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Abstract

Vertex coloring is a central concept in graph theory and an important symmetry-breaking
primitive in distributed computing. Whereas degree-∆ graphs may require palettes of ∆+1 colors
in the worst case, it is well known that the chromatic number of many natural graph classes can be
much smaller. In this paper we give new distributed algorithms to find (∆/k)-coloring in graphs
of girth 4 (triangle-free graphs), girth 5, and trees. The parameter k can be at most ( 1

4−o(1)) ln ∆
in triangle-free graphs and at most (1 − o(1)) ln ∆ in girth-5 graphs and trees, where o(1) is a
function of ∆. Specifically, for ∆ sufficiently large we can find such a coloring in O(k + log∗ n)
time. Moreover, for any ∆ we can compute such colorings in roughly logarithmic time for triangle-
free and girth-5 graphs, and in O(log ∆+log∆ log n) time on trees. As a byproduct, our algorithm
shows that the chromatic number of triangle-free graphs is at most (4 + o(1)) ∆

ln ∆ , which improves

on Jamall’s recent bound of (67+o(1)) ∆
ln ∆ . Finally, we show that (∆+1)-coloring for triangle-free

graphs can be obtained in sublogarithmic time for any ∆.

1 Introduction

A proper t-coloring of a graph G = (V,E) is an assignment from V to {1, . . . , t} (colors) such that no
edge is monochromatic, or equivalently, each color class is an independent set. The chromatic number
χ(G) is the minimum number of colors needed to properly color G. Let ∆ be the maximum degree
of the graph. It is easy to see that sometimes ∆ + 1 colors are necessary, e.g., on an odd cycle or a
(∆ + 1)-clique. Brooks’ celebrated theorem [9] states that these are the only such examples and that
every other graph can be ∆-colored. Vizing [36] asked whether Brooks’ Theorem can be improved
for triangle-free graphs. In the 1970s Borodin and Kostochka [8], Catlin [10], and Lawrence [25]
independently proved that χ(G) ≤ 3

4(∆ + 2) for triangle-free G, and Kostochka (see [18]) improved
this bound to χ(G) ≤ 2

3(∆ + 2).

Existential Bounds. Better asymptotic bounds were achieved in the 1990s by using an iterated
approach, often called the “Rödl Nibble”. The idea is to color a very small fraction of the graph in
a sequence of rounds, where after each round some property is guaranteed to hold with some small
non-zero probability. Kim [20] proved that in any girth-5 graph G, χ(G) ≤ (1 + o(1)) ∆

ln ∆ . This
bound is optimal to within a factor-2 under any lower bound on girth. (Constructions of Kostochka
and Masurova [22] and Bollobás [7] show that there is a graph G of arbitrarily large girth and
χ(G) > ∆

2 ln ∆ .) Building on [20], Johansson (see [28]) proved that χ(G) = O( ∆
ln ∆) for any triangle-

free (girth-4) graph G.1 In relatively recent work Jamall [15] proved that the chromatic number of
triangle-free graphs is at most (67 + o(1)) ∆

ln ∆ .

∗This work is supported by NSF CAREER grant CCF-0746673, NSF grants CCF-1217338 and CNS-1318294, and a
grant from the US-Israel Binational Science Foundation.

1We are not aware of any extant copy of Johansson’s manuscript. It is often cited as a DIMACS Technical Report,
though no such report exists. Molloy and Reed [28] reproduced a variant of Johansson’s proof showing that χ(G) ≤
160 ∆

ln ∆
for triangle-free G.



Algorithms. We assume the LOCALmodel [31] of distributed computation. In this model, vertices
host processors which operate in synchronized rounds; vertices can communicate one arbitrarily large
message across each edge in each round; local computation is free; time is measured by the number
of rounds. Grable and Panconesi [13] gave a distributed algorithm that ∆/k-colors a girth-5 graph
in O(log n) time, where ∆ > log1+ε n and k ≤ δ ln ∆ for any ε > 0 and some δ < 1 depending
on ε.2 Jamall [16] showed a sequential algorithm for O(∆/ ln ∆)-coloring a triangle-free graph in
O(n∆2 ln ∆) time, for any ε > 0 and ∆ > log1+ε n.

Note that there are two gaps between the existential [15, 20, 28] and algorithmic results [13, 16].
The algorithmic results use a constant factor more colors than necessary (compared to the existential
bounds) and they only work when ∆ ≥ log1+Ω(1) n is sufficiently large, whereas the existential bounds
hold for all ∆.

New Results. We give new distributed algorithms for (∆/k)-coloring triangle-free graphs that si-
multaneously improve on both the existential and algorithmic results of [13,15,16,28]. Our algorithms
run in log1+o(1) n time for all ∆ and in O(k+log∗ n) time for ∆ sufficiently large. Moreover, we prove
that the chromatic number of triangle-free graphs is (4 + o(1)) ∆

ln ∆ .

Theorem 1. Fix a constant ε > 0. Let ∆ be the maximum degree of a triangle-free graph G, assumed
to be at least some ∆ε depending on ε. Let k ≥ 1 be a parameter such that k ≤ 1

4(1− 2ε) ln ∆. Then

G can be (∆/k)-colored, in time O(k + log∗∆) if ∆1− 4k
ln ∆
−ε = Ω(lnn), and, for any ∆, in time on

the order of

(k + log∗∆) · lnn

∆1− 4k
ln ∆
−ε
· exp(O(

√
ln lnn)) = (lnn)1+O(1/

√
ln lnn) = ln1+o(1) n.

The first time bound comes from an O(k+log∗∆)-round procedure, each round of which succeeds
with probability 1 − 1/poly(n). However, as ∆ decreases the probability of failure tends to 1. To
enforce that each step succeeds with high probability we use a version of the Local Lemma algorithm
of Moser and Tardos [29] optimized for the parameters of our problem.

Theorem 1 has a complex tradeoff between the minimum threshold ∆ε, the number of colors, and
the threshold for ∆ beyond which the running time becomes O(log∗ n). The following corollaries
highlight some interesting parameterizations of Theorem 1.

Collorary 1. The chromatic number of triangle-free graphs with maximum degree ∆ is at most
(4 + o(1))∆/ ln ∆.

Proof. Fix an ε′ > 0 and choose k = ln ∆/(4 + ε′) and ε = ε′/(2(4 + ε′)). Theorem 1 states that for ∆
at least some ∆ε′ , the chromatic number is at most (4 + ε′)∆/ ln ∆. Now let ε′ = o(1) be a function
of ∆ tending slowly to zero. (The running time of the algorithm that finds such a coloring is never

more than (lnn)1+O(1/
√

ln lnn).)

Collorary 2. Fix any δ > 0. A (4 + δ)∆/ ln ∆-coloring of an n-vertex triangle-free graph can be
computed in O(log∗ n) time, provided ∆ > (lnn)(4+δ)δ−1+o(1) and n is sufficiently large.

Proof. Set k = ln ∆/(4 + δ) and let ε = o(1) tend slowly to zero as a function of n. If we have

∆1−4k/ ln ∆−ε = ∆1−4/(4+δ)−ε = ∆δ(4+δ)−1−ε = Ω(lnn),

or equivalently, ∆ > (lnn)δ
−1(4+δ)+o(1), then a (4 + δ)∆/ ln ∆-coloring can be computed in O(log∗ n)

time. (For n sufficiently large and ε tending slowly enough to zero, the lower bound on ∆ also implies
∆ > ∆ε.)

2They claimed that their algorithm could also be extended to triangle-free graphs. Jamall [16] pointed out a flaw in
their argument.
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Theorem 1 also shows that some colorings can be computed in sublogarithmic time, even when ∆
is too small to achieve an O(log∗ n) running time.

Collorary 3. Fix a δ > 0 and let k = o(ln ∆). If ∆ > (lnn)δ, a (∆/k)-coloring can be computed in
(lnn)1−δ+o(1) time.

Proof. Let ε = o(1) tend slowly to zero as a function of n. The running time of Theorem 1 is on the
order of

(k + log∗∆) · lnn

∆1− 4k
ln ∆
−ε
· exp(O(

√
ln lnn)) = O

(
lnn

∆1−o(1)−ε−ln k/ ln ∆
· exp(O(

√
log logn))

)
= O

(
(lnn)1−δ+o(1)+O(1/

√
ln lnn)

)
= (lnn)1−δ+o(1).

Our result also extends to girth-5 graphs with ∆1− 4k
ln ∆
−ε replaced with ∆1− k

ln ∆
−ε. This change

allows us to (1 + o(1))∆/ ln ∆-color such graphs. Our algorithm can clearly be applied to trees (girth
∞). Elkin [12] noted that with Bollobás’s construction [7], Linial’s lower bound [26] on coloring trees
can be strengthened to show that it is impossible to o(∆/ ln ∆)-color a tree in o(log∆ n) time. We
prove that it is possible to (1 + o(1))∆/ ln ∆-color a tree in O(log ∆ + log∆ log n) time. Also, we
show that a (∆ + 1)-coloring in triangle-free graphs can be computed in exp(O(

√
log logn)) time,

independent of ∆, which improves on the O(log ∆ + exp(O(
√

log log n))) time algorithm for arbitrary
graphs [5].

A graph is called k-list-colorable if it can be properly colored when each vertex is assigned an
arbitrary palette of k colors. Without modifying the analysis, our results extend to list-coloring
triangle-free graphs and girth-5 graphs. E.g., we can (4 + o(1)) ∆

ln ∆ -list-color triangle-free graphs.
However, our result for trees cannot be extended for list-coloring. The algorithm reserves a set of
colors for a final coloring phase and these colors must be in the palette of every vertex. In list-coloring,
it is not possible to reserve such a set of colors.

