
  

  

Abstract—Transportation mode inference is an important 
research direction and has many applications. Existing 
methods are usually based on fine-grained sampling -- 
collecting position data from mobile devices at high frequency. 
These methods can achieve high accuracy, but also incur cost 
and complexity in terms of the system implementation and 
computational resource requirements. Finally, fine-grained 
sampling is not always available, especially for large-scale 
deployment. This paper proposes a novel method to infer 
transportation mode based on coarse-grained call detail 
records. The method allows estimating the transportation mode 
share from a given origin to a given destination, looking also at 
how the share changes over time. The method can achieve 
acceptable accuracy with trivial cost and complexity and is 
suitable for the statistical analysis on transportation modes of a 
large population. The method can also be used as a 
complementary tool in situations where fine-grained sampling 
is unavailable or the balance between accuracy and complexity 
is critical. A case study using real call detail records data for 
the city of Boston shows the performance of the proposed 
method. 

I. INTRODUCTION 
ode of transportation specifies one of different kinds 
of transport facilities that are used to transport people, 

such as cars, buses, bicycles, and even walking. 
Transportation mode inference is a tool to determine the 
transportation mode of an individual traveler or a group of 
travelers, based on the speed, travel time or other 
information that can be collected from their trips. This tool 
has been used to provide traveling services, manage 
transportation and plan cities. 

The research on transportation mode inference has a 
history of more than a decade. At early stage, the technology 
was studied in the field of pervasive or ubiquitous 
computing, where the computation needs to understand the 
context. The context includes human activities, such as 
walking or driving, when the computation is being done. 
Body worn sensors (sensors placed in one or more positions 
on the body) are the major data source; see for instance [1]. 
However, since body worn sensors are not widely available, 
many research efforts tried to adopt mobile sensors, such as 
mobile phone or GPS, as data collection devices. Therefore, 
existing methods for transportation mode inference can be 
divided into two categories according to the data collection 
devices. 
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A. Mobile phone based methods 
Mobile phone based methods infer the transportation 

mode by estimating the mobile phone’s speed. The speed 
can be estimated by measuring the low level signals from the 
GSM network, such as the variance of GSM signal strength 
or the switch rate of cells. Generally, the variance of signal 
strength and the number of connected cells are greater when 
the mobile phone is moving faster. When the speed is within 
a range, it is believed that the mobile phone user is in a 
specific transportation mode. Since these methods are based 
on the speed, they can hardly distinguish transportation 
modes with similar speeds, such as buses and cars. 
Experiments report that these methods can generally obtain 
80% - 90% accuracy when inferring simple transportation 
modes -- remaining still, walking and driving. Intel’s 
research in [2][3] is a relevant example. The GSM signals 
were measured at the frequency of one record per second, 
and the authors proposed a formula to calculate the GSM 
signal variance based on the concept of naïve Euclidean 
distance. They further proposed seven features and adopted 
ordinary data mining algorithms for transportation mode 
inference, reaching an average accuracy of 85%. Other 
similar approaches have been proposed in [4][5] introducing 
also a hidden Markov model for the mode inference. 

In [6] the authors were able, just using WiFi signals, to 
infer whether the user is in motion. A hybrid approach was 
used in [7], which enhanced the Intel’s work by integrating 
WiFi signals and was able to produce an average accuracy of 
88%.  

Transportation mode inference was also performed in real 
time for a massive mobile phone location dataset in Rome 
[8], using an average speed threshold. However, only 
inference during the period of the call was possible since 
called ID was reset every time a call ended. 

B. GPS-based methods 
GPS location data is more precise, and can be used to 

measure both speed and direction of an individual. Therefore, 
more features can be extracted from GPS data. GPS is 
promising to distinguish different transportation modes, even 
when two modes have similar speeds. Microsoft’s research 
work [9]-[11] is a typical example. The GPS data is 
collected at a frequency of one record every two seconds. 
Firstly, the method determines walking segments – segments 
of path in which a user is only walking – based on the 
instantaneous speed and acceleration measured from GPS at 
each sampling point. Then, the method determines the 
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transportation mode in non-walking segments. The authors 
believe that it is generally difficult to change direction when 
people are driving or taking bus. So, the frequency of 
direction change is used as a feature to distinguish car/bus 
and walking/cycling. Authors also assume that people are 
likely to stop more times when on a bus than driving. Then, 
the frequency of stops is taken as another feature. Similarly, 
speed change rate and variance of speed are also features, for 
a total of nine. After feature extraction, some ordinary data 
mining algorithms, such as SVM and decision tree, are used 
to infer transportation mode. Similar research but using 
different features have also been developed in [12]-[17]. 

