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Abstract In this paper, we study the problems of enumerating cuts of a graph by
non-decreasing weights. There are four problems, depending on whether the graph
is directed or undirected, and on whether we consider all cuts of the graph or only
s-t cuts for a given pair of vertices s, t . Efficient algorithms for these problems with
Õ(n2m) delay between two successive outputs have been known since 1992, due to
Vazirani and Yannakakis. In this paper, improved algorithms are presented. The de-
lays of the presented algorithms are O(nm log(n2/m)). Vazirani and Yannakakis’s
algorithms have been used as basic subroutines in the solutions of many problems.
Therefore, our improvement immediately reduces the running time of these solu-
tions. For example, for the minimum k-cut problem, the upper bound is immediately
reduced by a factor of Õ(n) for k = 3,4,5,6.

Keywords Algorithms · Graphs · Minimum cuts · Maximum flows · Suboptimal
cuts · Enumeration

1 Introduction

Let G = (V ,E) be an edge-weighted, directed or undirected graph, where V is the
vertex set and E is the edge set. Let n = |V | and m = |E|. A cut is a partition of
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the vertex set V into two non-empty disjoint subsets. The weight of a cut (X,Y ) is
the total weight of the edges that go from X to Y . Let s, t ∈ V be two vertices. An
s-t cut is a cut (X,Y ) such that s ∈ X and t ∈ Y . The minimum cut problem is to
find a cut of minimum weight and the minimum s-t cut problem is to find an s-t
cut of minimum weight. Efficient algorithms for these two problems have numer-
ous real-world applications such as generating traveling salesperson cutting planes,
parallel computing, clustering, VLSI design, and network reliability [1, 3, 8, 9]. The
most fundamental tool for solving the minimum cut and the minimum s-t cut prob-
lems is the maximum flow computation. For the computation, Goldberg and Tar-
jan [6] had an O(nm log(n2/m))-time algorithm and King, Rao, and Tarjan [18]
had an O(nm logm/n logn n)-time algorithm. As a consequence of the well-known
maximum-flow minimum-cut theorem [1], the minimum s-t cut problem can be
solved in Õ(nm) time, where Õ(f ) denotes O(f logc f ) for some constant c. For the
minimum cut problem, Hao and Orlin [9] had an O(nm log(n2/m))-time algorithm.
For undirected graphs, better results for the minimum cut problem are known. Nag-
amochi and Ibaraki [20] gave an O(nm + n2 logn)-time algorithm and Karger [15]
gave an O(m log3 n)-time randomized algorithm.

In many important applications, such as the all terminal network reliability prob-
lem, the vertex packing problem, and the maximum closure problem, finding all min-
imum cuts or nearly minimum cuts might be more useful than finding one minimum
cut [4, 5, 17, 26]. For both directed and undirected graphs, the number of mini-
mum s-t cuts can be exponential [26]. Picard and Queyranne [26] showed that af-
ter a maximum flow computation, all minimum s-t cuts of a directed or undirected
graph can be enumerated with O(n) delay between two successive outputs. For di-
rected graphs, the number of minimum cuts can also be exponential [28]. It is easy
to extend Picard and Queyranne’s algorithm in [26] to enumerate all minimum cuts
of a directed graph. Dinits, Karzanov, and Lomonosov [4] showed that the number
of minimum cuts of an undirected graph is O(n2). For the problem of finding all
minimum cuts of an undirected graph, Nagamochi, Nakamura, and Ishii [25] had an
O(nm + n2 logn) time algorithm, and Karger [15] had an O(n2 logn)-time random-
ized algorithm. An α-minimum cut is a cut of weight at most α times the minimum,
where α ≥ 1 is a constant. Karger [15] showed that the number of α-minimal cuts of
an undirected graph is O(n�2α�). For the problem of finding all α-minimal cuts of an
undirected graph, Nagamochi, Nishimura, and Ibaraki [23] had an O(nm+ n�2α�m)-
time algorithm, and Karger and Stein [16] had an O(n2α log2 n)-time randomized
algorithm.

Vazirani and Yannakakis [28] introduced the problems of enumerating cuts of a
graph by non-decreasing weights. There are four problems, depending on whether
the graph is directed or undirected, and on whether we consider all cuts of the graph
or only s-t cuts for a given pair of vertices s, t . These enumeration problems were mo-
tivated by an application in studying the reliability and connectivity of networks [28].
For each of the problems, Vazirani and Yannakakis gave an efficient algorithm that
requires at most n − 1 maximum flow computations between two successive out-
puts. Since a maximum flow computation can be done in Õ(nm) time, the delays
of their algorithms are Õ(n2m). In this paper, for each of the enumeration prob-
lems, an improved algorithm is presented. The delays of the presented algorithms
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are O(nm log(n2/m)). Our algorithms have the same schema as Vazirani and Yan-
nakakis’s algorithms. Our improvement is based on a delicate application of Hao
and Orlin’s minimum cut algorithm to their framework. Vazirani and Yannakakis’s
algorithms have been used as basic subroutines in the solutions of many problems.
Therefore, our improvement reduces the running time of these solutions. For exam-
ple, for the minimum k-cut problem, the upper bound is immediately reduced by a
factor of Õ(n) for k = 3,4,5,6.

