
Hardware Transactional Memory System for Parallel Programming

Wang Huayong Hou Rui Wang Kun
IBM China Research Lab IBM China Research Lab IBM China Research Lab

huayongw@cn.ibm.com hourui@cn.ibm.com wangkun@cn.ibm.com

Abstract

Hardware transactional memory (HTM) is an

attractive research topic in recent years. It has great
potential to simplify parallel programming on the
soon-to-be-ubiquitous multi-core systems. In this
paper, a HTM design is proposed, and overall
performance is evaluated. This HTM design
distinguishes itself from others by its best effort
philosophy. The hardware makes best effort to
complete each transaction and software handles those
transactions that cannot be completed by hardware.
This design seeks a balance between application
performance and hardware implementation complexity,
and tries to answer the question: what should be done
by hardware and what should be done by software.
The overall performance of benchmarks is also
evaluated by simulation

1. Introduction

Parallel programming remains a challenging
problem in most application domains despite years of
research. As chip-multiprocessors become ubiquitous,
this problem becomes more severe. Providing
architectural support for massive parallel programming
is now critical. With this background, hardware
transactional memory (HTM) systems have been
proposed to ameliorate this challenge.

HTM provides a programming model that makes
parallel programming easier. A programmer delimits
regions of code that access shared data and the
hardware executes these regions atomically and in
isolation, buffering the results of individual
instructions, and retrying execution if isolation is
violated. Generally, TM allows programs to use a
programming style that is close to coarse-grained
locking to achieve performance that is close to fine-
grained locking.

Figure 1 shows a program using transactions, where
the begin and end of a transaction are marked in the

source code by TM_BEGIN and TM_END. The
transaction accesses the shared variables in a balanced
binary tree. Using transactions, multiple threads can
access the tree simultaneously, which shows potentials
for performance improvement.

Figure 1. A transaction example

This paper proposes a HTM design for

Power/PowerPC based CMP with best effort
philosophy. That is, the hardware makes best effort to
complete each transaction without the guarantee of
completing all transactions. The software handles those
transactions that cannot be completed by hardware.
This design philosophy seeks to balance the

a

b c

d f e
key =x

left right

root

Balanced binary tree operation
(read, write, delete and insert)

TM_BEGIN {
 p = root;
 while (TRUE) {
 if (x < p->key) {
 p = p->left;
 } else if (x > p->key) {
 p = p->right;
 } else { break; }
 }
 do read/write/deletion/insertion here;
} TM_END;

application performance and hardware implementation
complexity, which is crucial for industries to
implement HTM in real products.

The remaining sections are arranged as following.
Section 2 introduces the related work. Section 3 gives
our HTM proposal and explains our design philosophy.
Section 4 introduces the benchmark and methodology.
Section 5 gives the experiment result of overall
performance evaluation. Section 6 concludes the paper.

2. Related work

The original transaction concept stems from early
research in database management systems, e.g. IMS [1]
and System R [2], and has been widely adopted and
studied since then. A number of researchers proposed
to adopt the transaction principle outside database
systems, e.g. for parallelizing the execution of mostly
functional programs [3] or for the management of
concurrent access to virtual memory [4]. The HTM
mentioned in this paper was firstly proposed in 1993
by [5] and concurrently by [6]. However, the HTM
becomes a popular research topic only in recent years
after multi-core system is agreed to be the trend of chip
design. Currently, HTM attracts the interests from both
research communities and industries. Some HTM
designs were proposed, such as LogTM [7], UTM [8],
VTM [9], PTM [10] and TCC [11]. More and more
papers on HTM are published in research conferences.

HTM proposals from academia often adopt fancy
ideas to solve the typical problems in HTM design,
such as large transaction and transaction nesting.
However, these proposals are hard to be implemented
in real products by industries because of the
implementation complexity and cost. Recently, Sun
announced the first processor that supports HTM [12],
named Rock. Rock maintains the isolation and
atomicity of transactions by buffering all stores in the
store queue, keeping them invisible from the outside
until the transaction commits, and by using the per-
thread, per-L1-cache-line S-bits (speculative bits) to
track locations read by transactions. These bits are
cleared and the transactional stores buffered in the
store queue are discarded if the transaction fails. Rock
also adopts best effort philosophy to simplify the
design and implementation. We believe that how to
limit the resource applied to HTM is a valuable
research topic.

