
Productivity and Performance: Improving

Consumability of Hardware Transactional
Memory through a Real-World Case Study

Huayong Wang, Yi Ge, Yanqi Wang, and Yao Zou

IBM Research - China
{huayongw,geyi,yqwang}@cn.ibm.com,frankfoxy@gmail.com

Abstract. Hardware transactional memory (HTM) is a promising tech-
nology to improve the productivity of parallel programming. However, a
general agreement has not been reached on the consumability of HTM.
User experiences indicate that HTM interface is not straightforward to
be adopted by programmers to parallelize existing commercial applica-
tions, because of the internal limitation of HTM and the difficulties to
identify shared variables hidden in the code. In this paper we demon-
strate that, with well-designed encapsulation, HTM can deliver good
consumability. Based on the study of a typical commercial application in
supply chain simulations - GBSE, we develop a general scheduling engine
that encapsulates the HTM interface. With the engine, we can convert
the sequential program to multi-threaded model without changing any
source code for the simulation logic. The time spent on parallelization is
reduced from two months to one week, and the performance is close to
the manually tuned counterpart with fine-grained locks.

Keywords: hardware transactional memory, parallel programming, dis-
crete event simulation, consumability.

1 Introduction

Despite years of research, parallel programming is still a challenging problem
in most application domains, especially for commercial applications. Transac-
tional memory (TM), with hardware-based solutions to provide desired seman-
tics while incurring the least runtime overhead, has been proposed to ameliorate
this challenge. With hardware transactional memory (HTM), programmers sim-
ply delimit regions of code that access shared data. The hardware ensures that
the execution of these regions appears atomic with respect to other threads. As
a result, HTM allows programmers to enforce mutual exclusion as simple as tra-
ditional coarse-grained locks, while achieving performance close to fine-grained
locks.

However, consumability of HTM programming model is still a point of contro-
versy for commercial application developers, who have to take tradeoff between
the cost of parallelization and the performance benefits. Better consumability
means that applications can benefit from HTM in performance with less cost

P.D’Ambra,M.Guarracino, andD.Talia (Eds.):Euro-Par2010,Part II,LNCS6272, pp. 163–174, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

164 H. Wang et al.

of modification and debugging. It’s not easy to achieve good consumability due
to two reasons. First, when parallelizing a sequential program, its source code
usually contains a large quantity of variables shared by functions. Those shared
variables are not indicated explicitly, nor protected by locks. To thoroughly
identify these variables is a time consuming task. Second, the HTM program-
ming model has limitations. Supporting I/O and other irrevocable operations
(like system calls) inside transactions is expensive in terms of implementation
complexity and performance loss. Many HTM researches adopt application ker-
nels as benchmarks for performance evaluation. The benchmarks are designed
for hardware tuning purpose and cannot reflect the consumability problem of
HTM. How to improve the consumability of HTM is a practical problem at the
time of HTM’s imminent emergence in commercial processors.

Some research works have tried to provide friendly HTM programming inter-
faces [1]. By adding specific semantics into the HTM interfaces, it brings the new
challenge on compatibilities of HTM implementations, which is a major concern
for HTM commercial applications. It is more reasonable to solve the problem
by combining two approaches: encapsulating general HTM interface by runtime
libraries and taking advantage of application’s particularities. In this paper a
typical commercial application in supply chain simulation domain is studied as
a running example. We parallelize it by two ways: HTM and traditional locks.
Based on the quantitative comparison of the costs, we demonstrate that HTM
can have good consumability with proper encapsulation for such kind of appli-
cations. This paper makes the following contributions:

1. It shows that our method can reduce the time of the parallelization work
from two months to one week by using a new HTM encapsulation interface
on the case study application. The method is also suitable to most real-world
applications in the discrete event simulation domain.

2. Besides showing the improvement of productivity, we also evaluate the over-
all performance and analyze the factors that influence the performance. With
HTM encapsulation, we can generally achieve 4.36 and 5.13 times speedup of
8 threads in two different algorithms. The result is close to the performance
achieved through fine-grained locks.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on HTM and introduces the application studied in this pa-
per. Section 3 describes the details of the parallelization work and explains how
our method can help to improve the consumability. Section 4 presents and ana-
lyzes experimental results. Section 5 gives the conclusion.

