
Meteor Shower: A Reliable Stream Processing System for Commodity Data Centers

Huayong Wang, Li-Shiuan Peh, Emmanouil Koukoumidis

Computer Science And Artificial Intelligence Lab
MIT

Email: huayongw@smart.mit.edu, {peh,koukou}@csail.mit.edu

Shao Tao, Mun Choon Chan

School of Computing
National University of Singapore

Email: {shaot,chanmc}@comp.nus.edu.sg

Abstract—Large-scale failures are commonplace in commod-
ity data centers, the major platforms for Distributed Stream
Processing Systems (DSPSs). Yet, most DSPSs can only handle
single-node failures. Here, we propose Meteor Shower, a new
fault-tolerant DSPS that overcomes large-scale burst failures
while improving overall performance. Meteor Shower is based
on checkpoints. Unlike previous schemes, Meteor Shower
orchestrates operators’ checkpointing activities through tokens.
The tokens originate from source operators, trickle down the
stream graph, triggering each operator that receives these
tokens to checkpoint its own state1. Meteor Shower is a
suite of three new techniques: 1) source preservation, 2)
parallel, asynchronous checkpointing, and 3) application-aware
checkpointing. Source preservation allows Meteor Shower
to avoid the overhead of redundant tuple saving in prior
schemes; parallel, asynchronous checkpointing enables Meter
Shower operators to continue processing streams during a
checkpoint; while application-aware checkpointing lets Meteor
Shower learn the changing pattern of operators’ state size and
initiate checkpoints only when the state size is minimal. All
three techniques together enable Meteor Shower to improve
throughput by 226% and lower latency by 57% vs prior
state-of-the-art. Our results were measured on a prototype
implementation running three real world applications in the
Amazon EC2 Cloud.

Keywords-stream computing; fault tolerance; reliability;

I. INTRODUCTION

In recent years, many real-world applications, such as in-

telligent transportation and environmental monitoring, have

to process a large volume of data in a timely fashion.

Distributed Stream Processing Systems (DSPSs) are well-

suited to support these applications since DSPSs offer high

throughput and low latency for data processing. Commodity

clusters, built with off-the-shelf hardware, are the major

platforms for today’s DSPSs. With the ballooning demands

on computational resources, the size of DSPS clusters can

grow from dozens to thousands of nodes (data center scale).

When DSPSs approach the scale of data centers, fault

tolerance becomes a major challenge. In the past decade,

several fault tolerance schemes have been proposed for

DSPSs. They are either replication-based [1, 2, 3] or

checkpoint-based [1, 4, 5, 6]. In replication-based schemes,

a DSPS runs k+1 replicas of each operator to tolerate up to k

1The sprinkling of tokens resembles a meteor shower.

simultaneous failures (k-fault tolerant). Clearly, replication-

based schemes take up substantial computational resources,

and are not economically viable for large-scale failures.

Checkpoint-based schemes perform two key functions: 1)

periodic checkpoint (snapshot) of each operator’s running

state and 2) input preservation2, i.e. every operator retains

its output tuples until these tuples have been checkpointed

by the downstream operators. When an operator fails, the

operator is restarted from its Most Recent Checkpoint (MR-

C). Its upstream operators then resend all the tuples that the

failed operator had processed since its MRC. The restarted

operator rebuilds the same state as the failed operator after

it processes all these tuples.

The previously proposed fault tolerance schemes do not

fit well in today’s stream processing environment for two

main reasons. First, the failure model of a commodity data

center is quite different from the assumptions made by

previous work. Previous work assumes small-scale (usually

single node) failures and is based on the belief that 1-

safety guarantee is sufficient for most real-world applications

[7]. However, after a careful study of Google’s data center

[8, 9, 10, 11], we found that about 10% failures in the data

center are correlated and occur in bursts (Section II-B1). In

this context of correlated failures, the single node failure

assumption of previous work does not hold. Second, prior

checkpoint-based schemes impose substantial overhead on

the performance of DSPS applications. An ideal DSPS

should be resilient to many faults, while adding little runtime

overhead for fault tolerance.

This paper proposes a new fault tolerance scheme, called

Meteor Shower, to solve the reliability problem of DSPSs

in the context of commodity data centers. Meteor Shower

introduces tokens to coordinate the checkpointing activities.

The tokens are generated by source operators or a controller.

The tokens trickle down the stream graph, triggering each

operator to checkpoint its own state. We show that Meteor

Shower enables DSPSs to overcome large-scale burst failures

with low performance overhead: 226% increased throughput

and 57% reduced latency vs prior state-of-the-art. We sum-

marize the major differences between Meteor Shower and

previous schemes as follows.

2The name “input preservation” was proposed by [1].

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.108

1180

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.108

1180

1) Better common case performance: Common case

refers to the situation where no failure occurs. In the

common case, input preservation is costly. For a chain of

n operators where operator oi forwards tuples to oi+1,

every tuple has to be saved n-1 times by operators o1
to on−1. Since the data stream is continuous, the burden

of saving such a large volume of data is significant and

degrades overall performance. In Meteor Shower, only the

source operators preserve the output tuples, which is called

source preservation. Source preservation is sufficient as

Meteor Shower ensures that all operators in an application

are checkpointed together in a unified way. In case of a

failure, all the operators in this application are recovered

simultaneously and the source operators replay the preserved

tuples. Compared with input preservation, source preserva-

tion incurs less runtime overhead. Our experiments show

that source preservation increases throughput by 35% and

reduces latency by 9%, on average (Fig. 12 and Fig. 13).

2) Non-disruptive checkpoint: A common concern for

checkpoint-based schemes, like Meteor Shower, is check-

point time. Checkpoints are performed when operators are

busy processing incoming tuples. Therefore, checkpoint-

ing activities can disrupt or even suspend normal stream

processing, thus degrading overall performance. In Meteor

Shower, the checkpointing work is done in parallel and asyn-

chronously. When an operator starts checkpointing, it forks

a new process which shares the memory with the parent

process. Operating system guarantees the data consistency

through the copy-on-write mechanism. The child process

saves the operator’s state, while the parent process continues

processing streams. This asynchronous approach offloads the

checkpointing task from the critical path to a helper process,

helping to eliminate the negative impact of checkpointing

on normal stream processing (Section IV-B, Fig. 15). Our

experiments show that parallel, asynchronous checkpointing
increases throughput by 28% and reduces latency by 33%,

on average, vs. the state-of-the-art (Fig. 12 and Fig. 13).

3) Fast recovery: Another major concern for checkpoint-

based schemes is recovery time. The recovery time may

be long in Meteor Shower since it recovers all operators

together. In this paper, we propose a new technique to

solve this problem, called application-aware checkpointing.

Application-aware checkpointing is based on two obser-

vations: 1) stream applications have evolved from early

primitive monitoring applications to today’s sophisticated

data analysis systems; 2) data mining and image processing

algorithms, which constitute the kernels of typical data

analysis applications, manipulate data in batches. At the

boundaries of the batches, the operator state is puny since

the operator holds no intermediate results. Therefore, Meteor

Shower monitors the state size of each operator and learns its

changing pattern. The learnt patterns allow Meteor Shower

to make informed decisions about the best time to perform

a checkpoint resulting in minimal checkpointed state. For

(a)

(b)

Input/output�buffer� High�availability�unit�(HAU)�
Operator�N Data�pass�within�SPE� Network�connection�N

SPE�3

HAU�3�

4 6

3 5

SPE�4

HAU�4�

7 9

8

SPE�2

2
HAU�2

Source

SPE�5

HAU�5

10
Sink

sensor

sensor

sensor

sensor

sensor

HAU�1

SPE�1

1
Source

1 3

4

5
N� The�Nth HAU

Data�stream
2

Source

Source

Sink

Figure 1. Stream application consisting of ten operators. (a) Stream appli-
cation represented by operators and query network. (b) Stream application
represented by HAUs and high-level query network.

example, application-aware checkpointing can reduce the

checkpointed state in the three case study applications by

about 100%, 50% and 80% respectively (Section II-B2,

Fig. 5). Thanks to the small size of the checkpointed state,

the recovery time is also significantly reduced.