Technical Overview. Intuitively, consider a vertex u with its ∆ neighbors. Suppose that each of
its neighbor is colored with a color from one of the c∆/ ln ∆ colors uniformly at random, where c
is a constant. Then the expected number of colors not chosen by u’s neighbor is at least ∆ · (1 −
1/(c∆/ ln ∆))∆ ∼ ∆1−1/c. When c > 1, it is likely there will be colors not colored by u’s neighbor
and so u can be colored by using one of them. The iterated approaches of [13, 15, 20, 28] manage to
achieve the situation where each vertex in the neighborhood is colored uniformly at random, round
by round.

In the iterated approaches, each vertex u maintains a palette, which consists of the colors that have
not been selected by its neighbors. To obtain a t-coloring, each palette consists of colors {1, . . . , t}
initially. In each round, each uncolored u tries to assign itself a color (or colors) from its palette, using
randomization to resolve the conflicts between itself and the neighbors. The c-degree of u is defined to
be the number of its neighbors whose palettes contain c. In Kim’s algorithm [20] for girth-5 graphs,
the properties maintained for each round are that the c-degrees are upper bounded and the palette
sizes are lower bounded. In girth-5 graphs the neighborhoods of the neighbors of u only intersect at
u and therefore have a negligible influence on each other, that is, whether c remains in one neighbor’s
palette has little influence on a different neighbor of u. Due to this independence one can bound the
c-degree after an iteration using standard concentration inequalities. In triangle-free graphs, however,
there is no guarantee of independence. If two neighbors of u have identical neighborhoods, then after
one iteration they will either both keep or both lose c from their palettes. In other words, the c-degree
of u is a random variable that may not have any significant concentration around its mean. Rather
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than bound c-degrees, Johansson [28] bounded the entropy of the remaining palettes so that each
color is picked nearly uniformly in each round. Jamall [15] claimed that although each c-degree does
not concentrate, the average c-degree (over each c in the palette) does concentrate. Moreover, it
suffices to consider only those colors within a constant factor of the average in subsequent iterations.

Our (∆/k)-coloring algorithm performs the same coloring procedure in each round, though the
behavior of the algorithm has two qualitatively distinct phases. In the first O(k) rounds the c-
degrees, palette sizes, and probability of remaining uncolored vertices are very well behaved. Once
the available palette is close to the number of uncolored neighbors, the probability a vertex remains
uncolored begins to decrease drastically in each successive round, and after O(log∗ n) rounds all
vertices are colored, w.h.p.

Our analysis is similar to that of Jamall [15] in that we focus on bounding the average of the
c-degrees. However, our proof needs to take a different approach, for two reasons. First, to obtain an
efficient distributed algorithm we need to obtain a tighter bound on the probability of failure in the last
O(log∗ n) rounds, where the c-degrees shrink faster than a constant factor per round. Second, there
is a small flaw in Jamall’s application of Azuma’s inequality in Lemma 12 in [15], the corresponding
Lemma 17 in [16], and the corresponding lemmas in [17]. It is probably possible to correct the flaw,
though we manage to circumvent this difficulty altogether. See Appendix A for a discussion of this
issue.

The second phase presents different challenges. The natural way to bound c-degrees using
Chernoff-type inequalities gives error probabilities that are exponential in the c-degree, which is
fine if it is Ω(log n) but becomes too large as the c-degrees are reduced in each coloring round. At a
certain threshold we switch to a different analysis (along the lines of Schneider and Wattenhofer [35])
that allows us to bound c-degrees with high probability in the palette size, which, again, is fine if it
is Ω(log n).

In both phases, if we cannot obtain small error probabilities (via concentration inequalities and a
union bound) we revert to a distributed implementation of the Moser-Tardos Lovász Local Lemma
algorithm [29]. We show that for certain parameters the symmetric LLL can be made to run in
sublogarithmic time. For the extensions to trees and the (∆ + 1)-coloring algorithm for triangle-free
graphs, when we cannot obtain small error probabilities, we will ignore those bad vertices where error
occured. Using the ideas from [5,6, 34], we can show the size of each component induced by the bad
vertices is at most polylog(n). Each component can then be colored separately in parallel by the
deterministic algorithms [4, 30], which now runs faster as the size of each subproblem is smaller.

Organization. Section 2 introduces some basic probabilistic tools. Section 3 presents the general
framework for the analysis. Section 4 describes the algorithms and discusses what parameters to plug
into the framework. Section 5 describes extensions of the algorithm to graphs of girth 5, trees, and
the (∆ + 1)-coloring problem for triangle-free graphs.

2 Tools

See Dubhashi and Panconesi [11] for proofs of Lemma 1, Lemma 2, and related concentration bounds.

Lemma 1. (Hoeffding’s Inequaliy) Let X1, . . . , Xn be independent random variables such that ai ≤
Xi ≤ bi for 1 ≤ i ≤ n. Let X =

∑
iXi, then for any t > 0,

Pr(X > E[X] + t) ≤ e−
2t2∑

i(bi−ai)2
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Lemma 2. (Chernoff Bound) Let X1, . . . , Xn be independent 0/1 random variables such that Pr(Xi =
1) = p. Let X =

∑n
i=1Xi. Then, for δ > 0:

Pr(X > (1 + δ) E[X]) ≤
[

eδ

(1 + δ)(1+δ)

]E[X]

Pr(X < (1− δ) E[X]) ≤
[

e−δ

(1− δ)(1−δ)

]E[X]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X > (1 + δ) E[X]) ≤ e−δ2 E[X]/3

Pr(X < (1− δ) E[X]) ≤ e−δ2 E[X]/2.

Collorary 4. Let X1, . . . , Xn be independent 0/1 random variables such that Pr(Xi = 1) = pi. Let
X =

∑n
i=1Xi. If M ≥ E[X] and 0 < δ < 1, then

Pr(X > E[X] + δM) ≤ e−δ2M/3.

Proof. Without loss of generality, assume M = tE[X] for some t ≥ 1, we have

Pr(X > E[X] + δM) ≤
[

etδ

(1 + tδ)(1+tδ)

]E[X]

by Lemma 2

=

[
eδ

(1 + tδ)(1+tδ)/t

]M
≤
[

eδ

(1 + δ)(1+δ)

]M
(∗)

≤ e−δ2M/3 eδ

(1+δ)(1+δ) ≤ e−δ
2/3 for 0 < δ < 1

(*) follows if (1 + tδ)(1+tδ)/t ≥ (1 + δ)(1+δ), or equivalently, ((1 + tδ)/t) ln(1 + tδ) ≥ (1 + δ) ln(1 + δ).

Letting f(t) = ((1 + tδ)/t) ln(1 + tδ)− (1 + δ) ln(1 + δ), we have f ′(t) = ln
(

1+δt
1+δ

)
and f ′′(t) = δ

1+δt .

Thus, f ′(t) is zero iff t = 1, f(1) = 0, and f ′′(1) = δ
1+δ > 0 imply f(t) ≥ 0 for all t ≥ 1.

The following lemma shows that when conditioning on a likely event B, the probability of an
event A can only be affected by Pr(B).

Lemma 3. For any events A and B, it holds that |Pr(A)− Pr(A|B)| ≤ Pr(B).

Proof. Pr(A) = Pr(B) Pr(A|B)+Pr(B) Pr(A|B) = Pr(A|B)+Pr(B)(Pr(A|B)−Pr(A|B)). Therefore,
|Pr(A)− Pr(A|B)| ≤ Pr(B).

Lemma 4. e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.59.

Proof. Let f(x) = e−x − 1 + x/2. f(0) = 0 and f(1.59) ≤ 0. f ′(x) = 1/2 − e−x, f ′(x) is zero only
when x = ln 2 ≤ 1.59. Since f(ln 2) ≤ 0, f(x) ≤ 0 for 0 ≤ x ≤ 1.59.
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3 The Framework

Every vertex maintains a palette that consists of all colors not previously chosen by its neighbors.
The coloring is performed in rounds, where each vertex chooses zero or more colors in each round.
Let Gi be the graph induced by the uncolored vertices after round i, so G = G0. Let Ni(u) be u’s
neighbors in Gi and let Pi(u) be its palette after round i. The c-neighbors Ni,c(u) consist of those
v ∈ Ni(u) with c ∈ Pi(v). Call |Ni(u)| the degree of u and |Ni,c(u)| the c-degree of u after round i.
This notation is extended to sets of vertices in a natural way, e.g., Ni(Ni(u)) is the set of neighbors
of neighbors of u in Gi.

Algorithm 2 describes the iterative coloring procedure. In each round, each vertex u selects a set
Si(u) of colors by including each c ∈ Pi−1(u) independently with some probability πi to be determined
later. If some c ∈ Si(u) is not selected by any neighbor of u then u can safely color itself c. In order to
remove dependencies between various random variables (and thereby give us access to the standard
concentration bounds from Section 2) we exclude colors from u’s palette more aggressively than is
necessary. First, we exclude any color selected by a neighbor, that is, Si(Ni−1(u)) does not appear
in Pi(u). The probability that a color c is not selected by any neighbor is (1− πi)|Ni−1,c(u)|. Suppose
that this quantity is at least some threshold βi for all c. We force c to be kept with probability
precisely βi by putting c in a keep-set Ki(u) with probability βi/(1 − πi)|Ni−1,c(u)|. The probability
that c ∈ Ki(u)\Si(Ni−1(u)) is therefore exactly βi for each c, assuming βi/(1− πi)|Ni−1,c(u)| is a valid
probability; if it is not then c is ignored. Let P̂i(u) be what remains of u’s palette. Algorithm 2
has two variants. In Variant B, Pi(u) is exactly P̂i(u) whereas in Variant A, Pi(u) is the subset of
P̂i(u) whose c-degrees are sufficiently low, less than 2ti, where ti is a parameter that will be explained
below.

