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Abstract 

 
Hardware transactional memory (HTM) is an 

attractive research topic in recent years. It has great 
potential to simplify parallel programming on the 
soon-to-be-ubiquitous multi-core systems. In this 
paper, a HTM design is proposed, and overall 
performance is evaluated. This HTM design 
distinguishes itself from others by its best effort 
philosophy. The hardware makes best effort to 
complete each transaction and software handles those 
transactions that cannot be completed by hardware. 
This design seeks a balance between application 
performance and hardware implementation complexity, 
and tries to answer the question: what should be done 
by hardware and what should be done by software. 
The overall performance of benchmarks is also 
evaluated by simulation  
 
1. Introduction 
 

Parallel programming remains a challenging 
problem in most application domains despite years of 
research. As chip-multiprocessors become ubiquitous, 
this problem becomes more severe. Providing 
architectural support for massive parallel programming 
is now critical. With this background, hardware 
transactional memory (HTM) systems have been 
proposed to ameliorate this challenge. 

HTM provides a programming model that makes 
parallel programming easier. A programmer delimits 
regions of code that access shared data and the 
hardware executes these regions atomically and in 
isolation, buffering the results of individual 
instructions, and retrying execution if isolation is 
violated. Generally, TM allows programs to use a 
programming style that is close to coarse-grained 
locking to achieve performance that is close to fine-
grained locking. 

Figure 1 shows a program using transactions, where 
the begin and end of a transaction are marked in the 

source code by TM_BEGIN and TM_END. The 
transaction accesses the shared variables in a balanced 
binary tree. Using transactions, multiple threads can 
access the tree simultaneously, which shows potentials 
for performance improvement. 

 
 

Figure 1. A transaction example 
 
This paper proposes a HTM design for 

Power/PowerPC based CMP with best effort 
philosophy. That is, the hardware makes best effort to 
complete each transaction without the guarantee of 
completing all transactions. The software handles those 
transactions that cannot be completed by hardware. 
This design philosophy seeks to balance the 

a

b c 

d f e
key =x 

left right 

root 

Balanced binary tree operation 
(read, write, delete and insert) 

TM_BEGIN { 
    p = root; 
    while (TRUE) { 
        if (x < p->key) {  
            p = p->left;  
        } else if (x > p->key) { 
            p = p->right;  
        } else { break; } 
    } 
    do read/write/deletion/insertion here; 
} TM_END; 



application performance and hardware implementation 
complexity, which is crucial for industries to 
implement HTM in real products. 

The remaining sections are arranged as following. 
Section 2 introduces the related work. Section 3 gives 
our HTM proposal and explains our design philosophy. 
Section 4 introduces the benchmark and methodology. 
Section 5 gives the experiment result of overall 
performance evaluation. Section 6 concludes the paper. 
 
2. Related work 
 

The original transaction concept stems from early 
research in database management systems, e.g. IMS [1] 
and System R [2], and has been widely adopted and 
studied since then. A number of researchers proposed 
to adopt the transaction principle outside database 
systems, e.g. for parallelizing the execution of mostly 
functional programs [3] or for the management of 
concurrent access to virtual memory [4]. The HTM 
mentioned in this paper was firstly proposed in 1993 
by [5] and concurrently by [6]. However, the HTM 
becomes a popular research topic only in recent years 
after multi-core system is agreed to be the trend of chip 
design. Currently, HTM attracts the interests from both 
research communities and industries. Some HTM 
designs were proposed, such as LogTM [7], UTM [8], 
VTM [9], PTM [10] and TCC [11]. More and more 
papers on HTM are published in research conferences. 

HTM proposals from academia often adopt fancy 
ideas to solve the typical problems in HTM design, 
such as large transaction and transaction nesting. 
However, these proposals are hard to be implemented 
in real products by industries because of the 
implementation complexity and cost. Recently, Sun 
announced the first processor that supports HTM [12], 
named Rock. Rock maintains the isolation and 
atomicity of transactions by buffering all stores in the 
store queue, keeping them invisible from the outside 
until the transaction commits, and by using the per-
thread, per-L1-cache-line S-bits (speculative bits) to 
track locations read by transactions. These bits are 
cleared and the transactional stores buffered in the 
store queue are discarded if the transaction fails. Rock 
also adopts best effort philosophy to simplify the 
design and implementation. We believe that how to 
limit the resource applied to HTM is a valuable 
research topic. 

