
A Code Generation Approach for Auto-Vectorization in
the SPADE Compiler

Huayong Wang1, Henrique Andrade2, Buğra Gedik2, and Kun-Lung Wu2

1 IBM China Research Lab,
huayongw@cn.ibm.com,

2 IBM T. J. Watson Research Center,
{hcma,bgedik,klwu}@us.ibm.com

Abstract. We describe an auto-vectorization approach for the SPADE stream
processing programming language, comprising two ideas. First, we provide sup-
port for vectors as a primitive data type. Second, we provide a C++ library with
architecture-specific implementations of a large number of pre-vectorized opera-
tions as the means to support language extensions. We evaluate our approach with
several stream processing operators, contrasting SPADE’s auto-vectorization with
the native auto-vectorization provided by the GNU gcc and Intel icc compilers.

1 Introduction

Stream processing applications are designed to identify new information from data that
is continuosly generated by software and hardware sensors [1, 2]. Stream processing
has been a very active area of research over the last few years. Frameworks such as
STREAM [3], Borealis [4], StreamBase [5], TelegraphCQ [6], among others, have fo-
cused on providing stream processing middleware and declarative language for writ-
ing applications. Languages such as StreamIt [7] and the Aspen language [8] provide
additional support and abstractions for simplifying the coding of stream processing
applications. Another active research area has been in investigating the benefits of vec-
torization. From fundamental operations such as matrix multiplication [9] to complete
analytics in areas such as image processing [10], multimedia applications [11], and digi-
tal signal processing [12], it has been shown that substantial performance improvements
can be obtained. Drawing from these two research lines, our contributions in addressing
the challenge of speeding up stream processing applications can be summarized as fol-
lows: (1) an auto-vectorization approach that relies on a two-tier programming model
exposed by the SPADE language; and (2) an empirical case study with real-world stream
processing operators, demonstrating the improvements that can be derived through the
auto-vectorization support provided by the SPADE compiler.

2 Auto-Vectorization Support in SPADE

System S [1, 2] is a large-scale, distributed data stream processing middleware. It sup-
ports structured as well as unstructured data stream processing and can be scaled to a
large number of compute nodes. System S applications are written in the SPADE(Stream

2

Processing Application Declarative Engine) programming language [13, 14]. The rest
of this section describes how we added auto-vectorization capabilities to the SPADE
compiler.

Parser

Code Generator
Motion Estimation

Template

Operator templates

SPADE code

Metadata (operator name,
parameters, stream names, etc)

C++ code

SPADE code

GCC Compiler

Binary code with vector instructions

dlist library
(intrinsics)

Fig. 1. The two-tier code generation
framework. The Motion Estimation op-
erator is discussed in Section 3

In general terms, vectorizing computa-
tional kernels is usually accomplished by one
of the following alternatives: (1) By directly
using SIMD instructions, i.e., by writing the
code with vectorization instructions either by
inlining the assembly language instructions
into the source code or through the use of in-
trinsics [15]; (2) By employing specialized
libraries that implement common domain-
specific operations [12] required by the data
processing analytics; or (3) By making use
of general-purpose auto-vectorizing compil-
ers [16] where compiler analysis is used to
identify vectorization sites in the code.

Our approach, summarized in Figure 1,
borrows from all of these techniques. In a
nutshell, it provides direct auto-vectorization
capabilities to SPADE language programmers
and the means for relying on pre-vectorized
building-block operations, thus simplifying
the task of extending the language for SPADE
operator programmers. This approach consists of exposing a two-tier programming
model to application developers.

The application composition programming tier. SPADE is an extensible, dis-
tributed application composition language. A typical application consists of an enu-
meration of streams produced by a flowgraph. Each stream is defined in terms of its
schema, i.e., the format for the tuples it transports. In such a flowgraph, each stream is
the result of applying an operator that carries out a particular data transformation.

