
Adaptive Hardness and Composable Security in the Plain Model

from Standard Assumptions

Ran Canetti∗ Huijia Lin† Rafael Pass‡

Abstract

We construct the first general secure computation protocols that require no trusted in-
frastructure other than authenticated communication, and that satisfy a meaningful notion of
security that is preserved under universal composition—assuming only the existence of enhanced
trapdoor permutations. The notion of security fits within a generalization of the “angel-based”
framework of Prabhakaran and Sahai (STOC’04) and implies super-polynomial time simulation
security. Security notions of this kind are currently known to be realizable only under strong
and specific hardness assumptions.

A key element in our construction is a commitment scheme that satisfies a new and strong
notion of security. The notion, security against chosen-commitment-attacks (CCA security),
means that security holds even if the attacker has access to an extraction oracle that gives the
adversary decommitment information to commitments of the adversary’s choice. This notion is
stronger than concurrent non-malleability and is of independent interest. We construct CCA-
secure commitments based on standard one-way functions, and with no trusted set-up. To the
best of our knowledge, this provides the first construction of a natural cryptographic primitive
having adaptive hardness from standard hardness assumptions, using no trusted set-up or public
keys.

∗Tel Aviv University, Email: Canetti@tau.ac.il
†Cornell University, E-Mail: huijia@cs.cornell.edu
‡Cornell University, E-Mail: rafael@cs.cornell.edu



1 Introduction

The notion of secure multi-party computation allows m mutually distrustful parties to securely
compute (or, realize) a functionality f(x̄) of their corresponding private inputs x̄ = x1, ..., xm, such
that party Pi receives the ith component of f(x̄). Loosely speaking, the security requirements
are that the output of each party is distributed according to the prescribed functionality—this
is called correctness—and that even malicious parties learn nothing more from the protocol than
their prescribed output—this is called privacy. These properties should hold even in case that an
arbitrary subset of the parties maliciously deviates from the protocol.

Soon after the concept was proposed [Yao86], general constructions were developed that ap-
peared to satisfy the intuitive correctness and secrecy for practically any multi-party functionality
[Yao86, GMW87]. These constructions require only authenticated communication and can use any
enhanced trapdoor permutation. However, definitions that capture the security properties of se-
cure multi-party computation protocols (and, in fact, of secure cryptographic protocols in general)
took more time to develop. Here, the simulation paradigm emerged as a natural approach: orig-
inally developed for capturing the security of encryption and then extended to Zero-Knowledge
[GM84, GMR89], this paradigm offers a general and expressive approach that allows capturing
a wide variety of requirements and situations in a natural and precise way. The idea is to say
that a protocol π securely realizes f if running π emulates an idealized protocol If where all parties
secretly provide inputs to an imaginary trusted party that computes f and returns the outputs to
the parties; more precisely, any “harm” done by a polynomial-time adversary in the real execution
of π, could have been done even by a polynomial-time adversary (called a simulator) that interacts
with parties running If . An advantage of the simulation paradigm is its expressiveness: It allows
capturing a large variety of security properties in a natural and precise way, simply by formulating
the appropriate f . This idea was informally articulated in [GMW91]. Many formulations of this
paradigm were proposed, e.g. [GL90, Bea91, MR91, Can00, Gol04, PW01, Can01]. A proof that
the [GMW91] construction satisfies the [Can00, Gol04] definition eventually appeared in [Gol04],
demonstrating the realizability of this definition. We call this definition basic security.

Basic security indeed seems to be adequate in situations when the protocol is run in isolation.
However, it does not provide sufficiently strong composability guarantees. Let us explain.
Composable security. A useful notion of security should provide guarantees even in settings where
multiple protocols co-exist in the same system and potentially interact with each other, or in other
words are composed to form a larger system. We distinguish three quite different (and incomparable)
properties to consider in such settings:
Concurrent Multi-Instance Security: The security properties relating to the local data and outputs of
the analyzed protocol itself should remain valid even when multiple instances of the protocol are
executed concurrently and are susceptible to coordinated attacks against multiple instances.
Modular analysis: The notion of security should support designing composite protocols in a modular
way, while preserving security. That is, there should be a way to deduce security properties of the
overall protocol from security properties of its components. This is essential for asserting security
of complex protocols.
Environmental Friendliness: The security properties of other, potentially unknown protocols that co-
exist in the same system should not be adversely affected by adding the analyzed protocol.

The simulation paradigm suggests a natural approach to formulating composable notions of
security: Consider a protocol π that securely realizes a function f (i.e., π emulates the ideal
protocol If ), and let ρ be a protocol that uses subroutine calls to protocol π. Now, since the
execution of π should look to an observer just the same as an execution of If , the behavior of ρ

1



should, intuitively, remain unchanged when each call to π is replaced by a call to If . Therefore,
rather than analyzing the protocol ρ that uses (potentially multiple instances of) π, we might as
well analyze the simpler system where each instance of π is replaced by an instance of If .

Making good of this intuitive approach turns out to be non trivial. Specifically, the defini-
tions of [GL90, Bea91] were not shown to have any composability properties, whereas those of
[MR91, Can00, Gol04] only guarantee non-concurrent composability. That is, the above three
properties related to composable security are guaranteed only when the protocol ρ makes sure that
the instances of π run in sequence, with nothing else happening in the rest of the system from
the onset of the execution of each instance until all participants of this instance complete their
respective local processing of π. This is a significant restriction.

UC security [Can01] gives a more stringent formulation of the simulation paradigm than ba-
sic security, providing a very strong composability property that implies all three composability
requirements discussed above. But these strong properties come at a price: Many natural function-
alities cannot be realized with UC security in the plain model, where the only set-up provided is
authenticated communication channels; some additional trusted set-up is necessary [CF01, CKL03].
Furthermore, the need for additional trusted set up extends to any protocol that only guarantees
a concurrent multi-instance extension of basic security [Lin04].

Security with super-polynomial simulators (SPS) [Pas03] is a relaxation of UC security that
allows the adversary in the ideal execution to run in super-polynomial time. Informally, this
corresponds to guaranteeing that “any polytime attack that can be mounted against the protocol
can also be mounted in the ideal execution—albeit with super-polynomial resources.” Protocols
that realize practically any functionality with SPS security in the plain model were shown based
on sub-exponential hardness assumptions [Pas03, BS05, LPV09].

Although SPS security is sometimes weaker than basic security, it often provides an adequate
level of security. Furthermore, SPS security guarantees concurrent multi-instance security (with
super-polynomial simulation). However, SPS security is environmentally friendly only in a very
partial way: For other protocols in the systems, it only preserves those security properties that
withstand super-polynomial time adversaries. Furthermore, SPS security is not closed under com-
position (protocol ρπ/φ where each instance of π is replaced by an instance of φ is not guaranteed
to emulate ρ with SPS security, even if π realizes φ with SPS security), thus it is not a convenient
basis for modular analysis of protocols.

Angel-based UC security [PS04] is a framework for notions of security that allow mitigating
these shortcomings of SPS security. Specifically, angel-based security considers a model where both
the adversary and the simulator have access to an oracle (an “angel”) that allows some judicious use
of super-polynomial resources. (In spirit, these resources allow the simulator to “reverse engineer”
the adversary.) It is not hard to see that, for any angel, angel-based security implies SPS security.
Furthermore, akin to UC security, angel-based security is closed under composition. That is, if
π emulates φ with respect to some angel then, for any ρ, ρπ/φ emulates ρ with respect to the
same angel. This means that angel-based UC security, with any angel, can be used as a basis for
modular analysis of protocols. It remains to consider the “environmental friendliness” of this class
of notions. Here too angel based security may provide an improvement over SPS security: For the
other protocols in the system, any security property that holds with respect to adversaries that
have access to the specific angel in use will be preserved when adding the analyzed protocol to the
system. This means that different angels provide different levels of “environmental friendliness”.

Furthermore, angel-based security is potentially realizable: A protocol realizing practically any
ideal functionality with respect to some angel, in the plain model, are constructed in [PS04]. A
different construction, based on a different angel, is given in [MMY06]. In [BS05] it is remarked

2



that their protocol can be shown to be angel-based secure but the specific angel is not given.
These protocols are very attractive indeed: They use no trusted set-up other than authenticated
communication, and obtain a meaningful and composable security notion. However, they are all
based on strong and non-standard hardness assumptions. This leaves open the following questions:

Is it possible to realize general functionalities with SPS security in the plain model,
under standard hardness assumptions?

Can we show angel-based security with respect to some angel, under standard hardness
assumptions? Further, can we show that this angel is environmentally friendly, at least
for some class of protocols?

1.1 Our Results

We show an angel with which we can securely realize the ideal commitment functionality, Fcom,
in the plain model, assuming only one way functions. We then rely on known results [CLOS02,
DBR90, IPS08] to construct a protocol for general functionalities. (Here we need to assume also
existence of enhanced trapdoor permutations.)

In contrast with the angels considered so far in the literature, which maintain only global state
on the system and are otherwise stateless, our angel is highly interactive and stateful. (In fact,
dealing with such angels requires some modification of the original model of [PS04].) Still, security
with respect to our angel implies SPS security.

Furthermore, we demonstrate that our angel provides a partial notion of environmental friend-
liness, which we refer to as robustness:1 Any attack mounted on a constant-round protocol by an
adversary that uses our angel can be carried out by a polytime adversary with no angels at all.2

In fact, we rely on this robustness property to argue that the [CLOS02, DBR90] protocol (using
Fcom) remains secure even with respect to our angel (so that we can rely on this protocol to realize
general functionalities).