The rest of this paper is organized as follows. Notation and preliminaries are given
in the next section. In Sect. 3, we review Vazirani and Yannakakis’s algorithm for the
problem of enumerating all cuts of a directed graph. In Sect. 4, an improved algorithm
is presented for the same problem. In Sect. 5, we show how to modify the algorithm
in Sect. 4 so as to solve the other three problems. In Sect. 6, we describe existing
algorithms whose running time can be immediately reduced by our enumeration al-
gorithms. Finally, in Sect. 7, we conclude this paper.

2 Preliminaries

Let G = (V ,E) be a directed or undirected graph, where V is the vertex set and E is
the edge set. Let n = |V | and m = |E|. Each edge (u, v) ∈ E has a nonnegative real
weight w(u,v). A cut of G is a partition of the vertices into two non-empty subsets
X and Y . For any cut (X,Y ), we say that the vertices in X are on the source side
and the vertices in Y are on the sink side. Let C(G) be the set of cuts of G. If G is
directed, the weight of a cut (X,Y ) is the total weight of the edges going from X to Y ;
otherwise, it is the total weight of the edges having one end vertex in X and the other
in Y . A minimum cut of G is a cut of minimum weight. As an illustrative example,
consider the undirected graph in Fig. 1. In this example, ({v1, v2, v4, v5}, {v3, v6, v7})
is a minimum cut and its weight is 9. For convenience, in this paper, we usually omit
set braces around singletons, writing, for example, v instead of {v}.

Let S,T be two disjoint subsets of V . An S-T cut is a cut (X,Y ) such that S ⊆ X

and T ⊆ Y . A minimum S-T cut is an S-T cut of minimum weight. The partially
specified cut set with respect to (S,T ) is defined as P(S,T ) = {(X,Y )|(X,Y ) is an
S-T cut of G}. Let m(S,T ) be a minimum cut in P(S,T ). By definition, m(S,T ) is
just a minimum S-T cut of G. If S and T are non-empty, a minimum S-T cut can be
found by a maximum flow computation. Thus, we have the following.

Lemma 1 [1] Let S,T be two disjoint subsets of V . If S,T are non-empty, a mini-
mum S-T cut can be found by a maximum flow computation.

Fig. 1 A minimum cut of an
undirected graph G
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3 Vazirani and Yannakakis’s Algorithm for Enumerating All Cuts of a
Directed Graph

In this section, we review Vazirani and Yannakakis’s algorithm for enumerating all
cuts of a directed graph G = (V ,E).

The vertices in V are numbered from 1 to n. Each cut (X,Y ) of G is represented
by an n-bit binary string b1b2 . . . bn as follows: bi = 0 if and only if vertex i ∈ X.
Consider a complete binary tree of height n. (See Fig. 2 for an example of n = 4.)
Its leaves are named in the standard way by binary strings of length n, internal nodes
at depth k ≥ 1 are named by binary strings of length k, and root is named by the
empty string ε. The root represents the cut set C(G); and, each node v = b1b2 . . . bk

represents the partially specified cut set P(S,T ), where S = {i | bi = 0,1 ≤ i ≤ k}
and T = {i | bi = 1,1 ≤ i ≤ k}. For each internal node v, let P(v) denote the partially
specified cut set represented by v and let m(v) denote the minimum cut in P(v). Let
v = b1b2 . . . bi be a node and l = b1b2 . . . bibi+1 . . . bn be a leaf in the subtree rooted
at v. For i < k ≤ n, we call b1b2 . . . bk−1bk an immediate child of the path from v to l.
An illustration is given in Fig. 2, in which n = 4, v = 1, l = 1011, and the immediate
children of the path from v to l are 11, 100, and 1010. Clearly, the partially specified
cut sets represented by the immediate children of the path from v to l form a partition
of P(v) − {l}.

Vazirani and Yannakakis’s algorithm is as follows. A heap � is used to store a set
of partially specified cut sets P(v), using m(v) as keys. In the course of the algorithm,
all P(v) in � form a partition of the cuts which have not been output. Initially, �

contains only P(ε), which is just the cut set C(G). At each step, we extract a partially
specified cut set, say P(v), from �, and output m(v). Then, for each immediate child
u on the path from v to m(v), we compute m(u) and then insert P(u) into �. The
partially specified cut sets represented by the immediate children of the path from v

to m(v) form a partition of P(v) − {m(v)}. Therefore, m(v) is excluded from further
consideration.