The remainder of this paper is organized as follows.

Section II introduces the background and the motivation.

Section III describes Meteor Shower. Section IV dissects the

experimental results. Section V compares our work with the

related research work and Section VI offers our conclusions.

II. BACKGROUND AND MOTIVATION

A. Distributed Stream Processing System

A DSPS consists of operators and connections between

operators. Fig. 1.a illustrates a DSPS and a stream appli-

cation running on the DSPS. The application contains ten

operators. Each operator is executed repeatedly to process

the incoming data. Whenever an operator finishes processing

a unit of input data, it produces the output data and sends

them to the next operator. Each unit of data passed between

operators is called a tuple. The tuples sent in a connection

between two operators form a data stream. A directed

acyclic graph, termed query network, specifies the producer-

consumer relations between operators.

In practice, multiple operators can run on the same com-

puting node. One or more Stream Process Engines (SPEs)

on the node manage these operators. The group of operators

within an SPE is called a High Availability Unit (HAU) [4].

HAU is the smallest unit of work that can be checkpointed

and recovered independently. The state of an HAU is the sum

of all its constituent operators’ states. If multiple HAUs are

on the same node, they are regarded as independent units

for checkpointing. The structure of a stream application can

11811181

Table I
COMMODITY DATA CENTER FAILURE MODELS (AFN100).

Failure Sources Google’s Data Center Abe Cluster
Network ∗ >300 ∼250

Environment ∗ 100∼150 NA
Ooops ∼100 ∼40
Disk 1.7∼8.6 2∼6

Memory 1.3 NA
∗ The major reasons for large-scale burst failures.

be represented at a higher level based on the interaction

between the HAUs (Fig. 1.b).

B. Motivation

This paper is motivated by important observations about

the failure model of commodity data centers and the char-

acteristics of stream applications.

1) Failure Model: Our target platform for DSPSs is

commodity data centers, like Google’s, that are built with

off-the-shelf computers, storage and networks. Based on

statistics about Google’s data centers [8, 9, 10, 11], Table I

describes the failure model of a Google’s data center with

2400+ nodes (30+ racks and 80 blade servers per rack).

In order to make comparisons, all values in Table I are

translated to a common unit – Annual Failure Number per

100 nodes (AFN100). AFN100 is the average number of

node failures observed across 100 nodes running through a

year. AFN100 is broken down into the different causes of

failure. Network failures are due to rack, switch, router and

DNS malfunctions. Occasional network packet losses are not

viewed as failures. Environment refers to failures caused

by external reasons, such as power outage, overheating

and maintenance. Ooops represents failures generated by

software, man created mistakes, and other unknown reasons.

Disk and memory failures, unlike the above failures, are

usually correctable. For example, the majority of memory

failures are single-bit soft errors, which can be rectified

by error correction code (ECC) [10]. Many reported disk

failures, such as scan, seek and CRC errors, are actually

benign and cause no data loss [9]. Since correctable errors

have no impact on applications, Table I only accounts for

uncorrectable disk and memory errors.

Here is an example on how the network AFN100 is

calculated in Google’s data center. According to [8], in

one year, there are one network rewiring (5% of nodes

down), twenty rack failures (80 nodes disconnected each

time), five rack unsteadiness (80 nodes affected each time,

50% packet loss), fifteen router failures or reloads, and eight

network maintenances. We conservatively assume that only

10% of the nodes are affected each time in the last two

cases. Therefore, there are 7640 network failures in total:

AFN100 = 7640/2400 ∗ 100 > 300. The actual AFN100 in

the field could be higher because dozens of DNS blips are

not considered in our calculation.

S:�Source (collecting�position�
data�from�base�stations)�
P:�Pair�(calculating�speed�
from�position�data)�

S0

P0 M0

P1 M1

P2 M2

P3 M3

P4 M4

P5 M5

P6 M6

P7 M7

P8 M8

P9 M9

P10 M10

S9

P11 M11

…
…

G0�

G1�

G2�

G3�

G4�

G5�

G6�

G7�

G8�

G9�

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

K

M:�GoogleMap�operator�
(downloading�reference�speed��
for�each�transportation�mode)��
G:�Group���A:�K�means���K:�Sink�

…
…

Base�
station…

Base�
station

Base�
station…

Base�
station

Figure 2. Query network of TMI. Each operator constitutes an HAU. Each
GoogleMap operator connects to all Group operators. For clarity, only the
connections starting from M0 and M11 are shown.

From Google’s statistics, we make two key observations.

1) The major causes for the failures in a Google’s data

center are network, environment and ooops. 2) Failures can

be correlated. For example, a rack failure can immediately

disconnect 80 nodes from the network, and takes 1∼6 hours

to recover. In fact, about 10% failures are part of a correlated

burst, and large bursts are highly rack-correlated or power-

correlated [11].

Table I gives another example of a large-scale com-

modity cluster – the Abe cluster at National Center for

Supercomputing Applications (NCSA) [12]. Its AFN100 is

lower than the Google’s data center because Abe adopts

InfiniBand network and RAID6 storage. Nevertheless, the

same observations also apply for the Abe cluster.

In summary, large-scale burst failures are not rare in a

commodity data center because of the network and environ-

ment reasons. It is thus necessary for DSPSs running in data

centers to deal with large-scale burst failures.

2) Application Characteristics: The first application is

Transportation Mode Inference (TMI) [13]. It collects the

position data of mobile phones from base stations. Using

the data, TMI infers the transportation mode (driving, taking

bus, walking or remaining still) of mobile phone bearers

in real time. Fig. 2 illustrates the query network of TMI.

The kernel of TMI is the k-means clustering algorithm. The

k-means operators manipulate data in batches. In each N -

minute-long time window, a k-means operator retains input

tuples in an internal pool and clusters the tuples at the end

of the time window. After clustering, the operator discards

the tuples in the pool. Therefore, the state size of TMI

changes periodically. The dataset used in TMI consists of

829 millions anonymous location records collected from

over 100 base stations in one month.

The second application is Bus Capacity Prediction (BCP).

11821182

J0

J2

S0

D0

C0

B0
C1

C2

C3

H0

S4 N0
A0

L0

S1

D1

C4

B1
C5

C6

C7

H1

S2

D2

C8

B2
C9

C10

C11

H2

S3

D3

C12

B3
C13

C14

C15

H3

S5 N1
A1

L1

S6 N2
A2

L2

S7 N3
A3

L3

G0�

G1�

P0

P1

K

S4~7:�On�vehicle�infrared�sensor�
data�source���N:�Noise�filter���A:�
Prediction�model�for�bus�arrival�
time��L:�Prediction�model�for�
alighting�passengers��K:�Sink�

S0~3:�Camera�data�source��D: Dispatcher��
H:�Historical�image�processing��C:�Counter�
(counting�people�in�images)��B:�Prediction�
model�for�boarding�passengers��J:�Join��G:�
Group��P:�Bus�crowdedness�prediction�

…
�

camera

camera

…
�

camera

camera

…camera

camera

…camera

camera

…sensor

sensor

…sensor

sensor

…sensor

sensor

…
�

sensor

sensor

Figure 3. Query network of BCP. Each operator constitutes an HAU.

