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ABSTRACT

We describe language- and code generation-based approaches
to providing access to architecture-specific vectorization sup-
port for high-performance data stream processing applica-
tions. We provide an experimental performance evaluation
of several stream operators, contrasting our code generation
approach with the native auto-vectorization support avail-
able in the GNU gcc and Intel icc compilers.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; Modules, packages

General Terms

Languages, Performance, Experimentation

1. INTRODUCTION
Streaming applications can be extremely challenging to

design and implement. The design process has to cope with
difficult issues associated with building distributed appli-
cations, coupled with the need for careful optimization of
the performance-critical sequential portions of these appli-
cations. We have found that high-speed stream processing
applications present an interesting combination of challenges
from a performance optimization standpoint. Two impor-
tant issues stand out: (1) handling the stringent require-
ments to cope with high data ingest rates and (2) handling
analytics that rely heavily on vectorized processing.

In this work, we demonstrate an effective approach to ad-
dressing the second challenge by code generation and auto-
vectorization support. We describe language and library
support for developing streaming applications in Spade,
a high-level programming language that provides, among
other features, auto-vectorization to application developers.
In particular, we discuss a two-tier approach for making bet-
ter use of SIMD instructions in the context of stream pro-
cessing applications. We argue that this approach is superior
to directly using intrinsics, which requires application recod-
ing. We provide case studies with empirical evaluations of
real-world stream processing operators, demonstrating the
actual improvements that can be derived by making use of
transparent vectorization when adding new operators to ex-
tend Spade.
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Figure 1: The rapid application development envi-

ronment for System S

2. SYSTEM S AND SPADE
System S [3] is a large-scale, distributed data stream pro-

cessing middleware under development for the last 5 years.
It supports structured as well as unstructured data stream
processing and can be scaled to a large number of compute
nodes. The System S runtime can execute a large number of
long-running applications that take the form of flow graphs.

Spade [1] (Stream Processing Application Declarative En-
gine) is the stream processing application development frame-
work for System S. Spade provides a rapid application devel-
opment environment including design and debugging tooling
as seen in Figure 1. The Spade compiler makes use of sev-
eral optimizations. First, code fusion, i.e., the ability to
translate the logical description of an application in terms
of operators into a set of processing elements (PEs) such that
multiple operators may be placed inside a single processing
element and the streams between them are converted into
direct function calls. Second, transparent multi-core adap-
tation, i.e., the ability to dynamically tune data parallel op-
erators to exploit additional processing resources in reaction
to changes in resource availability or changes in the work-
load. Third, auto-vectorization, i.e., the ability to express
an operator’s vector-heavy internal computation in terms of
low-level vector operations, translating into code that em-
ploys SSE or AltiVec SIMD instructions. The design for
this feature is the central contribution of this work and we
discuss it next.

The Spade application support framework utilizes a very
minimal runtime system that enables the creation of Sys-
tem S processing elements and their interconnection. The
actual application processing is carried out by custom-made
instantiations of the operators used in the application. Each
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(a) Cosine measurement
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(b) Weighted cosine measurement

Figure 2: KNN speedup

code generator is tasked with specializing the template code
associated with an operator’s code generator based on the
operator parameter configurations as well as environmen-
tal configurations. Most programmers rely solely on this so
called Spade programming tier, writing their applications
completely in the Spade language.

The toolkit programming tier, which is not normally seen
by application developers, allows Spade to be an extensi-
ble language. New operators can be added to the language
as needed, seaminglessly extending its syntax. To support
the addition of new operators, considerable infrastructure
is provided. The Spade compiler libraries provide services
that enable the integration of the master compiler with new
operator-specific code generators. Each code generator is
defined by an operator model describing, for example, how
many streams an operator produces, how many streams
it consumes, what are the valid configuration parameters,
what are the constraints on these parameters, among oth-
ers. The operator model is used by the master compiler
to perform syntax checking as it compiles an application.
Each code generator is also informed about the architecture-
specific configurations and can thus specialize the code ac-
cordingly. Specifically, since vectors are first class types in
the Spade language, operator writers can make use of a
templatized vector manipulation class when implementing
operators that manipulate vectors. Two implementations
of this class are provided as part of the operator building
support library: a scalar and a vectorized one, hand-written
using intrinsics where vector operations are required.

3. EMPIRICAL EVALUATION
We employed 3 empirical configurations to evaluate our

auto-vectorization approach. We defined a scalar implemen-
tation as our baseline and compiled it with gcc. The same
code used for the scalar implementation was also built with
the C++ compiler-based auto-vectorization feature turned
on, by employing the appropriate command-line switches.
Two compilers were used, the Free Software Foundation
gcc [4] (version 4.3) as well as Intel’s icc [2] (version 11.0).
Finally, we made a single change in terms of the opera-

tors’ source code. We employed a version of the vector ma-
nipulation class that was written using the gcc intrinsics
and, naturally, we built the code using the gcc compiler.
This approach is labeled with the word “Spade”. We mea-
sured the throughput of the benchmark applications. The
ratio between the observed throughput of one of the auto-
vectorization approaches (either the C++ compiler-based
or the Spade-based) to the scalar version is the speedup we
report. The experiments were run on a node with an Intel
Core2 Duo processor 6700 running at 2.66 GHz, with 32 KB
L1 data cache per core, shared 4 MB L2 cache, and SSE3
support, running Linux.

While we looked at several applications, due to space con-
straints, we describe the results obtained for only one of
them. It employs a KNN (K-Nearest Neighbor) operator, an
important classification algorithm in data mining [5]. The
algorithm classifies an object based on knowledge gleaned
from a set of training objects. Figures 2(a) and 2(b) show
the speedup curve as a function of the feature vector length
for KNN, when using the cosine and the weighted cosine as
the similarity metric, respectively. As expected, the more
elements in the vector, the larger is the speedup. Also, the
weighted cosine measurement has better speedup character-
istics since it carries out more vector operations compared
to the simpler algorithm employing the cosine measurement.
In most cases, more speedup is observed for larger training
sets, as, in general, more vector-heavy work must be carried
out. The exception is for smaller vectors when using gcc

and the weighted cosine metric.

4. CONCLUDING REMARKS
Many streaming applications require vector manipulation.

We have shown how Spade, a language used for developing
complex streaming applications, employs code generation as
well as a templatized vector class so that application and op-
erator writers can reap the benefits of native SIMD instruc-
tions transparently. We have shown experimentally that our
approach, in most cases, outperforms the auto-vectorization
support from general purpose C++ compilers.
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