1: Include each c ∈ Pi−1(u) in Si(u) independently with probability πi.
2: For each c, calculate rc = βi/(1− πi)|Ni−1,c(u)|.
3: If rc ≤ 1, include c ∈ Pi−1(u) in Ki(u) independently with probability rc.
4: return (Si(u),Ki(u)).

Algorithm 1: Select(u, πi, βi)

1: i← 0
2: repeat
3: i← i+ 1
4: for each u ∈ Gi−1 do
5: (Si(u),Ki(u))← Select(u, πi, βi)
6: Set P̂i(u)← Ki(u) \ Si(Ni−1(u))
7: if Si(u) ∩ P̂i(u) 6= ∅ then
8: Color u with any color in Si(u) ∩ P̂i(u)
9: end if

10: (Variant A) Pi(u)← {c ∈ P̂i(u) | |Ni,c(u)| ≤ 2ti}
11: (Variant B) Pi(u)← P̂i(u)
12: end for
13: Gi ← Gi−1 \ {colored vertices}
14: until the termination condition occurs

Algorithm 2: Coloring-Algorithm(G0, {πi}, {βi}, {ti})

The algorithm is parameterized by the sampling probabilities {πi}, the ideal c-degrees {ti} and the
ideal probability {βi} of retaining a color. The {βi} define how the ideal palette sizes {pi} degrade.
Of course, the actual palette sizes and c-degrees after i rounds will drift from their ideal values, so we
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will need to reason about approximations of these quantities. We will specify the initial parameters
and the terminating conditions when applying both variants in Section 4.

3.1 Analysis A

Given {πi}, p0 = ∆/k, t0 = ∆, and δ, the parameters for Variant A are derived below.

βi = (1− πi)2ti−1 αi = (1− πi)(1−(1+δ)i−1/2)p′i

pi = βipi−1 ti = max(αiβiti−1, T ) (1)

p′i = (1− δ/8)ipi t′i = (1 + δ)iti

Let us take a brief tour of the parameters. The sampling probability πi will be inversely proportional
to ti−1, the ideal c-degree at the end of round i−1. (The exact expression for πi depends on ε.) Since
we filter out colors with more than twice the ideal c-degree, the probability that a color is not selected
by any neighbor is at least (1 − πi)2ti−1 = βi. Note that since πi = Θ(1/ti−1) we have βi = Θ(1).
Thus, we can force all colors to be retained in the palette with probability precisely βi, making the
ideal palette size pi = βipi−1. Remember that a c-neighbor stays a c-neighbor if it remains uncolored
and it does not remove c from its palette. The latter event happens with probability βi. We use αi as
an upper bound on the probability that a vertex remains uncolored, so the ideal c-degree should be
ti = αiβiti−1. Notice that a vertex remains uncolored if it did not choose any of the colors remaining
in the palette, whose size we will show to be at least (1− (1 + δ)i−1/2)p′i. To account for deviations
from the ideal we let p′i and t′i be approximate versions of pi and ti, defined in terms of a small error
control parameter δ > 0. In particular, p′i and t′i drift from pi and ti by a (1 − δ/8) and a (1 + δ)
factor in each round. Furthermore, certain high probability bounds will fail to hold if ti becomes too
small, so we will not let it go below a threshold T .

When the graph has girth 5, the concentration bounds allow us to show that |Pi(u)| ≥ p′i and
|Ni,c(u)| ≤ t′i with certain probabilities. As pointed out by Jamall [15,16], |Ni,c(u)| does not concen-
trate in triangle-free graphs. He showed that the average c-degree, ni(u) =

∑
c∈Pi(u) |Ni,c(u)|/|Pi(u)|,

concentrates and will be bounded above by t′i with a certain probability. Since ni(u) concentrates, it
is possible to bound the fraction of colors filtered for having c-degrees larger than 2ti using Markov’s
inequality.

In the following we formalize this tradeoff between the palette size and the average c-degree. Let
λi(u) = min(1, |Pi(u)|/p′i), which can be viewed as the amount that |Pi(u)| drifts below p′i due to
filtering out the colors. Define Hi(u) to be the event that

Di(u) ≤ t′i,
where, by definition, Di(u) = λi(u)ni(u) + (1− λi(u))2ti.

Define Hi to be the event that Hi(u) holds for all u ∈ Gi.3 Observe that Di(u) can be interpreted as
the average of the c-degrees of Pi(u), including p′i−|Pi(u)| dummy colors whose c-degrees are exactly
2ti. Notice that since (1−λi(u))2ti ≤ Di(u) ≤ t′i, we have 1−λi(u) ≤ t′i/(2ti) = (1+δ)i/2. Therefore,

|Pi(u)| ≥ (1− (1 + δ)i/2)p′i (2)

Recall Pi(u) is the palette consisting of colors c for which |Ni,c(u)| ≤ 2ti.
In the remainder of this section we prove Theorem 2, which bounds the probability that Hi(u)

holds conditioned on Hi−1.

Theorem 2. For any vertex u ∈ Gi−1,

Pr(Hi(u) | Hi−1) = Pr(Di(u) ≤ t′i | Hi−1) ≥ 1−∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′i).

3This is equivalent to the induction hypothesis of Jamall [15].

7



Note that if Pr(Hi(u) | Hi−1) = 1/ poly(n), we can conclude, by the union bound, that Pr(Hi | Hi−1)
is also 1/poly(n). In general we may need to invoke the Lovász Local Lemma to show Pr(Hi | Hi−1)
is nonzero.

3.2 Proof of Theorem 2

Clearly H0 holds initially. By definition t′0 = t0 = ∆ and, for all u ∈ G, we have λ0(u) = 1 and
D0(u) ≤ ∆. Thus, D0(u) ≤ t′0, i.e., H0(u) holds for all u. Let i be the current iteration. We
will assume throughout this section that Hi−1 holds, that is, all probabilities obtained are implicitly
conditioned on Hi−1. Remember that the transition of the palette at round i is from Pi−1(u) via
P̂i(u) to Pi(u), where P̂i(u) = Ki(u) \ Si(Ni−1(u)) is the palette before colors c with c-degree larger
than 2ti are filtered. Define n̂i(u) =

∑
c∈P̂i(u)

|Ni,c(u)|/|P̂i(u)| to be the average c-degree over the

palette P̂i(u). If the following two events hold

• E1(u) : |P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)|
• E2(u) : n̂i(u) ≤ αiβini−1(u) + δ(1 + δ)i−1ti

then Hi(u) holds as well, as we now argue.
Observe that if E1(u) is true, then the ratio λ̂i(u) = min(1, |P̂i(u)|/p′i) is at least as large as λi(u),

since by E1(u),

|P̂i(u)|
p′i

≥ (1− δ/8)βi|Pi−1(u)|
(1− δ/8)βip′i−1

=
|Pi−1(u)|
p′i−1

.

Therefore,
λ̂i(u) ≥ λi(u) ≥ λi−1(u). (3)

Consider D̂i(u) = λ̂i(u)n̂i(u) + (1 − λ̂i(u))2ti. Compared to D̂i(u), Di(u) can be viewed as the
average c-degree of the palette obtained by changing those colors in P̂i(u) whose c-degrees are greater
than 2ti to dummy colors with c-degrees exactly 2ti. Since the average only goes down in this process,

Di(u) ≤ D̂i(u). (4)

Notice that ni−1(u) ≤ 2ti and that Hi−1 implies ni−1(u) ≤ Di−1(u) ≤ t′i−1. We will choose
δ = o(1) sufficiently small so that (1 + δ)i = 1 + o(1) for any iteration index i encountered in the
algorithm. Therefore,

n̂i(u) ≤ αiβini−1(u) + δ(1 + δ)i−1ti by E2(u)

≤ αiβit′i−1 + δ(1 + δ)i−1ti

≤ (1 + δ)i−1ti + δ(1 + δ)i−1ti αiβiti−1 ≤ ti
= t′i ≤ 2ti (1 + δ)i = 1 + o(1) < 2 (5)

Now we have

Di(u) ≤ D̂i(u) by (4)

= λ̂i(u)n̂i(u) + (1− λ̂i(u))2ti defn. of D̂i(u)

≤ λi−1(u)n̂i(u) + (1− λi−1(u))2ti by (3) and (5)

≤ λi−1(u)(αiβini−1(u) + δ(1 + δ)i−1ti) + (1− λi−1(u))2ti by E2(u)

≤ αiβi(ni−1(u) + (1− λi−1(u))2ti−1) + δ(1 + δ)i−1ti ti = αiβiti−1

≤ αiβiDi−1(u) + δ(1 + δ)i−1ti defn. of Di−1(u)

≤ αiβit′i−1 + δ(1 + δ)i−1ti Hi−1 : Di−1(u) ≤ t′i−1

≤ (1 + δ)i−1ti + δ(1 + δ)i−1ti αiβiti−1 ≤ ti
= t′i defn. of t′i
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It remains to prove that E1(u) and E2(u) hold with sufficiently high probability.

3.3 Analysis of E1(u) and E2(u)

In this section we show that if Hi−1 holds (that is, Di−1(x) ≤ t′i−1 for all x), then events E1(u) and
E2(u) only fail with probability exponentially small in p′i and T .

The step P̂i(u)← Ki(u) \ Si(Ni−1(u)) makes each color remain in P̂i(u) with probability exactly
βi independently, therefore E[|P̂i(u)|] = βi|Pi−1(u)|. By Chernoff Bound, we immediately get that
E1(u) holds with the following probability:

Lemma 5. Pr(E1(u)) = Pr
(
|P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)|

)
≥ 1− e−Ω(δ2p′i).