An alternative to implement transactional memory 
is by pure software, named software transactional 
memory (STM). The typical examples include DSTM 
[13], WSTM [14], OSTM [15] and so on. STM has 
good flexibility and small implementation cost, but the 

performance is generally worse than HTM. In this 
paper, we only focus on HTM. 

 
3. Architecture design 
 

To minimize the hardware complexity, in our 
design, the HTM makes best effort to complete each 
transaction. For transactions that may not finish in 
transactional execution (e.g., due to hardware resource 
limitation), it uses a software handler to force 
serialization of transactions so that they can be 
completed in regular non-transactional execution (refer 
to section 3.3). 

To balance performance and complexity, our design 
approach is to optimize for common cases while 
handles rare cases in a slower but acceptable way. On 
the one hand, it is difficult for hardware to support all 
kinds of transactions. There are many fundamental 
limitations, such as area, power and verification cost. 
On the other hand, most transactions (under evaluation) 
actually show common characteristics, such as small 
write set. 

 
 

Figure 2. Dedicated buffer 
 
The HTM proposed in this paper requires the 

following extensions to the hardware. As shown in 
Figure 2, a dedicated buffer is added to each processor. 
Each dedicated buffer contains two parts: write buffer 
(W-buf) and read buffer (R-buf). When the execution 
enters a transaction, all memory stores are saved in the 
write buffer (W-buf) instead of the conventional 
memory hierarchy, and the addresses of all memory 
loads are recorded in the read buffer (R-buf). The data 
read or written by transactions are called speculative 
data. 

The dedicated buffers and the cache are connected 
together by bus, and read/write messages are broadcast 
and monitored by dedicated buffers to detect conflicts 
among concurrent transactions. The granularity for 
conflict detection is a block. That is, a conflict is 
detected if two transactions access the same buffer 
block (not necessarily the same address) and at least 
one of them is a write. An immediate result is HTM 
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may have false sharing. False sharing refers to the 
situation that two transactions access the different 
portions in a same buffer block, and at least one of 
them tries to write. Since the granularity for conflict 
detection is a block, the above situation has to be 
deemed as a conflict although it is actually not. 

If no conflict is detected, upon reaching the end of 
the transaction, stores in W-buf are committed into 
cache coherent memory. This is called transaction 
commit. Otherwise, a conflict resolution handler 
determines which of the two conflicting transactions to 
be aborted. The aborted transaction has to rollback (by 
clearing out W-buf and R-buf) and retry at some time 
later. 

As an important design choice, the logging of load 
addresses and buffering of stores in transactions can be 
done by adding dedicated buffers, or by augmenting 
the cache. Unlike many other HTM proposals [7,8,9], 
this design does not use cache to save speculative data 
because of three reasons. The first, cache-based 
designs modify the existing cache system. Since the 
cache verification is expensive, industries are reluctant 
to accept cache-based designs. The second, current TM 
benchmarks [16] and related research work [17] all 
show that a 4KB W-buf can hold the data written by 
most transactions. And R-buf capacity is not an urgent 
problem since it only records addresses, rather than 
data. Therefore, buffer overflow would be a rare case. 
It is believed that the cost and complexity of dedicated 
buffer are acceptable. The third, large granularity for 
conflict detection actually hurts the program 
concurrency because of false sharing. Cache-based 
design naturally uses cache line as the granularity for 
conflict detection. Modern computers generally have 
large cache line size. For example, Power architecture 
has 128B cache line. Buffer-based design enables the 
designers to reduce false sharing by choosing smaller 
block size. 
 
3.1. Data path of the HTM design 
 

The load/store operation inside a transaction is 
called transactional load/store. The transactional 
load/store has different semantics from normal 
load/store. Figure 3 illustrates the data path of the 
HTM design in this paper. For simplicity, only one 
processor core is shown. In actual system, multiple 
cores share one L2 cache. 

Transactional store saves data into W-buf. 
1) If it hits W-buf, the data is written directly into 

W-buf. 
2) If it misses W-buf, do conflict detection. 

2.1) If there is no conflict, the store saves data 
into W-buf with write allocation.  

2.2) If there is a conflict, one of the conflicted 
transactions has to abort. Which one to abort depends 
on the contention management policy. 

3) If W-buf overflows, the transaction aborts. 
Transactional load reads data from both L1 and W-

buf, and checks whether the address hits R-buf. 
1) If the load operation hits W-buf, return the data 

from W-buf and ignore the data from cache. 
2) If the load operation misses W-buf but hits R-buf, 

return the data from cache. 
3) If the load operation misses both W-buf and R-

buf, do conflict detection. 
3.1) If there is no conflict, read the data again 

from cache, and insert the address into R-buf. 
3.2) If there is a conflict, one of the conflicted 

transactions has to abort. Which one to abort depends 
on the contention management policy. 