It predicts how crowded a bus will be based on the number

of passengers on the bus and at the next few bus stops.

BCP uses cameras installed at bus stops to take pictures

and count the passengers in the pictures. In order to filter

out the pedestrians who are just walking by and distinguish

occluded people in the pictures, BCP’s image processing

algorithm needs to analyze multiple successive images from

the same camera. Therefore, BCP internally saves the images

for each camera. These saved images, which are used to

improve detection accuracy, become BCP’s running state.

These images, however, are removed upon a bus arrival,

because the passenger counts waiting at a bus stop before

and after a bus arrival are usually significantly different.

The image accumulation and removal cause the state size to

fluctuate. Fig. 3 illustrates the query network of BCP. The H

operators manage the historical images for each camera. A

prototype BCP system is currently running on the National

University of Singapore campus buses.

The third application is SignalGuru, a driver assistance

system [14]. It predicts the transition time of a traffic

light at an intersection and advises drivers on the optimal

speed they should maintain so that the light is green when

they arrive at the intersection. In this way, the drivers can

cruise through the intersections without stopping, decreasing

significantly their fuel consumption. A proof of concept

SignalGuru has been implemented on iPhone devices [14].

Here, a large-scale SignalGuru is implemented on a DSPS,

with inputs coming from phones and videos captured at

actual deployments at ten intersections in Cambridge and

Singapore. Such a DSPS implementation enables coverage

of a much larger area, and can potentially increase prediction

S:�Source��D:�Dispatcher��C:�Color�Filter��A:�Shape�Filter��M:�Motion�Filter��V:�
Voting�(selection�thru�voting)���G:�Group���P:�SVM�Prediction�Model���K:�Sink

S0

S1

S2

S3

D0

D1

D2

D3

C0 A0 M0

C1 A1 M1

C2 A2 M2

C3 A3 M3

C4 A4 M4

C5 A5 M5

C6 A6 M6

C7 A7 M7

C8 A8 M8

C9 A9 M9

C10 A10 M10

C11 A11 M11

V0�

V1�

V2�

V3�

G0

G1

G2

G3

P0

P1

K

iPhone…

iPhone

iPhone…

iPhone

iPhone…

iPhone

iPhone…

iPhone

Figure 4. Query network of SignalGuru. Each operator constitutes an
HAU.

accuracy since phones will have global knowledge from all

other phones.

SignalGuru leverages windshield-mounted iPhones de-

vices to take pictures of an intersection. It then detects

the traffic signals in the images and learns the pattern of

the signal transitions. The image processing algorithm uses

motion filtering to eliminate noises because traffic lights

always have fixed positions at intersections. The motion

filtering operators preserve all pictures taken by an iPhone at

a specific intersection, until the vehicle carrying the iPhone

device leaves the intersection. The preserved images become

the operator’s state as long as the vehicle remains in the

vicinity of an intersection (usually 10∼40 seconds). Fig. 4

illustrates the query network of SignalGuru.

Fig. 5 shows the state size of these applications over a time

window. In TMI (N=10), the maximum size is over 300MB,

while the minimum size is close to zero. If checkpoints are

performed randomly, the average size of the checkpointed

state is about 150MB. In BCP, the state size ranges between

100MB and 700MB with an average of 400MB. In Sig-

nalGuru, the state size ranges from 200MB to 2GB with

an average of 1GB. The three applications represent low,

medium and high stream workload respectively.

We summarize two key characteristics of these stream

applications for data analysis. First, these applications ex-

hibit a pattern of data aggregation. That is, they have a

large number of data sources and at each data source the

input data rate is low. However, the aggregated data are

large. Therefore, downstream HAUs are often busy. As a

result, if it is necessary to save tuples at least once, it is

better to save them someplace near the sources. Second, real-

time data mining and image processing algorithms usually

store historical data internally for a while, then discard the

data when they become stale. Consequently, the state size

of the operators implementing these algorithms fluctuates

significantly over time. If a checkpoint is performed just

after the internal data is discarded, the checkpointed state

11831183

0
50

100
150

200
250
300
350

0 5 1 1 2
Time (minutes)

St
at

e
si

ze
 (M

B
)

N=1
N=5
N=10

(a)�TMI

0 5 10 15 20

Average

0
100
200
300
400
500
600
700
800

0 5 10 15 20
Time (minutes)

St
at

e
si

ze
 (M

B
)

(b)�BCP

Average

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14
Time (minutes)

St
at

e
si

ze
 (M

B
)

(c)�SignalGuru�

Average

Figure 5. Fluctuation in state size. Red circles mark the local minima of the state size and red dotted lines indicate the average state sizes.

will be minimal. The data aggregation characteristic inspires

the idea of source preservation, and the varying state charac-

teristic prompts application-aware checkpointing. We believe

these applications are representative since the kernels of

these applications are commonly used algorithms.

3) Fault Tolerance Overhead: For comparison, we de-

fine a baseline system that represents the state-of-the-art

checkpoint-based schemes [1, 4, 5, 6]. In the baseline sys-

tem, HAUs perform checkpoints independently. Each HAU

selects randomly the time for its first checkpoint. After that,

each HAU checkpoints its state periodically. For all HAUs,

the checkpoint period is the same, but the time for the

first checkpoint is different. The default value of checkpoint

period is 200 seconds. It can be adjusted as we do in the

following experiments. Using input preservation, each HAU

preserves output tuples in an in-memory buffer. The buffer

has a limited size in order to curb memory contention.

Once the buffer is full, the buffered data are dumped into

the local disk. The buffer size in this implementation is

50MB. A larger buffer reduces the frequency of disk I/O,

but does not reduce the amount of data written to the disk.

Therefore, further enlarging buffers shows little performance

improvement in our experiments. The checkpointed state

is saved on a shared storage node. An HAU sends a

message back to its upstream neighbors once it completes a

checkpoint. The message informs the upstream neighbors of

the checkpointed tuples, so these tuples are discarded from

the buffer and disk of the upstream neighbors. In the baseline

system, HAUs perform checkpoints synchronously. That is,

an HAU suspends its normal stream processing during a

checkpoint, and resumes the processing after the checkpoint

is thoroughly completed. By comparing Meteor Shower and

the baseline system, we hope to evaluate source preservation

vs. input preservation, parallel and asynchronous check-

pointing vs. synchronous checkpointing, and application-

aware checkpointing vs. random checkpointing.

III. METEOR SHOWER DESIGN

This section introduces the assumptions made by Meteor

Shower and three variants of Meteor Shower.

Meteor Shower makes several assumptions about the

software errors, network, storage and workload. Meteor

Shower handles fail-stop failures. That is, a software error

is immediately detected and the operator stops functioning

without sending spurious output. Meteor Shower assumes

that TCP/IP protocol is used for the network communication.

Network packets are delivered in-order and will not be

lost silently. According to the failure model in Section

II-B1, storage is deemed reliable enough. Meteor Shower

assumes that there is a shared storage system in the data

center where computing nodes can share data. Furthermore,

Meteor Shower assumes the storage system to be reliable

except that the network between the storage system and

computing nodes can fail. In practice, the shared storage

system can be implemented by a central storage system

or a distributed storage system like Google’s File System

(GFS). The overall workload of a stream application should

be below the system’s maximum processing capability. Once

an application has recovered from a failure, it can process

the replayed tuples faster than usual to catch up with regular

processing. Meteor Shower does not consider long-term

overload situations because they require load shedding [15].