Let xk be the sequence of x repeated k times, where x is 0 or 1. For example,
15 = 11111. Vazirani and Yannakakis’s algorithm is formally described as follows.

Algorithm 1 (Enumeration_Vazirani_Yannakakis)

Input: a directed graph G = (V ,E)

Output: all cuts of G in the order of non-decreasing weights

Fig. 2 Immediate children
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begin

1. for k ← 1 to n − 1 do compute m(0k) and m(1k)

2. � ← {(P (ε),m(ε))} / ∗ P(ε) = C(G),m(ε) is the minimum cut of G

3. while � 
= ∅ do
4. begin
5. (P(v),m(v)) ← the element in � with minimum m(v)

6. �∗ ← {(P (u),m(u))|u is an immediate child on the path from v to m(v)}
7. � ← � − (P (v),m(v)) ∪ �∗ /∗ delete P(v) and insert a partition of

P(v) − m(v)

8. output (m(v))

9. end

end

Lines 1 and 2 are initialization steps. The computation of m(0k) in line 1 is done
as follows. First, by using n − 1 maximum flow computations, we compute ci as a
minimum {1,2, . . . , i} − {i + 1} cut for 1 ≤ i < n. Then, we compute each m(0k) as
the minimum cut in {ck, ck+1, . . . , cn−1}. The computation of m(1k) in line 1 is done
similarly. Since m(ε) can be computed as the smaller one in {m(0),m(1)}, line 2
requires O(1) time. Therefore, the initialization steps require 2n − 2 maximum flow
computations. The delay between two successive outputs is analyzed as follows. The
computation of all m(u) in line 6 is the bottleneck. For each u, if u = 0k or u = 1k for
some integer k,m(u) was found in line 1; otherwise, according to Lemma 1, it can be
computed by using a maximum flow computation. Since |�∗| ≤ n−1, line 6 requires
at most n − 1 maximum flow computations. Each maximum flow computation can
be done in Õ(nm) time [6, 18]. Thus, we have the following.

Theorem 1 [28] The cuts of a directed graph can be enumerated in the order of
non-decreasing weights with Õ(n2m) time delay between two successive outputs.

4 An Improved Algorithm for Enumerating All Cuts of a Directed Graph

In this section, an improved algorithm is proposed for enumerating all cuts of a di-
rected graph. The delay between two successive outputs is O(nm log(n2/m)).

4.1 The Algorithm

Let S,T ⊂ V be two disjoint subsets. By using a vertex v in V − (S ∪ T ), we can
partition the partially specified cut set P(S,T ) into two disjoint subsets P(S ∪ v,T )

and P(S,T ∪ v). Let U = (v1, v2, . . . , vn−|S|−|T |) be a sequence of the vertices
in V − (S ∪ T ). The extract-min partition of P(S,T ) induced by U is a parti-
tion obtained as follows: First, partition P(S,T ) into two subsets by using the ver-
tex v1; then, recursively, partition the subset containing m(S,T ) by the sequence
(v2, v3, . . . , vn−|S|−|T |). An illustration is given in Fig. 3. Note that in an extract-min
partition of P(S,T ), the subset containing m(S,T ) is a singleton.
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Fig. 3 Extract-min partition, where U = (v1, v2, v3) and m(S,T ) = (S ∪ v2, T ∪ {v1, v3})

Fig. 4 A basic partition of P(s,∅), where U = {v1, v2, v3, v4}

Select an arbitrary vertex s. We partition C(G) into two subsets P(s,∅) and
P(∅, s). Let U = (v1, v2, . . . , vn−1) be a sequence of the vertices in V − s. The ba-
sic partition of P(s,∅) induced by U is {P({s, v1, . . . , vi−1}, vi)|1 ≤ i ≤ n − 1}. An
illustration is given in Fig. 4. Note that every subset in a basic partition of P(s,∅)

contains non-empty source and sink sides. Similarly, define the basic partition of
P(∅, s) induced by U as {P(vi, {s, v1, . . . , vi−1}) | 1 ≤ i ≤ n − 1}.
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We are ready to present a high-level description of our enumeration algorithm. It
is as follows.

Algorithm 2 (Enumeration_Directed_Graph)

Input: a directed graph G = (V ,E)

Output: all cuts of G in the order of non-decreasing weights
begin

1. � ← Basic_Partition /* � stores a partition of C(G) and the minimum cuts
of its subsets

2. while � 
= ∅ do
3. begin
4. (P (S,T ),m(S,T )) ← the element in � with minimum m(S,T )

5. �∗ ← Extract_Min_Partition (P(S,T ),m(S,T ))

6. � ← � − (P (S,T ),m(S,T )) ∪ �∗
7. output (m(S,T ))

8. end

end

Procedure (Basic_Partition)
begin

1. B0 ← a basic partition of P(s,∅)

2. B1 ← a basic partition of P(∅, s)

3. for each P(S,T ) ∈ B0 ∪ B1 do compute m(S,T )