To formally present and prove our results, we also re-cast the model of [PS04] within the
extended UC (EUC) framework of [CDPW07]. Roughly speaking, this framework is identical to
standard UC security as in [Can00], except that all parties have access to an additional global entity.
In [CDPW07], this entity is used to model global set-up such as a reference string or strong public-
key infrastructure. Here, in contrast, we consider a global entity that, as in [PS04], interacts only
with the corrupted parties (and the environement in the EUC framework). This means that the
actual protocol uses no trusted infrastructure, and the global entity becomes a means for relaxing
the security requirement. We call the global entity, H a helper functionality or an angel, and denote
the corresponding notion of security H-EUC security.

Main Theorem (Informally Stated): Assume the existence of enhanced trapdoor permutations.
Then there exists a subexponential-time computable interactive machine H such that for any “well-
formed” polynomial-time functionality F , there exists a protocol that realizes F with H-EUC
security, in the plain model.

We emphasize that this is the first protocol to acheive any non-trivial notion of fully concurrent
multi-instance security in the plain model and under standard assumptions, let alone to say closure
under composition or environmental friendliness. In particular, it yields the first protocol achieving
SPS-security in the plain model based only on standard assumptions.

1This notion of robustness is a strengthening of the notion of robustness considered in [LPV09].
2In fact, at the cost of increasing the round-complexity of our protocol, the angel can be modified to retain the

security of any protocol with an a-priori bounded number of rounds.

3



Intuitively, our helper functionality (i.e., angel) will allow a party P to obtain the decommitment
information for commitments where P is the committer. This will allow the simulator (i.e., the
adversary we need to construct for interacting with the ideal protocol) to extract the decommitment
information from commitments made by corrupted parties. Given such extraction help, simulation
is relatively easy.

The main challenge is to make sure that the adversary will not be able to use this angel in
order to break the security of other commitments, that were made by uncorrupted parties. For this
we need commitment schemes that allow a committer to commit securely even when the receiving
party has access to an extraction oracle. We call this strong property security against adaptive
chosen commitment attack (CCA security).

1.2 The Main Tool: CCA-Secure Commitments

The protocols of [PS04, MMY06] for angel-based UC security rely on certain, quite specific adaptive
hardness assumptions, namely assumptions that postulate security even in face of adversaries that
have adaptive access to some help information. Indeed, such form of adaptive hardness seems
to be inherent in the angel-based approach to security. However, such assumptions appear to be
qualitatively stronger than non adaptive ones. A natural question is then whether such an adaptive
hardness property can be based on a more standard assumption.

We answer this question positively: We formulate an angel that provides a useful adaptive
hardness property, and show that this adaptive hardness property can be based on a standard
assumption, specifically existence of one way functions.

The adaptive hardness property is the CCA security property of commitment schemes men-
tioned above. Roughly speaking, a tag-based commitment scheme (i.e., commitment scheme that
take an identifier—called the tag—as an additional input) is said to be CCA-secure if the value com-
mitted to using the tag id remains hidden even if the receiver has access to a (super-polynomial time)
oracle that provides decommitments to commitments using any tag id′ 6= id. CCA-security can be
viewed as a natural strengthening of concurrent non-malleability [DDN00, PR03, LPV08]—roughly
speaking, a commitment scheme is concurrently non-malleable if it is CCA-secure with respect to
restricted classes of adversaries that only ask a single parallel—i.e., non-adaptive—decommitment
query after completing its interaction with the committer.

It is not hard to construct CCA-secure commitments using trusted set-up (by e.g., relying on
known constructions of CCA-secure encryption schemes). It is also quite simple to construct a
CCA-secure commitment scheme under an adaptive hardness assumption (such as the existence of
adaptively-secure one-way permutations—namely one-way permutations that remain uninvertible
even if the adversary has access to a inversion oracle) [PPV08].3

Our main technical contribution consists of showing how to construct a CCA-secure commit-
ment based only on one-way functions, and without any trusted set-up.

Theorem (informally stated) Assume the existence of one-way functions. Then, for every ε > 0,
there exists an O(nε)-round CCA-secure commitment scheme (where n is the security parameter).

As far as we know this yeilds the first non-trivial primitive whose “adaptive hardness” can be
proven based on standard assumptions without set-up. Note that many standard cryptographic
primitives (such as signatures [GMR89], pseudo-random function [GGM86] and CCA-secure en-
cryption [RS91]) consider adaptive attacks where an adversary has access to an oracle breaking the

3[PPV08] considered a variant of the notion of CCA-security for non-interactive and perfectly binding commitment
scheme (called adaptively-secure commitments). We have extended this definition to general commitment schemes.

4



primitive. However, all these cryptographic rely on some trusted set-up (in the case of signatures
and CCA-secure encryption, the public-key used needs to be well-formed, whereas in the case of
pseudo-random function, the “seed” needs to be uniform and perfectly hidden from the adversary).

Our construction of CCA-secure commitments Consider the scenario of concurrent non-
malleable commitments [DDN00, PR03, LPV08]. We consider a man-in-the-middle attacker (MIM)
that participates in one interaction “on the left” and many interactions “on the right”. In the left
interaction it receives a commitment, whereas in the right interactions it provides (potentially) many
commitments, acting as a committer. Intuitively, we want to ensure that the values committed to
on the right are “independent” of the value committed to on the left. Let us revisit the approach
of [LPV08] (which builds on [DDN00]) for constructing such commitments. The basic idea is to
have a protocol where the scheduling of the messages depends on the tag of the commitment. The
scheduling ensure that for every right interaction with a tag that is different from the left interaction,
there exists a point—called a safe-point—from which we can “rewind” the right interaction (and
extract out the value committed to), without violating the hiding property of the left interaction.
It now follow from the hiding property of the left interaction that the values committed to on the
right do not depend on the value committed to on the left.

At first sight, it would seem that this type of construction and analysis could be directly used
to guarantee also CCA-security: we simply view the extrenal interaction the adversary participates
in as a receiver, as the left interaction, and view all the oracle calls as right interactions. Each time
a right interaction completes, we “rewind” the appropriate safe-point to extract the decommitment
information (without violating the hiding of the left interaction), and feed the decommitment
information to the adversary.

But there is a problem with this approach. Recall that in the setting of CCA-security, we need
to provide the adversary with the decommitment information at the very moment it completes
a commitment to its oracle. If the adversary “nests” its oracle calls, these rewindings become
recursive and the running-time of the extraction quickly becomes exponential. (Note that this does
not happen in the context of concurrent non-malleability since in that setting it is suffices to extract
the committed values at the end of the whole execution; it is, thus, enough to rewind the right
interactions one at a time, in sequence.) The problem is analogous to the simulation problem in
the context of concurrent zero-knowledge [DNS04], where a nesting verifier might cause the naive
simulation to take exponential time. On a high-level, we resolve this problem using an idea that
is similar to that used in the context of concurrent zero-knowledge in the the work of Richardson
and Kilian [RK99]. We present a scheduling of messages (again based on the tag) which ensures
that every right interaction has nε (where n is the security parameter and ε > 0) safe-points,
instead of just one. Intuitively, having many safe-points ensures that there is always at least one
safe-point where the number of nested executions is “small,” which in turn ensures that the overall
running-time of the extraction is polynomial.

Formalizing this argument turns out to be tricky. The main obstacle is that the techniques
used to acheive non-malleability are incompatible with those used in the context of concurrent
zero-knowledge:

• In order to use the proof technique of [LPV08, DDN00], the protocol (roughly speaking)
needs to consists of a sequence of three-message “slots” with the property that if the last
two messages are rewound the committed value can be efficiently recovered, but if all three
messages are rewound, then the committed value remains completely hidden. This is used
to argue that there exist points where we can extract the committed value from the rigth
interaction, without violating the hiding of the left interaction.

5



• Known concurrent zero-knowledge protocols [RK99, KP01, PRS02, PV08] (and their analyses)
rely on the fact that the intial message in the protocol determines some value; this value can
then be recovered by rewinding any “chunk” of more than two messages that does not contain
the initial message4. This property does not hold for protocols such as [DDN00, LPV08] since
they rely on the principle that three-message chunks reveal nothing when rewound.

To get around this problem we develop a new concurrent extraction technique (based on the simu-
lator strategies in [RK99, PV08]) which can be applied also to protocols such as [DDN00, LPV08].
Roughly speaking, instead of determining what slot to rewind based on the number of new execu-
tions that started “within” the slot (as in [RK99, PV08]), we treat slots from different executions
uniformly and instead decide whether to rewind a slot, based on the number of slots that are con-
tained within it. (This idea is similar to one used in [DGS09] in a different context, but where a
similar problem arises). This allows us to extract the decommitment information to all commit-
ments provided by the adversary to its oracle, without violating the hiding property of the left
interaction, and while ensuring that the (expected) running-time of the extraction procedure is
polynomial.

Robust CCA-security “Plain” CCA-security only guarantees that the security of the particu-
lar commitment scheme in question remains intact when the adversary has access to an extraction
oracle. As mentioned above, in our final construction we additionally require that an attacker
having access to the extraction oracle should not be able to violate the security of any constant-
round protocol; we call CCA-secure commitments satisfying this property robust CCA-secure. Ro-
bust CCA-security of our construction follows in essentially the same way as plain CCA-security.
Roughly speaking, when extracting the commitments on the “right”, we simply have to make sure
not to rewind any messages from the constant-round protocol on the “left”; this is possible since
the commitment scheme has a super constant number of slots.

2 Definition of CCA-Secure Commitments

2.1 Notations and Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote the set
{1, 2, . . . , n}, and let {0, 1}n denote the set of n-bit long string; furthermore, let ε denote the empty
string. We assume familiarity with the basic notions of Interactive Turing Machines [GMR89] (ITM
for brevity) and interactive protocols. Given a pair of ITMs, A and B, we denote by 〈A(x), B(y)〉(z)
the random variable representing the (joint) output of A and B, on common input z and private
input x and y respectively, and when the random input to each machine is uniformly and indepen-
dently chosen.