The next step is to bound the probability of E2(u). Jamall [15–17] attempted to bound n̂i(u)
by arguing that, for each c, the value of each |Ni,c(u)| is independent of |Ni,c′(u)| for c′ 6= c. Thus,
the sum

∑
c∈P̂i−1(u)

|Ni,c(u)| will concentrate. However, they are not independent since a vertex

x ∈ Ni−1(u) can affect |Ni,c(u)| for all c ∈ Pi−1(x) if x becomes colored in round i.
To fix this, our idea is to break the analysis into two steps. Define the auxiliary c-neighbor set

N̂i,c(u) = {x : x ∈ Ni−1,c(u) and c ∈ P̂i(x)} to be the set of neighbors x ∈ Ni−1,c(u) with c remaining

in P̂i(x) regardless of whether x is colored during round i or not.
For the first step, we will show that due to the independence among |N̂i,c(u)|, for each c ∈ Pi−1(u),∑
c∈P̂i(u)

|N̂i,c(u)| will concentrate below β2
i ni−1(u)|Pi−1(u)|. For the second step, we will calculate

the probability of |Ni,c(u)| ≤ αi|N̂i,c(u)| for each c ∈ Pi−1(u) individually.
Finally, by taking the union bound for the first step and the second step for all c ∈ Pi−1(u), we can

prove that
∑

c∈P̂i(u)
|Ni,c(u)| concentrates below αiβ

2
i ni−1(u)|Pi−1(u)|, which is about αiβini−1(u)|P̂i(u)|

by Lemma 5.

Lemma 6. Pr
(∑

c∈P̂i(u)
|N̂i,c(u)| ≤ β2

i |Pi−1(u)|
(
ni−1(u) + δ

4 ti−1

))
≥ 1− e−Ω(δ2p′i).

Proof. Let Yc = |N̂i,c(u)| if c ∈ P̂i(u), and Yc = 0 otherwise. Observe that since G is triangle-free,

two adjacent vertices u and x have disjoint neighborhoods. Also, whether c ∈ P̂i(u) only depends
on the colors selected by its neighbors, not itself. Therefore, Pr(c ∈ P̂i(x)|c ∈ P̂i(u)) = βi for all
c ∈ Pi−1(x). By linearity of expectation, E[Yc] = Pr(c ∈ P̂i(u))

∑
x∈Ni−1,c(u) Pr(c ∈ P̂i(x)|c ∈ P̂i(u)) =

β2
i |Ni−1,c(u)|.

It is clear that
∑

c∈P̂i(u)
|N̂i,c(u)| =

∑
c∈Pi−1(u) Yc. By linearity of expectation again, we get that

E
[∑

c∈P̂i(u)
|N̂i,c(u)|

]
= E

[∑
c∈Pi−1(u) Yc

]
= β2

i ni−1(u)|Pi−1(u)|.
Since each Yc ranges from 0 to 2ti−1 and the {Yc} are independent, by Hoeffding’s inequality we
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have

Pr

 ∑
c∈P̂i(u)

|N̂i,c(u)| ≥ β2
i |Pi−1(u)|

(
ni−1(u) +

δ

4
ti−1

)
= Pr

 ∑
c∈P̂i(u)

|N̂i,c(u)| ≥ E

 ∑
c∈P̂i(u)

|N̂i,c(u)|

+
δ

4
β2
i |Pi−1(u)|ti−1


≤ exp

(
−
δ2β4

i t
2
i−1|Pi−1(u)|2

8
∑

c∈Pi−1(u)(2ti−1)2

)

≤ exp

(
−δ

2β4
i |Pi−1(u)|

32

)
≤ exp

(
−
δ2β4

i (1− (1 + δ)i−1/2)p′i−1

32

)
≤ exp

(
−Ω(δ2p′i)

)
by (2) and note βi = Ω(1)

Next, we are going to bound the number of uncolored neighbors in N̂i,c(u) for each c ∈ Pi−1(u).

Note that we are not conditioning on whether c ∈ P̂i(u) at this point. Instead, we will take the union
bound over all c ∈ Pi−1(u) in the end so that the next lemma holds for all c ∈ Pi−1(u).

Lemma 7. Fix an iteration i, vertex u, and color c ∈ Pi−1(u). Letting M = max
(
αi|N̂i,c(u)|, T

)
,

then we have

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M

)
≥ 1− e−Ω(δ2T ) −∆e−Ω(δ2p′i).

Proof. Let E be the event that E1(x) holds for all x ∈ Ni−1,c(u). By Lemma 5 and the union

bound over each x ∈ Ni−1,c(u), Pr(E) ≤ |Ni−1,c(u)|e−Ω(δ2p′i) ≤ ∆e−Ω(δ2p′i). When E occurs, for all
x ∈ Ni−1,c(u), we have:

|P̂i(x)| ≥ (1− δ/8)βi|Pi−1(x)| by E1(x)

≥ (1− δ/8)βi(1− (1 + δ)i−1/2)p′i−1 by (2)

= (1− (1 + δ)i−1/2)p′i By defn., p′i = (1− δ/8)βip
′
i−1

Note that the event E is determined only by the following random variables:

• Ki(x), for all x ∈ Ni−1,c(u), and

• Si(w), for all w ∈ Ni−1(Ni−1,c(u)).

Therefore, we can let E =
⋃
ω Eω, where the {Eω} represent all the possible outcomes of these random

variables that imply E . Then, Pr(|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | E) is exactly∑
ω

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | Eω

)
· Pr (Eω | E)

Since ω 6= ω′ implies Eω ∩ Eω′ = ∅,
∑

ω Pr(Eω | E) = 1. It is sufficient to bound Pr(|Ni,c(u)| ≤
αi|N̂i,c(u)| + (δ/5)M | Eω) for each Eω. When conditioning on Eω, the neighbor set N̂i,c(u) is de-

termined and the palette P̂i(x) for each x ∈ N̂i,c(u) is also determined. Furthermore, since G is

triangle-free, Ni−1(Ni−1,c(u)) must be disjoint from N̂i,c(u). This implies that conditioning on Eω
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does not have any influence on Si(x) for x ∈ N̂i,c(u). For all x ∈ N̂i,c(u), each c ∈ P̂i(x) is selected
with probability πi independently.

Therefore, the probability x remains uncolored conditioned on Eω, Pr(x ∈ Ni,c(u) | Eω), must be

independent of all other nodes in N̂i,c(u). Since x is uncolored iff x did not select any color in P̂i(x),

Pr (x ∈ Ni,c(u) | Eω) ≤ (1− πi)|P̂i(x)| ≤ (1− πi)(1−(1+δ)i−1/2)p′i = αi.

Therefore, E [Ni,c(u) | Eω] ≤ αi
∣∣∣N̂i,c(u)

∣∣∣. By applying Corollary 4 with M = max
(
αi|N̂i,c(u)|, T

)
we

get

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | Eω

)
≥ 1− e−Ω(δ2T )

and, therefore,

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | E

)
≥ 1− e−Ω(δ2T ).

Since Pr(E) ≤ ∆e−Ω(δ2p′i), by Lemma 3, we can conclude that

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M

)
≥ 1− e−Ω(δ2T ) −∆e−Ω(δ2p′i).

For convenience we restate Theorem 2 before proving it. Recall from Section 3.1 that Hi =⋂
u∈Gi Hi(u) and Hi(u) is the event that Di(u) ≤ t′i.

Theorem 2. For any vertex u ∈ Gi−1,

Pr(Hi(u) | Hi−1) = Pr(Di(u) ≤ t′i | Hi−1) ≥ 1−∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′i).

Proof. By Lemma 5, 6, 7, and the union bound, the following hold with probability at least 1 −
∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′i).

|P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)| (6)∑
c∈P̂i(u)

∣∣∣N̂i,c(u)
∣∣∣ ≤ β2

i |Pi−1(u)|
(
ni−1(u) +

δ

4
ti−1

)
(7)

For all c ∈ Pi−1(u), |Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5) max
(
αiN̂i,c(u), T

)
(8)

Therefore,∑
c∈P̂i(u)

|Ni,c(u)|

≤
∑

c∈P̂i(u)

(
αi|N̂i,c(u)|+ (δ/5) max

(
αi|N̂i,c(u)|, T

))
by (8)

≤ (1 + δ/5)αi

 ∑
c∈P̂i(u)

|Ni,c(u)|

+ (δ/5)|P̂i(u)|T max(a, b) ≤ a+ b

≤ βi|Pi−1(u)|(1 + δ/5)

(
αiβini−1(u) +

δ

4
αiβiti−1

)
+ (δ/5)|P̂i(u)|T by (7)

≤ 1 + δ/5

1− δ/8
|P̂i(u)|

(
αiβini−1(u) +

δ

4
αiβiti−1

)
+ (δ/5)|P̂i(u)|T by (6)
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Therefore,

n̂i(u) =
∑

c∈P̂i(u)

|Ni,c(u)|/|P̂i(u)|

≤ 1 + δ/5

1− δ/8
(αiβini−1(u) + (δ/4)αiβiti−1) + (δ/5)T

≤ (1 + δ/2)(αiβini−1(u) + (δ/4)αiβit
′
i−1) + (δ/5)T when δ < 1

≤ (1 + δ/2)(αiβini−1(u) + (δ/4)αiβit
′
i−1) + (δ/5)ti T ≤ ti

≤ αiβini−1(u) + (δ/2 + δ/4 + δ2/8)αiβit
′
i−1 + (δ/5)ti ni−1(u) ≤ t′i−1

≤ αiβini−1(u) + (δ/2 + δ/4 + δ2/8 + δ/5)(1 + δ)i−1ti αiβit
′
i−1 = ti(1 + δ)i−1

≤ αiβini−1(u) + δ(1 + δ)i−1ti when δ ≤ 2/5

As we showed in Section 3.2, whenever E1(u) and E2(u) hold, Hi(u) holds as well.

3.4 Analysis B

Analysis A has a limitation for smaller c-degrees, since the probability guarantee becomes smaller as
ti goes down. Therefore, Analysis A only works well for ti ≥ T , where T is a threshold for certain
probability guarantees. For example, if we want Theorem 2 to hold with high probability in n, then
we must have T � log n.