Figure 2 shows a simple exemplar application, with a contrived credit card transac-
tion fraud detection application. We refer to this programming tier as the application
composition programming tier. Most of the application developers do the bulk of their
coding in this tier, by employing operators available from existing operator toolkits.
In this tier, a developer employs the SPADE language syntax and constructs. In this
context, several low-level data transformation operations can be carried out on vectors,
which are basic data types supported by the language. In this tier, auto-vectorization is
achieved by the compiler generating code that converts vector manipulation expressions
(e.g., the expression with normalizedTransactionFV in the sample code) writ-
ten in the SPADE language into calls to a hand-vectorized C++ template class, called
dlist. Currently, the dlist template class has two instantiations, a scalar one which
is architecture-agnostic and a vectorized one, which has been specialized for x86 pro-
cessors through the use of SSE intrinsics. It includes the implementation of many op-
erations, from simple arithmetic operations with vector operands, to more specialized

3

composite FraudDetection {
graph
stream<timestamp transactionTime, string userid,

list<float32> transactionFV>
transactions = TCPSource() {

param url: “stcpns:///CreditCardTransactions”;
}
stream<timestamp transactionTime, string userid,

list<float32> normalizedTransactionFV>
normalizedTransactions = Functor(transactions) {

output normalizedTransactions:
normalizedTransactionFV = normalize(4*transactionFV);

}
stream<string userid, int32 clusterid>
classifiedTransactions = KNN(normalizedTransactions) {

param metric: cosineDistanceMetric
}
() = FileSink(classifiedTransactions) {

param url: “file:///classifiedTransactions.dat”;
}

}

Fig. 2. The SPADE application composition programming tier

operations such as adding a vector and a scalar operand, to vector element filtering,
plus a large collection of other convenience functions, such as the normalize func-
tion seen in Figure 2.

When a SPADE application runs, it does not use any form of introspection. Instead
the SPADE compiler consumes an application source code of the type seen in Figure 2,
producing the equivalent C++ code. In other words, the SPADE compiler employs a
collection of backend code generators, one per operator (e.g., TCPSource, Functor,
KNN, FileSink in Figure 2) in the application. Each operator code generator is tasked
with specializing the template code associated with an operator’s code generator based
on the operator parameter configurations as well as environmental configurations. As a
final step, the C++ code is compiled using a regular off-the-shelf C++ compiler.

The toolkit programming tier. The second programming tier, normally not seen by
application developers, is the toolkit programming tier. The SPADE language does not
pre-define a set of operators. New operators can be added to the language, seamlessly
extending its syntax. In this case, the vectorization support is provided to toolkit writers
in terms of a mixed-mode programming environment. This templatized programming
mode combines a scripting language (in our case, Perl) for coding the generic parts of
the operator logic and a regular programming language (in our case, C++) for the fixed
logic. The templatized implementation is automatically converted to a code generator
by the SPADE support tooling. Since vectors are first-class types in the SPADE language,

4

when an operator such as the KNN operator used by the application in Figure 2 makes
use of vector operations, these operations are coded by making use of methods provided
by the dlist template class.

3 Case Study Applications

We implemented the following vector-heavy operators to demonstrate and experiment
with our auto-vectorization approach:

K-Nearest Neighbor (KNN). The KNN algorithm [17] classifies an object based
on knowledge gleaned from a set of training objects. The pre-classified training set and
the unclassified objects are represented as feature vectors in a multidimensional feature
space. KNN can leverage vectorization in the step of computing the similarity metric,
represented as the distance between the feature vector of an unclassified object and each
of the training objects. In our study, we employed two of the commonly used similarity
metrics – cosine and weighted cosine.

Digital Watermarking. Digital watermarking is a commonly used technology in
copyright protection systems. The particular implementation we chose to study comes
from the Digital Watermarking Open Source Project [18]. We implemented the Discrete
Hartley Transform (DHT)-based watermarking algorithm as a SPADE operator.