A. Basic Meteor Shower

Basic Meteor Shower, denoted by MS-src, features source

preservation. MS-src can be described in three steps. First,

every source HAU checkpoints its state and sends a token

to each of its downstream neighbors. A token is a piece of

data embedded in the dataflow as an extra field in a tuple.

It conveys a checkpoint command, and incurs very small

overhead. Second, every HAU checkpoints its state once it

receives tokens from all upstream neighbors. The checkpoint

is performed synchronously. After that, the HAU forwards a

token to each of its downstream neighbors. In this way, the

tokens are propagated in the query network. When all HAUs

have finished their own checkpoints, the checkpoint of this

application is completed. To avoid confusion, we name the

checkpoint of a single HAU “individual checkpoint”. An

application’s checkpoint contains the individual checkpoints

of all HAUs belonging to this application. Third, every

source HAU preserves all the tuples generated since the

Most Recent Checkpoint (MRC). The source HAU saves

these tuples in stable storage before sending them out, which

guarantees that the preserved tuples are still accessible even

if the source HAU fails. The preserved tuples and the HAU

states are saved in the shared storage system, and optionally

saved again in the local disks of the corresponding nodes.

11841184

(t=1)� (t=2)� (t=3)�

1

2

3 4

5

T0

+2

1

2

3 4

5

(t=4)� (t=5)�

1

2

3 4

5

T1 T2

1

2

3 4

5
T3

T2

1�

2�

3 4�

5�
T4�
+1�

Source�preservation Stream�boundary� T Token

Figure 6. Execution snapshots illustrating MS-src. For clarity, the tuples
preceding and succeeding the token in each stream are not shown.

Fig. 6 illustrates the execution snapshots of MS-src. At

time instant 1, the source HAU checkpoints its state and

sends out the token T0 to its downstream neighbor. At time

instant 2, HAU 2 receives the token, checkpoints its state

and forwards the token to HAUs 3 and 4. At time instant 3,

HAU 3 does the same thing and forwards the token down.

Because HAU 4 runs more slowly than HAU 3, token T2 has

not been processed yet. At time instant 4, HAU 4 receives the

token T2, checkpoints its state and forwards the token down.

HAU 5 receives one token T3 from HAU 3. Since HAU 5

has two upstream neighbors, it cannot start its checkpoint

at the moment. HAU 5 then stops processing tuples from

HAU 3, which guarantees that the state of HAU 5 is not

corrupted by any tuple succeeding the token. HAU 5 can

still process tuples from HAU 4 because HAU 5 has not

received any token from HAU 4. At time instant 5, HAU

5 receives tokens from both upstream neighbors and then

checkpoints its state. After HAU 5 finishes its checkpoint,

the checkpoint of this application is completed.

The token plays an important role in Meteor Shower. A

token indicates a stream boundary (depicted by dotted lines

in Fig. 6). That is, in a stream between a pair of neighboring

HAUs, the tuples preceding the token are handled by the

downstream HAU while the tuples succeeding the token

are handled by the upstream HAU. The stream boundary

guarantees that no tuple will be missed or processed twice

when the application is recovered from a failure.

Failure detection in Meteor Shower relies on a controller.

The controller runs on the same node as the shared storage

system. If the shared storage system is implemented by

GFS, the controller runs on the master node of GFS [16].

As pointed out by [3], the controller is not necessarily a

single point of failure. Hot standby architecture [17] and

active standby technique [18] can provide redundancy for

the controller. The controller’s job is to periodically ping

the source nodes (the nodes on which source HAUs run).

A source node is deemed failed if it does not respond for

a timeout period. The other computing nodes in the DSPS

are monitored by their upstream neighbors respectively. A

node can also report its own failure actively to its upstream

neighbor. For example, when a node is disconnected from

(t=3)�

1

2

3� 4

5 +2

(t=1)�

1

2

3 4

5

C

(t=2)�

1

2

3 4

5

T

T

T

T

T

C Controller Command T� 1�hop�Token�

Figure 7. Execution snapshots illustrating MS-src+ap.

the shared storage system, it notifies its upstream neighbor.

If a failure has been detected, the controller sends noti-

fications to all HAUs that are alive. All HAUs must then

be restored to their MRC. When nodes fail, the HAUs on

those failed nodes are restarted on other healthy nodes.

Recovery starts by reading the checkpointed state from the

local disk. Where the local disk cannot provide the data, the

restarted HAUs will read the data from the shared storage

system. Source HAUs then replay the preserved tuples. All

downstream HAUs reprocess these tuples and the application

therefore recovers its state.

B. Parallel, Asynchronous Meteor Shower

In MS-src, individual checkpoints are performed one after

another in the order in which the token visits HAUs. A way

to shorten the checkpoint time and reduce the disruption to

normal stream processing is to perform individual check-

points in parallel and asynchronously. We thus propose an

enhanced design of Meteor Shower, denoted by MS-src+ap.

Fig. 7 illustrates the parallel aspect of MS-src+ap. The

controller sends a token command to every HAU simultane-

ously. After receiving the command, the HAU generates a

token for each of its downstream neighbors, and then waits

for the incoming tokens from its upstream neighbors. Once

an HAU receives the tokens from all upstream neighbors,

the HAU checkpoints its state. Unlike MS-src, the incoming

tokens are not forwarded further to downstream HAUs.

Instead, they are discarded after the individual checkpoint

starts. Tokens in MS-src+ap are hence called 1-hop tokens.

Fig. 8 illustrates the asynchronous aspect of MS-src+ap. It

shows the token handling and asynchronous checkpointing

in an HAU. The HAU has two upstream and downstream

neighbors, corresponding to the two input and output buffers

respectively. At time instant 1, the HAU receives the token

command. Then, two 1-hop tokens T0 and T1 are immedi-

ately inserted to the output buffers and placed at the head of

the queue. After that, the HAU keeps processing the tuples

in both input buffers and waits for incoming tokens. The

first incoming token T2 is received by input buffer 1 at time

instant 2. The HAU continues the normal tuple processing

until it processes T2 at time instant 3. The HAU then stops

processing tuples in input buffer 1 because a token can be

11851185

(t=1)� (t=2)�

(t=5a)� (t=5b��view�from�child�process)�

(t=3)� (t=4)�

Token�command�
from�controller�

1Save�tuples�from�output�1

2Save�tuples�from�output�1 3 1 2Save�tuples�from�output�1 3 1
4Save�tuples�from�output�2

T0

T1

SPE�

Input�2

HAU
9 8 7

11 10

2 1

5 4

Input�1 Output�1

Output�2
6

3

12

SPE�

Input�2�

HAU
T2 9 8�

11 10�

3 2

5 4

Input�1� Output�1

Output�2
12

7

6

chkptSPE

Input�2�

HAU
14 13 T2�

T3 12 11�

8 7

10 6 5

Input�1� Output�1

Output�2

9

SPE

Input�2

HAU
15 14 13

16 12 11

8 7

10 6 5

Input�1 Output�1

Output�2

9

SPE�

Input�2

HAU
14 13 T2

11 10

8 7

5 4

Input�1 Output�1

Output�2

9

12 6

SPE

Input�2�

HAU
14 13 T2�

T3 12 11�

8 7

10 6 5

Input�1� Output�1

Output�2

9

Input/output�buffer� Tuple�N�N T 1�hop�token� New�process�

Storage�

2
Tuples�in�memory�

3� 1
4

Save

Figure 8. Token handling and asynchronous checkpointing in HAU.
1) Command arrival. 2) First token arrival. 3) Token waiting. 4) Second
token arrival. 5a) Process creation and token erasure. 5b) Asynchronous
checkpointing.

handled only when the tokens from all upstream neighbors

have been received. The HAU can still process the tuples in

input buffer 2 because input buffer 2 has not received a token

yet. Another incoming token T3 is received by input buffer

2 at time instant 4. As both tokens have been received, the

HAU spawns a child process to complete the checkpointing

asynchronously. This child process shares the memory with

its parent process, with the operating system guaranteeing

data consistency through the copy-on-write mechanism [19].