2 Background

This section introduces HTM concepts as well as a case study application.

2.1 HTM Implementation and Interface

In order to conduct a fair evaluation, we choose a basic HTM implementation -
Best Effort Transaction (BET), which was referred in many papers as a baseline

Improving Consumability of Hardware Transactional Memory 165

design [2],[3],[4]. BET uses data cache as buffers to save the data accessed by
transactions. Each cache line is augmented with an atomic flag (A-flag) and an
atomic color (A-color). The A-flag indicates whether the cache line has been ac-
cessed by an uncommitted transaction, and A-color indicates which transaction
has accessed the cache line. When a transaction accesses a cache line, the A-flag
is set; when a transaction is completed or aborted, the A-flag of each cache line
that has been accessed by the transaction is cleared. When two transactions
access a cache line simultaneously, and at least one of them modifies the cache
line, one of the two transactions should be aborted to ensure transaction atom-
icity. This is called “conflict”. If a transaction is aborted, all cache lines modified
by the transaction need to be invalidated. Then, the execution flow jumps to a
pre-defined error handler, in which the cleanup task can be performed before the
transaction is re-executed.

From the programmers’ perspective, this basic HTM exposes five primitives.
TM BEGIN and TM END mark the start and end of a transaction. TM BEGIN
has a parameter “priority”. It is used to avoid livelock. If a conflict happens, the
transaction with lower priority is aborted. In this paper, the lower the value,
the higher the priority. Therefore using time stamp as priority leads to the
result that the older transaction aborts the younger in a conflict. TM SUSPEND
and TM RESUME are two primitives used inside a transaction to temporarily
stop and restart the transaction execution. In suspend state, the memory access
operations are treated as regular memory access operations, except that conflicts
with the thread’s own suspended transaction are ignored. I/O and system calls
are allowed in suspend state. If a conflict happens in suspend state and the
transaction needs to be aborted, the cancelation is delayed until TM RESUME
is executed. The last primitive TM VALIDATE is used in suspend state to check
whether a conflict happens.

2.2 Discrete Event and Supply Chain Simulation

Discrete event simulation (DES) is a method to mimic the dynamics of a real
system. The Parallel DES (PDES) in this paper refers to the DES parallelized
by multiple threads on a shared memory multiprocessor platform, rather than
the distributed DES running on clusters. The core of a parallel discrete event
simulator is an event list and a thread pool processing those events. Each event
has a time stamp and a handler function. Event list contains all unprocessed
events, sorted by time stamps, as shown in Fig. 1. The main processing loop in
a simulator repeatedly removes the oldest event from the event list and calls the
handler function for the event. Thus, the process can be viewed as a sequence of
event computations. When an event is being processed, it is allowed to add one
or more events to the event list with time stamps in the future.

The principle of DES is to ensure that events with different time stamps are
processed in time stamp order. This is worthy of extra precaution because each
thread does not priori know whether a new event will be added later. Figure 1
demonstrates such a situation. Both threads fetch the event with the oldest time
stamp to process. Since event B requires relatively longer processing time, thread

166 H. Wang et al.

Fig. 1. Event list

1 fetches event D after it finished processing event A. However, event B adds a
new event C to the event list at time tadd, which causes an out-of-order execution
of events C and D. There are two kinds of algorithms to address the problem
[5]: conservative and optimistic algorithms. Briefly, the conservative algorithm
takes precautions to avoid the out-of-order processing. That is, each event is
processed only when there is no event with a smaller time stamp. To achieve it,
a Lower Bound on the Time Stamp (LBTS)is used in the conservative algorithm.
In this paper, LBTS is the smallest time stamp in the event list. Events with
time stamp equal to LBTS are safe to be processed. After all of them have
been processed, LBTS is increased to the next time stamp in the event list. The
optimistic algorithm, on the contrary, uses a detection and recovery approach.
Events are allowed to be processed out of time stamp order. However, if the
computations of two events conflicts, the event with larger time stamp must be
rolled back and reprocessed.