Motion Estimation. Motion estimation is used in video encoding and surveillance
applications [19]. Motion estimation is the process of determining object movement in
adjacent video frames. In this work, we chose to implement the full search block match-
ing algorithm as a SPADE operator. For our purpose, full search also makes the amount
of computation fixed irrespective of the processed image frames, simplifying the exper-
imental evaluation carried out in Section 4. We use the Sum of Absolute Differences3

(SAD) method for movement estimation, a simple yet effective metric. It works by tak-
ing the absolute value of the difference between each pixel in the original block and the
corresponding pixel in the block used for comparison. These differences are summed
up, creating the similarity metric value. The excerpt below is from a dlist helper
function implementing such operation:

inline int DLIST_SAD(const dlist<unsigned char>& a, const dlist<unsigned char>& b,
int pos_a, int pos_b, int len)

__m128i* p = static_cast<__m128i*>(&a[pos_a]);
__m128i* q = static_cast<__m128i*>(&b[pos_b]);
int res=0;
for (unsinged i = 0; i <= len - 16; i += 16)
__m128i va, vb, vsad;
va = _mm_loadu_si128(p);
vb = _mm_loadu_si128(q) ;
vsad = _mm_sad_epu8(va, vb);
res += _mm_extract_epi16(vsad, 0) + _mm_extract_epi16(vsad, 4);
p++; q++;

for (unsigned i = 0; i < len; i++)
res += abs(static_cast<int>(a[pos_a + i]) - static_cast<int>(b[pos_b + i]));

3 Note that the SSE instruction set includes the PSADBW instruction, which efficiently performs
this type of computation.

5

KNN speedup from different compilers

(cosine metric)

0.0

0.5

1.0

1.5

2.0

2.5

1K 512 256 128 64 32 1K 512 256 128 64 32 1K 512 256 128 64 32

vector length

sp
ee

du
p

Training Set Size = 128 Training Set Size = 256 Training Set Size = 512

SPADE ICC GCC

(a) Cosine measurement

KNN speedup from different compilers

(weighted cosine metric)

0.0

0.5

1.0
1.5

2.0

2.5

3.0

1K 512 256 128 64 32 1K 512 256 128 64 32 1K 512 256 128 64 32

vector length

sp
ee

du
p

Training Set Size = 128 Training Set Size = 256 Training Set Size = 512

SPADE ICC GCC

(b) Weighted cosine measurement

Fig. 3. KNN speedup

4 Empirical Evaluation

To assess the effectiveness of our two-tier auto-vectorization technique, we designed
experiments using each of the SPADE operators from Section 3. We employed 3 ex-
perimental configurations: (1) Scalar: each operator was implemented using meth-
ods from the dlist class that did not use intrinsics and the SPADE compiler used
gcc as the backend C++ compiler, with auto-vectorization turned off; (2) C++ auto-
vectorization: the operators from the scalar configuration were compiled with the C++
auto-vectorization feature turned on. In this case, the SPADE compiler could be config-
ured to employ either gcc or Intel’s icc [20] as the backend C++ compiler. The results
for a particular backend C++ compiler are labeled with the name of the compiler; and
(3) SPADE auto-vectorization: each operator was implemented using methods from
the dlist class written using the gcc SSE intrinsics. The SPADE compiler was con-
figured to use gcc as the backend C++ compiler. The results for this approach are
labeled with the word “SPADE”.

In our empirical evaluation, we measured the throughput of the benchmark applica-
tions by running each configuration 5 times and averaging the results. The ratio between
the observed throughput of one of the auto-vectorization approaches (either the C++
compiler-based or SPADE’s) to the scalar version is the speedup we report. Note that,
with this experimental setup, we are capturing the full spectrum of processing carried
out by the processing operator, including the interaction between the operator and the
source and sink edge adapters (responsible for data ingestion and results generation, re-

6

spectively), which typically do not benefit from auto-vectorization techniques. The ex-
periments ran on a node with an Intel Core2 Duo Processor 6700 running at 2.66 GHz,
with 32 KB L1 data cache per core, shared 4 MB L2 cache, and SSE3 support, running
Linux. We employed gcc version 4.3 and icc version 11.0.

KNN. Figures 3(a) and 3(b) show the speedup curve as a function of the feature
vector length for KNN, when using the cosine and the weighted cosine as the simi-
larity metric, respectively. As expected, the more elements in the vector, the larger is
the speedup. Also, the weighted cosine measurement has better speedup characteristics
since it carries out more vector operations compared to the simpler algorithm employ-
ing the cosine measurement. We can see that, in most cases, more speedup is observed
for larger training set sizes, as, in general, more vector-heavy work must be carried
out. The exception is for smaller vector lengths when using the gcc compiler and the
weighted cosine metric, as is seen in Figure 3(b).