4. return ({(P (S,T ),m(S,T ))|P(S,T ) ∈ B0 ∪ B1})
end

Procedure (Extract_Min_Partition (P (S,T ),m(S,T )))
begin

1. R ← an extract-min partition of P(S,T )

2. for each P(S′, T ′) ∈ R − {m(S,T )} do compute m(S′, T ′)
3. return ({(P(S′, T ′),m(S′, T ′))|P(S′, T ′) ∈ R − {m(S,T )})

end

Algorithm 2 uses the same schema as Algorithm 1. There are two differences.
First, to avoid handling partially specified cut sets with empty source or sink sides, in
Algorithm 2, the partially specified cut sets initially stored in � are elements of basic
partitions of P(s,∅) and P(∅, s). Such an initialization is done by Basic_Partition.
The second difference is as follows. Let P(S,T ) be the partially specified cut set in
� with minimum m(S,T ) at some iteration of Algorithms 1 or 2. Algorithm 1 num-
bers the vertices from 1 to n at the beginning. To extract the minimum cut m(S,T )

from P(S,T ), Algorithm 1 partitions P(S,T ) by using the vertices in V − (S ∪ T )

increasingly. That is, the sequence of vertices used to partition P(S,T ) is predeter-
mined. Therefore, in Algorithm 1, it always holds that S ∪ T = {1,2, . . . , |S| + |T |}.
Algorithm 2 does not predetermine the sequence. Instead, it allows the flexibility of
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partitioning P(S,T ) by using any sequence of the vertices in V − (S ∪ T ), which is
done in line 1 of Extract_Min_Partition. Our improvement is based on such flexibil-
ity.

The detailed implementations of Basic_Partition and Extract_Min_Partition are
described, respectively, in Sects. 4.2 and 4.3.

4.2 Basic Partition

We only describe the computation of B0 and the minimum cuts in its subsets. The
computation of B1 and the minimum cuts in its subsets is done similarly. A simple
implementation is as follows: Select an arbitrary sequence U of the vertices in V − s,
compute B0 as the basic partition of P(s,∅) induced by U , and then compute the
minimum cut of each subset by a maximum flow computation. Such an implementa-
tion needs n− 1 maximum flow computations and thus requires Õ(n2m) time. In the
following, an O(nm log(n2/m))-time implementation is presented.

The trick here is to select a specific sequence U . Hao and Orlin [9] had an effi-
cient algorithm for computing a minimum cut of a directed graph. We determine the
sequence U by making use of their algorithm. Given a directed graph G = (V ,E),
Hao and Orlin’s algorithm finds a minimum cut as follows. First, select an arbitrary
vertex s ∈ V . Then, compute a minimum cut C1 subject to the condition that s is on
the source side. And then, compute a minimum cut C2 subject to the condition that
s is on the sink side. Clearly, the smaller one of C1 and C2 is a minimum cut. The
cut C2 is computed by firstly reversing each edge of G and then applying the same
computation of C1. The computation of C1 is described below. First, set S = {s} and
T = V − s. Then, repeatedly, select a sink vertex t ∈ T , compute a minimum S-t cut,
and then transfer t from T to S until T is empty. In total, n − 1 cuts are computed.
Hao and Orlin showed that the n−1 cuts can be computed in O(nm log(n2/m)) time
if we select the sink vertex t in a careful way at each time. Finally, C1 is computed as
the smallest one of the n − 1 cuts. Let (v1, v2, . . . , vn−1) be the sequence of vertices
in the order of their selection as sinks during the above computation of C1. Then, the
ith cut being computed is a minimum {s, v1, . . . , vi−1}-vi cut of G,1 ≤ i ≤ n − 1.
Therefore, we have the following.

Lemma 2 [9] Given a directed graph G = (V ,E) and a vertex s ∈ V , we can de-
termine a sequence (v1, v2, . . . , vn−1) of the vertices in V − s and compute the cuts
m({s, v1, . . . , vi−1}, vi), i = 1,2, . . . , n − 1, in O(nm log(n2/m)) time.

According to Lemma 2, we implement the computation of B0 as follows. First, by
using Hao and Orlin’s algorithm, we determine a sequence U = (v1, v2, . . . , vn−1) of
the vertices in V −s and compute the cuts m({s, v1, . . . , vi−1}, vi), i = 1,2, . . . , n−1.
Then, we compute B0 as the basic partition of P(s,∅) induced by U . The overall time
complexity is O(nm log(n2/m)). Therefore, we have the following.