The child process then copies and saves state, while the

parent process continues normal stream processing. After

the child process is created, the tokens in the input buffers

are erased immediately, as at time instant 5a. From now on,

the HAU returns to its normal execution.

In addition to the above actions, all tuples that are sent

from time instant 1 to 4 retain a local copy in memory. The

retained tuples can be deleted at time instant 5a after the

child process is created. Let us turn to the child process at

time instant 5b. Besides the HAU’s original state, the child

process also checkpoints all the tuples between the incoming

tokens (T2 and T3) and the output tokens (T0 and T1). They

are tuples 1∼12 in this case, as shown by the red rectangles

in Fig. 8. Some of them are still in the buffers. These tuples

are treated as a part of the HAU state. They will be restored

if the HAU recovers its state in the future. Please note

that MS-src+ap is different from input preservation although

they both save some tuples in each HAU. In MS-src+ap,

only tuples between the input and output tokens are saved.

But in input preservation, all tuples between two adjacent

checkpoints are saved. MS-src+ap saves a negligible number

of tuples in comparison with input preservation.

C. Application-aware Meteor Shower

To reduce the checkpointing overhead of MS-src+ap,

we propose Meteor Shower with application-aware check-

pointing, denoted by MS-src+ap+aa. MS-src+ap+aa tracks

applications’ state size, then chooses the right time for

checkpointing, thus resulting in less checkpointed state and

lower network traffic.

1) Code Generation at Compile Time: MS-src+ap+aa

provides a precompiler that processes the source code of

stream applications before the standard C++ compiler. The

precompiler scans the source code, recognizes operator state

and generates stub code that will be executed at runtime for

the purpose of state size tracking.

A tuple is a C++ class whose data members are to be one

of the following types. 1) Basic types: integer, floating-point

number and character string. 2) Tuple types: another tuple

or a pointer to another tuple. 3) Array types: an array whose

elements are of basic types or tuple types. Our precompiler

disallows cyclic recursive definitions – tuple A contains tuple

B and tuple B contains tuple A. Because every data member

in a tuple has an explicit type, the precompiler can generate

a member function size() for each tuple class. The function

returns the size of the memory consumed by this tuple.

An operator is a C++ class inherited from a common

base class stream operator, as shown in Fig. 9. Devel-

opers implement the operator’s processing logic: function

input port 0() processes the tuples from the first upstream

neighbor, function input port 1() processes the tuples from

the second, and so on. An SPE calls one of these functions

whenever an input tuple is received.

Operator state is the data members of an operator class.

These data members are usually tuples managed by stan-

dard C++ containers. The precompiler recognizes the class

members and automatically generates a member function

state size() for each operator class. By default, function

state size() samples the elements of each data structure and

estimates its total size. For example, function state size()
in Fig. 9 takes three samples in the vector data and calcu-

lates the total size of the vector. We believe that sampling

is suitable for estimating state size as stream applications

normally process sensor data, which have fixed format and

constant size. Developers can give hints to the precompiler

in the comments after the variable declarations. The com-

ment “state sample=N” indicates that function state size()
should take N random samples when estimating the total

size of a data structure. The element size of a data structure

can also be specified explicitly if it is known a priori,

like the comment “state element size=1024” in Fig. 9. For

user-defined data structures, like my hashtable, developers

must specify how to get the number of the elements in

11861186

class�my_operator�:�public�stream_operator�{�
����/*�operator�state�*/�

vector<my_tuple>�data;�
map<int,�my_tuple*>�tbl;��//�state�element_size=1024�
my_hashtable�*idx;��//�state���length=”idx�>count()”�
�������������������������������������//�element_size=”idx�>first().size()”
……�
�

����/*�processing�logic�*/�
void�input_port_0(my_tuple�*t)�{�
����data.push_back(*t);�
�����……�
}�
……�

�

/*�automatically�generated�code�*/�
int�state_size()�{�
�����……�
�

��������/*�take�three�samples�by�default�*/�
��������len�=�data.size();�
��������if�(len�>�0)�{�
������������sz�=�(data[0].size()�+�data[len�1].size()��
���������������������+�data[len/2].size())�/�3;�
������������total_size�+=�len�*�sz;�
��������}�
�

����/*�data�structure�with�fixed�size�*/�
����total_size�+=�tbl.size()�*�1024;�
�

����/*�user�defined�data�structure�*/�
����if�(idx�!=�NULL)�{�
��������total_size�+=�idx�>count()�*�idx�>first().size();�
����}�
�

����return�total_size;�
}�

};�

Figure 9. Example of operator class and automatically generated function
state size().

the data structure and the size of each element, using the

parameters “length=...” and “element size=...”. Otherwise,

the precompiler ignores the user-defined data structure. Once

specified, the parameters will be placed by the precompiler

at appropriate locations within function state size().
2) Profiling during Runtime: MS-src+ap+aa profiles the

state of stream applications during runtime. The profiling

is done periodically so that MS-src+ap+aa can adapt to

changing workloads. The purpose of the profiling is to

determine smax, the state size threshold for entering “alert

mode”. During actual execution, whenever the state size falls

below smax, MS-src+ap+aa enters alert mode, during which

the controller only allows the state size to decrease. Once

the state size increases, the controller initiates a checkpoint

immediately.

The first step of the profiling is to find dynamic HAUs,

i.e. HAUs whose state size changes significantly over time,

as dynamic HAUs are the main reason behind state size

fluctuation in a stream application. This is done by observing

each HAU’s state size through function state size(). During

the period of observation, HAUs whose minimum state size

is less than half of its average state size are deemed dynamic

HAUs. In our case study applications, the HAUs containing

k-means operators (Ai of TMI), historical image processing

operators (Hi of BCP) and motion filter operators (Mi of

SignalGuru) are dynamic HAUs, constituting less than 20%

of all HAUs.

250

130

40 30

250

100100100

200200

170 120

50

220

0

100

200

300

400

500

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

St
at

e
siz

e

Dynamic HAU 1 Dynamic HAU 2 Total State Size

T 2T 3T

Smin

Smax

Checkpoint
Period T

Figure 10. State size function illustrating aggregated state size of two
dynamic HAUs. The state sizes at turning points are marked. Red circles
indicate the best time for checkpointing in each period.

The second step is to rebuild the aggregated state size of

all dynamic HAUs. Each dynamic HAU records its recent

few state sizes and detects the turning points (local extrema)

of the state size. For example, at time instant t7 in Fig. 10,

the recent few state sizes of HAU1 are 100(t0), 150(t1),

200(t2), 250(t3), 200(t4), 150(t5), 100(t6) and 150(t7). The

turning points are 250(t3) and 100(t6). In order to lower

network traffic, dynamic HAUs report only the turning points

of their state size to the controller. The state size at any time

point between two adjacent turning points can be roughly

recovered by linear interpolation. The controller then sums

the state sizes of dynamic HAUs. The total state size can be

represented by a state size function f(x), whose graph is a

zigzag polyline, as shown in Fig. 10.