To get a good probability guarantee below T , we circumvent Chernoff Bound and calculate the
probability explicitly. Also, the reduction in the c-degrees we aimed to show is slower than that in
Analysis A. In particular, similar to Theorem 12 in [35], the ideal c-degrees decrease by a factor
proportional to the ratio between the initial upper bound on the c-degrees and the current palette
size.

The parameters for Variant B are chosen based on an initial lower bound on the palette size p0,
upper bound on the c-degree t0, and error control parameter δ. The selection probability is chosen to
be πi = 1/(ti−1+1) and the probability a color remains in a palette βi = (1−πi)ti−1 . The ideal palette
size and its relaxation are pi = βipi−1 and p′i = (1− δ)ipi. The ideal c-degree is ti = max(αiti−1, 1),
where αi = 5t0/p

′
i.

Define Fi(u) to be the event that

|Pi(u)| ≥ p′i and, for all c ∈ Pi(u), |Ni,c(u)| < ti.

Let Fi be the event that Fi(u) holds for all u ∈ Gi. When analyzing probabilities in iteration i
we always condition on Fi−1 holding. Although a vertex could lose its c-neighbor if the c-neighbor
becomes colored or loses c in its palette, in this analysis, we only use the former to bound its c-degree.
Moreover, if Fi−1(u) holds then Pr(c /∈ Si(Ni−1(u))) > βi for all c ∈ Pi−1(u). Thus in Select(u, πi, βi),
we will not ignore any colors in the palette. Each color remains in the palette with probability exactly
βi. We will write Pi(u) instead of P̂i(u) in this section, since they are the same in Variant B.

Theorem 3. For any vertex u ∈ Gi−1,

Pr (Fi(u) | Fi−1) ≥ 1−∆e−Ω(t0) − (∆2 + 1)e−Ω(δ2p′i).

Proof. By the Chernoff bound,

Pr
(
|Pi(u)| ≥ p′i

)
≥ Pr (|Pi(u)| ≥ (1− δ/8)βi|Pi−1(u)|)

≥ 1− e−Ω(δ2p′i).
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Now fix a c ∈ Pi−1(u). We will derive a bound on the probability that |Ni,c(u)| < ti. Similar to
the proof of Lemma 7, define E to be the event that

For all x ∈ Ni−1,c(u), |Pi(x)| ≥ p′i.

By taking the union bound over all x ∈ Ni−1,c(u), Pr(E) ≥ 1− |Ni−1,c(u)|e−Ω(δ2p′i) ≥ 1−∆e−Ω(δ2p′i).
The event E is determined only by the following random variables:

• Ki(x), for all x ∈ Ni−1,c(u) and

• Si(w), for all w ∈ Ni−1(Ni−1,c(u)).

Let E =
⋃
ω Eω, where the {Eω} represents all the possible outcomes of these random variables that

imply E . Then, Pr(|Ni,c(u)| < ti | E) is exactly∑
ω

Pr(|Ni,c(u)| < ti | Eω) · Pr(Eω | E)

Since
∑

ω Pr(Eω | E) = 1, it is sufficient to bound Pr(|Ni,c(u)| < ti | Eω) for each Eω. When
conditioning on Eω, the palette Pi(x) for each x ∈ Ni−1,c(u) is determined. Furthermore, since G is
triangle-free, Ni−1(Ni−1,c(u)) must be disjoint from Ni−1,c(u). This implies conditioning on Eω does
not have any influence on Si(x) for all x ∈ Ni−1,c(u). For all x ∈ Ni−1,c(u), each c ∈ Pi(x) is selected
with probability πi independently at round i.

Note that x ∈ Ni−1,c(u) remains uncolored iff no c ∈ Pi(x) is selected during round i. Therefore,

Pr(x ∈ Ni,c(u) | Eω) ≤ (1− πi)|P̂i(x)| ≤
(

1− 1

ti−1 + 1

)p′i
.

By the union bound,

Pr (|Ni,c(u)| ≥ ti | Eω) ≤
∑

S⊆Ni−1,c(u)
s.t. |S|=ti

∏
x∈S

Pr(x ∈ Ni,c(u) | Eω)

≤
∑

S⊆Ni−1,c(u)
s.t. |S|=ti

(
1− 1

ti−1 + 1

)p′iti

< 2t0
(

1− 1

ti−1 + 1

)p′iti
|Ni−1,c(u)| ≤ t0

≤ 2t0 exp

(
− p′iti
ti−1 + 1

)
1− x ≤ e−x

≤ 2t0 exp

(
− p′iti

2ti−1

)
ti−1 + 1 ≤ 2ti−1 for ti ≥ 1

≤ 2t0 exp

(
−αip

′
i

2

)
ti ≥ αiti−1

≤ 2t0 exp

(
−5

2
t0

)
defn. of αi

= exp

(
−
(

5

2
− ln 2

)
t0

)
Therefore, Pr(|Ni,c(u)| < ti | E) ≥ 1− e−Ω(t0). Since Pr(E) ≥ 1−∆e−Ω(δ2p′i) we can conclude, by

Lemma 3, that Pr(|Ni,c(u)| < ti) ≥ 1−e−Ω(t0)−∆e−Ω(δ2p′i). Recall that Fi(u) states that |Pi(u)| ≥ p′i
and |Ni,c(u)| < ti, for all c ∈ Pi−1(u). By the union bound, we have

Pr (Fi(u)) ≥ 1−∆e−Ω(t0) − (∆2 + 1)e−Ω(δ2p′i).
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4 The Coloring Algorithms

Theorem 1 is established by analyzing a two-phase coloring algorithm: Phase I uses Analysis A
and Phase II uses Analysis B. We will first give the parameters for both phases, then present the
distributed algorithm that makes the induction hypotheses (Hi in Theorem 2 and Fi in Theorem 3)
hold with high probability in n, for every round i. Notice that we use the terms iteration and round
interchangeably.

Let ε1 = 1 − 4k
ln ∆ −

2ε
3 and ε2 = 1 − 4k

ln ∆ −
ε
3 . We will show that upon reaching the terminating

condition of Phase I (which will be defined later), we will have |Pi(u)| ≥ ∆ε2 for all u ∈ Gi and
|Ni,c(u)| < ∆ε1 for all u ∈ Gi and all c ∈ Pi(u). At this point, for a non-constructive version, we can
simply apply the results about list coloring constants [14,32,33] to get a proper coloring, since at this
point there is an ω(1) gap between |Ni,c(u)| and |Pi(u)| for every u ∈ Gi. One can turn the result
of [32] into a distributed algorithm with the aid of Moser-Tardos Lovász Local Lemma algorithm to
amplify the success probability. However, to obtain an efficient distributed algorithm we use Analysis
B in Phase II.

Since our result holds for large enough ∆, we can assume whenever necessary that ∆ is sufficiently
large. The asymptotic notation will be with respect to ∆.

4.1 Parameters for Phase I

In this phase, we use Analysis A with the following parameters: πi = 1
2Kti−1+1 , where K = 4/ε is a

constant, p0 = ∆/k, t0 = ∆, and δ = 1/ log2 ∆. This phase ends after the round when ti ≤ T
def
=

∆ε1/3.
First, we consider the algorithm for at most the first O(log ∆) rounds. For these rounds, we can

assume the error (1 + δ)i ≤
(

1 + 1
log2 ∆

)O(log ∆)
≤ eO(1/ log ∆) = 1 + o(1) and similarly (1 − δ/8)i ≥(

1− 1
8 log2 ∆

)O(log ∆)
≥ e−O(1/ log ∆) = 1 − o(1). We will show the algorithm reaches the terminating

condition during these rounds, where the error is under control.
The probability a color is retained, βi = (1 − πi)2ti−1 ≥ e−1/K , is bounded below by a constant.

The probability a vertex remains uncolored is at most αi = (1 − πi)
(1−(1+δ)i−1/2)p′i . If we define

C = 1/(4Ke1/K), then

αi ≤
(

1− 1

2Kti−1 + 1

)(1−(1+δ)i−1/2)p′i

≤ exp

(
−(1− (1 + δ)i−1/2)p′i

(2Kti−1 + 1)

)
≤ exp

(
−(1− (1 + δ)i−1/2)(1− δ/8)ie−1/Kpi−1

(2Kti−1 + 1)

)
p′i ≥ (1− δ/8)ie−1/Kpi−1

≤ exp(−(1− o(1))Cpi−1/ti−1) defn. of C

Let si = ti/pi be the ratio between the ideal c-degree and the ideal palette size. Initially, s0 = k
and si = αisi−1 ≤ si−1e

−(1−o(1))(C/si−1). Initially, si decreases by roughly C in each round until
the ratio si ≈ C is a constant. Then, si decreases rapidly in the order of iterated exponentiation.
Therefore, it takes O(k + log∗∆) rounds to reach the terminating condition where ti ≤ T . Our goal
is to show upon reaching the terminating condition, the palette size bound pi is greater than T by
some amount, in particular, pi ≥ 30e3/ε∆ε2 .

Lemma 8. Phase I terminates in (4+o(1))Ke1/Kk+O(log∗∆) iterations, where K = 4/ε. Moreover,
pi ≥ 30e3/ε∆ε2 for every iteration i in this phase.
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Proof. Let si = ti/pi so that s0 = k. Consider the number of rounds in the following stages:

1. k ≥ si−1 ≥ log∗∆: By using the inequality e−x ≤ 1 − x + x2/2 for 0 ≤ x ≤ 1, we get
si ≤ si−1e

−(1−o(1))(C/si−1) ≤ si−1 − (1 − o(1))(1 − C/(2si−1))C ≤ si−1 − (1 − o(1))C since
si−1 ≥ log∗∆. Therefore, this stage takes (1 + o(1))(s0/C) rounds.