2.2 Commitment Schemes

A commitment scheme 〈C,R〉 consists of a pair of PPT ITMs C and R that interacts in a commit
stage and a reveal stage. In this work, we consider commitment schemes 〈C,R〉 that are statisti-
cally binding and computationally hiding. Furthermore, We restrict our attention to commitment
schemes where the reveal phase is non-interactive—the committer decommits to value v by simply
sending a decommitment pair (v, d). We let open〈C,R〉 denote the function that verifies the validity

4This is used in the analysis to ensure that the extraction for a particular execution does not get stuck because of
some execution that started earlier.

6



of (v, d); the receiver accepts (v, d) if open(c, v, d) = 1, and rejects otherwise, where c is the com-
mitment, i.e., the transcript of messages exchanged in the commit phase. Additionally, we consider
the following two properties of commitment schemes:

• We say that a commitment c is accepting if the receiver accepts the transcript c at the
end of the commit stage, and valid if there exists a decommitment pair (v, d) such that
open〈C,R〉(c, v, d) = 1. Then we say that a commitment scheme is efficiently checkable, if
every commitment that is accepting w.r.t the honest receiver is valid.

• A tag-based commitment schemes [PR05, DDN00] is a scheme where, in addition to the
security parameter, the committer and the receiver also receive a “tag”—a.k.a. the identity—
id as common input.

2.3 CCA-Secure Commitments

Security under chosen-ciphertext-attacks (CCA security) [RS91] has been studied extensively in
the context of encryption schemes, where the confidentiality of encrypted messages is guaranteed
even in the presence of a decryption oracle. We here define an analogous notion for commitment
schemes. Roughly speaking, a commitment scheme is CCA-secure (chosen-commitment-attack)
secure if the commitment scheme retains its hiding property even if the receiver has access to a a
“decommiment oracle”. Let 〈C,R〉 be a tag-based commitment scheme. A decommitment oracle
O of 〈C,R〉 acts as follows in interaction with an adversary A: it participates with A in many
sessions of the commit phase of 〈C,R〉 as an honest receiver, using identities of length n, chosen
adaptively by A. At the end of each session, if the session is accepting and valid, it reveals a
decommitment of that session to A; otherwise, it sends ⊥. (Note that when a session has multiple
decommitments5, the decommitment oracle only to returns one of them. Hence, there might exist
many valid decommitment oracles.)

Loosely speaking, a tag-based commitment scheme 〈C,R〉 is said to be CCA-secure, if there
exists a decommitment oracle O for 〈C,R〉, such that, the hiding property of the commitment holds
even with respect to adversaries with access to O. More precisely, denote by AO the adversary A
with access to the decommitment oracle O. Let INDb(〈C,R〉,O, A, n, z), where b ∈ {0, 1}, denote
the output of the following probablistic experiment: on common input 1n and auxiliary input z,
AO (adaptively) chooses a pair of challenge values (v0, v1) ∈ {0, 1}n—the values to be committed
to—and an identity id ∈ {0, 1}n, and receives a commitment to vb using identity id. Finally, the
experiment outputs the output y of AO; the output y is replace with ⊥ if during the execution A
sends O any commitment using identity id (that is, any execution where the adversary queries the
decommitment oracle on a commitment using the same identity as the commitment it receives, is
considered invalid).

Definition 1 (CCA-secure Commitments.). Let 〈C,R〉 be a tag-based commitment scheme, and
O a decommitment oracle for it. We say that 〈C,R〉 is CCA-secure w.r.t. O, if for every PPT ITM
A, the following ensembles are computationally indistinguishable:

• {IND0(〈C,R〉,O, A, n, z)}n∈N,z∈{0,1}∗

• {IND1(〈C,R〉,O, A, n, z)}n∈N,z∈{0,1}∗
5Note that the statistically binding property only guarantees that, with overwhelming probability, the committed

value is unique. However, there may still exist many different decommitments.

7



We say that 〈C,R〉 is CCA-secure if there exists a decommitment oracle O′, such that, 〈C,R〉 is
CCA-secure w.r.t. O′.

As mentioned in the introduction, CCA-security easily implies concurrent non-malleability [DDN00,
PR03, LPV08]. Note that in the definition of CCA-security, we could also have considered an
adversary that can select a pair of sequences ~v0, ~v1 of challenge messages (instead of simply a pair
(v0, v1)). It follows using a standard hybrid argument that CCA-security implies security also in
this setting.

2.4 k-Robust CCA-Secure Commitments

We introduce a strengthening of the notion of CCA-security analougosly to the notion of robust
non-malleable commitments of [LP09]. We here consider a man-in-the-middle adversary that par-
ticipates in an arbitrary left interaction with a limited number of rounds, while having access to a
decommitment oracle.

Definition 2. Let 〈C,R〉 be a tag-based commitment scheme, and O a decommitment oracle for it.
We say that 〈C,R〉 is k-robust CCA-secure w.r.t. O, if 〈C,R〉 is CCA-secure w.r.t. O, and for every
PPT adversary A, there exists a PPT simulator S, such that, for every PPT k-round ITMs B,
the following two ensembles are computationally indistinguishable.

•
{
〈B,AO(z)〉(1n)

}
n∈N,z∈{0,1}∗

• {〈B,S(z)〉(1n)}n∈N,z∈{0,1}∗

Thus, roughly speaking, 〈C,R〉 is k-robust if the (joint) output of every k-round interaction,
with an adversary having access to the oracle O, can be simulated without the oracle. In other
words, having access to the oracle does not help the adversary in participating in any k-round
protocols.

We say that a tag-based commitment 〈C,R〉 is robust CCA-secure if there exists a a decommit-
ment oracle O, such that, 〈C,R〉 is k-robust CCA-secure w.r.t. O, for every constant k.

On the identity length Recall that in the definition of CCA-security, the adversary can pick
arbitrary identities id for both the left and the right interaction. We may also consider a restricted
notion of (robust) CCA-security where the adversary is restricted to use identities of some bounded
length. As we show in the full version of the paper, standard techniques [DDN00] can be used to
show that any robust CCA-secure commitment that is secure for identities of length `(n) = nε can
be turned into a robust CCA-secure commitment (that is secure for identities of length n).

Proposition 1. Let ε be any constant such that 0 < ε < 1, and 〈C,R〉 a robust CCA-secure
commitment scheme secure for identities of length `(n) = nε. Then assume the existence of one-
way functions, there exists a robust CCA-secure commitment scheme 〈Ĉ, R̂〉 secure for identities of
length n.

Proof. The transformation from a robust CCA-secure commitment 〈C,R〉 for short (nε-bit) iden-
tities into one for long identities (n-bit) uses standard techniques [DDN00] as follows: to commits
to a message v ∈ {0, 1}n, the committer Ĉ on common input a security parameter n ∈ N and
an identity id ∈ {0, 1}n, first generates a key pair (sk, vk) of a signature scheme, such that the
verification-key vk is of length nε6, and sends vk and a signature of the n-bit identity id (using sk)

6The existence of signature schemes is implied by the existence of one-way functions [Rom90]. To get a signature
scheme with a “short” verification-key, simply “scale-down” the security parameter.

8



to the receiver in the first stage. Then, in the second stage, it simply commits to v using 〈C,R〉
and the verification key vk as the identity.

Let O be a decommitment oracle of 〈C,R〉, with respect to which 〈C,R〉 is robust CCA-secure.
Then consider a decommitment oracle Ô of 〈Ĉ, R̂〉 that extends O in the following straightforward
way: to decommit a commitment of 〈Ĉ, R̂〉, Ô returns the decommitment that O returns for
the Stage 2 commitment of 〈C,R〉. Below we show that 〈Ĉ, R̂〉 is robust CCA-secure w.r.t. Ô.
First, it follows directly from the robustness of 〈C,R〉 w.r.t. O (and the fact that, given access
to O, the decommitment oracle Ô can be emulated perfectly) that 〈Ĉ, R̂〉 is robust w.r.t. Ô.
Then, for CCA security, consider an arbitrary adversary A that participates in an experiment of
INDb(〈Ĉ, R̂〉, A, n, z). We claim that, except from negligible probabilty, A never picks the same
verification key vk, as that picked in the left interaction (by the left committer), in any accepting
right interaction that has a different identity from the left interaction. Otherwise, (using A,) we
could construct an adversary, who with access to Ô, is able to forges a signature of a randomly
chosen key (corresponding to the key chosen by the left committer); then, by the robustness of
〈Ĉ, R̂〉 w.r.t. Ô, there exists a simulator B that is able to forge a signature even without access to
Ô, which violates the unforgibility of the signature scheme. In other words, every successful right
interaction that has a different identity from the left, also has a different veficiation key from the
left. It thus follows from the CCA-security of 〈C,R〉 that 〈Ĉ, R̂〉 is CCA-secure w.r.t. Ô.

3 Construction of a CCA-Secure Commitment

In this section, we show the following theorem.

Theorem 1. Assume the existence of one-way functions. Then, for every ε > 0, there exists an
O(nε)-round robust CCA-secure commitment scheme (where n is the security parameter).

Our CCA-secure commitment 〈C,R〉 is based on a variant of the concurrent non-malleable com-
mitment protocol of [LPV08], which in turn is based on message scheduling technique of [DDN00].
However, here we use a slightly different message schedule in order to provide more “safe” rewinding
slots. We proceed to formally specifying the protocol. For simplicity of exposition, the descrip-
tion below relies on the existence of one-way functions with efficiently recognizable range, but the
protocol can be easily modified to work with any arbitrary one-way function (see Remark 1 for
more details). Furthermore, we also rely on 3-round special-sound proofs in our protocol, but the
analysis also works also with 4-round proofs. (See Remark 2 for more details .)