Supply chain simulation is an application of DES. General Business Simula-
tion Environment (GBSE) is a supply chain simulation and optimization tool
developed by IBM [6]. It is a widely used commercial application and earned
the 2008 Supply Chain Excellence Award, a top award in this domain. GBSE-C
is the C/C++ version of GBSE. Besides the aforementioned features of DES,
GBSE-C presents other properties to the parallelization work.

1. As a sequential program, it has a large amount of shared variables not pro-
tected by locks in event handlers. To parallelize it, all shared variables in the
source code must be identified, which is a very time consuming task.

2. The number of events is large. Events with shared variables are probably
processed at different time. Therefore the actual conflict rate between events
is low.

3. For business reasons, source code of event handlers is frequently changed.
Considering the code is developed by experts on supply chain, rather than
experts on parallel programming, it is desirable to keep the programming
style as simple as usual, i.e. writing sequential code as before, but achieving
performance of parallel execution.

Improving Consumability of Hardware Transactional Memory 167

Using traditional lock-based technique to parallelize GBSE-C makes no sense
because the business processing logic need to be modified. It’s unbearable to
depend on the business logic programmers, who have little knowledge about
parallelization, to explicitly specify which parts should be protected by locks
and which are not. On the contrary, our HTM-based approach only modifies the
simulation service layer and is transparent to business logic programmers.

3 Using Transactions in GBSE-C

For the purpose of parallelization, GBSE-C can be deemed to be a two-layer pro-
gram. The upper layer is the business logic, such as order handling process, in-
ventory control process, and procurement process. These logics are implemented
in the form of event handlers. The lower layer is the event scheduling engine,
which is the core of the simulator. The engine consists of two modules:

1. The resource management module encapsulates commonly used functions,
such as malloc, I/O, and operations to the event list. After encapsulation,
those functions are made safe to be used inside transactions.

2. The scheduling management module is in charge of event scheduling and pro-
cessing. Threads from a thread pool fetch suitable events from the event list
and process them. The scheduling policy is either conservative or optimistic,
which defines the event processing mechanism.

3.1 Resource Management

The resource management module includes a memory pool, an I/O wrapper
API, and the event list interface.

Memory Pool. If a chunk of memory is allocated inside a transaction and
the transaction is aborted, the allocated memory will never be released. Also
memory allocation from a global pool usually requires accessing shared vari-
ables, and hence incurs conflict between transactions. To solve these problems,
we implement a memory pool per thread. Inside a transaction, new functions
TM MALLOC and TM FREE replace the original functions malloc and free.
TM MALLOC obtains a chunk of memory from the corresponding memory pool.
Then it records the address and size of the memory chunk in a thread-specific
table (MA table). If the transaction is aborted, the error handler releases all
memory chunks recorded in the table; otherwise, the allocated memory is valid.
TM FREE returns the memory chunk to the pool and deletes the corresponding
entry in the table.

I/O Wrapper. There are many disk and network I/O operations in GBSE-
C. Functionally, they are used to access files, remote services, as well as for
database operations. To simplify programming, these operations have already
been encapsulated by helper functions. I/O operations inside a transaction are

168 H. Wang et al.

re-executed if the transaction is re-executed. Based on whether an I/O operation
can tolerate this side effect, they can be classified to two categories. The first
category is idempotent, such as reading a read-only file and printing for debug
purpose. It can be re-executed without harmful impact. The second category is
non-idempotent, as for example appending a row of data to a database table.
It cannot be executed multiple times. We have encountered a lot of cases in the
first category. What we do is to add TM SUSPEND and TM RESUME at the
start and end of those helper functions. The code in event handlers can remain
unchanged if it calls the helper functions for these operations. The cases in the
second category are more interesting. We have two approaches to handle these
cases. First, we use I/O buffering, as described in previous work [7]. Briefly, we
buffer the data of the I/O operations until the transaction finishes. If the trans-
action is committed, perform the I/O operations with the data in the buffer;
otherwise, discard the data in the buffer. However, this method is inconvenient
for some complex cases where the buffered I/O operation influences later op-
erations in the transaction. We propose another method by adding a new flag
“serial mode” to each event. If it is set, the event handler contains complex I/O
operations that should be handled in traditional sequential mode, where only
one event is processed at a time. After this event is processed, the scheduler
resumes the parallel execution mode.