An alternative to implement transactional memory
is by pure software, named software transactional
memory (STM). The typical examples include DSTM
[13], WSTM [14], OSTM [15] and so on. STM has
good flexibility and small implementation cost, but the

performance is generally worse than HTM. In this
paper, we only focus on HTM.

3. Architecture design

To minimize the hardware complexity, in our
design, the HTM makes best effort to complete each
transaction. For transactions that may not finish in
transactional execution (e.g., due to hardware resource
limitation), it uses a software handler to force
serialization of transactions so that they can be
completed in regular non-transactional execution (refer
to section 3.3).

To balance performance and complexity, our design
approach is to optimize for common cases while
handles rare cases in a slower but acceptable way. On
the one hand, it is difficult for hardware to support all
kinds of transactions. There are many fundamental
limitations, such as area, power and verification cost.
On the other hand, most transactions (under evaluation)
actually show common characteristics, such as small
write set.

Figure 2. Dedicated buffer

The HTM proposed in this paper requires the

following extensions to the hardware. As shown in
Figure 2, a dedicated buffer is added to each processor.
Each dedicated buffer contains two parts: write buffer
(W-buf) and read buffer (R-buf). When the execution
enters a transaction, all memory stores are saved in the
write buffer (W-buf) instead of the conventional
memory hierarchy, and the addresses of all memory
loads are recorded in the read buffer (R-buf). The data
read or written by transactions are called speculative
data.

The dedicated buffers and the cache are connected
together by bus, and read/write messages are broadcast
and monitored by dedicated buffers to detect conflicts
among concurrent transactions. The granularity for
conflict detection is a block. That is, a conflict is
detected if two transactions access the same buffer
block (not necessarily the same address) and at least
one of them is a write. An immediate result is HTM

Dedicated Buffer

Pipeline

L1 D-cache

L2 D-cache

addr

BUS

addr data

block 1
……

block n

W-buf R-buf

may have false sharing. False sharing refers to the
situation that two transactions access the different
portions in a same buffer block, and at least one of
them tries to write. Since the granularity for conflict
detection is a block, the above situation has to be
deemed as a conflict although it is actually not.

If no conflict is detected, upon reaching the end of
the transaction, stores in W-buf are committed into
cache coherent memory. This is called transaction
commit. Otherwise, a conflict resolution handler
determines which of the two conflicting transactions to
be aborted. The aborted transaction has to rollback (by
clearing out W-buf and R-buf) and retry at some time
later.

As an important design choice, the logging of load
addresses and buffering of stores in transactions can be
done by adding dedicated buffers, or by augmenting
the cache. Unlike many other HTM proposals [7,8,9],
this design does not use cache to save speculative data
because of three reasons. The first, cache-based
designs modify the existing cache system. Since the
cache verification is expensive, industries are reluctant
to accept cache-based designs. The second, current TM
benchmarks [16] and related research work [17] all
show that a 4KB W-buf can hold the data written by
most transactions. And R-buf capacity is not an urgent
problem since it only records addresses, rather than
data. Therefore, buffer overflow would be a rare case.
It is believed that the cost and complexity of dedicated
buffer are acceptable. The third, large granularity for
conflict detection actually hurts the program
concurrency because of false sharing. Cache-based
design naturally uses cache line as the granularity for
conflict detection. Modern computers generally have
large cache line size. For example, Power architecture
has 128B cache line. Buffer-based design enables the
designers to reduce false sharing by choosing smaller
block size.

3.1. Data path of the HTM design

The load/store operation inside a transaction is
called transactional load/store. The transactional
load/store has different semantics from normal
load/store. Figure 3 illustrates the data path of the
HTM design in this paper. For simplicity, only one
processor core is shown. In actual system, multiple
cores share one L2 cache.

Transactional store saves data into W-buf.
1) If it hits W-buf, the data is written directly into

W-buf.
2) If it misses W-buf, do conflict detection.

2.1) If there is no conflict, the store saves data
into W-buf with write allocation.

2.2) If there is a conflict, one of the conflicted
transactions has to abort. Which one to abort depends
on the contention management policy.

3) If W-buf overflows, the transaction aborts.
Transactional load reads data from both L1 and W-

buf, and checks whether the address hits R-buf.
1) If the load operation hits W-buf, return the data

from W-buf and ignore the data from cache.
2) If the load operation misses W-buf but hits R-buf,

return the data from cache.
3) If the load operation misses both W-buf and R-

buf, do conflict detection.
3.1) If there is no conflict, read the data again

from cache, and insert the address into R-buf.
3.2) If there is a conflict, one of the conflicted

transactions has to abort. Which one to abort depends
on the contention management policy.