Let ` and η be polynomials in the security parameter n. To commit to a value v, the Committer
C and the Receiver R, on common input 1n and the identity id ∈ {0, 1}`(n), proceeds in the following
three stages in the commit phase.

• Stage 1: the Receiver picks a random string r ∈ {0, 1}n, and sends its image s = f(r),
through a one-way function f with an efficiently recognizable range, to the Committer. The
Committer checks that s is in the range of f and aborts otherwise. Additionally, the receiver
also sends the first messages r1, r2 for two commitments, using a a two-round statistically
binding string commitment com.

• Stage 2: The Committer provides a commitment c1 to v using the commitment scheme com
and r1 as the first message; let (v, d) denote the decommitment information. Next, it provides
a commtiment c2 to (v, d) using com and r2 as first message. We refer to (r1, c1) as the first
commitment and (r2, c2) as the second commitment.

9



• Stage 3: The Committer proves that

– (r1, c1) is a valid commitment to v and (r2, c2) is a valid commitment to a decommitment
pair for (r1, c1),

– or s is in the image set of f .

This is proved using 4`(n)η(n) invokations of a special-sound WI proof where the verifier
query has length 3n.7 The messages in the proofs are scheduled based on the identity id and
relies on scheduling pairs of proofs according to schedules design0 and design1 depicted in
Figure 1. More precisely, the proof stage consist of `(n) phases. In phase i, the committer
provides η(n) sequential designidi pairs of proofs, followed by η(n) sequential design1−idi pairs
of proofs.

In the reveal phase, the Committer simply decommits to the first commitment (r1, c1). The Receiver
accepts if the decommitment is valid and rejects otherwise.

design0 design1

γ2

β2

β1

α1

γ1, α2

γ2

β2

γ1

β1

α1, α2

Figure 1: Description of the schedules used in Stage 3 of the protocol. (α1, β1, γ1) and (α2, β2, γ2)
are respectively the transcripts of a pair of 3-round special-sound proofs.

On the round complexity of 〈C,R〉: The round complexity of 〈C,R〉 is O(`(n)η(n)). We will
show that 〈C,R〉 is robust CCA-secure when η(n) = nε for any constant ε > 0. When `(n) = nε

′

(which is without loss of generality by Proposition 1) we thus obtain a O(nε+ε
′
)-round protocol.

It follows using standard techniques that 〈C,R〉 is a commitment scheme with efficient verifia-
bility.

Proposition 2. 〈C,R〉 is a statistically binding commitment scheme with efficient verifiability.

Proof. It follows using essentially the same proof as in [LPV08] that the protocol is statistically
binding and computationally hiding; we refer the reader to [LPV08] for more details.

It remains to show that the validity of an 〈C,R〉 commitment is efficiently checkable. By
construction, an 〈C,R〉 commitment is valid if and only if the “first commitment” is valid. It then
follows from the soundness of Stage 3 of the protocol that, whenever the receiver is accepting (at
the end of the commit phase), the first commitment is valid except with negligible probability.
Thus, the validity of 〈C,R〉 is also efficiently checkable.

We turn to show that 〈C,R〉 is a robust CCA-secure commitment when η(n) = nε for any
constant ε > 0.

Theorem 2. Let ε > 0 be a constant, and let η(n) = nε. Then 〈C,R〉 is a robust CCA-secure
commitment.

7As we shall see later on, the length restriction will facilitate the security proof.

10



To show that 〈C,R〉 is a robust CCA-secure commitment, we need to exhibit a decommitment
oracle O for 〈C,R〉 such that 〈C,R〉 is robust CCA-secure w.r.t. O. Consider the following de-
commitment oracle O: O acts just as an honest receiver during the commit phase. At the end
of every accepting interaction, if the “second commitment” (r2, c2) defines a unique value (v, d)
such that (v, d) is a valid decommitment for the “first commitment” (r1, c2), O returns (v, d). Oth-
erwise, O returns the lexicographically first decommitment, or ⊥ if there does not exists a valid
decommitment. The main technical challenge consists of proving the following proposition.

Proposition 3. 〈C,R〉 is robust CCA-secure w.r.t O.

We provide a high-level overview of the proof below. The formal proof can be found in the full
version of the paper.

Proof overview of Proposition 3 We first argue that 〈C,R〉 is CCA-secure w.r.t. O. Consider
the CCA-experiment INDb, where the adversary A interacts with an honest committer C, and is
given access to O. We refer to its interaction with C as the left interaction, and its intearctions
with O as the right interactions. Recall that proving CCA-security w.r.t. O amounts to showing
that the views of A in experiments IND0 and IND1 are indistinguishable (when A has oracle access
to O). The main hurdle in showing this is that the oracle O is not efficiently computable; if it was,
indistinguishability would directly follow from the hiding property of the left interaction. However,
since 〈C,R〉 consists of a sequence of special-sound proofs of the committed vaule, the oracle O can
be efficiently implemented by “rewinding” the special-sound proofs in the right interaction. But,
the problem is that once we start rewinding the right interactions, A might send new messages also
in the left interaction. So, if done naively, this would require us to also rewind the left interaction,
which could violate its hiding property.

The crux of the proof is showing how to appropriately rewind the right interactions (so as to
extract out the commited values), without violating the hiding property of the left interaction. This
implies that the view of A in INDb can be efficiently emulated, without the oracle O, and hence by
the hiding property of the left interaction, A’s view is indistinguishable. Towards doing this, we
rewind the right interaction only at special points in the interaction; we call such points safe points.

Note that the hiding property of the left interaction remains intact if during the rewinding, one
of the following two cases occurs.

• Case 1: A does not request any new messages in the left interaction.

• Case 2: The only new messages A requests in the left interaction are complete WISSP
proofs.

The fact that the left interaction is still hiding even if case 2 happens follows using exactly the
same proof as proof of hiding of 〈C,R〉. And, obviously, the left interaction remains hiding if case
1 happens.

Roughly speaking, we now say that a prefix ρ of a transcript ∆ (which consists of one left
interaction and many right interaction) is a safe-point for the kth right interaction if ρ “lies in
between” the first two messages αr and βr of a WISSP proof (αr, βr, γr) for the kth interaction
(i.e., it contains αr but not βr), and satisifes that from ρ to the point when γr is sent, one of the two
cases above occurs in the left interaction. We call (αr, βr, γr) the WISSP associated with the safe

point ρ in ∆. It follows using a combinatorical argument (similar in spirit, but more complicated
than, [DDN00, LPV08]) that the message scheduling in Stage 3 of 〈C,R〉 guarantees the following
key property:

11



Let ∆ be any transcript of one left interaction, and many right interactions, of 〈C,R〉.
Then, any right interaction k that 1) has completed, and 2) uses a different identity
than the left interaction, has Ω(nε) non-overlapping WISSP that are associated with
a safe point in ∆.

We will now use these safe-points to construct a simulator that can efficiently emulates the oracle
O. (As mentioned in the Introduction, the reason we need “many” safe-points is to ensure that
we can extract out the committed values in all the right interactions while ensuring an expected
polynomial running-time.) On a high-level, the simulation emulates O by following the honest
receiver strategy of 〈C,R〉, until it enounters a “good” safe-point ρ. It then keeps rewinding the
execution back to ρ until it obtains another accepting transcript of the right proof associated with
ρ. Once two accepting proof transcripts are obtained, the special-soundness property allows the
simulator to extract the decommitment information.

More precisely, the simulation is defined recursively in the following manner: On recursion level
d, we say that a safe-point ρ of a transcript ∆ is “good” (we call this a d + 1-good safe-point) if
the number of right-execution WISSP proofs—possibly from different interactions—starting in
between ρ and the point where γρ is sent in ∆, is smaller than kd = M/η′d+1, where M is a
(polynomial) upperbound on the total number of messages in ∆, and η′ = nε

′
for some constant ε′

such that 0 < ε′ < ε.
Then, on recursion level d, the simulator emulates every right interaction honestly, but as soon

as it encounters a d+1-good safe-point in the current transcript, it begins “rewinding” the execution
back to the safe-point, and invokes itself recursively at level d+1. In each rewinding, if it notices that
ρ might no longer be a d+1-good safe-point, it cancels the rewinding and starts a new rewinding. It
continues the process until it gets another transcript where ρ is a d+ 1-good safe-point again; from
this second transcript we can extract out (and store) the decommitment information for the right
interaction associated with the safe-point. Finally, whenever in the emulation a right interaction
completes, the simulator provides A with the decommitment information extracted out (or outputs
fail if the decommitment information has not been recovered). By cancelling “bad” rewindings
(i.e., rewindings that are not d+1-good safe-points) we are guaranteeing two properties: 1) we never
violate the hiding property of the left interaction, and 2) the running-time of the simulation does
not blow up.

Let us now briefly argue that the simulator indeed emulates O both correctly and efficiently,
without violating the hiding property of the left interaction.

Hiding property of the left interaction: Since the simulator only rewinds the right interactions from
safe-points, and cancels every rewinding in which the point is no longer a safe-point, it follows that
the left interaction remains hiding.