Event List Interface. Event handler may add a new event to the event list
through the event list interface. The interface exposes a function ADD EVENT
for programmers. The function does not manipulate the event list immediately.
Instead, it records the function call and the corresponding parameters in a
thread-specific table (ELO table). After the transaction is committed, extra
code after TM END will execute the operations recorded in ELO table. If the
transaction is aborted, the table is simply cleared.

3.2 Scheduling Management

In order to make TM programming transparent, the HTM interface is encapsu-
lated in the event scheduler. Event handler programmers need not be aware of
the HTM programming primitives. The engine supports both conservative and
optimistic scheduling algorithms.It also has a special scheduling policy support-
ing conflict prediction. This policy is based on the conservative algorithm and
needs change of HTM implementation.

The Conservative Algorithms. The main process loop in each thread in the
conservative algorithm includes the following steps:

1. Fetch an event with the smallest time stamp in the event list.
2. If the time stamp of this event is larger than LBTS, return the event to the

event list and wait until LBTS is increased. The check guarantees that an
event will be processed only when there is no event with smaller time stamp.

3. Execute the event handler in the context of a transaction. After the trans-
action is committed, execute the delayed event list operations (if any), and
clear both ELO and MA tables.

Improving Consumability of Hardware Transactional Memory 169

4. If all events with time stamp equal to LBTS have been processed, LBTS is
increased to the next time stamp in the event list. After that, a notification
about the LBTS change is sent to all other threads. The threads blocked on
LBTS then wake up.

In the conservative algorithm, threads only process events with the same time
stamp (LBTS). Thread pool will starve if the number of events with time stamp
equal to LBTS is small. The parallelism of the conservative algorithm is limited
by event density - the average number of events with each time stamp in the
event list. In addition, the barrier synchronization to prevent out-of-order event
processing might be costly when the event processing time is disproportional.
Some threads might go idle while others are processing events that take a long
execution time. Both degrade the performance of the conservative algorithm.

Fig. 2. An example of the optimistic algorithm

The Optimistic Algorithm. The optimistic algorithm overcomes the short-
comings of the conservative algorithm since it allows out of time stamp order
execution. However, in traditional implementations, the optimistic algorithm
does not necessarily bring optimized performance in a general sense, because
it incurs overhead for checkpoint and rollback operations [8]. Using HTM, that
overhead is minimized since checkpoint and rollback are done by hardware. The
main process loop in the optimistic algorithm includes following steps:

1. Fetch an event with the smallest time stamp in the event list.
2. Execute the event handler in the context of a transaction. In this case the

transaction priority is equal to the time stamp.
3. After the execution of the event handler, suspend the transaction and wait

until the event’s time stamp is equal to LBTS. During this period, the han-
dler periodically wakes up and checks whether a conflict is detected. If so,
abort the transaction and re-execute the event handler.

4. After the transaction is committed, execute the delayed event list operations
(if any), and clear both ELO and MA tables.

5. If all events with time stamp equal to LBTS have been processed, LBTS is
increased to the next time stamp in the event list. After that a notification

170 H. Wang et al.

about LBTS change is sent to all other threads. The threads blocked on
LBTS then wake up.