2. log∗∆ > si−1 ≥ C/1.1: Similarly, si ≤ si−1e
−(1−o(1))(C/Si−1) ≤ si−1 − (1 − o(1))C/2, where

we assumed (1 − o(1))C/si−1 ≤ 1.59 and applied Lemma 4, which states that e−x ≤ 1 − x/2
for 0 ≤ x ≤ 1.59. This stage takes O(log∗∆/C) rounds. Notice that the constant 1.1 was
arbitrarily chosen from numbers greater than 1 and no more than 1.59.

3. C/1.1 > si−1: At this point αi+1 ≤ e−(1−o(1))C/si−1 ≤ e−1. For any j ≥ i, αj ≤ e−(1−o(1))C/sj−1 ≤

e
−(1−o(1)) C

si−1αj−1 ≤ e−1/αj−1 . Therefore, after j = log∗∆ more rounds, αi+j ≤ 1/∆ and so
ti+j ≤ max(αi+jt0, T ) = ∆ε1/3 terminates Phase I. This stage takes log∗∆ rounds.

The total number of rounds is (1 + o(1))(s0/C) +O(log∗∆) ≤ (4 + o(1))Ke1/Kk+O(log∗∆). By
the definition of pi, at the end of Phase I we have:

pi = p0

i∏
j=1

βj

≥ ∆

k
e−

1
K

(
(4 + o(1))Ke1/Kk + O (log∗∆)

)
βj ≥ e−1/K

≥ ∆

k

(
1

∆

) (4+o(1))e1/Kk+O(log∗∆)
ln ∆

≥ ∆1− 4e1/Kk
ln ∆ − o(1) k < ln ∆

≥ ∆1− 4k
ln ∆ −

1
K

4k
ln ∆

(
1 + 1

K

)
− o(1) by using ex ≤ 1 + x+ x2 for |x| ≤ 1

≥ ∆1− 4k
ln ∆ −

ε
4 (1− 2ε)

(
1 + ε

4

)
− o(1) since K = 4/ε and 4k

ln ∆ ≤ 1− 2ε

≥ ∆1− 4k
ln ∆ − ε/4− o(1)

Thus, for large enough ∆, pi is at least 30e3/ε∆ε2 , which will be enough for the induction hypothesis
to hold with sufficiently high probability. If Hi(u) holds for every u ∈ Gi for every round i during this
phase, we will have |Pi(u)| ≥ (1− (1 + δ)i/2)p′i ≥ 10e3/ε∆ε2 for all u ∈ Gi and |Ni,c(u)| ≤ 2ti < ∆ε1

for all u ∈ Gi and all c ∈ Pi(u) in the end of Phase I.

4.2 Parameters for Phase II

In Phase II, we will use Analysis B with the following parameters: p0 = 10e3/ε∆ε2 , t0 = ∆ε1 and
δ = 1/ log2 ∆. This phase terminates after 3

ε rounds.
First note that the number of rounds 3

ε is a constant. We show p′i ≥ 5∆ε2 for each round 1 ≤ i ≤ 3
ε ,

so there is always a sufficient large gap between the current palette size and the initial c-degree, which
implies the shrinking factor of the c-degrees is αi = 5t0/p

′
i ≤ ∆−ε/3. Since pi shrinks by at most a

βi ≥ e−1 factor every round, p′i ≥ (1− δ)ip0
∏i
j=1 βj ≥ ((1− δ)e−1)i10e3/ε∆ε2 ≥ 5∆ε2 .

Now since αi ≤ ∆−ε/3, after 3
ε rounds, ti ≤ t0

∏i
j=1 αj ≤ ∆

(
∆−ε/3

) 3
ε ≤ 1. The c-degree bound,

tε/3, becomes 1. Recall that the induction hypothesis Fi(u) is the event that |Pi(u)| ≥ p′i and
|Ni,c(u)| < ti for all c ∈ Pi(u). If Fi holds for every round i in Phase II then, in the end, every
uncolored vertex has no c-neighbors, as implied by |Ni,c(u)| < ti ≤ 1. This means these vertices can
be colored with anything remaining in their palettes, which are non-empty.
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The leading constant 4 The leading constant 4 stems from filtering out colors whose c-degree
exceeds twice of the ideal. In general, if we filter out colors whose c-degree exceeds q times the ideal,
then the remaining palette has size at least (1− 1/q) of the original one. q affects how fast the ratio
ti/pi decreases for every round. In particular, it decreases roughly by 1/(q/(1−1/q)Ke1/K) for every
round. Note that the palette size decreases by a fixed rate βi ∼ e1/K for each round i and we have
to keep it large enough as stated in Lemma 8 (pi ≥ 30e3/ε∆ε2). Given that the number of rounds
we allow is fixed, the leading constant we can get depends on how fast the ratio ti/pi decreases.
Therefore, we choose q = 2 to maximize 1/(q/(1 − 1/q)Ke1/K), which results in a leading constant
of 4.

4.3 The Distributed Coloring Algorithm

We will show a distributed algorithm that makes the induction hypothesis in Phase I and Phase II
hold with high probability in n.

Fix the round i and assume the inductive hypothesis holds after round i− 1, which is either Hi−1

in Phase I or Fi−1 in Phase II. Define A(u) to be the bad event that the induction hypothesis fails at

u, that is, Hi(u) fails in Phase I or Fi(u) fails in Phase II. Let p = e−∆1− 4k
ln ∆
−ε
/(e∆4). By Theorem

2 and 3 we have

Pr(A(u)) ≤ max
(

∆e−Ω(δ2T) + (∆2 + 2)e−Ω(δ2p′i), ∆e−Ω(t0) + (∆2 + 1)e−Ω(δ2p′i)
)
.

Therefore,

Pr(A(u)) ≤ ∆e−Ω(δ2∆ε1) + (∆2 + 2)e−Ω(δ2∆ε2) T = ∆ε1 , t0 = ∆ε1 , p′i ≥ ∆ε2

≤ exp
(
−Ω

(
δ2∆ε1

)
+O (log ∆)

) /
(e∆4) ε1 < ε2

≤ exp
(
−Ω

(
δ2∆ε1

)) /
(e∆4)

≤ exp

(
−Ω

(
∆

1
3
ε

log4 ∆

)
·∆1− 4k

ln ∆
−ε

)/
(e∆4) defn. ε1 and δ

≤ exp
(
−∆1− 4k

ln ∆
−ε
)/

(e∆4) = p for large enough ∆

If ∆1− 4k
ln ∆
−ε > c log n, then p < 1/nc. By the union bound over u ∈ Gi, the probability that {A(u)}

all fail to occur is at least 1− 1/nc−1. In other words, the induction hypothesis (Hi or Fi) holds after
round i with high probability. In this case, O(k+log∗∆) rounds suffice, because each round succeeds
with high probability.

On the other hand, if ∆1− 4k
ln ∆
−ε < c log n then we apply Moser and Tardos’ parallel resampling

algorithm [29] to find a point avoiding all the bad events {A(u)}, with high probability. The symmetric
LLL and its algorithmic versions refer to the following objects and parameters.

• A set P of random variables over some domain, which may be different for each variable.

• A set A of “bad” events. Each A ∈ A depends only on some subset vbl(A) ⊆ P of the variables.

• Define Γ(A) = {A′ | A′ 6= A and vbl(A′) ∩ vbl(A) 6= ∅} to be those events that share variables
with A. The Γ function induces an undirected dependency graph G = (A, {(A,A′) | A′ ∈
Γ(A)}). Let GB be the subgraph induced by B ⊆ A.

• Define d = maxA∈A |Γ(A)| and p = maxA∈A Pr(A) to be the maximum degree in the dependency
graph and the maximum probability of any single bad event.
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1: Sample an initial assignment to P
2: repeat
3: V ← {A | A is violated under the current assignment to P}
4: I ← a maximal independent set in GV
5: resample all variables in vbl(I) =

⋃
A∈I vbl(A).

6: until all events are not violated.

Algorithm 3: The Parallel Resampling Algorithm.

Authors Time Notes

Luby 1986,

Alon, Babi, and Itai 1986
O(log n) [1, 27], randomized, indep. of d.

Panconesi, Srinivasan 1996 2O(
√

logn) [30], deterministic, indep. of d.

Barenboim, Elkin 2009,

Kuhn 2009
O(d+ log∗ n) [3, 23], deterministic, any d.

Barenboim, Elkin, Pettie, O(
√

log d ·
√

log n) [5], randomized, any d.

and Schneider 2010 2O(
√

log logn) when d = (log n)O(1).

Linial 1992 Ω(log∗ n) [26], any d ≥ 2.

Kuhn, Moscibroda, and

Wattenhofer 2010
Ω(min{log d,

√
log n}) [24], any d.

Table 1: Upper and lower bounds on the distributed complexity of MIS on degree-d graphs.

If A ∈ A occurs under an assignment to P we say it is violated. The parallel version of Moser
and Tardos’s LLL algorithm (Algorithm 3) repeatedly selects a maximal independent set (MIS) of
violated events and resamples the variables they depend on, halting when no events are violated.

Lemma 9. (Corollary of [29, Thm. 1.3]) If ep(d+ 1) = 1− ε, the probability that there exist violated
events after t iterations of the Parallel Resampling Algorithm is (1− ε)t|A|/d. As a consequence, no
violated events occur after O(log1/ep(d+1) |A|) iterations with probability 1− 1/ poly(|A|).

The Parallel Resampling Algorithm can clearly be implemented in a distributed network where
the events correspond to processors and G is the network. Excluding the computation of MISs, the
messages transmitted in this algorithm only contain the resampled variables. If |A| = n, the running
time of the algorithm is therefore O(MIS(n, d) · log1/ep(d+1) n), where MIS(n, d) is the time required
to find a maximal independent set in a degree-d network. It is known that MIS(n, d) is ω(1) (unless
d = 1) but the precise complexity remains open. Table 4.3 summarizes the best upper and lower
bounds on MIS(n, d).