4) If the R-buf overflows, the transaction aborts.  

 
Figure 3. Data path of the HTM design 

 
Dedicated buffers, L1 data cache are connected 

with L2 data cache by a crossbar switch. The L2 is 
implemented as three separate and autonomous cache 
controllers. Each L2 controller can operate 
concurrently and feed 32B of data per cycle. The 
switch also accepts stores from the processor core and 
sequences them to the L2 controllers. This is an IBM 
Power4-like architecture [18]. 
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3.2. Runtime design 
 

 
Figure 4. Runtime of the HTM system 

 

 
Figure 5. Transaction runtime macros 

 
The runtime provides the basic software support for 

transactions, as well as overflow handling, contention 
management, and retry management. Fig. 4 gives a 
simplified implementation of the runtime (overflow 
handling are omitted). The runtime provides two 
macros: TM_BEGIN and TM_END. TM_BEGIN uses 

setjmp to save registers, and executes tbegin 
instruction to start transaction. TM_END executes 
tcommit instruction to commit a transaction. tbegin 
instruction has an argument “default_handler”, which 
is the address of a TM handler provided by runtime. 
When conflict happens, the execution flow jumps into 
default_handler. long_jmp is called by default_handler 
to rollback transaction. Figure 5 shows a transaction 
after macro expansion. 

 
3.3. Overflow handling 

 
Buffer overflow is a rare case. The basic idea of 

overflow handling is to serialize the execution of 
transactions when overflow happens. Since, under this 
mode, there are no concurrent transactions, the 
transaction can be executed in a non-transactional 
manner and access only the regular memory hierarchy. 

To implement this overflow handling mechanism, 
each transaction tests a global unique token before its 
execution. If the token is taken, it waits until the token 
is returned. If a transaction overflows, the execution 
jumps to an overflow handler, shown as Figure 6. The 
handler fetches the global unique token, and waits on 
all outstanding transactions to finish. After that, the 
overflowed transaction re-executes. During the re-
execution, the data is directly written to cache coherent 
memory without conflict detection. After the re-
execution finishes, the token is returned. The re-
execution of the overflowed transaction is the only one 
transaction in the system, which is the key point to 
guarantee atomicity. 

 
Figure 6. An overflow transaction 

 
 

  TM_BEGIN { 
    /* transaction execution. */ 
  } TM_END; 
 
overflow_handler: 
  do { 

  // atomically fetch global unique token 
    got_token = try_fetch_token();  
  } while (got_token == FALSE); 
  do { 
    // wait until existing transactions finish 
    no_trans = check_trans();  
  } while (no_trans == FALSE); 
 
  /* re-execute the transaction */ 
  return_token(); 

TM_BEGIN { 
// do something; 

} TM_END; 

while (1) { 
int _ret; 
get thread local jmp_buf; 
_ret = setjmp(jmp_buf); 
if (_ret == 0) { 
    xbegin default_handler; 
        { 
             // do something; 
        } 
        xcommit();    // success 
        break; 
} 

} 

Define TM_BEGIN as following: 
while (1) { 

int _ret; 
get thread local jmp_buf(allocated by tm_init);
_ret = setjmp(jmp_buf); 
if (_ret == 0) { 
    tbegin default_handler; 

Define TM_END as following: 
tcommit(); 
break; 

} 
} 

default_hanlder { 
    get thread local jmp_buf; 

trollback(); 
long_jmp(jmp_buf, 1); 

} 



4. Benchmark and methodology 
 

The benchmarks used in the paper come from 
several resources: STAMP, SPLASH-2 and self-
developed application kernels. STAMP [16] is a TM 
benchmark published by Stanford University, 
including genome, vacation, rbtest and kmeans. 
genome is a bioinformatics application, performing 
gene sequencing from a very large pool of gene 
segments. vacation is a travel reservation system 
powered by an in-memory database. rbtest implements 
a red-black tree. kmeans is an clustering algorithm for 
data mining workload. SPLASH-2 is a well-studied 
benchmark for parallel computing. Three programs, 
barnes, ocean and raytrace, are ported to BET platform. 
Besides, a b+tree program is developed on BET 
platform. Many database system uses b+tree as kernel 
data structure. 