Lemma 3 Basic_Partition can be implemented in O(nm log(n2/m)) time.
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4.3 Extract-min Partition

It is easy to implement Extract_Min_Partition in O(n2m log(n2/m)) time by using
maximum flow computations. In this section, we show that Extract_Min_Partition
can be efficiently implemented in O(nm log(n2/m)) time. We need some more no-
tation and definitions. A flow network G = (V ,E) is a directed graph in which
each edge (u, v) ∈ E has a nonnegative real weight w(u,v). For convenience, if
(u, v) 
∈ E, we assume that w(u,v) = 0. Let S,T ⊂ V be two disjoint non-empty
subsets. An S-T flow in G is a real-valued function f : V × V → R that satisfies the
following three properties [1]:

• Capacity constraint: f (u, v) ≤ w(u,v) for all u,v ∈ V .
• Antisymmetry constraint: f (u, v) = −f (v,u) for all u,v ∈ V .
• Flow conservation constraint:

∑
v∈V f (u, v) = 0 for all u ∈ V − (S ∪ T ).

The quantity f (u, v) is called the flow from vertex u to vertex v. The value of a flow
f is the total flow out from the vertices in S. Given a flow f and a pair of vertices
u,v ∈ V , the residual weight of (u,v) is given by rf (u, v) = w(u,v) − f (u, v).
Given a flow network G and a flow f , the residual network of G induced by f is
Gf = (V ,Ef ), where Ef is the set of edges (u, v) in E with rf (u, v) > 0. The
weight of each (u, v) ∈ Ef is rf (u, v). According to the well-known maximum-flow
minimum-cut theorem, we have the following two lemmas.

Lemma 4 Let f be a maximum S-T flow and (X,Y ) be a minimum S-T cut. Then,
rf (u, v) = 0 for any u ∈ X and v ∈ Y .

Lemma 5 Let (X,Y ) be an S-T cut. If there is an S-T flow f such that rf (u, v) = 0
for any u ∈ X and v ∈ Y , then (X,Y ) is a minimum S-T cut.

From Lemmas 4 and 5, it is easy to conclude that following:

Lemma 6 Let f be a maximum S-T flow and (X,Y ) be a minimum S-T cut. Then,
for any two subsets S′, T ′ ⊂ V such that S ⊆ S′ ⊆ X and T ⊆ T ′ ⊆ Y,f is a maxi-
mum S′-T ′ flow and (X,Y ) is a minimum S′-T ′ cut.

Our implementation of Extract_Min_Partition consists of two phases. Let P(S,T )

be the given partially specified cut set. Let m(S,T ) = (S∗, T ∗), q = |S∗ − S|, and
r = |T ∗ − T |. Phase 1 determines a sequence (s1, s2, . . . , sq) of the vertices in
S∗ − S, partitions P(S,T ) into q + 1 subsets P(S ∪ {s1, s2, . . . , si−1}, T ∪ si),
i = 1,2, . . . , q + 1, where sq+1 = ∅, and computes the minimum cut in each sub-
set. After Phase 1, the minimum cut (S∗, T ∗) is contained in the subset P(S ∪
{s1, s2, . . . , sq}, T ) = P(S∗, T ). Then, Phase 2 determines a sequence (t1, t2, . . . , tr )
of the vertices in T ∗ − T , further partitions the subset P(S∗, T ) into r + 1 subsets
P(S∗ ∪ ti , T ∪ {t1, t2, . . . , ti−1}), i = 1,2, . . . , r + 1, where tr+1 = ∅, and computes
the minimum cut in each subset. An illustration is given in Fig. 5.

We proceed to present the detailed implementation of Phase 1. For convenience,
we assume that S contains only a single vertex s and T contains only a single ver-
tex t . In case this is not true, we simply contract S and T , respectively, to create two
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Fig. 5 Extract_Min_Partition, where (S∗, T ∗) = (S ∪ {s1, s2, s3), T ∪ {t1, t2})

new vertices. Our problem is the following: Given G,s, t , and m(s, t) = (S∗, T ∗),
determine a sequence (s1, s2, . . . , sq) of the vertices in S∗ − s and compute the min-
imum cuts m(Si, {t, si}), i = 1,2, . . . , q , where Si = {s, s1, . . . , si−1}. Note that the
computation of m(Sq+1, t) is unnecessary, since m(Sq+1, t) = m(S∗, t) = (S∗, T ∗).
We solve the above problem as follows. First, compute f as a maximum s-t flow
in G. Next, obtain a graph G′ by removing T ∗ from the residual network Gf . The
vertex set of G′ is S∗. Then, by using Hao and Orlin’s algorithm, determine a se-
quence (s1, s2, . . . , sq) of the vertices in S∗ − s and compute a minimum Si -si cut,
denoted by (αi, βi), of G′ for 1 ≤ i ≤ q , where Si = {s, s1, . . . , si−1}. Finally, com-
pute m(Si, {t, si}) = (αi, T

∗ ∪ βi) for 1 ≤ i ≤ q . The overall time complexity is
O(nm log(n2/m)). The correctness is ensured by the following lemma.