Figure 2 shows an example of the optimistic algorithm. At the beginning, there
are three events (A, B, and C) in the event list and LBTS is equal to k. The
three events are being concurrently processed by three separate threads. Since
the time stamp of event C is larger than LBTS, event C is blocked and put
into the suspend state. The thread releases the CPU during the blocking. Mean-
while, event B adds a new event D into the event list with time stamp k+1
by calling function ADD EVENT. After event A and B are finished, LBTS is
increased to k+1, and a notification about LBTS change is sent to event C. The
execution of event C is woken up, and the corresponding transaction is going
to be committed soon. Event D can also be processed whenever there is a free
thread in the thread pool. If conflict happens between event A and C, event C
is aborted since its priority is low. From the example, we can see that although
events are processed out-of-order, they are committed strictly in order, which
guarantees the correctness of the simulation. Besides the low cost of checkpoint
and rollback, HTM-based optimistic algorithm has another advantage over tra-
ditional implementations: fine-grained rollback. In HTM-based implementation,
only those events really affected are rolled back since each transaction has its
own checkpoint.

The optimistic algorithm might suffer from overly optimistic execution, i.e.,
some threads may advance too far in the event list. The results are two-fold.
First, conflict rate balloons with the increase of the number of events being
processed. Second, overflow might happen when a lot of transactions are concur-
rently executed. Both results limit the parallelism of the optimistic algorithm.

Scheduler with Conflict Prediction. The performance of the case study ap-
plication is limited by the high conflict rate when the thread number is large.
Without appropriate event scheduling mechanisms, a large thread pool may con-
sume more on-chip power without performance improvement, or even causing
performance degradation. In our engine, the event scheduler supports a special
policy to predict the conflict between events with the help of HTM. The predic-
tion directs each thread to process suitable events to avoid unnecessary conflicts.
The conflict prediction is feasible based on the following observations.

– Data locality. In PDES applications, executions of one event show data lo-
cality. The memory footprints of the previous executions give hints about
the memory addresses to be accessed in the future.

– Conflict position. Some event handlers are composed with a common pattern:
first read configuration data, then do some computation, and finally write
back computing results. Positions of conflicts caused by shared variables
accessing are usually at the beginning and end of the event handler. The
time span of transaction execution between conflict position and the end of
the transaction is highly relevant to the conflict probability.

In order to design the scheduler with conflict prediction, we modify the HTM
implementation by adding two bloom filters in each processor to record the

Improving Consumability of Hardware Transactional Memory 171

transaction’s read and write sets. When the transaction is committed, the con-
tents of bloom filters called signatures are dumped into memory at pre-defined
addresses. When the transaction is aborted, the bloom filters are cleared and
the conflicting address is recorded. Each event maintains a conflict record ta-
ble (CRT) for the conflict prediction, which contains the signatures and other
transaction statistics. Some important fields of the statistics are described as
follows:

– Total Execution Cycles (TEC): total execution cycles of a transaction be-
tween TM BEGIN and TM END.

– Conflicting Addresses (CA): conflicting addresses of a transaction.
– Conflicting Execution Cycles (CEC): execution cycles of a transaction be-

tween TM BEGIN and conflict.

Before an event is going to be processed, the scheduler first checks whether the
event’s conflict addresses are in the signatures of any event under execution. If
so, a conflict is possible to happen if this event is executed. Then the scheduler
uses possible conflict time-span (PCT) as a metric to determine the conflict
probability. PCT refers to the total time span within which if one event with
lower priority starts to execute, it will be aborted by the other running event
with high priority. The smaller the PCT is, the less probably the conflict occurs.
The value of PCT between event A and event B can be computed according to
Eq. 1.

PCTAB = (TECA − CECA) + (TECB − CECB) (1)

Fig. 3 shows three cases of transaction conflict between event A and B. In the
first case, two transactions have conflicting memory accessing at the very begin-
ning, the transaction with lower priority could be possibly aborted if it starts
to execute at any time within the time span from point M to N. It has the
largest PCT (PCTmax ≈ TECA + TECB); in the second case, conflict position
is located in the middle and conflict probability is lower than the first one with
PCTmid ≈ 1/2(TECA + TECB); while it’s seldom to conflict in the third case
with PCTmin ≈ 0. Based on CRT and PCT, the scheduler can predict conflict
and decide the scheduling policy for each event.

Trans A.

()High Priority

Trans B.

M

TECA

TECB

Conflict address

Case 1 early flict: con

PCT≈TECA+TECB

Case 2 middle conflict:

PCT ≈ 1/2(TECA+TECB)

Trans A.