A more interesting observation is that all auto-vectorization approaches are bene-
ficial. In general, the SPADE auto-vectorization mechanism outperforms the icc Intel
compiler, and the Intel compiler outperforms gcc. Looking at a single data point, 1K-
vectors using the weighted cosine metric, we can see that the difference can be quite
substantial. The SPADE auto-vectorization mechanism produces a speed-up of around
3, while icc yields a speedup of around 2, which is also what gcc is able to obtain.

Digital watermarking speedup from different compilers

2.44 2.46

1.80 2.01 2.11 2.25
2.15

1.20 1.24 1.30 1.33

1.97

1.65 1.72

1.16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

32x32 64x64 128x128 256x256 512x512
image size

sp
ee

du
p

SPADE ICC GCC

Fig. 4. Digital watermarking speedup

Digital Watermark-
ing. In Figure 4 we see
the speedup in through-
put (in this case, mea-
sured in terms of frames/s)
as a function of differ-
ent block sizes for two
different image sizes.
When the image size
changes from 32×32 to
512× 512, the speedup
goes from 1.65 to 2.46
with the SPADE auto-vectorization mechanism. As expected, when larger images are
used, the execution time for the matrix operations becomes a larger relative share of the
total processing per frame. Consequently, the speedup also increases when comparing
the vectorized implementation against the scalar one.

Note that the icc auto-vectorized version initially outperforms SPADE and, in gen-
eral, it also outperforms gcc. Again, we point out that the SPADE-generated vector-
ized code is also compiled with gcc in these experiments. Thus, it can be seen that the
SPADE auto-vectorization mechanism adds a factor between 0.49 and 1.13 of additional
speedup, eventually, gaining on the icc compiler. Ultimately, for 512×512 images, the
SPADE auto-vectorized version outperforms icc’s by an extra 0.31 factor in speedup.

Motion Estimation. To study the Motion Estimation operator’s performance char-
acteristics, we employed 256×256 video frames. The macro-block size ranged from 4×
4 to 32× 32. The results shown in Figure 5 demonstrate that the larger the macro-block
size is, the larger is the speedup. This is because using larger macro-blocks increases

7

the fraction of the overall computation performing operations on vector operands. The
speedups in the SPADE auto-vectorized version for different macro-block sizes are 1.82,
2.34, 3.84, and 6.44 respectively, in correlation with the sizes of the macro-blocks.

Motion estimation speedup from different compilers

(image size 256x256)

1.82 2.34

3.84

6.44

3.61

1.73

0.90
0.80 1.00

1.001.00
1.00

0

1

2

3

4

5

6

7

4x4 8x8 16x16 32x32
macroblock size

sp
ee

du
p

SPADE ICC GCC

Fig. 5. Motion estimation speedup

Several surprising
results can also be
observed. For example,
the speedup can be
significantly higher
than usual because,
using the SPADE
auto-vectorization
mechanism. The SAD
operation intensively
used by this operator
can be computed with a
single instruction when
using the vectorized dlist class (see Section 3). Synthetic experiments, omitted for
lack of space, demonstrated that SAD operations can be vectorized very efficiently
(with a speedup varying from 7 to 34, under different conditions). Here we also see the
largest difference between the SPADE auto-vectorized version and icc’s. Simply put,
icc did not appear to recognize and employ the appropriate SSE instruction for the
SAD operation. The same is true for gcc. This observation highlights why the two-tier
approach used in SPADE is useful. While, we spent the effort in re-implementing
the dlist template class with intrinsics, the performance payoff can be substantial.
From an operator developer’s standpoint, this is completely transparent, since one can
directly use the dlist methods when implementing any vector-heavy operator.