Finally, we determine the state size threshold for alert

mode. The controller finds the time instants when the state

size is minimum in each checkpoint period, as marked by

the red circles in Fig. 10. These time instants are the best

time for checkpointing. The y-coordinates of the highest

and lowest red-circled points are called smax and smin

respectively, and the ratio α = (smax−smin)/smin is called

relaxation factor. The value smax is the threshold for alert

mode. Based on our empirical experimental data, it is better

to conservatively increase smax a little, so that there are

more occasions where the state size stays below smax in

each period. We do so by bounding the relaxation factor to

a minimum of 20% relative to smin.

3) Choosing Time for Checkpointing: After profiling,

MS-src+ap+aa begins actual execution. Given smax from

profiling, MS-src+ap+aa enters alert mode whenever the

total state size of dynamic HAUs falls below smax. Based

on the second characteristic of stream applications (Section

II-B2), dramatic decrease in total state size is usually a result

of a dramatic decrease in a single HAU’s state size, rather

than the joint effect of several HAUs having small reduction

in state size. Therefore, the method to check alert mode can

be designed with less network overhead: When the system

is not in alert mode, dynamic HAUs do not actively report

their state sizes to the controller. Instead, they wait passively

11871187

0

100

200

300

400

500

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

St
at

e
siz

e

Dynamic HAU 1 Dynamic HAU 2 Total State Size

T 2T 3T

1

Smax

Checkpoint
Period T

2

3

4

5

6

7

9

10

11

12

8

P2(100,30), P3(140,-50), P5(40,60),
P6(50,45), P7(87.5,-12.5), P9(140,-60),
P10(100,50), P11(200,-50), P12(20,105)

Figure 11. Choosing time for checkpointing. Red circles indicate the time
chosen for checkpointing. Red line segments indicate that MS-src+ap+aa
is in alert mode.

for the queries about state size from the controller. The

controller sends out queries only on two occasions: 1) A

new checkpoint period begins; 2) A dynamic HAU detects,

at a turning point of its state size, that its state size has fallen

by more than half (the HAU notifies the controller then). On

these two occasions, the controller sends out queries to each

dynamic HAU and obtains their state sizes. If the total state

size is below the threshold, the system enters alert mode.

Take Fig. 11 as an example. In the first period, the

controller collects the state size at t0 and the total state size

is larger than smax. At t2, dynamic HAU2 detects that its

state size has fallen by more than half (from p1 to p2). It

triggers the controller to check the total state size. Since

the total state size at point p4 is below smax, MS-src+ap+aa

enters alert mode at t2. Similarly, MS-src+ap+aa enters alert

mode at t6 and t10 in the second and third periods.

When in alert mode, dynamic HAUs actively report to

the controller at the turning points of their state size.

Besides the current state sizes, dynamic HAUs also report

the instantaneous change rate (ICR) of their state sizes. For

example, at t2 in Fig. 11, HAU1 reports its state size (140)

and ICR (-50) to the controller. The ICR of -50 means that

HAU1’s state size will decrease by 50 per unit of time in

the near future. In practice, HAU1 can know the ICR only

shortly after t2. We ignore the lag in Fig. 11 since it is

small. Similarly, dynamic HAU2 reports its state size (100)

and ICR (30) at t2. The controller sums all ICRs and the

result is -20. The negative result indicates that the total state

size will further decrease in the future. Therefore, it is not

the best time for checkpointing. The controller then waits

for succeeding reports from HAUs. At t4, HAU1 detects

another turning point p5, it reports its state size (40) and

ICR (60). The aggregated ICR is 90 this time. The positive

result indicates that the total state size will increase. Once

the controller foresees a state size increase in alert mode, it

initiates a checkpoint. After that, the alert mode is dismissed.

In the second period, the aggregated ICR at t6 is 32.5.

Therefore, the controller initiates a checkpoint at t6. For

the same reason, the controller initiates a checkpoint at t12.

Since this method can only find the first local minimum

in alert mode, it skips point p8, which is a better time for

checkpointing in the second period. This is the reason why

we need the profiling phase and require it to return a tight

threshold smax. In addition, in the rare case where the total

state size is never below smax during a period, a checkpoint

will be performed anyway at the end of the period.

IV. EVALUATION

We run the experiment on Amazon EC2 Cloud and use 56

nodes (55 for HAUs and one for storage). The controller runs

on the storage node. Each node has two 2.3GHz processor

cores and is equipped with 1.7GB memory. The nodes are

interconnected by a 1Gbps Ethernet. We evaluate Meteor

Shower using the three actual transportation applications

presented in Section II-B2. Each application is composed

of 55 operators and each operator constitutes an HAU.

A. Common Case Performance

We first evaluate the common case performance of the

three applications: the end-to-end throughput and latency.

Throughput is defined as the number of tuples processed by

the application within a 10-minute time window, and latency

is defined as the average processing time of these tuples.

First, we compare the throughput of the baseline system

and Meteor Shower. In order to examine the throughput vari-

ation at different checkpoint frequencies, we have arranged

0∼8 checkpoints performed within the time window. As

shown in Fig. 12, MS-src outperforms the baseline system.

Since the baseline system and MS-src both adopt syn-

chronous checkpointing, the improvement is due to source

preservation. Specifically, when there is no checkpoint, MS-

src increases throughput by 35%, on average, compared with

the baseline system. This increase indicates the performance

gain of source preservation in terms of throughput. It can

also be seen that MS-src+ap offers higher throughput than

MS-src. As an example, when there are 3 checkpoints in

a 10-minute window, the increase in throughput from MS-

src to MS-src+ap is 28%, on average. This improvement is

due to parallel, asynchronous checkpointing. Among all the

schemes under evaluation, MS-src+ap+aa offers the highest

throughput. MS-src+ap+aa outperforms MS-src+ap because

of application-aware checkpointing, which results in less

checkpointed state. At 3 checkpoints, the improvement in

throughput from MS-src+ap to MS-src+ap+aa is 14%, on

average. Combining the three techniques, MS-src+ap+aa

outperforms the baseline system by 226%, on average, at

3 checkpoints.

Second, we measure the average latency in these systems.

Fig. 13 shows the results. It can be seen that MS-src+ap+aa

and the baseline system perform best and worst respectively

in terms of latency. When there is no checkpoint, Meteor

Shower reduces latency by 9%, on average, compared with

the baseline system. This decrease indicates the performance

11881188

0.710.740.770.810.840.870.910.951.00

1.24

1.17 1.13 1.08 1.04 0.99 0.96 0.92 0.87

1.15 1.13
1.11 1.08 1.06 1.03

1.151.171.181.191.201.21
1.13

1.22

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline MS-src MS-src+ap MS-src+ap+aa
(a) TMI (N=10)

0.470.520.58
0.64

0.72
0.790.85

0.94
1.00

1.31

1.20 1.13
1.06

0.98
0.90

0.83
0.73 0.66

1.25 1.21 1.18 1.15 1.11 1.09 1.05 1.01

1.181.191.201.231.251.27
1.16

1.29

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline MS-src MS-src+ap MS-src+ap+aa
(b) BCP

0.21

0.45

0.72

1.00

1.51

1.25

0.95

0.65

0.33

1.38

1.21
1.09

0.95
0.81

0.63
0.49

0.35

1.281.321.361.401.431.47

1.25

1.48

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline MS-src MS-src+ap MS-src+ap+aa
(c) SignalGuru

Figure 12. Throughput of baseline system, MS-src, MS-src+ap and MS-src+ap+aa. All values are normalized to the throughput of the baseline system
with zero checkpoint.