()High Priority

Trans B.

PCT

TECA/2

CECB

CECA

Case 3 late conflict:

PCT ≈ 0

Trans A.

()High Priority Trans B.

CECBCECA

N

PCT

Fig. 3. Three cases with different PCT Fig. 4. Transaction conflict rate

172 H. Wang et al.

4 Productivity and Performance Evaluation

We have parallelized GBSE-C through two approaches: the new approach based
on HTM and the traditional approach based on locks. Since the work was done
by the same group of developers, the time spent implementing the different
approaches can be considered as a straightforward indication of productivity.

– HTM-based approach. We spent about one week to finish the parallelization
work for both conservative and optimistic algorithms. Three days were used
to identify I/O operations and handle them accordingly. It is not very diffi-
cult because the I/O operations are well encapsulated by helper functions.
Additional time was used to encapsulate the HTM interface in the scheduling
engine.

– Lock-based approach. We spent two months to complete the parallelization
work for the conservative algorithm. About half of the time was used to
identify the variables shared by events. This task is time-consuming because
understanding the program logic in event handler requires some domain
knowledge and the usage of pointers exacerbates the problem. Performance
tuning and debugging took another three weeks. It includes shortening crit-
ical sections (fine-grained locks), using proper locks (pthread locks vs. spin-
ning locks), and preventing dead locks. Since the execution order of events
with same time stamp is not deterministic, some bugs were found only after
running the program many times. We did not implement the optimistic algo-
rithm using locks because doing checkpoint and rollback by software means
is difficult in general.

The performance evaluation is carried out on an IBM full system simulator [9],
which supports configurable cycle-accurate simulation for POWER/PowerPC
based CMP and SMP. The target processor contains 4 clusters connected by an
on-chip interconnect. Each cluster includes 4 processor cores and a shared L2
cache. Each core runs at a frequency of 2GHz, with an out-of-order multi-issue
pipeline.

We have studied the transaction size in this application. The sizes are mea-
sured separately for the read set and the write sets. Read and write sets contain
the data read and written by a transaction respectively. 88% of the read sets and
91% of the write sets are less than 4KB, indicating that most transactions are
small. The sizes of the read and write sets in the largest transaction approach
512KB. Since the L2 data cache (2MB) is much larger, the execution of a single
transaction dose not incur overflow.

Figure 4 shows the transaction conflict rate in conservative and optimistic
algorithms. The conflict rate is defined as the number of conflict divided by the
total number of transactions. Optimistic algorithm has higher conflict rate than
the conservative algorithm since the optimistic algorithm tries more paralleling
execution. When the number of threads in thread pool is increased, the conflict
rate is also increased. Generally, the conflict rate is less than 24%. It proves that
many events are actually independent and can be processed in parallel.

Improving Consumability of Hardware Transactional Memory 173

Fig. 5. Speedup from three algorithms

0.22%

3.87%

7.79%

15.19%

0.02%

3.80%

9.37%

19.36%

1.07

1.91

3.26

4.64
4.96

2.00

3.23

4.36

4.34

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0

1

2

3

4

5

6

1 thread 2 threads 4 threads 8 threads 16 threads

C
o

n
fl

ic
t

ra
te

S
p

e
e

d
u

p

CP scheduler vs. Normal scheduler
CP = Conflict Prediction

Conflict rate of CP scheduler Conflict rate of normal scheduler

Speedup of CP scheduler Speedup of normal scheduler

Fig. 6. Speedup of scheduler with con-
flict prediction

Figure 5 illustrates the observed speedup from the three approaches: the
conservative algorithm with fine-grained locks, the conservative algorithm with
HTM and the optimistic algorithm with HTM. The first approach represents
the best performance achievable through manual optimization. The conserva-
tive algorithm with HTM achieves performance that is slightly lower than the
first approach, indicating HTM is effective for the parallelization work. The opti-
mistic algorithm with HTM is better than the previous two approaches. It gains
more than 2 times speedup when the thread count is 2. This is because opti-
mistic algorithm reduces the synchronization overhead at each time stamp and
the scheduler has more chances to balance workloads among threads. Generally,
through HTM, we can achieve 4.36 and 5.13 times speedup with 8 threads in
the conservative and optimistic algorithms respectively, and achieve 5.69 times
speedup with 16 threads in the optimistic algorithm.