4) If the R-buf overflows, the transaction aborts.

Figure 3. Data path of the HTM design

Dedicated buffers, L1 data cache are connected

with L2 data cache by a crossbar switch. The L2 is
implemented as three separate and autonomous cache
controllers. Each L2 controller can operate
concurrently and feed 32B of data per cycle. The
switch also accepts stores from the processor core and
sequences them to the L2 controllers. This is an IBM
Power4-like architecture [18].

Core 0

Pipeline

Load Unit Store Unit

MUX

W-buf L1 D-Cache

8B

8B
normal load

R-buf
8B

address

Switch

commit
write
allocation

32B 8B 32B8B

L2 D-Cache (three L2 cache controllers)

32B8B 32B 8B 32B8B

On-chip bus controller

32B32B 32B 32B 32B32B

3.2. Runtime design

Figure 4. Runtime of the HTM system

Figure 5. Transaction runtime macros

The runtime provides the basic software support for

transactions, as well as overflow handling, contention
management, and retry management. Fig. 4 gives a
simplified implementation of the runtime (overflow
handling are omitted). The runtime provides two
macros: TM_BEGIN and TM_END. TM_BEGIN uses

setjmp to save registers, and executes tbegin
instruction to start transaction. TM_END executes
tcommit instruction to commit a transaction. tbegin
instruction has an argument “default_handler”, which
is the address of a TM handler provided by runtime.
When conflict happens, the execution flow jumps into
default_handler. long_jmp is called by default_handler
to rollback transaction. Figure 5 shows a transaction
after macro expansion.

3.3. Overflow handling

Buffer overflow is a rare case. The basic idea of

overflow handling is to serialize the execution of
transactions when overflow happens. Since, under this
mode, there are no concurrent transactions, the
transaction can be executed in a non-transactional
manner and access only the regular memory hierarchy.

To implement this overflow handling mechanism,
each transaction tests a global unique token before its
execution. If the token is taken, it waits until the token
is returned. If a transaction overflows, the execution
jumps to an overflow handler, shown as Figure 6. The
handler fetches the global unique token, and waits on
all outstanding transactions to finish. After that, the
overflowed transaction re-executes. During the re-
execution, the data is directly written to cache coherent
memory without conflict detection. After the re-
execution finishes, the token is returned. The re-
execution of the overflowed transaction is the only one
transaction in the system, which is the key point to
guarantee atomicity.

Figure 6. An overflow transaction

 TM_BEGIN {
 /* transaction execution. */
 } TM_END;

overflow_handler:
 do {

 // atomically fetch global unique token
 got_token = try_fetch_token();
 } while (got_token == FALSE);
 do {
 // wait until existing transactions finish
 no_trans = check_trans();
 } while (no_trans == FALSE);

 /* re-execute the transaction */
 return_token();

TM_BEGIN {
// do something;

} TM_END;

while (1) {
int _ret;
get thread local jmp_buf;
_ret = setjmp(jmp_buf);
if (_ret == 0) {
 xbegin default_handler;
 {
 // do something;
 }
 xcommit(); // success
 break;
}

}

Define TM_BEGIN as following:
while (1) {

int _ret;
get thread local jmp_buf(allocated by tm_init);
_ret = setjmp(jmp_buf);
if (_ret == 0) {
 tbegin default_handler;

Define TM_END as following:
tcommit();
break;

}
}

default_hanlder {
 get thread local jmp_buf;

trollback();
long_jmp(jmp_buf, 1);

}

4. Benchmark and methodology

The benchmarks used in the paper come from
several resources: STAMP, SPLASH-2 and self-
developed application kernels. STAMP [16] is a TM
benchmark published by Stanford University,
including genome, vacation, rbtest and kmeans.
genome is a bioinformatics application, performing
gene sequencing from a very large pool of gene
segments. vacation is a travel reservation system
powered by an in-memory database. rbtest implements
a red-black tree. kmeans is an clustering algorithm for
data mining workload. SPLASH-2 is a well-studied
benchmark for parallel computing. Three programs,
barnes, ocean and raytrace, are ported to BET platform.
Besides, a b+tree program is developed on BET
platform. Many database system uses b+tree as kernel
data structure.