In order to characterize those benchmarks and 
perform evaluation, we implemented two statistics. 

1) Overflow rate is calculated by formula (1). 

%100×=
transcommitted

overflowbytransaborted
rateoverflow   (1) 

Overflow rate actually reflects the transaction size. 
By observing the overflow rates at different buffer 
sizes, the information about transaction size is revealed. 
In this paper, the overflow rate is only accounted for 
W-buf since R-buf only records addresses. Some 
signature-based method can extend R-buf capacity to 
be reasonable large. So, the capacity of R-buf is not 
big problem. 

2) Conflict rate is calculated by formula (2). 

%100×=
transcommitted

conflictbytransaborted
rateconflict   (2) 

A large number of conflicts can indicate either that 
application lacks inherent concurrency, or that certain 
design choices are causing unnecessary conflicts. In 
the above formula, if a transaction is aborted n times 
by conflict, it is counted as n in numerator. 

The evaluation methodology is simulation. We 
modify the simulator mambo [19] to support HTM. 
Mambo is an IBM simulator for Power architecture. 
Figure 7 shows the target system to be simulated. The 
CMP contains two groups, connected by on-chip bus. 
Each group has 4 processor cores and a shared L2 
cache. The corresponding configuration parameters are 
listed in table 1. 

 
5. Design evaluation 

 
This section gives the evaluation to the design in 

this paper, including the W-buf size selection, R-buf 
evaluation and performance comparison. 

 
Figure 7. Target system 

 
Table 1. System configuration 

 
 L1 L2 Memory

size 32KB 2MB 128MB
associativity 4 8 NA 

line size 128B 128B NA 
access latency

(cycles) 2 load: 6 
store: 20 254 

type write 
through inclusive NA 

 
W-buf size selection is actually a tradeoff between 

performance and cost. Large W-buf reduces the chance 
to overflow, but requires more chip area and power. 
Since overflow has great impact to the performance, 
the W-buf size has to be well-selected to suit current 
benchmarks. 

Table 2 gives the overflow rate of different 
benchmarks at different block size and W-buf size. 
Benchmarks kmeans, raytrace, barnes and ocean are 
not shown in this table because their transactions are 
very small (a 512B W-buf is quite enough for them). 
Generally, when W-bus size is small, the overflow rate 
is high, which significantly hurts performance. Take 
b+tree as example, experiments show that 35% ~ 48% 
execution time is used for overflow handling when W-
buf size is 1KB, while the ratio falls to 1% ~ 6% when 
W-buf size is 4KB. An immediate conclusion is that 
small W-buf is unacceptable in performance. In our 
design, 4KB is chosen to be W-buf size since it has 
lowest overflow rate. 

Figure 8 shows the scalability of the design in this 
paper. Different benchmarks are run with 1, 2, 4 and 8 
threads. And the sequential version is a single-threaded 
program without any locks. Generally, single-threaded 
benchmarks have slightly slowdown if compared to 
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sequential version, but 8-threaded benchmarks may 
have 3~6 times speedup. The major source of the 
speedup comes from the concurrency of transactions. 
When thread number increases, more and more 
transactions run concurrently. 

Figure 9 shows the performance comparison 
between lock-based programs and TM-based programs. 
Both run with 8 threads. W-buf size is 4KB and block 
size is 32B. Generally, TM-based programs run 2~5 
times faster. SPLASH-2 has very small transactions, 

both in terms of transaction number and transaction 
size. So, it does not show good performance gain. 
 
6. Conclusions 
 

This paper proposes a HTM design for 
Power/PowerPC based CMP. The design seeks balance 
between performance and complexity. The application 
performance in HTM context is evaluated. Generally, 
HTM is able to achieve good performance gain when it 
is compared with lock-based systems. 

 
Table 2. Overflow rate (8 threads) 

 
block 32B 64B 128B 
W-buf  1KB 2KB 4KB 1KB 2KB 4KB 1KB 2KB 4KB 
b+tree 3.04% 0.25% 0.001% 5.01% 0.25% 0.008% 5.02% 0.25% 0.25% 

vacation 1.13% 1.06% 0% 6.80% 1.07% 0% / 3.52% 0.12% 
genome 0.14% 0% 0% 0.34% 0% 0% 0.51% 0% 0% 
rbtest 0% 0% 0% 0.41% 0% 0% 5.44% 0.22% 0% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The scalability of the HTM 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Performance comparison (4KB W-buf, 32B block size) 
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