Correctness: We argue that for each right interaction that uses an identity that is different from
the left interaction, we extract out the decommitment information before the interaction completes
sucessfully. First, note that the recursion level is bounded by c = logη′M , which is a constant

(since is M is polynomial in n and η′ = nε
′
). Since each successful right interaction, that uses a

different identity than the left interaction, has nε safe-points (by the key property above), it follows
that for each such interaction, there exists some recursive level d, such that the right interaction
has at least nε/c > η′ safe-points on level d. But, as the total number of right-proofs that start on
level d is bounded by kd = M/η′d (otherwise, the simulation at this recursive level is cancelled),
there must exist one right-proof with an associated safe-point ρ, such that less than M/η′d+1 right-
proofs start in between ρ and the last message of the proof. Therefore ρ is a d + 1-good safe-point

and will be rewound. Finally, since we continue rewinding until the decommitment information is

12



found, it follows that for each successful right interaction that uses a different identity than the left
interaction, the decommitment information is recovered by the simulator.

Efficiency: To prove that the simulation is efficient, consider a simplified scenario where A never
sends a com commitment that can be decommitted to two different values—i.e., A never manages
to violate the statistical binding property of com. We argue that the simulation is efficient in this
case. (It suffices to consider this case, since the probability that A violates the statistical binding
property of com is negligible, and thus we can always “cut-off” the simulation without loosing “too
much”.) To prove that the expected running-time of the simulation (in the simplified scenario)
is polynomially bounded, first recall that the recursive depth is a constant c. Secondly, at each
recursive level d, there are at most M possible points from which we can rewind and from each
of these points, the expected number of rewindings is 1. The latter follows since the simulator
only starts rewinds from a point ρ if it is a ` + 1-good safe-point, and it continues rewinding until
ρ becomes a `+ 1-good safe-point again; furthermore, in each of the rewindings the simulated view
of the adversary is identically distributed to its view in the first execution (this fact relies on us
considering the case when all com commitments are well-defined). Thus, the probability that a
point is a `+ 1-good safe-point (conditioned on it occuring as a prefix in the execution) is the same
in the first execution and in the rewindings. Therefore, the expected number of recursive calls
starting from any point is 1. We now conclude that the expected total number of rewindings is
bounded by O(M)c.

The robustness w.r.t. O property of 〈C,R〉 follows using essentially the same proof as above:
the key step here is, again, to show that the decommitment oracle O can be emulated efficiently,
without “affecting” the security of the left interaction. Now, however, a rewinding is “safe” only
if the adversary does not request any new message in the left (constant-round) interaction—that
is, the the left interaction is never rewound during the extractions on the right. Roughly speaking,
this is achieved by rewinding only those WISSP proofs that do not interleave with any message
in the left interaction (and cancelling every rewinding in which the WISSP proof interleaves with
a left-message).

4 Proof of Proposition 3

We provide the formal definition of safe-points in the next section. The formal proof of Proposition 3
consists of two parts: in Section 4.2, we show that 〈C,R〉 is CCA-secure w.r.t O; then in section 4.3,
we show that it is also robust w.r.t. O.

4.1 Safe-Points

Our notion of safe-points is almost the same as that in [LPV08] (which in turn is based on the notion
of safe rewinding block of [DDN00]), with the only exception that our definition also considers the
Stage 1 and 2 messages of the protocol, whereas the definition in in [LPV08] only concerns messages
in the WISSP proofs.

Intuitively, a safe-point ρ of a right interaction k, is a point in ∆ that lies in between the first
two messages αr and βr of a WISSP proof (αr, βr, γr) in interaction k, such that, when rewinding
from ρ to γr, if A uses the same “scheduling of messages” as in ∆, then the left interaction can
be emulated without affecting the hiding property. This holds, if in ∆, from ρ to where γ is sent,
A expectes either no message or only complete WISSP proofs in the left interaction, as shown in
Figure 2 (i) and (ii) respectively, (Additionally, in both cases, A may request the reply message of
some WISSP proof, as shown in Figure 2 (iii). This is because, given the first two messages of a

13



γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

γl

βl

αl

γr

βr

αrρ

(i) (ii) (iii)

Figure 2: Three characteristic safe-points.

WISSP proof, the reply message is deterministic, and hence can be emulated in the rewinding by
replaying the reply in ∆.)

γ′l

β′l

αl

γr

βr

αrρ

Figure 3: Prefix ρ that is not a safe point.

Definition 3. Let ∆ be any transcript of one left interaction, and many right interactions, of
〈C,R〉. A prefix ρ of a transcript ∆ is called a safe-point for right interaction k, if there exists an
accepting proof (αr, βr, γr) in the right interaction k, such that:

1. αr occurs in ρ, but not βr (and γr).

2. for any proof (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl occurs after γr.

3. messages in Stage 1 and 2 of the left interaction occur either before ρ or after γr.

If ρ is a safe-point, let (αρ, βρ, γρ) denote the canonical “safe” right proof associated with ρ. Note
that the only case a right-interaction proof is not associated with any safe-point is if it is “aligned”
with a left-execution proof, as shown in Figure 3. In contrast, in all other cases, a right-interaction
proof has a safe-point, as shown in Figure 2. Below we show in Lemma 1 that in any transcript of
one left and many right interactions of 〈C,R〉, every accepting right interaction that has a different
identity from the left interaction, has at least η(n) safe-points. This technical lemma will be very
instrumental in the proof of CCA-security in the next section.

Lemma 1 (Safe-point Lemma). Let ∆ be any transcript of one left interaction, and many right
interactions, of 〈C,R〉. Then, in ∆, for every successful right interaction that has a different
identity from the left interaction, there exist at least a number of Ω(η(n)) non-overlapping WISSP
proofs that are associated with a safe-point.

Proof. Consider a fixed b ∈ {0, 1}, and a transcript ∆ of one left and many right interactions of
〈C,R〉 with A. We show below that in ∆, for every accepting right interaction that has a different

14



identity from the left interaction, there are a number of Ω(η(n)) WISSP proofs, (αr, βr, γr), such
that there exists a point ρ—a prefix of ∆—satisfying the following two properties:

• ρ contains αr, but not βr and γr.

• For any proof (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl occurs after γr.

We call ρ a “weak” safe-point for (αr, βr, γr). It is easy to see that, if a right interaction has a
number of µ = Ω(η(n)) proofs that are associated with a weak safe-point, then at least a number
of µ/2 of these proofs are completely sequentially arranged (as all the designs are sequentially
arranged), and hence non-overlapping. Furthermore, since there are only a constant number of
messages in Stage 1 and 2 of the protocol, at least µ/2 − c of these weak safe-points are actually
full safe-points. Hence, we can conclude that there are Ω(η(n)) non-overlapping proofs in this right
interaction that are associated with a safe-point.

Now it only remains to show that there are Ω(η(n)) proofs with a weak safe-point. Consider
the following two adversarial schedulings in ∆:

• The adversary “aligns” the proofs in the left and right interactions one by one, where a left
proof is aligned with a right proof if its challenge message lies in between the challenge and
reply messages of the right proof in ∆.

• The adversary does not “align” the proofs in the left and right interactions.

We show that in the first case , there exist η(n) weak safe-points; furthermore, we show that no
matter how the adversary changes the message scheduling of the left interaction, the number of
weak safe-points never decreases; hence, the claim also holds in the second case.

Assume that Case 1 holds. Since the identities of the left and right interactions, idl and idr,
are different, they must exist one bit, i, on which they differ, i.e., idli 6= idri . Then each of the η(n)
design1’s in the ith iteration (in Stage 3) of the right interaction k is aligned with a design0 on the
left. Below we show that whenever a design1 is aligned with a design0 on the left, there exists a
weak safe-point: let (αrk, β

r
k, γ

r
k) for k = 1, 2 be the two proofs in the right design1, and (αlk, β

l
k, γ

l
k)

for k = 1, 2 the two proofs in the left design0 that are aligned with them, as shown in figure 4.
Then consider the prefix ρ of ∆ that includes all the messages up to βl1. As βl1 lies in between βr1
and γr1 , so does ρ. Hence, ρ is associated with the right-proof (αr2, β

r
2, γ

r
2), and every the left proof

either has its first two messages inside ρ, or after, which means ρ is a weak safe-point. Therefore
each of the η(n) design1’s in the ith iteration of the right interaction has a weak safe-point.

γl2

βl2

βl1

αl1

γl1, α
l
2

γr2

βr2

γr1

βr1

αr1, α
r
2ρ

Figure 4: A design0 matches up with design1.

Next consider a game in which the adversary tries to decrease the number of weak safe-points to
below η(n), by changing the message-scheduling in the left interaction. By the argument above, we

15



know that if the η(n) design1’s in the ith iteration of interaction j are aligned with design0’s, then
there are at least η(n) weak safe-points, with one for each design1. Then to succeed, the adversary
must manage to eliminate the weak safe-points associated with j > 0 design1’s (in iteration i). Take
any design1 on the right.

• If one of the two proofs in the design1 is not aligned with any proof on the left, then there
exists a weak safe-point associated with that proof.

• If the two proofs in the design1 are aligned with the two proofs in a design0 on the left, then
as argued above, there exists a weak safe-point.

• If the two proofs in the design1 are aligned with two left-proofs belonging to two different
designs, then since the two left-proofs are sequentially arranged, as the two proofs in a design0,
it follows using the same argument as in the second case that there exists a weak safe-point.

Therefore, the only way to ensure that a design1 is not associated with any weak safe-point is to
align it with a design1 on the left. Then if the adversary wants to eliminate the weak safe-points
associated with j design1’s in the ith iteration on the right, namely designs kr1 < kr2 < . . . < krj , it

must align them with j design1’s on the left, namely designs kl1 < kl2 < . . . < klj (where klh and
krh are the indexes of the designs). Since the η(n) design1’s in the i’th iterations corresponds to
design0’s on the left, it holds that for every h, either klh < kr1 or klh > krj . Then there are only three
possibilities, in which although the adversary may eliminate j weak safe-points associated with the
design1’s in the ith iteration on the right, it creates at least 2j new weak safe-points at other parts
of the right interaction, namely,

The adversary shifts j left-designs down, i.e., klj < kr1. Then the first kr1 − 1 right-designs

can only be aligned with the first kl1−1 left-designs. Since kl1−1 ≤ klj−j ≤ (kr1−1)−j, there
are at least 2j proofs on the right (belonging to the first krl − 1 right-designs) that are not
aligned with any proofs on the left. Then each of them is associated with a weak safe-point.