In order to characterize those benchmarks and
perform evaluation, we implemented two statistics.

1) Overflow rate is calculated by formula (1).

%100×=
transcommitted

overflowbytransaborted
rateoverflow (1)

Overflow rate actually reflects the transaction size.
By observing the overflow rates at different buffer
sizes, the information about transaction size is revealed.
In this paper, the overflow rate is only accounted for
W-buf since R-buf only records addresses. Some
signature-based method can extend R-buf capacity to
be reasonable large. So, the capacity of R-buf is not
big problem.

2) Conflict rate is calculated by formula (2).

%100×=
transcommitted

conflictbytransaborted
rateconflict (2)

A large number of conflicts can indicate either that
application lacks inherent concurrency, or that certain
design choices are causing unnecessary conflicts. In
the above formula, if a transaction is aborted n times
by conflict, it is counted as n in numerator.

The evaluation methodology is simulation. We
modify the simulator mambo [19] to support HTM.
Mambo is an IBM simulator for Power architecture.
Figure 7 shows the target system to be simulated. The
CMP contains two groups, connected by on-chip bus.
Each group has 4 processor cores and a shared L2
cache. The corresponding configuration parameters are
listed in table 1.

5. Design evaluation

This section gives the evaluation to the design in

this paper, including the W-buf size selection, R-buf
evaluation and performance comparison.

Figure 7. Target system

Table 1. System configuration

 L1 L2 Memory

size 32KB 2MB 128MB
associativity 4 8 NA

line size 128B 128B NA
access latency

(cycles) 2 load: 6
store: 20 254

type write
through inclusive NA

W-buf size selection is actually a tradeoff between

performance and cost. Large W-buf reduces the chance
to overflow, but requires more chip area and power.
Since overflow has great impact to the performance,
the W-buf size has to be well-selected to suit current
benchmarks.

Table 2 gives the overflow rate of different
benchmarks at different block size and W-buf size.
Benchmarks kmeans, raytrace, barnes and ocean are
not shown in this table because their transactions are
very small (a 512B W-buf is quite enough for them).
Generally, when W-bus size is small, the overflow rate
is high, which significantly hurts performance. Take
b+tree as example, experiments show that 35% ~ 48%
execution time is used for overflow handling when W-
buf size is 1KB, while the ratio falls to 1% ~ 6% when
W-buf size is 4KB. An immediate conclusion is that
small W-buf is unacceptable in performance. In our
design, 4KB is chosen to be W-buf size since it has
lowest overflow rate.

Figure 8 shows the scalability of the design in this
paper. Different benchmarks are run with 1, 2, 4 and 8
threads. And the sequential version is a single-threaded
program without any locks. Generally, single-threaded
benchmarks have slightly slowdown if compared to

Group 0

CMP

Group 1

C
ore 0

C
ore 1

C
ore 2

C
ore 3

L2 Cache
C

ore 4
C

ore 5
C

ore 6
C

ore 7

L2 Cache

On-Chip Bus

Memory Controller

sequential version, but 8-threaded benchmarks may
have 3~6 times speedup. The major source of the
speedup comes from the concurrency of transactions.
When thread number increases, more and more
transactions run concurrently.

Figure 9 shows the performance comparison
between lock-based programs and TM-based programs.
Both run with 8 threads. W-buf size is 4KB and block
size is 32B. Generally, TM-based programs run 2~5
times faster. SPLASH-2 has very small transactions,

both in terms of transaction number and transaction
size. So, it does not show good performance gain.

6. Conclusions

This paper proposes a HTM design for
Power/PowerPC based CMP. The design seeks balance
between performance and complexity. The application
performance in HTM context is evaluated. Generally,
HTM is able to achieve good performance gain when it
is compared with lock-based systems.