II. PROBLEM STATEMENT AND OVERVIEW OF OUR 
METHOD 

In real world scenarios, large scale and frequent sampling 
from mobile devices may be unavailable. For example, 
mobile phones with GPS still cover a minor portion (less 
than 10% in 2011) of the market in China, although the 
market share growth is strong [18]. And users usually turn 
off the GPS modules to save power. On the other hand, large 
volume of data about the position of mobile phones can be 
collected from CDRs – Call Detail Records. This data is 
cheap because CDRs are already produced by the charging 
system of the telecom infrastructure when users make phone 
calls, send/receive messages/emails or browse web pages. 
To analyze CDRs and extract meaningful information brings 
no extra overhead for both mobile phone users and telecom 
operators. 

We propose a method in which trip information (user id, 
origin, destination, start time, end time) is extracted from 
CDRs. Furthermore, based on a large amount of trip data 
that we can collect from the CDRs, we can measure how 
many travelers have moved from a same origin to a same 
destination, their starting time and travel times. This 
information inspires us to consider the possibility to infer 
travelers’ transportation modes based on these travel times, 
and so evaluate what is the share of people who travel with a 
give transportation facility. The problem that we try to solve 
in this paper can be stated as following:  
 
Transportation mode share inference problem: Given an 
origin and a destination, as well as the travel times of a 
group of travelers who move from the origin to the 
destination, infer the percentage of travelers using a given 
transportation facility. 
 

This problem is of interest for transportation planning 
because it allows understanding the number and percentage 
of people moving between areas in the city using different 
transportation modes (and how this percentage changes over 
time). This could for instance complement 
Origin-Destination flows information (see, for instance [19]) 
with information about the percentage of people using a 
given transportation mode by moving from a given origin to 
a given destination. 

Our approach to solve the problem can be summarized as 
follows. Fig. 1 shows the travel time distribution of an 
imaginary group of travelers. The travel times are not evenly 
distributed. The numbers of travelers in some travel time 
ranges are significantly more than other ranges. Therefore, 
the travelers can be clustered into subgroups according to the 
density. The three subgroups should correspond to different 
transportation modes (e.g. car, public transit, walking) in the 
real world. 

 
Fig. 1.  Travel time distribution in an imaginary group of travelers. The 
travelers are clustered to three subgroups according to their travel times. 

 
This method has several advantages: 

1) It is novel in the sense that it does not rely on the frequent 
sampling on mobile devices. To the best of the authors’ 
knowledge, no literature has provided research results about 
transportation mode inference only based on travel times. 
2) It is cheap in the sense that it uses existing data generated 
by telecom infrastructures. No modification to mobile 
phones or telecom equipments is required. 
3) It has good scalability so it is suitable for statistical 
analysis on a large population, which is desirable for city 
planning and transportation management. 

To make a fair comparison, we admit that there are also 
some limitations for this method: 
1) The CDRs are not a complete dataset since there is no 
CDR if traveler’s mobile phone is turned off. But large 
volume of CDRs data can compensate the incompleteness. 
2) This data collection method usually has low sampling 
frequency. So, it is quite coarse-grained if compared with the 
sampling frequency in existing research work. 

III. METHOD DETAILS 

A. Data Set Description 
The dataset used in this paper consists of anonymous 

cellular phone signaling data collected by AirSage 
(http://www.airsage.com), which turns this signaling data 
into anonymous locations. The dataset consists of 829 
millions of anonymous location estimations – latitude and 
longitude – from close to 1 million devices in 1 month, 
which are generated each time the device connects to the 
cellular network.  The location information is estimated 
through the AirSage's Wireless Signal Extraction (WiSE) 
technology, which aggregates, anonymizes and analyzes 
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signaling data from cellular networks, and determines 
location information. A longer description of this data is 
available in [20]. 