Observe that A(u) depends only on random variables selected by u and vertices at distance 1 or
2 from u. It follows that if distGi−1(u, v) ≥ 5 then A(u) and A(v) are independent. Let G≤4

i−1 be

the dependency graph where (u, v) is an edge iff distGi−1(u, v) ≤ 4. The maximum degree in G≤4
i−1 is

clearly less than ∆4.

Therefore, d < ∆4 and p = e−∆1− 4k
ln ∆
−ε
/(e∆4). We have ep(d + 1) ≤ e−∆1− 4k

ln ∆
−ε

. By Lemma 9,

O(log n/∆1− 4k
ln ∆
−ε) resampling rounds will be sufficient. In each round, we have to find an MIS in

G≤4
i−1. Notice that since ∆1− 4k

ln ∆
−ε < c log n, d < ∆4 ≤ (c log n)4/(1− 4k

ln ∆
−ε) ≤ (c log n)4/ε ≤ logO(1) n.

Barenboim et al. showed that an MIS can be found in eO(
√

log logn) time when d = polylog(n). Though
G is the underlying network in our case, we can simulate their algorithms to find an MIS in G≤4

i−1

with constant factor slowdown.
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Each of the O(k+ log∗∆) rounds is delayed by O(log n/∆1− 4k
ln ∆
−ε) resampling rounds, which are

further delayed by the rounds needed to find an MIS. Therefore, the total number of rounds is

O
(

(k + log∗∆) ·
(

log n/∆1− 4k
ln ∆
−ε
)
· exp

(
O
(√

log log n
)))

Note that this is always at most log1+o(1) n, since ∆1− 4k
ln ∆
−ε ≥ ∆ε = ∆Ω(1). If ∆

1− 4k
log ∆

−ε
=

O(log1−γ n) for some constant γ > 0, then the running time is sublogarithmic.

5 Extensions

5.1 Graphs of Girth at Least 5

For graphs of girth at least 5, existential results [20, 28] show that there exists (1 + o(1))∆/ ln ∆-
coloring. Grable and Panconesi [13] gave a distributed algorithm that run in O(log n) time to find
a (∆/k)-coloring for k = O(log ∆) when ∆ � log1+ε′ n for some constant ε′ > 0. Since there
is a constant hidden in k = O(log ∆), the k = (1 + o(1))∆/ ln ∆-coloring is not obtainable by their
algorithm. We close this gap by extending our result for triangle-free graphs and replacing the leading
constant 4 by 1.

Theorem 4. Fix a constant ε > 0. Let ∆ be the maximum degree of a girth-5 graph G, assumed to
be at least some ∆ε depending on ε. Let k ≥ 1 be a parameter such that 2ε ≤ 1− k

ln ∆ . Then G can be

(∆/k)-colored, in time O(k+ log∗∆) if ∆1− k
ln ∆
−ε = Ω(lnn), and, for any ∆, in time on the order of

(k + log∗∆) · log n

∆1− k
ln ∆
−ε
· eO(

√
ln lnn) = log1+o(1) n

In Analysis A, instead of using the inductive hypothesis Hi(u) and Variant A in Phase I, we shall
use Variant B and prove the following induction hypothesis, Qi(u):

|Pi(u)| ≥ p′i and, for all c ∈ Pi(u), |Ni,c(u)| ≤ t′i

Define Qi to be the events that Qi(u) holds for all u ∈ Gi. Also, we use definitions with a slightly
different error control:

βi = (1− πi)t
′
i−1 αi = (1− πi)p

′
i

pi = βipi−1 ti = max(αiβiti−1, T ) (9)

p′i = (1− δ)ipi t′i =
(1 + δ)i∏i
k=1(1− πk)

ti

We use πi = 1/(1 + Kt′i) as the sampling probability in the ith iteration, where K = 4/ε. As a
consequence βi is lower bounded by a constant since

βi = (1− πi)t
′
i−1 =

(
1− 1

1 +Kt′i

)t′i−1

>

(
1− 1

1 +Kt′i

)t′i
> e−1/K .

Notice that since δ = 1/ log2 ∆, for the first i = O(log ∆) rounds we have p′i = pi(1−δ)i = (1−o(1))pi.
If we choose ε1 = 1− k

ln ∆ −
2ε
3 and ε2 = 1− k

ln ∆ −
ε
3 , and end the phase after the first round i when

ti ≤ T
def
= ∆ε1/3, then

t′i =
(1 + δ)i∏i
k=1(1− πk)

· ti ≤
(

(1 + δ)

1− (1 +K∆ε1/3)−1

)i
ti ≤ (1 + o(1))ti.
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Then, Lemma 8 holds similarly except that the algorithm runs in (1+o(1))Ke1/Kk+O(log∗∆) time.
Also, one can prove pi ≥ 30e3/ε∆ε2 as in the proof of Lemma 8. The argument for Phase II afterwards
will be the same with that in triangle-free graphs.

The remaining task is to bound the failure probability of Qi(u), when Qi−1 holds. To show this,
notice that it is possible to bound individual c-degrees rather than bounding the average c-degree
in graphs of girth at least 5, since the probability a color remains in each neighbor has only a weak
correlation. Instead of proving Lemma 6, we prove the following:

Lemma 10. Let β′i = βi
(1−πi) . If Qi−1 holds, then Pr

(
|N̂i,c(u)| ≤ (1 + δ/4)β′it

′
i−1

)
≥ 1− e−Ω(δ2T )

Proof. Let x ∈ Ni−1,c(u). Whether x loses c in its palette depends on whether x’s neighbors chose
c. Since G is a graph with girth at least 5, u is the only common neighbor of vertices in Ni−1,c(u).
The probability that x loses c is almost independent among other vertices in Ni−1,c(u). Let Ix be the
indicator random variable that c ∈ K(x) and all of x’s neighbors excluding u did not choose c (i.e.
c ∈ K(x) \Si(Ni−1,c(x) \{u})). Clearly, Ix are independent among all x ∈ Ni−1,c(u) and Pr(Ix) = β′i.

Letting I =
∑

x Ix, we have |N̂i,c(u)| ≤ I and E[I] = β′i|Ni−1,c(u)|. Therefore,

Pr
(
|N̂i,c(u)| ≤ (1 + δ/4)β′it

′
i−1

)
≥ Pr

(
I ≤ (1 + δ/4)β′it

′
i−1

)
|N̂i,c(u)| ≤ I

≥ Pr
(
I ≤ E[I] + (δ/4)β′it

′
i−1

)
E[I] = β′i|Ni−1,c(u)| ≤ β′it′i−1

≥ 1− e−Ω(δ2β′it
′
i−1) β′it

′
i−1 ≥ E[I] and by Corollary 4

= 1− e−Ω(δ2T ) β′i = Ω(1) and t′i−1 ≥ T

Combined with Lemma 7, we get the following:

Collorary 5. If Qi−1 holds, then Pr (∀c ∈ Pi−1(u), |Ni,c(u)| ≤ t′i) ≥ 1− 2∆e−Ω(δ2T ) −∆2e−Ω(δ2p′i).

Proof. By applying union bound with Lemma 10 and Lemma 7 for all c ∈ Pi−1(u), the following
holds with probability at least 1− 2∆e−Ω(δ2T ) −∆2e−Ω(δ2p′i):

1. |N̂i,c(u)| ≤ (1 + δ/4)β′it
′
i−1

2. |Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5) max(αi|N̂i,c(u)|, T )

Then, we have:

|Ni,c(u)| ≤ αiβ′i(1 + δ/4)(1 + δ/5)t′i−1 + (δ/5)T max(a, b) ≤ a+ b

≤ αiβ′i(1 + δ/4)(1 + 2δ/5)t′i−1 T ≤ ti ≤ αiβiti−1 ≤ αiβ′i(1 + δ/4)ti−1

≤ (1 + δ)αiβ
′
it
′
i−1 δ ≤ 1

= t′i defn. of β′i and t′i

Theorem 5. For any vertex u ∈ Gi−1, Pr(Qi(u) | Qi−1) ≥ 1− 2∆e−Ω(δ2T ) − (∆2 + 1)e−Ω(δ2p′i).

Proof. By Chernoff bound, we can get that Pr(|Pi(u)| ≥ p′i) = Pr(|Pi(u)| ≥ (1 − δ)βip
′
i−1) ≥

Pr(|Pi(u)| ≥ (1 − δ)βi|Pi−1(u)|) ≥ 1 − e−Ω(δ2p′i). By the union bound and Corollary 5, we get
that |Pi(u)| ≥ p′i and |Ni,c(u)| ≤ t′i−1 for all c ∈ Pi(u) hold with probability at least 1− 2∆e−Ω(δ2T )−
(∆2 + 1)e−Ω(δ2p′i)
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Since pi ≥ C2∆ε2 and T = ∆ε1/3, the probability Qi(u) fails for u, 2∆e−Ω(δ2T ) +(∆2 +1)e−Ω(δ2p′i),

is bounded by e−∆1− k
ln ∆
−ε
/(e∆4) for large enough ∆. As in Section 4, depending on how small this

probability is, one can either apply the union bounds to get a high success probability or use Moser
and Tardos’ resampling algorithm for the Lovász Local Lemma.

5.2 Trees

Trees are graphs of infinity girth. According to Theorem 4, it is possible to get a (∆/k)-coloring in

O(k + log∗∆) time if ∆1− k
ln ∆
−ε = Ω(log n) and ε is a constant less than or equal to 1

2 · (1 −
k

ln ∆).