5 Concluding Remarks

We have observed that both gcc and icc were, in most cases, successful in auto-
vectorizing the code. Not surprisingly their effectiveness depended on being able to
identify loop patterns amenable to optimizations. On the other hand, our two-tier ap-
proach based on providing a library with all of the basic vector manipulation opera-
tions proved successful, in most cases, substantially outperforming the direct use of the
auto-vectorization capabilities provided by gcc and icc. Currently, substantial work
in the SPADE compiler is focused on developing techniques for leveraging architecture-
specific features of modern processors. The SPADE compiler architecture and its use of
code generation makes the SPADE language specially suitable to writing high perfor-
mance, large-scale, distributed, complex streaming applications.

References
1. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.: Design,

implementation, and evaluation of the linear road benchmark on the stream processing core.
In: Proceedings of the International Conference on Management of Data (SIGMOD’06),
Chicago, IL (2006)

8

2. Wu, K.L., Yu, P.S., Gedik, B., Hildrum, K.W., Aggarwal, C.C., Bouillet, E., Fan, W., George,
D.A., Gu, X., Luo, G., Wang, H.: Challenges and experience in prototyping a multi-modal
stream analytic and monitoring application on System S. In: Proceedings of the International
Conference on Very Large Data Bases Conference (VLDB’07), Vienna, Austria (2007)

3. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I., Srivastava,
U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford stream data manager. IEEE
Data Engineering Bulletin 26 (2003)

4. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The design
of the Borealis stream processing engine. In: Proceedings of Conference on Innovative Data
Systems Research (CIDR’05), Asilomar, CA (2005)

5. StreamBase: StreamBase Systems. http://www.streambase.com
6. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong,

W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ:
Continuous dataflow processing for an uncertain world. In: Proceedings of Conference on
Innovative Data Systems Research (CIDR’03), Asilomar, CA (2003)

7. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming appli-
cations. In: Proceedings of the 2002 International Conference on Compiler Construction
(ICCC’02), Grenoble, France (April 2002)

8. Upadhyaya, G., Pai, V.S., Midkiff, S.P.: Expressing and exploiting concurrency in networked
applications with Aspen. In: Proceedings of the 2007 Symposium on Principles and Practice
of Parallel Programming (PPOPP’07). (2007)

9. Aberdeen, D., Baxter, J.: Emmerald: a fast matrix-matrix multiply using Intel’s SSE instruc-
tions. Concurrency and Computation: Practice and Experience 13 (2001) 103–119

10. Conte, G., Tommesani, S., Zanichelli, F.: The long and winding road to high-performance
image processing with MMX/SSE. In: 5th International Workshop on Computer Architec-
tures for Machine Perception (CAMP’00), Washington, DC, USA (2000) 302

11. Diefendorff, K., Dubey, P.K., Hochsprung, R., Scales, H.: AltiVec extension to PowerPC
accelerates media processing. IEEE Micro 20(2) (2000) 85–95

12. Puschel, F.F.M.: Short vector code generation for the discrete fourier transform. In: Proceed-
ings of the International Conference on Parallel and Distributed Systems (IPDPS’03), Nice,
France (2003)

13. Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: SPADE: The System S declarative
stream processing engine. In: Proceedings of the International Conference on Management
of Data (SIGMOD’08), Vancouver, Canada (2008)

14. Hirzel, M., Andrade, H., Gedik, B., Kumar, V., Rosa, G., Soule, R., Wu, K.L.: Spade –
language specification. Technical Report RC24830, IBM Research (2009)

15. Intel: Intel 64 and IA-32 architectures optimization reference manual. http://www.
intel.com/design/processor/manuals/248966.pdf (November 2007)

16. Naishlos, D.: Autovectorization in GCC. In: Proceedings of the GCC Summit. (2004)
17. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A.,

Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in
data mining. Knowledge and Information Systems 14(1) (January 2008) 1–37

18. Meerwald, P.: Digital watermarking project. http://www.cosy.sbg.ac.at/
˜pmeerw/Watermarking

19. Laidi, K., Bailiche, M.A., Mehenni, M.: Comparative study of block matching techniques
used in video images motions estimation. In: The 5th International Symposium on Image
and Signal Processing and Analysis (ISPA’07). (September 2007)

20. Intel: Intel C++ compiler user and reference guides. Intel Document number: 304968-022US
(2008)