B. Determining trips 
To infer transportation mode for the travels, we first have 

to estimate the origins and destinations of trips that people 
make. A first approach for the trip estimation is to consider a 
trip as a path between user’s positions at consecutive 
network connections and calculate the length as the distance 
between those points. This approach was used in [21] even if 
only the cell phone tower location for each network 
connection was available, so coarser grain spatial resolution. 
The drawback of this approach is that we can detect several 
very short trips due to localization errors and users making 
consecutive network connections in the same area. An 
example of this problem is shown in Fig. 2, where the user 
does not move in the time interval 0 - 3 and 3.2 - 5.5, but 
with this first approach we would detect more than 20 very 
short trips that are just due to the localization errors. 

Since these fictitious trips could drastically modify the 
trip length distribution, we propose a second approach for 
which we manipulate the data applying the same 
methodology used for analyzing GPS [22][23]. In fact, we 
can consider our data as GPS traces due to the fact that 
Airsage provides us with the estimated position (and 
associated uncertainty) and not just the cell phone tower the 
phone is connected to. 

 
Fig. 2.  Example of individual measurements and localization errors. The 
location changes even when the user remains still, which leads to fictitious 
trips. 

For each user we have a location estimation measurement 

€ 

mi ∈ M  each time his device connects to the cellular 
network. Each location measurement 

€ 

mi ∈ M  is 
characterized by a position 

€ 

pmi
, expressed in latitude and 

longitude, and a timestamp 

€ 

tmi
. The locations measurements 

of each user are then connected into a sequence 
  

€ 

Mn = {m1,m2,,mn}  according to their timestamp. 
The methodology used to extract trips is composed of the 

following steps. 
Given a sequence of locations measurements 

€ 

Mn ,  

1) We infer virtual locations by grouping consecutive 
locations measurements 

  

€ 

MS = mq ,mq+1,,mz ∈Mn  
where  and  

€ 

max distance (pm i
,pm j

) < ΔS ∀ q ≤ i, j ≤ z . 

The spatial threshold 

€ 

ΔS  has been defined as 1km, to take 
into account the localization errors estimated by Airsage. 
2) The points  are fused together so 

that a single geographic region: 

 

This location becomes the origin or destination of a trip. 
3) Once the virtual locations are detected, we can evaluate 
the trips as paths between user’s positions at consecutive 
virtual locations. 

C. Dataset subsampling 
Given the massive dataset, we decided to subsample it by 

considering only mobile phone users living in the Middlesex 
County, and making calls with frequency greater than 1 per 
hour. The reason of this subsampling resides in the fact that 
we are interested in users making many calls in a day, so to 
be able to infer trips they make, and travel times. This results 
in 9,154,042 trip records for 56,715 mobile phone users. 
Each user has 6.2 trip records per day on average. Figure 3 
and 4 show the spatial and length distribution of inferred 
trips. In particular, the trips length distribution was 
computed by counting the number of trips having a defined 
trip length. 

 
Fig. 3.  Spatial distribution of trips in the Boston downtown (green lines). 
Yellow lines show trips that happen at least 50 times. Blue lines show the 
subway system. 

 

 
Fig. 4.  Trip length distribution of the trip data. 

 
Because of the coarse-granularity of the sampling over 

time (only when people make phone calls), the data set 
cannot be used to infer transportation modes for very short 
trips. For this reason, we concentrated on long trips above 3 
km. 



  

D.  Trip Data Grouping 
We grouped all trip records according to the same origin 

and destination. The same means two locations are in a same 
cell of a 500 x 500m cells grid. The choice of 500m comes 
from our localization error being 350m We remove all 
groups that contain less than k records (minimum group 
size), and denote with f(k) the number of the associated 
groups. Table I shows the number of groups available for 
different group sizes. 

 
TABLE I 

NUMBER OF GROUPS WITH DIFFERENT GROUP SIZE 
 k = 25 k = 50 k = 75 k = 100 
f(k) 860 107 30 7 

 
For each group, we also label the records as weekday 

records or weekend records according to the date when the 
records are collected. 