Besides the performance comparison with the normal event scheduler, we also
conduct an experiment to evaluate the performance of the scheduler with conflict
prediction. Fig. 6 illustrates the speedup and conflict rate comparison between
the two schedulers with conservative algorithm. Because of extra overhead of
the conflict prediction, the scheduler with conflict prediction shows a slightly
worse performance against the normal one when the thread count is low. But
as the thread count increases, it gradually outperforms the normal one and the
performance gap becomes larger. With 16 threads, the speedup is 14% more than
the normal one. We can also see that the conflict rate is reduced by scheduler
with conflict prediction.

5 Conclusion

In this paper, we demonstrate that the encapsulated HTM can have good con-
sumability for some real-world applications. Based on these findings in the paper,
we will further investigate the consumability of HTM in a broader range of ap-
plications in the future.

174 H. Wang et al.

References

1. McDonald, A., Chung, J., Carlstrom, B.D., Minh, C.C., Chafi, H., Kozyrakis, C.,
Olukotun, K.: Architectural semantics for practical transactional memory. In: Proc.
of the 33rd International Symposium on Computer Architecture, pp. 53–65. IEEE,
Los Alamitos (2006)

2. Wang, H., Hou, R., Wang, K.: Hardware transactional memory system for parallel
programming. In: Proc. of the 13th Asia-Pacific Computer System Architecture
Conference, pp. 1–7. IEEE, Los Alamitos (2008)

3. Baugh, L., Neelakantam, N., Zilles, C.: Using hardware memory protection to build
a high-performance, strongly-atomic hybrid transactional memory. In: Proc. of the
35th International Symposium on Computer Architecture, pp. 115–126. IEEE, Los
Alamitos (2008)

4. Chung, J., Baek, W., Kozyrakis, C.: Fast memory snapshot for concurrent pro-
gramming without synchronization. In: Proc. of the 23rd International Conference
on Supercomputing, pp. 117–125. ACM, New York (2009)

5. Perumalla, K.: Parallel and distributed simulation: traditional techniques and recent
advances. In: Proc. of the 2006 Winter Simulation Conference, pp. 84–95 (2006)

6. Wang, W., Dong, J., Ding, H., Ren, C., Qiu, M., Lee, Y., Cheng, F.: An introduc-
tion on ibm general business simulation environment. In: Proc. of the 2008 Winter
Simulation Conference, pp. 2700–2707 (2008)

7. Chung, J., Chafi, H., Minh, C., McDonald, A., Carlstrom, B., Kozyrakis, C., Oluko-
tun, K.: The common case transactional behavior of multithreaded programs. In:
Proc. of the 12th International Symposium on High-Performance Computer Archi-
tecture, pp. 166–177. IEEE, Los Alamitos (2006)

8. Poplawski, A., Nicol, D.: Nops: a conservative parallel simulation engine for ted. In:
Proc. of the 12th Workshop on Parallel and Distributed Simulation, pp. 180–187
(1998)

9. Bohrer, P., Peterson, J., Elnozahy, M., Rajamony, R., Gheith, A., Rochhold, R.:
Mambo: a full system simulator for the powerpc architecture. ACM SIGMETRICS
Performance Evaluation Review 31(4), 8–12 (2004)

	Productivity and Performance: Improving Consumability of Hardware Transactional Memory through a Real-World Case Study
	Introduction
	Background
	HTM Implementation and Interface
	Discrete Event and Supply Chain Simulation

	Using Transactions in GBSE-C
	Resource Management
	Memory Pool.
	I/O Wrapper.
	Event List Interface.

	Scheduling Management
	The Conservative Algorithms.
	The Optimistic Algorithm.
	Scheduler with Conflict Prediction.

	Productivity and Performance Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