The adversary shifts j left-designs up, i.e., kl1 > krj . It follows from the same argument as
above that there are at least 2j weak safe-points in the last 2`(n)η(n) − krj designs on the
right.

The adversary shifts some left-designs down and some up, i.e., kl1 < kr1 and klj > krj . Then
every right-design k, such that k < kr1 or k > krj , can only be aligned with a left-design k′,

such that k′ < kl1 or k′ > klj . Since there are at least 2`(n)η(n) − η(n) right-designs with
indexes smaller than kr1 or greater than krj , but at most 2`(n)η(n)−η(n)− j left-designs with

indexes smaller than kl1 or greater than klj , there are (again) at least 2j proofs on the right
that are not aligned with any proofs on the left, which gives 2j weak safe-points.

Therefore no matter how the adversary changes the message-scheduling in the left interaction, there
always exist at least η(n) weak safe-points in the right interaction. Hence we conclude the Lemma.

4.2 Proof of CCA Security

We show that for every PPT adversary A, the following ensembles are computationally indistin-
guishable.

• {IND0(〈C,R〉,O, A, n, z)}n∈N,z∈{0,1}∗

16



• {IND1(〈C,R〉,O, A, n, z)}n∈N,z∈{0,1}∗

Towards this, we consider new commitment scheme 〈Ĉ, R̂〉 (similar to the “adaptor” schemes of
[DDN00, LPV08]), which is a variant of 〈C,R〉 where the receiver can ask for an arbitrary number
of special-sound WI designs in Stage 3. Furthermore, 〈Ĉ, R̂〉 does not have a fixed scheduling in
Stage 3; the receiver instead gets to choose which design to execute in each iteration (by sending
bit i to select designi). Note that, clearly, any execution of 〈C,R〉 can be emulated by an execution
of 〈Ĉ, R̂〉 by simply requesting the appropriate designs. It follows using standard techniques that
〈Ĉ, R̂〉 is computationally hiding; we omit the proof here.

Now, assume, for contradiction, that there exists an adversary A, a distinguisher D, and a
polynomial p, such that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,∣∣Pr [D(IND0(〈C,R〉,O, A, n, z)) = 1]− Pr [D(IND1(〈C,R〉,O, A, n, z)) = 1]

∣∣ ≥ 1

p(n)

We reach a contradiction by exhibiting a (stand-alone) adversary B∗ that distinguishes com-
mitments using 〈Ĉ, R̂〉. Let STAb be defined identically to INDb (in the definition of CCA-security),
except that the adversary does not get access to a decommitment oracle. We show that the following
two claims hold w.r.t B∗.

Claim 1. There exists a polynomial T , such that, for every n ∈ N and z ∈ {0, 1}∗, the probability
that the machine B∗, on input 1n and z, in interaction with Ĉ, runs for more than T (n) steps is
smaller than 1/3p(n).

Claim 2. Let b ∈ {0, 1}. The following ensembles are computationally indistinguishable.

•
{

STAb(〈Ĉ, R̂〉, B∗, n, z)
}
n∈N,z∈{0,1}∗

•
{

INDb(〈C,R〉,O, A, n, z)
}
n∈N,z∈{0,1}∗

By Claim 2, it thus follows that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,∣∣∣Pr
[
D(STA0(〈Ĉ, R̂〉, B∗, n, z)) = 1

]
− Pr

[
D(STA1(〈Ĉ, R̂〉, B∗, n, z)) = 1

]∣∣∣ ≥ 2

3p(n)

Finally, by Claim 1, the execution of B∗ can be truncated after T (n) steps, while only affecting
the distinguishing probability by at most 1

3p(n) , which means there exists a PPT machine that

distinguishes commitments with probability 1
p(n) ; this contradicts the hiding property of 〈Ĉ, R̂〉.

Construction of B∗. On a high-level, B∗ in interaction with an honest committer Ĉ on “the
left” emulates the decommitment oracle O∗ for A by extracting the decommitments of the “right
interactions” from the WISSP proofs in 〈C,R〉. It does this by rewinding A only at safe-points
associated with the WISSP on the right. This ensures that we do not have to rewind the ex-
ternal left execution; rather, it suffices to request an additional design on the left to handle these
rewindings. But, as the simulator needs to provide the decommitments in a “on-line” fashion (i.e.,
as soon as a right-interaction completes, the simulator needs to provide A with decommitment
information for this interaction), these rewindings might become recursive (if the right interactions
are nested). And, if we were to perform these rewindings naively the running-time quickly becomes
exponential (just as in the context of concurrent zero knowledge [DNS04]). To make sure that the

17



recursion depth is constant, we instead only rewind from safe-points ρ such that the number of new
right-proofs that start between ρ and the last message γρ of the right-proof associated with ρ, is
“small”; here, “small” is defined appropriately based on the recursion level. More precisely, we
say that a safe-point ρ is d + 1-good for a transcript ∆ if less than kd = M/η′d right-proofs start
between ρ and γρ, where M is an upperbound on the total number of messages that A sends or
receives, and η′ = nε

′
for some constant ε′ such that 0 < ε′ < ε. On recursion level d, B∗ then only

rewinds A from d+ 1-good safe-points.
Formally, we describe B∗ using a recursive helper procedure EXT. EXT, on input an integer d

(the recursion level), a partial joint view V of A and the (emulated) right receivers, the index s of
a right-proof, a “repository” R of transcripts of right-proofs that have been previously collected,
proceeds as follows:

Procedure EXT(d,V, s,R): Let ρ be the (partial) transcript contained in V. If d = 0, EXT will
emulates a complete execution of IND with the adversary A. If d > 0, it will instead extends the
partial view V to the completion of the sth right-proof. If at any point in the emulation, d > 0 and
ρ is not a d+ 1-good safe-point, for s, EXT aborts returning ⊥. Finally, EXT returns the the view
VA of A in the emulation (generated so far). We now turn to describe how EXT emulates the left
and the right interactions.

The left interaction is emulated by simply requesting the appropriate messages from the external
committer. At the top level (i.e., d = 0), when A is participating in a complete 〈C,R〉 commitment
on the left, this can be easily done by simply requesting the appropriate designs from Ĉ. At lower
levels (i.e., d > 0), recall that EXT cancels every execution in which ρ is not a safe-point, hence
it only needs to emulate the left interaction when ρ is a safe-point. In this case, as previously
discussed, A either does not request any new messages on the left, or only asks for complete new
WISSP proofs; the former case can be trivially emulated (by simply doing nothing), in the latter
case, EXT emulate the left interaction by by asking for more designs from Ĉ.

On the other hand, in the right interactions, EXT follows the honest receiver strategy of 〈C,R〉.
Furthermore, whenever A completes a proof (αr, βr, γr) in a right interaction j, EXT attempts to
extract a decommitment for this interaction, if the proof (αr, βr, γr) is associated with a d+ 1-good
safe-point ρ′ (for the transcript generated so far). To extract, EXT invokes itself recursively on input
(d+1,V ′, s′,R), where V ′ is the (partial) joint view of A and the right receivers after the transcript
ρ′, and s′ is the index of the right-proof (αr, βr, γr). It continues invoking itself recursively until one
of the recursive invokations returns a view containing another accepting transcript (αr, β

′
r, γ
′
r) of the

s′-th proof. When this happens, and βr 6= β′r, EXTcomputes a witness w (by the special-soundness
property of theWISSP), and records w in the repositoryR, if it contains the committed value (v, d)
of the “second commitment”, and (v, d) is a valid decommitment of the “first commitment” (and
hence, by definition, also a valid decommitment). Later, whenever A expects a decommitment for a
right interaction j that has an identity that is different from the left interaction, it simplys check the
repository R for a matching decommitment; it aborts and outputs fail if no valid decommitment is
available—we say that EXT “gets stuck” on interaction j in this case. (If A expects the decommitent
of a right interaction that has the same identity as the left, it simply sends ⊥ to A.)

We now return to specifying B∗. B∗, in interaction with Ĉ, simply invokes EXT on inputs
(0,V, null, ∅,M, η′), where V is the initial joint states of A and honest right receivers. Once EXT
returns a view VA of A, B∗ return the output of A in this view if A never used the identity of the
left interaction in any of the right interaction, and returns ⊥ otherwise. Furthermore, to simplify
our analysis, B∗ cuts-off EXT whenever it runs for more than 2n steps. If this happens, B∗ halts
and outputs fail.

18



Proof of Claim 1—Running-time Analysis of B∗. Let Bind denote the event that in an
execution between B∗ and Ĉ, the adversary A provides a com commitment that has two valid
decommitments. It follows from the statistically binding property of com, and the fact that B∗

never runs for more than 2n steps, that the event Bind happens with only negligible probability
(where the probability is taken over the randomness used by B∗ and Ĉ). Below we show the
following claim.

Claim 3. There exists a polynomial function t such that for every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗,
conditioned on the event that Bind does not occur in the experiment STAb(〈Ĉ, R̂〉, B∗, n, z), B∗ takes
t(n) steps in expectation.

Claim 1 directly follow from Claim 3: Set T (n) = 4p(n)t(n). By the Markov inequality we have
that, conditioned on Bind not occurring, the probability that B∗ runs for more than T (n) steps is
at most 1/4p(n). Since Bind occurs with only negligible probability, overall the probability that B∗

runs for over T (n) steps is at most 1/3p(n).