To give an example, Fig. 5 shows the origin and 
destination of one group (our running example). The 
position of the origin and the destination are (lat: 42.41, 
long: -71.25) and (lat: 42.38, long: -71.28) respectively. 

 
Fig. 5.  Origin and destination of a group of travelers, and the travel times 
reported from Google Maps. 

 
Figs. 6, 7 and 8 show the travel time distribution in this 

group at weekdays, weekends and both. At weekdays, there 
are 20 travelers who spend 10 minutes traveling from the 
origin to the destination. While at weekends, there are only 7 
travelers whose travel time is 10 minutes. Fig. 8 is the sum 
of the Fig 6 and Fig 7. 

 
Fig. 6.  Travel time distribution in a group (week day). 

 
Fig. 7.  Travel time distribution in a group (weekend). 

 
Fig. 8.  Travel time distribution in a group (weekday + weekend). This 
figure is the sum of Figs. 6 and 7. 

E. Downloading Travel Time 
Since Google Maps (http://maps.google.com) provides 

reliable travel time information, we use it as reference to 
verify our inference results. It is also interesting to note that 
the available travel times for public transit change over time 
as function of the schedules. For the example in Fig. 5, 
Google Maps reports the travel time for driving is 9 minutes, 
for public transit is 47 minutes and for walking is 63 minutes 
(computed over a weekday 9am). Moreover, the travel 
length by driving is 5.5 km, by walking is 5.1 km. 

F. Noise Reduction 
Since it is a rare case for a traveler to walk more than 3 

km (see for instance the area shown in Fig. 5), we 
hypothesize that the records whose travel times are larger 
than 63 minutes (walking travel time computed through 
Google Maps) are due to noise in the data (either 
localization or sampling errors). We then remove all records 
whose travel times are more than 63 minutes, shown in Fig. 
9. After noise reduction, the data look like Fig. 10. 

 
Fig. 9.  Noise data in a group. Noise data refer to the trip data records that 
have travel times longer than the walking time. 

Walking: 63 minutes 

Noise data 



  

 
Fig. 10.  Trip data after noise reduction. Compared with Fig. 9, trip data 
records that have travels time longer than 63 minutes are removed. 

G. Data Clustering 
We use the k-means unsupervised clustering algorithm to 

partition the records of a Group into two non-overlapping 
subgroups. This approach partitions data such that each 
observation is as much like its own group’s members, and 
unlike other groups’ members, as possible. We cluster the 
records in two groups that for us represent trip made by 
driving and using public transit. 

For each subgroup we then compute the average travel 
time. Considering the running example, as shown in Fig. 11, 
the average travel time of the first subgroup is 13.4 minutes, 
while the average travel time of the second subgroup is 42.4 
minutes. Fig. 11 also marks the travel times from Google 
Maps. The driving time is 9 minutes while the public transit 
travel time is 47 minutes. We define the error of 
transportation mode inference as the average of the 
differences between average travel times obtained from 
k-means and the travel times reported from Google Maps. In 
this case, the error is (| 13.4 – 9 | + | 42.4 – 47 |) / 2 = 4.5 
minutes, which seems acceptable compared to the big 
variation of observed travel times. 

 
Fig. 11.  Trip data clustered to two subgroups. The average travel times of 
the subgroups are 13.4 and 42.4 minutes. The travel times reported by 
Google Maps for driving and public transit are 9 and 47 minutes. 

 
After data clustering, we can finally infer the percentage 

of travelers in each subgroup, which corresponds to the 
percentage of travelers using each transportation mode 
(driving and public transit). 

IV. PERFORMANCE EVALUATION 
We evaluate the performance of our method according to 

various metrics. 

A. Comparison with Google Maps 
In this section, we study the groups with minimum size 

100 (k = 100). We have done the clustering experiments for 
the 7 groups. Considering the weekday and weekend may 
have different road conditions, the experiments are done 
separately for weekday records and weekend records. The 
results are shown in Table II and III. 