3.04
2.81

2.56
2.27

2.02
1.78

1.53
1.24

1.00

0.95

1.15
1.34 1.53

1.71 1.96
2.20

2.48
2.74

1.01 1.09 1.12 1.14 1.18 1.24 1.27 1.31

0.970.970.970.960.960.95 0.970.95

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 la
te

nc
y

Baseline MS-src MS-src+ap MS-src+ap+aa
(a) TMI (N=10)

2.78
2.49

2.22
2.04

1.79
1.60

1.42
1.23

1.00

0.91

1.09
1.27 1.43 1.60

1.79 1.92 2.05 2.18

0.96 1.02 1.10
1.16 1.23 1.29 1.32 1.39

0.970.970.960.950.940.93 0.990.92

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 la
te

nc
y

Baseline MS-src MS-src+ap MS-src+ap+aa
(b) BCP

5.82

4.06

2.53

1.00

0.86

2.13

3.44

4.61

5.94

1.39

1.85
2.37

2.97
3.55

4.11
4.63

5.11

1.201.151.111.061.000.96
1.23

0.90
0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6 7 8
Number of checkpoints in 10 minutes

N
or

m
al

iz
ed

 la
te

nc
y

Baseline MS-src MS-src+ap MS-src+ap+aa
(c) SignalGuru

Figure 13. Latency of baseline system, MS-src, MS-src+ap and MS-src+ap+aa. All values are normalized to the latency of the baseline system with zero
checkpoint.

gain of source preservation in terms of latency. At 3 check-

points, MS-src+ap and MS-src+ap+aa reduce latency by

43% and 57% respectively, on average, compared to the

baseline system.

B. Checkpointing Overhead

We evaluate the checkpointing overhead using two metric-

s: checkpoint time and instantaneous latency (latency jitter).

Checkpoint time is the time used by a DSPS to complete a

checkpoint. Instantaneous latency is the processing time of

each tuple during a checkpoint. As checkpointing activities

disrupt normal stream processing, these two metrics indicate

the duration and extent of the disruption.

The methods for measuring checkpoint time differ in MS-

src, MS-src+ap and MS-src+ap+aa. In MS-src+ap and MS-

src+ap+aa, we only measure the time consumed by the s-

lowest individual checkpoint because individual checkpoints

start at the same time and are performed in parallel. The

checkpoint time can be broken down into three portions:

token collection, disk I/O and other. Token collection is

the period of time during which an HAU waits for the

tokens from all upstream neighbors (time instants 1∼4 in

Fig. 8). Disk I/O is the time used to write the check-

pointed state to stable storage. Other includes the time for

state serialization and process creation. In MS-src, however,

we only measure the total checkpoint time because token

propagation and individual checkpoints overlap. Besides, to

evaluate application-aware checkpointing, we also measure

the checkpoint time in MS-src+ap+aa when the checkpoint

0
20
40
60
80

100
120
140
160

M
S-

sr
c

M
S-

sr
c+

ap

M
S-

sr
c+

ap
+a

a

O
ra

cl
e

M
S-

sr
c

M
S-

sr
c+

ap

M
S-

sr
c+

ap
+a

a

O
ra

cl
e

M
S-

sr
c

M
S-

sr
c+

ap

M
S-

sr
c+

ap
+a

a

O
ra

cl
e

C
he

ck
po

in
t t

im
e

(s
)

Other
Disk I/O
Token Collection

61.879

22.149

6.650 5.822

82.893

55.734

29.040 26.426

151.664

133.216

27.164 24.586

(a) TMI (N=10) (b) BCP (c) SignalGuru

Figure 14. Checkpoint time. The value of MS-src is not broken down.

is performed exactly at the moment of the minimal state

(Oracle). This checkpoint time is obtained from observing

prior runs, when a complete picture of the runtime state is

available. Oracle is the optimal result.

Fig. 14 shows the results. It can be seen that disk I/O

dominates the checkpoint time. MS-src+ap reduces check-

point time by 36%, on average, compared with MS-src.

MS-src+ap+aa further reduces checkpoint time by 66%,

on average, compared with MS-src+ap. This is close to

the Oracle which reduces checkpoint time by 69%, on

average, vs MS-src+ap. This shows that application-aware

checkpointing can reasonably pinpoint suitable moment for

checkpointing in the vicinity of the ideal moment.

We then evaluate the disruption of our checkpoints to

normal stream processing by measuring instantaneous la-

tency during a checkpoint. Fig. 15 shows the results. It

11891189

0
20
40
60
80

100
120
140
160
180

0 30 60 90
Time (s)

In
st

an
ta

ne
ou

s l
at

en
cy

 (s
)

MS-src
MS-src+ap
MS-src+ap+aa

(a) TMI (N=10)

0
20
40
60
80

100
120
140
160
180

0 30 60 90 120
Time (s)

In
st

an
ta

ne
ou

s l
at

en
cy

 (s
)

MS-src
MS-src+ap
MS-src+ap+aa

(b) BCP

0
20
40
60
80

100
120
140
160
180

0 30 60 90 120 150 180
Time (s)

In
st

an
ta

ne
ou

s l
at

en
cy

 (s
)

MS-src
MS-src+ap
MS-src+ap+aa

(c) SignalGuru
Figure 15. Instantaneous latency during checkpoint.

0

10

20

30

40

50

M
S-

sr
c(

+a
p)

M
S-

sr
c+

ap
+a

a

O
ra

cl
e

M
S-

sr
c(

+a
p)

M
S-

sr
c+

ap
+a

a

O
rc

al
e

M
S-

sr
c(

+a
p)

M
S-

sr
c+

ap
+a

a

O
ra

cl
e

R
ec

ov
er

y
tim

e
(s

)

Other
Disk I/O
Reconnection

11.302

4.712 4.403

17.419

9.902 9.107

43.247

10.006 8.497

(a) TMI (N=10) (b) BCP (c) SignalGuru
Figure 16. Recovery time. MS-src and MS-src+ap have the same recovery
time.

can be seen that MS-src causes larger instantaneous latency

than MS-src+ap, due to the synchronous checkpointing.

MS-src+ap+aa outperforms MS-src and MS-src+ap. MS-

src+ap+aa increases instantaneous latency by just 47%,

on average, compared with the latency when there is no

checkpointing, whereas MS-src can aggravate the latency by

5∼12X. MS-src+ap+aa thus effectively hides the negative

impact of checkpointing on normal stream processing.

C. Worst Case Recovery Time

Recovery time is the time used by a DSPS to recover from

a failure. We measure the recovery time in the worst case,

where all computing nodes on which a stream application

runs fail. In this situation, all the HAUs in this application

have to be restarted on other healthy nodes and read their

checkpointed state from the shared storage. Since the base-

line system can only handle single node failures, we do not

include it in this experiment. For each HAU, the recovery

proceeds in four phases: 1) the recovery node reloads the

operators in the HAU; 2) the node reads the HAU’s state

from the shared storage; 3) the node deserializes the state

and reconstructs the data structures used by the operators;

and 4) the controller reconnects the recovered HAUs. The

recovery time is the sum of these four phases.

Fig. 16 shows the recovery time. The data is broken

down into three portions: disk I/O, reconnection and other.

Corresponding to the aforementioned procedure, disk I/O

is phase two, reconnection is phase four, and other is

the sum of phases one and three. We also measure the

recovery time when the application is recovered from the

state checkpointed by the Oracle. It can be seen that disk

I/O dominates the recovery time. MS-src+ap+aa is able to

reduce 59% of the recovery time, on average, compared

with MS-src and MS-src+ap. The Oracle reduces 63% of the

recovery time, on average, compared with MS-src and MS-

src+ap. The similar ratios indicate again that application-

aware checkpointing is effective.