Proof of Claim 3. Towards bounding the running time of B∗, we construct another machine B̄,
which proceeds exactly the same as B∗, except that, it never aborts. More precisely, let Ocom be
a oracle with unbounded running-time that on input a transcript of a com commitment returns
the unique committed value. (It returns ⊥ if the commitment is invalid or there does not exists a
unique committed value.) Then consider a machine B̄ that has access to Ocom, and internally runs a
variant EXT of the procedure EXT: EXT proceeds identically as EXT except that, once the execution
“gets stuck” on a right interaction j, instead of aborting and outputting fail, it queries Ocom on the
transcript of the second com commitment of interaction j, and uses the committed value returned
from the oracle to continue the simulation; furthermore, B̄ never cuts-off the execution of EXT and
may run for more than 2n steps. It is obvious that B̄Ocom always runs longer than B∗. Therefore
it is suffices to show that B̄ runs in expected polynomial time, or equivalently, that EXT runs in
expected polynomial time, conditioned on Bind not occurring. Below in Subclaim 1 we first show
that the recursive depth of EXT is a constant.

Subclaim 1. There exists a constant D such that for every n ∈ N , and every V, s, and R,
EXT(D,V, s,R,M(n), η′(n)) does not perform any recursive calls.

Proof. Let nc be an upper bound on M(n); and set D to dlogη′(n) n
ce, which is a constant. Recall

that the procedure EXT(d, ∗, ∗, ∗,M, η′) terminates and returns ⊥ whenever more than kd = M/η′d

new right-proofs has started in its execution. When d = D, kD < 1, which means the execution
terminates whenever A starts a new right-proof. On the other hand, EXT only makes a recursive
call at the completion of a new right-proof. Therefore at recursion level D, EXT never makes any
recursive calls.

Next, assume that Bind does not occur, that is, A never sends any com commimtment that has
more than one decommitments. we show that the expected number of queries that EXT makes to
A at every recursion level d ≤ D is bounded by a polynomial. Then so is the expected running
time of EXT.

Subclaim 2. For every d ∈ [D], it holds that for every n ∈ N , V, s, and R, the expected number
of queries that EXT(d,V, s,R,M(n), η′(n)) makes to A is bounded by θ(d) = M3(D−d+1).

19



Proof. We prove the subclaim by induction on d. When d = D, the claim follows, since EXT does
not perform any recursive calls and the number of queries made by EXT can be at most the total
number of messages, which is M .

Assume the claim is true for d = d′ + 1. We show that it holds also for d = d′. Consider some
fixed V, s and R. The procedure EXT(d′,V, s,R,M(n), η′(n)) simulates an execution with A in
a straight-line on recursion level d′, until it encounters the completion of a right-proof s that has
a d′ + 1-good safe-point ρ, then it tries to extract a witness of s, by repeatedly invoking EXT on
recursion level d′ + 1 from (the partial transcript) ρ. Hence, the number of queries made by EXT
is bounded by the sum of the number of queries made on level d′, and the queries made by the
recursive calls: the former is at most the total number of messages, that is, M , while the latter
is bounded by the sum of the queries made by those recursive calls invoked for every right-proof
s.Furthermore we compute the expected number of queries made by the recursive calls for a right-
proof s by taking expectation over all partial transcript that is potentially a d′-good safe-point for
s. let Γi denote the set of all partial transcripts of length i that are consistent with V; for every
ρ ∈ Γi, we denote by Pr [ρ occurs on level d′] the probability that ρ occurs (in the simulation) on
level d′, and E[Qsd′(ρ)|ρ] the expected number of queries made by the recursive calls started from
ρ for the right-proof s, conditioned on ρ occurring on level d′. Then

E[number of queries by EXT] = M +
∑
s

∑
i

∑
ρ∈Γi

Pr[ρ occurs on level d′] E[Qsd′(ρ)|ρ]

Next we bound E[Qsd′(ρ)|ρ] in two steps: the first step bounds the expected number of recursive
calls started from ρ for proof s, and the second step uses the induction hypothesis to derive a bound
on E[Qsd′(ρ)|ρ].

Step 1: Given a partial transcript ρ from Γi, let psd′(ρ) denote the probability that conditioned
on ρ occurring on level d′, EXT starts recursive calls from ρ for the right-proof s, which happens
if and only if the proof s completes without being cancelled, and ρ is a d′ + 1-good safe-point for
it. When this happens, EXT repeatedly calls itself on recursion level d′ + 1, until an invocation
succeeds without cancelling. (Recall that EXT never aborts, hence whenever an invocation does
not cancel, it returns an accepting transcript of s.) An invocation is cancelled if and only if ρ fails
to be a d′+1-good safe-point for s in the invocation on level d′+1. Let qsd′(ρ) denote the probability
that conditioned on ρ occurring on level d′, ρ is a d′ + 1-good safe-point for the right-proof s in a
recursive call (from ρ for s) on level d′ + 1. We claim that qsd′(ρ) ≥ psd′(ρ). This follows from the
fact that the view of A after ρ on level d′ is simulated identically to that in a recursive call from ρ
on level d′ + 1: on both levels d′ and d′ + 1, EXT emulates messages in the commitments of 〈C,R〉
for A perfectly; and furthermore, whenever A expects a decommitment of a right interaction, EXT
sends it the value committed to in the second com commitment, obtained either through recursive
calls or through the oracle Ocom; since, by our assumption, A never sends any com commitment
that has multiple decommtments, A always receives the same value on both level d′ and d′ + 1.

Therefore, conditioned on ρ occurring on level d′, the expected number of recursive invocations
to level d′ + 1 before encountering a successful one is 1/qsd′(ρ); since, EXT only starts recursive
invocations from ρ with probability psd′(ρ), we have that the expected number of recursive calls
from ρ for proof s, conditioned on ρ occurring on level d′, is at most psd′(ρ)/qsd′(ρ) ≤ 1.

Step 2: From the induction hypothesis, we know that the expected number of queries made by
an invocation of EXT on level d′ + 1 is at most θ(d′ + 1). Therefore, if u recursive invocations are

20



made from ρ for a right proof s, the expected number of queries made is bounded by uθ(d′ + 1).
Then we bound E[Qsd′(ρ)|ρ] as follow:

E[Qsd′(ρ)|ρ] ≤
∑
u∈N

Pr [u recursive calls are made from ρ for s] u θ(d′ + 1)

= θ(d′ + 1)
∑
u∈N

Pr [u recursive calls are made from ρ for s] u

≤ θ(d′ + 1)

Therefore,

E[number of queries by EXT] ≤ M +
∑
s

∑
i

∑
ρ∈Γi

Pr
[
ρ occurs on level d′

]
θ(d′ + 1)

= M + θ(d′ + 1)
∑
s

∑
i

∑
ρ∈Γi

Pr
[
ρ occurs on level d′

]
= M + θ(d′ + 1)M2

≤ M3(D−d′+1) = θ(d′)

Proof of Claim 2—Correctness of the Output distribution of B∗. We proceed to show
that the output distribution of B∗ is correct. This follows from the following two claims:

Claim 4. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, conditioned on the event that Bind
does not occur and that B∗ does not output fail, the output view of A by B∗ in the experiment
STAb(〈Ĉ, R̂〉, B∗, n, z) is simulated perfectly as in the experiment INDb(〈C,R〉,O∗, A, n, z).

Claim 5. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, conditioned on the event that Bind does not
occur, the probability that B∗ outputs fail in the experiment STAb(〈Ĉ, R̂〉, B∗, n, z) is negligible.

Combining Claim 4 and 5 with the fact that Bind occurs with only negligible probability, we
have that, except with negligible probability, the output view of A by B∗ is simulated perfectly.

Hence,
{

STAb(〈Ĉ, R̂〉, B∗, n, z)
}

and
{

INDb(〈C,R〉,O∗, A, n, z)
}

are indistinguishable.

Proof of Claim 4. First note that, in STAb(〈Ĉ, R̂〉, B∗, n, z), B∗ outputs the simulated view VA re-
turned by the procedure EXT at the top recursion level (d = 0), and, as in INDb(〈C,R〉,O∗, A, n, z),
the view is replaced with ⊥ if A copies the identity of the left interaction, in some right interaction.
Hence it suffices to show that in the case where A never copies the identity of the left interaction,
EXT simulates the messages in the left and right interactions for A perfectly. By construction of
EXT, all the messages belonging to the commitments of 〈C,R〉 (both on the left and right) are
simulated perfectly. Furthermore, conditioned on that B∗ does not output fail, whenever A expects
a decommitment of a right interaction, B∗ extracts successfully a pair (v, d) that is the value com-
mitted to in the second com commitment, and is a decommitment of the first com commitment
of this right interaction; then further conditioned on that Bind does not occur, the decommitment
oracle O would have returned exactly the same value. Hence we conclude the Claim.

21



Proof of Claim 5. Consider a fixed b ∈ {0, 1}. By Claim 3, conditioned on Bind not occurring,
B∗ runs in t(n) steps in expectation in the experiment STAb(〈Ĉ, R̂〉, B∗, n, z). By construction,
B∗ outputs fail, if the procedure EXT runs for more than 2n steps, or it “gets stuck” on a right
interaction j; and the latter happens if the interaction j succeeds and has a different identity from
the left interaction, but one of the following three cases occurs.

Case 1: None of the WISSP proofs in the right interaction is rewound.

Case 2: Some proof is rewound but the recursive calls invoked for this proof generates the same
proof transcript as in the interaction.

Case 3: A witness is extracted from one of the proofs in the interaction, but it is not the value
committed to in the second com commitment, or is not a valid decommitment of the first com
commitment in the interaction.

Below for each of the cases where B∗ outputs fail, we show that it occurs with negligible probability.