Table 2. Overflow rate (8 threads)

block 32B 64B 128B
W-buf 1KB 2KB 4KB 1KB 2KB 4KB 1KB 2KB 4KB
b+tree 3.04% 0.25% 0.001% 5.01% 0.25% 0.008% 5.02% 0.25% 0.25%

vacation 1.13% 1.06% 0% 6.80% 1.07% 0% / 3.52% 0.12%
genome 0.14% 0% 0% 0.34% 0% 0% 0.51% 0% 0%
rbtest 0% 0% 0% 0.41% 0% 0% 5.44% 0.22% 0%

Figure 8. The scalability of the HTM

Figure 9. Performance comparison (4KB W-buf, 32B block size)

0

1

2

3

4

5

6

7

sequential 1 2 4 8
thread number

sp
ee

du
p

vacation kmeans b+tree
barnes raytrace

0

2

4

6

genome vacation rbtest kmeans B+tree raytrace barnes ocean

benchmark (8 threads)

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Lock HTM

7. References

[1] W.C. McGee, “The information management system
imv/vs”, IMB System Journal, vol. 2, IBM, 1977, pp. 84-168.
[2] M. Astrahan, M. Blasgen, D. Chamberlin and et al,
“System r: Relational approach to database management”,
Transactions on Database Systems, vol. 1, ACM, 1976, pp.
97-137.
[3] T.F. Knigh, “An architecture for mostly functional
languages”, Proceedings of AMC Lisp and Functional
Programming Conference, ACM, 1986, pp. 500-519.
[4] A. Chang and M.F. Mergen, “801 storage: Architecture
and programming”, ACM Transactions on Computer System
(TOCS), vol. 6, ACM, 1988, pp. 28-50.
[5] M. Herlihy and J.E.B. Moss, “Transactional memory:
Architectural support for lock-free data structures”,
Proceedings of the 20th Annual International Symposium on
Computer Architecture (ISCA), IEEE Computer Society,
1993, pp. 289-300.
[6] J.M. Stone, H.S. Stone, P. Heidelberger and et al,
“Multiple reservations and the Oklahoma update”, IEEE
Parallel and Distributed Technology, 1(4), IEEE Computer
Society, 1993, pp. 58-71.
[7] K.E. Moore, J. Bobba, M.J. Moravan and et al, “LogTM:
Log-based transactional memory”, Proceedings of the 12th
Annual International Symposium on High Performance
Computer Architecture (HPCA), IEEE Computer Society,
2006, pp. 254-256.
[8] C.S. Ananian, K. Asanovic, B.C. Kuszmaul and et al,
“Unbounded transactional memory”, Proceedings of the 11th
International Symposium on High Performance Computer
Architecture (HPCA), IEEE Computer Society, 2005, pp.
316-327.
[9] R. Rajwar, M. Herlihy and K. Lai, “Virtualizing
transactional memory”, Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA),
IEEE Computer Society, 2005, pp. 494-505.

[10] W. Chuang, S. Narayanasamy, G. Venkatesh and et al,
“Unbounded page-based transactional memory”, ACM
SIGPLAN Notices, 41(11), ACM, 2006, pp. 347-358.
[11] L. Hammond, B.D. Carlstrom, V. Wong and et al,
“Transactional coherence and consistency: Simplifying
parallel hardware and software”, IEEE Micro, 24(6), IEEE
Computer Society, 2004, pp. 92-103.
[12] M. Moir, K. Moore and D. Nussbaum, “The adaptive
transactional memory test platform: A tool for experimenting
with transactional code for rock”, Proceedings of the 3rd
ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT2008), ACM, 2008.
[13] M. Herlihy, V. Luchangco, M. Moir and et al, “Software
transactional memory for dynamic-sized data structures”,
Proceedings of the 22nd AMC Symposium on Principles of
Distributed Computing, ACM, 2003, pp. 92-101.
[14] T. Harris, “Exceptions and side-effects in atomic
blocks”, Proceedings of the 2004 Workshop on Concurrency
and Synchronization in Java programs, 2004, pp. 46-53.
[15] K. Fraser and T. Harris, “Concurrent programming
without locks”, Technical report, Microsoft Research, 2003.
[16] Stanford Transactional Applications for Multi-
Processing (STAMP), http://stamp.stanford.edu/
[17] J.W. Chung, H. Chafi, C.C. Minh and et al, “The
common case transactional behavior of multithreaded
programs”, Proceedings of International Symposium on High
Performance Computer Architecture (HPCA), IEEE
Computer Society, 2006, pp. 266-277.
[18] J.M. Tendler, J.S. Dodson, J.S. Fields, and et al,
“POWER4 system microarchitecture”, IBM Journal of
Research and Development, 46(1), 2002, pp. 5-25.
[19] Patrick Bohrer, Mootaz Blnozahy, Ahmed Gheith, et al,
“Mambo: a full system simulator for the PowerPC
architecture”, ACM SIGMETRICS Performance Evaluation
Review, 31(4), ACM, 2004, pp. 8-12.