If ∆1− k
ln ∆
−ε = O(log n), we will show that using additional O(q) colors, it is possible to get a

(∆/k +O(q))-coloring in O
(
k + log∗ n+ log logn

log q

)
time. In any case, we can find a (1 +o(1))∆/ ln ∆-

coloring in O(log ∆ + log∆ log n) rounds by choosing q =
√

∆ and k = ln ∆/(1 + o(1)).
The algorithm is the same with the framework of Section 5.1, except that at the end of each round

we delete the bad vertices, which are the vertices that fail to satisfy the induction hypothesis (i.e.
Qi(u) in Phase I or Fi(u) in Phase II). The remaining vertices must satisfy the induction hypothesis.
Using the idea from [5,6,34], we will show that after O(k + log∗∆) rounds of the algorithm, the size
of each component formed by the bad vertices is at most O

(
∆4 log n

)
with high probability.

Barenboim and Elkin’s deterministic algorithm [4] obtains an O(q)-coloring in O
(

logn
log q + log∗ n

)
time for trees (arboricity = 1). We then apply their algorithm on each component formed by
bad vertices. Since the size of each component is at most O(∆4 log n), their algorithm will run

in O
(

log logn+log ∆
log q + log∗ n

)
time, using the additional O(q) colors. Note that this running time is

actually O
(

log logn
log q + log∗ n

)
, since ∆ = O(log1/(1− k

ln ∆
−ε) n) = O(log1/ε n) = logO(1) n.

Define Ai(u) be the event the induction hypothesis fails at u in round i (Qi(u) fails in Phase I
or Fi(u) fails in Phase II). Since k < ln ∆, there exists a constant c1 > 0 such that the algorithm
always finishes in c1 ln ∆ rounds. Let p = 1/(2c1e∆

5 ln ∆). By Theorem 3 and Theorem 5 and since

T ≥ ∆1− k
ln ∆
− 2ε

3 and p′i ≥ ∆1− k
ln ∆
− ε

3 , we have that for large enough ∆,

Pr(Ai(u)) ≤ 2∆e−Ω(δ2T ) + (∆2 + 1)e−Ω(δ2p′i) ≤ 1/(2c1e∆
5 ln ∆) = p

Also note that for u, v ∈ Gi−1, Ai(u) and Ai(v) are independent if distGi−1(u, v) ≥ 5, since Ai(u) only
depends on variables within distance two from u.

Lemma 11. Let H ⊆ Gi−1 be a connected component with s vertices. There exists a vertex set V0 ⊆ H
such that |V0| = ds/∆4e and for any u, v ∈ V0, distGi−1(u, v) ≥ 5 and distGi−1(u, V0 \ {u}) = 5.

Proof. Define B(v, i) = {u ∈ H | distGi−1(v, u) ≤ i}. Start with an arbitrary vertex v ∈ H. Put
v in V0 and delete B(v, 4) from H. Select a new vertex v′ from the remaining vertices in H such
that dist(v′, V0) = 5. If the remaining graph is non-empty, then such v′ must exist, because H is
connected. Repeat this procedure until there are ds/∆4e vertices in V0. Since we delete at most ∆4

vertices in each iteration, the remaining graph will be non-empty until we find ds/∆4e vertices.

Suppose that there exists a component H containing s bad vertices in the end of the algorithm.
Let t = ds/∆4e, we can extract such a subset V0 ⊆ H with the property stated in Lemma 11. We
will show that the total possible number of such V0 will be bounded.

For any V0, we can map it to a tree with size t in the graph G5
i−1. This is because the vertex

set of V0 is connected in G5
i−1 and we can take any spanning tree of it. The mapping is injective.

Therefore, the total number of possilbe V0 is at most the total possible number of ways to embed an
unordered, rooted tree of t vertices in G5

i−1, which is bounded by net∆5t [21, p. 397, Exercise 11].
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On the other hand, the total possible number schedules for when these t vertices become bad is
at most ct1 lnt ∆, since each vertex becomes bad in one of at most c1 ln ∆ rounds in our algorithm.
For those u ∈ V0 who become bad at round i, each failure happens with probability at most p
independently. Therefore,

Pr(∃H s.t. |H| ≥ s and v is bad, ∀v ∈ H)

≤
∑

treeT⊆G5
i−1

|T |=s/∆4

Pr(v is bad, ∀v ∈ T )

≤
∑

treeT⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃
Bi=T,Bi∩Bj=∅

∏
i

Pr(Bi become bad at round i)

≤
∑

treeT⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃
Bi=T,Bi∩Bj=∅

∏
i

p|Bi|

=
∑

treeT⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃
Bi=T,Bi∩Bj=∅

ps/∆
4

≤ n
(
(e∆5)(c1 ln ∆)p

)s/∆4

≤ n(1/2)s/∆
4

which is at most 1/poly(n), if s = Ω(∆4 log n). Therefore, with high probability, all bad components
have size at most O(∆4 log n).

5.3 (∆ + 1)-coloring triangle-free graphs in sublogarithmic time

The (∆ + 1)-coloring problem is a well-studied problem in distributed coloring. For general graphs,
there are algorithms that run in O(log n), O(∆ + log∗ n), and O(log ∆ + exp(O(

√
log log n))) time [3,

5,19,23]. We show that (∆+1)-coloring in triangle-free graphs can be obtained in exp(O(
√

log logn))
rounds for any ∆. Let k = 1 and ε = 1/4. By Theorem 1, there exists a constant ∆0 such that for
all ∆ ≥ ∆0, if ∆1/2 ≥ log n, then a (∆ + 1)-coloring can be found in O(log∗∆) time. If ∆ < ∆0,
then (∆ + 1)-coloring can be solved in O(∆ + log∗ n) = O(log∗ n) rounds [3, 23]. Otherwise, if
∆0 ≤ ∆ < log2 n, then we can apply the same technique for trees to bound the size of each bad
component by O(∆4 log n) = polylog(n), whose vertices failed to satisfy the induction hypothesis in
the O(log∗∆) rounds. Panconesi and Srinivasan’s deterministic network decomposition algorithm [30]
obtains (∆+1)-coloring in exp(O(

√
log s)) time for graphs with s vertices. In fact, their decomposition

can also obtain a proper coloring as long as the graph can be greedily colored (e.g. the palette size is
more than the degree for each vertex). Therefore, by applying their algorithm, each bad component
can be properly colored in exp(O(

√
log logn)) rounds.

6 Conclusion

The time bounds of Theorem 1 show an interesting discontinuity. When ∆ is large we can cap the
error at 1/poly(n) by using standard concentration inequalities and a union bound. When ∆ is small
we can use the Moser-Tardos LLL algorithm to reduce the failure probability again to 1/ poly(n).
Thus, the distributed complexity of our coloring algorithm is tied to the distributed complexity of
the constructive Lovász Local Lemma.
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We showed that χ(G) ≤ (4 + o(1))∆/ ln ∆ for triangle-free graphs G. It would be interesting to
see if it is possible to reduce the palette size to (1 + o(1))∆/ ln ∆, matching Kim’s [20] bound for
girth-5 graphs.

Alon et al. [2] and Vu [37] extended Johansson’s result [28] for triangle-free graphs to obtain an
O(∆/ log f)-coloring for locally sparse graphs (the latter also works for list coloring), in which no
neighborhood of any vertex spans more than ∆2/f edges. It would be interesting to extend our result
to locally sparse graphs and other sparse graph classes.
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A Jamall’s Analysis

There is a small flaw in Jamall’s proof of Lemma 12 in [15], the corresponding Lemma 17 in [16], and
the corresponding lemmas in [17]. He defined the following quantities:

dt(u, c): the c-degree of u at the beginning of round t, which corresponds to |Nt−1,c(u)| in our case.

St(u): the palette of u at the beginning of round t, which corresponds to Pt−1(u) in our case. Also,
he defined st(u) = |St(u)|.

d̃t(u, c): the c-degrees of u just before the cleanup phase (filtering out colors whose c-degrees are too
large) of round t, which corresponds to |Nt,c(u)| in our case.

d̄t(u) :=
∑

c∈S̃t(u) d̃t(u, c), which corresponds to n̂t(u) · |P̂t(u)| in our case.

S̃t(u): the palette of u just before the cleanup phase of round t, which corresponds to P̂t(u) in our
case.

In [15, p. 13]:

For concentration of d̄t(u), suppose st(u) = m. Let c1, . . . , cm be the colors in
St(u). Then d̄t(u) may be considered a random variable determined by the random trials
T1, . . . , Tm, where Ti is the set of vertices in Gt that are assigned color ci in round t.
Observe that Ti affects d̄t(u) by at most dt(u, c).

He claimed that each of the random trials Ti only affects d̄t(u) by dt(u, c), which is the range of
the term d̃t(u, c) (i.e. d̃t(u, c) ∈ [0, dt(u, c)]) in the sum d̄t(u) =

∑
c∈S̃t(u) d̃t(u, c). However, this is not

necessarily true, since it is possible that a single exposure of Ti can cause all c-neighbors to become
colored. This may affect more than one term in the sum and thus more than the amount of dt(u, c).

For example, at the initial configuration, where each vertex has the same palette, the c-degree of
u, dt(u, c), are equal for all colors c. Suppose that after exposing T1, . . . , Tm−1, we have T1 = · · · =
Tm−1 = ∅. When we expose Tm, if Tm is also an emptyset, then d̄t(u) =

∑m
i=1 dt(u, ci). On the other

hand, if Tm is exactly the neighbor set of u, then d̄t(u) = 0, because every neighbor becomes colored.
The difference can be as large as

∑m
i=1 dt(u, ci) = mdt(u, cm) rather than claimed dt(u, cm). This

bound is too large to apply Azuma’s inequality, because
∑
α2
i in their proof can become as large

as O(s2
t (u)d2

t (u)). Perhaps it is possible to fix it by bounding the unlikely events or by considering
the average difference rather then just considering the absolute difference. We presented a different
analysis in this paper, whose concentration bound also satisfies the demands of an efficient distributed
implementation.
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