Lemma 7 Let s, t ∈ V be two vertices, (S∗, T ∗) be a minimum s-t cut of G, and f

be a maximum s-t flow in G. Let G′ be the graph obtained by removing T ∗ from the
residual network Gf . Let S1, S2 ⊂ S∗ be two disjoint non-empty subsets such that
s ∈ S1, and let (α,β) be a minimum S1-S2 cut of G′. Then, (α,T ∗ ∪ β) is a minimum
S1-(t ∪ S2) cut of G.

Proof According to Lemma 5, we prove this lemma by showing that there is an
S1-(t ∪ S2) flow f ∗ in G such that w(u,v) − f ∗(u, v) = 0 for any u ∈ α and
v ∈ T ∗ ∪ β . For any u,v ∈ S∗, let w′(u, v) be the weight of the edge (u, v) in G′,
which by definition is w(u,v) − f (u, v). Let f ′ be a maximum S1-S2 flow in G′.
Let f ∗ be the flow sum of f and f ′, which is defined by

f ∗(u, v) =
{

f (u, v) if u ∈ T ∗ or v ∈ T ∗,
f (u, v) + f ′(u, v) otherwise

for all u,v ∈ V . Since f is an s-t flow in G,f ’ is an S1-S2 flow in G′, s ∈ S1,
and w′(u, v) = w(u,v) − f (u, v) for all u,v ∈ S∗, it is easy to conclude that f ∗
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Fig. 6 An illustration for
Lemma 6

satisfies the three properties of an S1-(t ∪ S2) flow. In the following, we show that
w(u,v) − f ∗(u, v) = 0 for any u ∈ α and v ∈ T ∗ ∪ β .

Consider a fixed pair of u ∈ α and v ∈ T ∗ ∪ β . (See Fig. 6.) Note that (α,β) is a
partition of S∗ and thus u ∈ S∗. Since (S∗, T ∗) is a minimum s-t cut of G and f is
a maximum s-t flow in G, by Lemma 4, w(x,y) − f (x, y) = 0 for any x ∈ S∗ and
y ∈ T ∗. Thus, if v ∈ T ∗,w(u, v) − f ∗(u, v) = w(u,v) − f (u, v) = 0. (See Case 1 of
Fig. 6(b).) Assume that v ∈ β . (See Case 2 of Fig. 6(b).) Since (α,β) is a minimum
S1-S2 cut of G′ and f ′ is a maximum S1-S2 flow in G′, w′(u, v) − f ′(u, v) = 0.
Thus, w(u,v)−f ∗(u, v) = w(u,v)−(f (u, v)+f ′(u, v)) = w′(u, v)−f ′(u, v) = 0,
which completes the proof of this lemma. �

Next, consider the implementation of Phase 2. Our problem is the following:
Given G,S∗, T , and m(S∗, T ) = (S∗, T ∗), determine a sequence (t1, t2, . . . , tr ) of
the vertices in T ∗ − T and compute the minimum cuts m(S∗ ∪ ti , Ti), i = 1,2, . . . , r ,
where Ti = T ∪ {t1, . . . , ti−1}. Let H be the transpose of G, which is obtained from
G by reversing each edge. For any two non-empty disjoint subsets A,B of V , let
mH (A,B) denote the minimum A-B cut in H . Clearly, for any cut (X,Y ) in G,
its weight is the same as the weight of (Y,X) in H . Thus, our problem can be
restated as follows: Given H,T ,S∗, and mH (T ,S∗) = (T ∗, S∗), determine a se-
quence (t1, t2, . . . , tr ) of the vertices in T ∗ − T and compute the minimum cuts
mH (Ti, S

∗ ∪ ti ), i = 1,2, . . . , r , where Ti = T ∪ {t1, . . . , ti−1}. This is a special case
of the problem in Phase 1, in which the sink side of the given mH (T ,S∗) is the same
as the parameter S∗. Therefore, Phase 2 can be implemented in O(nm log(n2/m))

time as follows. First, obtain a directed graph H ′ from the residual network Gf by
removing S∗ and then reversing each edge. Recall that f is the S-T maximum flow
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computed in Phase 1. Let g be the flow defined by g(u, v) = f (v,u) for any u,v ∈ V .
Clearly, H ′ is the graph obtained by removing S∗ from the residual network Hg . Note
that since H is the transpose of G and by Lemma 6 f is a maximum S∗-T flow in
G, it is easy to conclude that g is a maximum T -S∗ flow in H . Next, by using Hao
and Orlin’s algorithm, determine a sequence (t1, t2, . . . , tr ) of the vertices in T ∗ − T

and compute a minimum Ti -ti cut, denoted by (βi, αi), of H ′ for 1 ≤ i ≤ r , where
Ti = T ∪ {t1, . . . , ti−1}. Finally, compute m(S∗ ∪ ti , Ti) = (S∗ ∪αi,βi) for 1 ≤ i ≤ r .
We obtain the following:

Lemma 8 Extract_Min_Partition can be implemented in O(nm log(n2/m)) time.