TABLE II 
K-MEANS ERROR OF EACH GROUP IN WEEKDAYS (SECONDS) 

Google Map k-means 
Group 

ID Driving Public 
Transit Walking Driving Public 

Transit 
Error 

Error / 
Walking 

Time 
1 420 1740 3120 998 2323 580 18.6% 
2 480 2100 3180 1044 2190 327 10.3% 
3 420 2460 3780 690 2469 139 3.7% 
4 600 2880 7740 1001 3155 338 4.4% 
5 540 1740 3420 805 2206 366 10.7% 
6 540 2820 3780 705 2358 314 8.3% 
7 420 2280 3000 536 2178 109 3.6% 

Average value 310 8.5% 

 
TABLE III 

K-MEANS ERROR OF EACH GROUP IN WEEKENDS (SECONDS) 
Google Map k-means 

Group 
ID Driving Public 

Transit Walking Driving Public 
Transit 

Error 
Error / 

Walking 
Time 

1 420 2400 3180 1110 2412 351 11.0% 
2 480 1500 3180 1049 2264 666 20.9% 
3 360 2580 3780 671 2095 398 10.5% 
4 600 2820 7620 843 3450 436 5.7% 
5 540 1680 3480 688 1999 233 6.7% 
6 540 2700 3780 978 2794 266 7.0% 
7 420 2280 3060 363 1688 325 10.6% 

Average value 382 10.3% 

 
From these two tables, we can observe that the average 

errors of our method are about 5~6 minutes. The error of 
weekend records is higher than the weekday records. The 
reason is that the number of weekend records is smaller than 
the number of the weekday records in each group. 

B. Validation by Sihouette 
Another important aspect in all clustering techniques is to 

verify whether the elements of a cluster are well associated 
with the representative of the cluster. This is computed 
through the silhouette value [24]. Values close to 1 
correspond to good associations. Values close to -1 instead 
are symptoms of bad clustering. Results for the 7 groups are 
shown in Table IV, and confirm the good performance of the 
k-means algorithm. 

TABLE IV 
SILHOUETTE OF K-MEANS CLUSTERING IN EACH GROUP 

Group ID Week days Week ends Average 
1 0.666 0.654 0.658 
2 0.557 0.593 0.584 
3 0.651 0.583 0.624 
4 0.687 0.728 0.691 
5 0.631 0.636 0.626 
6 0.595 0.617 0.595 
7 0.675 0.749 0.674 

C. Percentage of Travelers in Each Mode 
In order to further verify the accuracy of our method, we 

compare the percentage of each transportation mode inferred 
by our method with other surveyed data for the city of 
Boston. While it is quite difficult to find local statistics on 
transportation mode choice (global statistics from the 
National Household Travel Survey (http://nhts.ornl.gov) are 

Driving: 9 mins Public transit: 47 mins 
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not adequate for comparison since sampled over the whole 
nation, and so do not consider the very good public 
transportation available in Boston), we have been able to 
find self-reports from people living in Boston, available on 
the online website Carpoolworld 
(http://www.carpoolworld.com). These reports tell us, for 
the first 3 months of 2010, that on average 45% of the trips 
of 110 surveyed individuals are made using public 
transportation. Our method instead predicts an average share 
of public transportation use of 38.1%. The two percentages 
are very close and the small difference could be explained 
by the slightly biased comparison dataset (people more 
conscious about efficiency and CO2 saved, as mentioned in 
the website). 

D. Sensitivity to Group Size 
The number of groups increases if the group size k 

decreases. Fig. 12 shows the results of clustering experiment 
for 4 values of k. It is clear that the error of our method 
decreases when the group size increases. In order to keep the 
error less than 5~6 minutes, the group size k should be larger 
than 100. 

 
Fig. 12.  Impact of group size to accuracy. The accuracy increases as the 
group size increases. 

V. CONCLUSION 
This paper proposed a method to infer transportation 

mode from CDR data. For a given origin and destination the 
method can determine the percentage of travelers using each 
transportation facility starting from their travel times. 
Experiments of the method using a real mobility dataset are 
performed and comparisons with travel times from Google 
Maps show promising results. The method can be easily 
implemented and applied in real world and for large 
populations, so could be a suitable candidate for augmenting 
existing transportation datasets used for city planning and 
transportation management. 
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