After recovery, the source HAUs replay the preserved

tuples and the application catches up the normal stream

processing. Since this procedure is the same with previous

schemes, we do not further evaluate it.

V. RELATED WORK

Checkpointing has been explored extensively in a wide

range of domains outside DSPS. Meteor Shower leverages

some of these prior art, tailoring techniques specifically to

DSPS. For instance, there has been extensive prior work in

checkpointing algorithms for traditional database. Howev-

er, classic log-based algorithms, such as ARIES or fuzzy

checkpointing [20, 21], exhibit unacceptable overheads for

applications, such as DSPS, with very frequent updates

[22]. Recently, Vaz Salles et al. evaluated checkpointing

algorithms for highly frequent updates [19], concluding that

copy-on-write leads to the best latency and recovery time.

Meteor Shower therefore adopts copy-on-write for asyn-

chronous checkpointing. In the community of distributed

computing, sophisticated checkpointing methods, such as

virtual machines [23, 24], have been explored. However,

if used for stream applications, these heavyweight methods

can lead to significantly worse performance than the stream-

specific methods discussed in this paper; Virtual machines

incur 10X latency in stream applications in comparison with

SGuard [6].

In the field of DSPS, two main classes of fault tolerance

approaches have been proposed: replication-based schemes

[1, 2, 3] and checkpoint-based schemes [1, 4, 5, 6]. As

mentioned before, replication-based schemes take up sub-

stantial computational resources, and are not economically

viable for large-scale failures. Checkpoint-based schemes

adopt periodical checkpointing and input preservation for

fault tolerance, like the baseline system in this paper. The

11901190

differences between the schemes are the techniques used

to reduce disk I/O and the disruption to normal stream

processing. Passive standby [1] saves the checkpointed state

in memory. It avoids disk I/O but limits the state size. LSS

[5] sacrifices data consistency for performance. Whenever

the buffer for input preservation is full, LSS drops the

tuples from the buffer instead of saving them into disk.

Cooperative HA Solution [4] saves each HAU’s state on

other computing nodes in the DSPS, thus avoiding a central

storage system. It also experiments with delta-checkpointing

(saving only the changed part of the state) to reduce the

state size. SGuard [6] adopts asynchronous checkpointing

and distributed checkpointing (scattering the checkpointed

state into multiple storage nodes). We believe that distributed

checkpointing and delta-checkpointing complement Meteor

Shower’s application-aware checkpointing and could be ap-

plied jointly.

VI. CONCLUSION

We presented a new fault tolerance scheme for DSPSs –

Meteor Shower. Meteor Shower enables DSPSs to overcome

large-scale burst failures in commodity data centers, and

improves the overall performance of DPSPs. We evaluated

Meteor Shower across three actual transportation applica-

tions and showed substantial performance improvements

over the state-of-the-art.

REFERENCES

[1] J.-H. Hwang, M. Balazinska, A. Rasin, et al. High-

Availability Algorithms for Distributed Stream Pro-

cessing. In ICDE, pages 779–790. IEEE, 2005.

[2] M. Balazinska, H. Balakrishnan, S.R. Madden and M.

Stonebraker. Fault-Tolerance in the Borealis Distribut-

ed Stream Processing System. ACM Transactions on
Database Systems, 33(1), 2008.

[3] M.A. Shah, J.M. Hellerstein and E. Brewer. Highly

Available, Fault-Tolerant, Parallel Dataflows. In SIG-
MOD. ACM, 2004.

[4] J.-H Hwang, Y. Xing, U. Cetintemel, et al. A Cooper-

ative, Self-Configuring High-Availability Solution for

Stream Processing. In ICDE, pages 176–185. IEEE,

2007.

[5] Q. Zhu, L.Chen and G. Agrawal. Supporting Fault-

Tolerance in Streaming Grid Applications. In IPDPS,

pages 1–12. IEEE, 2008.

[6] Y.C. Kwon, M. Balazinska and A. Greenberg. Fault-

tolerant Stream Processing Using a Distributed, Repli-

cated File System. PVLDB, pages 574–584, 2008.

[7] J. Gray and A.Reuter. Transaction Processing –
Concepts and Techniques. Kaufmann, 1993.

[8] J. Dean. Keynote: Designs, Lessons and Advice

from Building Large Distributed Systems. In the 3rd
ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware. ACM, 2009.

[9] E. Pinheiro, W.-D. Weber and L.A. Barroso. Failure

Trends in a Large Disk Drive Population. In Proceed-
ings of the 5th USENIX Conference on File and Storage
Technologies (FAST), pages 17–29. USENIX, 2007.

[10] B.Schroeder, E.Pinheiro and W.-D. Weber. DRAM

Errors in the Wild: A Large-Scale Field Study. In

SIGMETRICS, pages 193–204. ACM.

[11] L.A. Barroso. Keynote: Warehouse-scale Computing.

In SIGMOD. ACM, 2010.

[12] S. Gaonkar, E. Rozier, A. Tong, et al. Scaling File Sys-

tems to Support Petascale Clusters: A Dependability

Analysis to Support Informed Design Choices. In Pro-
ceedings of International Conference on Dependable
Systems and Networks, pages 386–391. IEEE, 2008.

[13] H. Wang, F. Calabrese, G. Di Lorenzo and C. Ratti.

Transportation Mode Inference from Anonymized and

Aggregated Mobile Phone Call Detail Records. In

Proceedings of the IEEE Conference on Intelligent
Transportation Systems, pages 318–323. IEEE, 2010.

[14] E. Koukoumidis, L. Peh and M. Martonosi. SignalGu-

ru: Leveraging Mobile Phones for Collaborative Traffic

Signal Schedule Advisory. In MobiSys. ACM, 2011.

[15] N. Tatbul, U. Cetintemel, S. Zdonik, et al. Load

Shedding in a Data Stream Manager. In VLDB, pages

309–320, 2003.

[16] S. Ghemawat, H. Gobioff, S.-T. Leung. The Google

File System. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles. ACM, 2003.

[17] S.-O. Hvasshovd, O. Torbjornsen, S. Bratsberg et al.

The ClustRa Telecom Database: High Availability,

High Throughput, and Real-Time Response. In VLDB,

1995.

[18] E. Lau and S. Madden. An Integrated Approach

to Recovery and High Availability in an Updatable,

Distributed Data Warehouse. In VLDB, 2006.

[19] M.V. Salles, T. Cao, B. Sowell et al. An evaluation of

checkpoint recovery for massively multiplayer online

games. In VLDB, 2009.

[20] C. Mohan, D. Haderle, B. Lindsay et al. ARIES:

A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using

Write-Ahead Logging. In TODS. ACM, 1992.

[21] K. Salem and H. Garcia-Molina. Checkpointing

Memory-Resident Database. In ICDE, 1989.

[22] T. Cao, M.V. Salles, B. Sowell et al. Fast Checkpoint

Recovery Algorithms for Frequently Consistent Appli-

cations. In VLDB, 2011.

[23] T.C. Bressoud and F.B. Schneider. Hypervisor-based

fault tolerance. In ACM Symposium on Operating
Systems Principles, 1995.

[24] J. Zhu, W. Dong, Z. Jiang et al. Improving the

Performance of Hypervisor-Based Fault Tolerance. In

IPDPS, 2010.

11911191