Consequently, we have the following:

Theorem 2 The cuts of a directed graph can be enumerated in the order of non-
decreasing weights with O(nm log(n2/m)) time delay between two successive out-
puts.

5 Enumerating All Cuts of an Undirected Graph and All s-t Cuts of a Graph

We solve the problem of enumerating all cuts of an undirected graph G as follows.
Since G is undirected, two cuts (X,Y ) and (Y,X) are the same. To avoid encounter-
ing a cut twice, we firstly select an arbitrary vertex s and assume that s is always on
the source side. That is, we only consider the cuts in P(s,∅). Next, G is transformed
into a directed graph G′ by replacing each undirected edge (u, v) with two directed
edges (u, v) and (v,u), each having the same weight as the original edge. Clearly,
for any cut (X,Y ), its weights in G and in G′ are the same. Then, we enumerate the
cuts in P(s,∅) by applying Algorithm 2 to G′ with the following slight modification:
Basic_Partition only returns a basic partition of P(s,∅) and the minimum cuts in its
subsets.

Theorem 3 The cuts of an undirected graph can be enumerated in the order of non-
decreasing weights with O(nm log(n2/m)) time delay between two successive out-
puts.

Next, consider the problem of enumerating all s-t cuts of a directed graph for a
given pair of vertices s, t ∈ V . We do the enumeration by applying Algorithm 2 with
the following simple modification: Basic_Partition only returns (P (s, t),m(s, t)). We
obtain the following:

Theorem 4 The s-t cuts of a directed graph can be enumerated in the order of non-
decreasing weights with O(nm log(n2/m)) time delay between two successive out-
puts.

As indicated in [28], the problem of enumerating all s-t cuts of an undirected
graph can be treated as a special case of enumerating all s-t cuts of a directed graph



Algorithmica

by replacing each edge by two arcs with opposite directions. Therefore, we have the
following:

Theorem 5 The s-t cuts of an undirected graph can be enumerated in the order of
non-decreasing weights with O(nm log(n2/m)) time delay between two successive
outputs.

6 Applications

In this section, we describe existing algorithms whose running time can be immedi-
ately reduced by our enumeration algorithms.

Let G be an undirected graph and k ≥ 2 be an integer. A k-cut of G is a par-
tition of the vertex set V into k non-empty disjoint subsets. The definition of a
k-cut is a generalization of the definition of a cut. More specifically, a “cut” and
a “2-cut” refer to the same thing. The minimum k-cut problem is to find a k-cut
that minimizes the total weight of the edges whose endpoints are in different sub-
sets. Goldschmidt and Hochbaum [7] showed that the minimum k-cut problem is
NP-hard if k is part of the input and presented an O(nk2/2−3k/2+5m log(n2/m))-
time algorithm. Kamidoi, Yoshida, and Nagamochi [12] had an O(n(4+o(1))k)-time
algorithm for the minimum k-cut problem. Very recently, Thorup [27] improved
this upper bound to Õ(n2k). In several special cases, better results are known. For
k = 3, Kapoor [13] and Kamidoi, Wakabayashi, and Yoshida [11] showed that the
problem can be solved in O(n4m log(n2/m)) time, Nagamochi and Ibaraki [21]
had an O(n3m log(n2/m))-time algorithm, and Burlet and Goldschmidt [2] had an
O(n3m + n4 logn)-time algorithm. For k = 4, Kamidoi, Wakabayashi, and Yoshida
[11] had an O(n5m log(n2/m))-time algorithm, and Nagamochi and Ibaraki [21] had
an O(n4m log(n2/m))-time algorithm. For k = 5 and 6, Nagamochi, Katayama, and
Ibaraki [24] showed that the problem can be solved in O(nkm log(n2/m)) time. For
k = 3,4,5, and 6, Levine [19] gave O(nk−2m log3 n)-time randomized algorithms.

Consider the minimum k-cut problem with k ≥ 3. If we can identify a component
X of a minimum k-cut, then the other k − 1 components can be computed by solv-
ing the minimum (k − 1)-cut problem on the subgraph induced by V − X. A set of
cuts is called a k-candidate set if it contains a cut (X,Y ) such that either X or Y is
a component of a minimum k-cut. For any j ≥ 1, let M(j) be the time required for
computing the smallest j cuts. For k = 3 and 4, Nagamochi and Ibaraki [21] gave the
following important result: a k-cut π and a set D of O(n) 2-cuts can be determined
in M(2n − 2) time such that either π is a minimum k-cut or D is a k-candidate set.
Later, as an extension of this work, Nagamochi, Katayama, and Ibaraki [24] further
showed that such k-cut π and set D can be determined in M(15n−60) time for k = 5
and 6. Given a k-candidate set D, a minimum k-cut can be found by simply applying
a minimum (k − 1)-cut algorithm 2|D| times. Let Tk be the time required for solving
the minimum k-cut problem. By using Vazirani and Yannakakis’s enumeration algo-
rithm, O(M(2n − 2)) = O(M(15n − 60)) = Õ(n3m). Therefore, for k = 3,4,5,6,
the minimum k-cut problem can be solved in

Tk = Õ(n3m) + O(n × Tk−1) = Õ(nkm + nk−2 × T2) = Õ(nkm)
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time [21, 24]. By using our enumeration algorithm, O(M(2n − 2)) = O(M(15n −
60)) = O(n2m log(n2/m)) and thus the following result is obtained.

Theorem 6 The minimum k-cut problem can be solved in O(nk−1m log(n2/m)) time
for k = 3,4,5,6.

Zhao, Nagamochi, and Ibaraki [29] had a simple approximation algorithm for the
minimum k-cut problem. The performance ratio is 2 − (3/k) for an odd k and is
2 − (3k − 4)/(k2 − k) for an even k. The algorithm first divides V into two compo-
nents by using a minimum 2-cut algorithm. Then, it repeatedly divides the compo-
nents into smaller components by applying a minimum 3-cut algorithm until there are
k components. At each iteration, the number of components increases by at least 2.
Thus, at most k/2 minimum 3-cut computations are required. By using the minimum
3-cut algorithm Zhao, Nagamochi, and Ibaraki [21], implemented their approxima-
tion algorithm in O(kn3m log(n2/m)) time. By using our result on the minimum
3-cut problem, the following is obtained.

Theorem 7 The approximation algorithm in [29] can be implemented in O(kn2m ×
log(n2/m)) time.

An ideal cut of a directed acyclic graph is a cut (X,Y ) such that there is no edges
directed from Y to X. Vazirani and Yannakakis [28] showed that the problem of enu-
merating the ideal cuts of a directed acyclic graph by their weights can be reduced in
O(m) time to the problem of enumerating the s-t cuts of a directed graph. Therefore,
we have the following:

Theorem 8 The ideal cuts of a directed acyclic graph can be enumerated in the order
of non-decreasing weights with O(nm log(n2/m)) time delay between two successive
outputs.

Given a network of n vertices, each of whose m links is assumed to fail indepen-
dently with some probability, the all-terminal network reliability problem is to deter-
mine the probability that the network becomes disconnected due to edge failures. This
problem is NP-complete [14]. Given an approximation ratio ε > 1, Karger [14] had an
approximation scheme that initially computes the smallest O(n2α) cuts, where α =
O(1 − log ε/ logn), and then determines a solution based on the cuts. By using Vazi-
rani and Yannakakis’s algorithm, the running time is Õ(mn2+2α + (n/ε)2O(− logn ε)

).
By using our result, the following is obtained.

Theorem 9 The approximation scheme in [14] can be implemented in O(mn1+2α ×
log(n2/m) + (n/ε)2O(− logn ε)

) time.

7 Concluding Remarks

In this paper, improved algorithms were proposed for the problems of enumerating
the cuts of a graph by their weights. The presented algorithms use the same schema
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as Vazirani and Yannakakis’s enumeration algorithms. To enumerate a cut, their al-
gorithms require at most n − 1 maximum flow computations, and ours require one
maximum flow computation and two invocations of Hao and Orlin’s minimum cut
algorithm. Note that our two invocations of Hao and Orlin’s algorithm are applied,
respectively, to two disjoint parts of the input graph.

Theoretically, our algorithms reduced the asymptotic upper bound for enumer-
ating a cut by a factor of Õ(n). In the following, the practical performance of our
algorithms is discussed. The practical running time of minimum cut algorithms have
been extensively studied in the literature [3, 10, 22]. In order to perform meaningful
comparisons, Nagamochi, Ono, and Ibaraki [22] had developed a problem generator
and six families of graph instances for evaluating and comparing the performance of
minimum cut codes. Nagamochi and Ibaraki’s [20] had an O(nm + n2 logn)-time
minimum cut algorithm. Nagamochi, Ono, and Ibaraki’s experimental results in [22]
indicated that the running time of Nagamochi and Ibaraki’s algorithm is comparable
to 2–3 executions of a maximum flow algorithm. Based on the same test families,
Jünger and Rinaldi’s [10] had a comparison between Nagamochi and Ibaraki’s al-
gorithm and Hao and Orlin’s algorithm. According to their experimental results, on
average, the running time of Hao and Orlin’s algorithm is less than twice the run-
ning time of Nagamochi and Ibaraki’s algorithm. Thus, on the test families developed
in [22], the practical running time of Hao and Orlin’s algorithm is about 4–6 times the
running time of a maximum flow algorithm. And therefore, the improvement of our
enumeration algorithms is significant from both the theoretical and practical points
of view.
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