Analysis of the case where B∗ runs for more than 2n steps: By Subclaim 3, conditioned on
Bind not occurring, B∗ runs in expected polynomial time. Therefore, by the Markov inequal-
ity, the probability that EXT runs for more than 2n steps is negligible.

Analysis of Case 1: We show that Case 1 never happens. More precisely, for every accepting
right interaction j with a different identity from the left interaction, one of its proofs must
be rewound. By Lemma 1, there exist a number of Ω(η(n)) non-overlapping proofs in the
right interaction j that has a safe-point. Recall that in B∗ (more precisely, in EXT), a right
interaction may be carried out at multiple different recursion levels (through recursive calls);
and at level d, B∗ rewinds every proof in this interaction that has a d+ 1-good safe-point. By
Subclaim 1, the recursion depth is only a constant; hence there must be a level d, on which a
number of Ω(η(n)) non-overlapping proofs with a safe-point start in interaction j. Since the
total number of right-proofs that start on level d is bounded by kd = M/η′(n)d (otherwise,
the simulation is cancelled) and η′(n) = o(η(n)), there must exist one right-proof that has a
safe-point ρ, such that there are less than M/η′(n)d+1 right-proofs starting in between ρ and
the last message of the proof. Therefore ρ is a d+ 1-good safe-point for this right-proof, and
will be rewound.

Analysis of Case 2: We bound the probability that any challenge message is picked twice in
whole execution of B∗ to be negligible. Since B∗ runs for at most 2n steps, it picks at most
2n challenges during the whole execution. Furthermore, the length of each challenge is 3n.
By applying the union bound, we obtain that, conditioned on B∗ running within 2n steps,
the probability that a challenge β on level d′ is picked again is at most 2n

23n
, and hence, using

the union bound again, the probability that any challenge in the execution is picked twice is
at most 2n 2n

23n
. Hence, overall, the probability that this case occurs is negligible.

Analysis of Case 3: Suppose for contradiction that, there exists a polynomial g, such that for
infinitely many n ∈ N and z, case 3 occurs with probability at least 1/g(n) during the
execution of B∗. By the special-sound property, it follows that the witness w extracted must
be a value r such that f(r) = s, where s is the first message in the right interaction j. Then
we show that we can invert the one-way function f . More precisely, given A, n and z, we
construct A∗ that inverts f . A∗ on input y = f(r′), emulates an execution of A(z) internally,
exactly as B∗ does, except that (1) it “cuts” the execution off after g′(n) = 2t(n)g(n) steps,

22



and (2) it picks a random right interaction started in the first g′(n) steps, and feeds y as the
Stage 1 message in that interaction; finally, A∗ outputs all the witnesses extracted from this
interaction. Since A∗ proceeds identically as B∗ in the first g′(n) steps, the probability that
it inverts f in some right interaction is exactly the same as the probability that B∗ does in
the first g′(n) steps. Furthermore, since B in expectation takes t(n) steps, by the Markov
inequality, the probability that it runs for more than g′(n) steps is at most 1/2g(n). Hence
the probability that A∗ inverts f in some right interaction is at least 1/g(n)− 1/2g(n). With
probability at least 1/g′(n), A∗ guesses correctly the right interaction in which this happens,
and thus it inverts y with probability at least 1/2g(n)g′(n).

4.3 Proof of Robustness

In this section, we extend the proof in the last section to show that 〈C,R〉 is also robust CCA-secure
w.r.t. O. Towards this, we need to show (in addition to that 〈C,R〉 is CCA-secure w.r.t. CO∗) that
for every constant k, and every PPT adversary A, there exists a simulator S, such that, for every
PPT k-round ITM B, the interaction between B and A with access to O is indistinguishable from
that between B and S.

Given an adversary A, and a constant k, the construction of the simultor S is very similar to that
of B∗ in the last section. On a high-level, S externally interacts with an arbitrary k-round ITM B,
and internally simulates an execution between B and AO, by forwarding messages from B internally
to A, while concurrently extracting the decommitments of the right interactions from A to simulate
O. The extraction strategy of S is essentially the same as that used by B∗: it recursively rewinds A
over theWISSP proofs in Stage 3 of the protocol to extract the decommitments, except that, here
the goal is to make sure that the left interaction with B is never rewound, (instead of the goal of
ensuring that the left interaction remains hiding (in B∗)). This is achieved by rewinding only those
WISSP proofs that do not interleave with any messages in the left interaction, and cancelling every
rewinding in which the WISSP proof interleaves with a left-message. More precisely, consider the
notion of R-safe-point (which is in analogous to the notion of safe-point)—a prefix ρ of a transcript
∆ is a R-safe-point for a right-proof (α, β, γ) if it includes all the messages in ∆ up to α, and that
no left-message is exchanged in between ρ and γ. Then S simply runs the procedure EXTdefined in
the last section internally, except that it replaces the notion of safe-point with R-safe-point, and that
it simulates the left interaction with A by fowarding the messages between A and B; everything
else remains the same. Then it follows from the fact that S always rewinds A from a R-safe-point ρ,
and cancels every rewindings in which ρ is not a R-safe-point, the left interaction is never rewound.
Furthermore, since the left interaction with B consists of only k rounds, there exist Ω(nε) R-safe-
point in every successful right interaction. Then, it follows from the same proof as in Claim 3 and
Lemma 2 that, except from negligible probability, S runs in expected polynomial time, and that
the output of S in interaction with B is indistinguishable from the output of AO in interaction
with B.

Remark 1. The protocol 〈C,R〉 described in Section 3 uses a one-way function with efficiently
recognizable range in its first stage. It can be modified to work with any arbitrary one-way function
f as follows: in Stage 1, the receiver sends the images of two secrets, i.e., s1 = f(r1) and s2 =
f(r2), followed by a proof that either s1 or s2 is in the range of f , using a resettable WI proof
system [CGGM00] (the committer verifies the proof and aborts if it is not convincing); and in
Stage 3 the committer proves that either it has committed to v honestly, or that one of s1 and s2

23



is in the range of f . It follows using almost the same proofs as above that the modified protocol
is a robust CCA-secure commitment scheme, except that it relies on the one-wayness of f and,
additionally, the resettable WI property of the proof in Stage 1 that, the value extracted from A
is the desired decommitment, despite that A is rewound during the extraction. (See Case 3 in the
proof of Claim 5.)

Remark 2. We further modify the protocol to work with 4-round special-sound proofs instead of
3-round special-sound proofs: in Stage 1, the receiver sends, in addition to the images of two secrets,
the first message r of a 4-round special-sound proof; then in Stage 3, the committer and the receiver
simply use the last three messges of a 4-round special-sound proof with the first message fixed to r,
as a 3-round special-sound proof. It follows from the same proof as described above that the modified
protocol is robust CCA secure, as both the WI and the special-soundness properties hold even if the
special-sound proofs share the same first message.

5 UC and Global UC security

We briefly review UC and externalized UC (EUC) security. For full details see [Can00, CDPW07].
The original motivation to define EUC security was to capture settings where all ITMs in the
system have access to some global, potentially trusted information (such as a globally available
public key infrastructure or a bulletin board) [CDPW07]. Here however we use the EUC formalism
to capture the notion of global helper functionalities that are available only to the corrupted paties.

We first review the model of computation, ideal protocols, and the general definition of securely
realizing an ideal functionality. Next we present hybrid protocols and the composition theorem.

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as an
interactive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified below.
Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol

24



execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process
for that ideal functionality. Below we overview the model of protocol execution (called the real-life
model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running
an instance of a protocol π, an adversary A that controls the communication among the parties, and
an environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter k ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol π. That is, all the ITMs invoked by the
environment must have the same SID and the code of π. In the context of EUC security the
environment can in addition invoke an additional ITI that interacts with all parties. We call this
ITI the helper functionality, denoted H.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on
the party’s incoming communication tape or report information to Z by writing this information
on the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we
assume authenticated communication; that is, the adversary may deliver only messages that were
actually sent. (This is however not essential since authentication can be realized via a protocol,
given standard authentication infrastruture [Can04].)

Once a protocol party (i.e., an ITI running π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let execπ,A,Z(k, z, r) denote the output of the environment Z when interacting with parties
running protocol π on security parameter k, input z and random input r = rZ , rA, r1, r2, ... as
described above (z and rZ for Z; rA for A, ri for party Pi). Let execπ,A,Z(k, z) denote the

25



random variable describing execπ,A,Z(k, z, r) when r is uniformly chosen. Let execπ,A,Z denote
the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of
F is null.)) In addition, F can interact with the adversary according to its code. Whenever F
outputs a value to a party, the party immediately copies this value to its own output tape. We call
the parties in the ideal protocol dummy parties. Let π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running π, or
it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol π is ‘just as good’ as interacting with φ. We say that π securely
realizes an ideal functionality F if it emulates the ideal protocol π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 4. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ if for
any adversary A there exists an adversary S such that for any environment Z that obeys the rules
of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,A,Z .

Definition 5. Let F be an ideal functionality and let π be a protocol. We say that π UC-realizes
(resp., EUC-realizes) F if π UC-emulates (resp., EUC-emulates) the ideal protocol π(F).

Security with dummy adversaries. Consider the adversary D that simply follows the instruc-
tions of the environment. That is, any message coming from one of the ITIs running the protocol
is forwarded to the environment, and any input coming from the environment is interpreted as a
message to be delivered to the ITI specified in the input. We call this adversary the dummy adver-
sary. A convenient lemma is that UC security with respect to the dummy adversary is equivalent
to standard UC security. That is:

Definition 6. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ w.r.t
the dummy adversary D if there exists an adversary S such that for any environment Z that obeys
the rules of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,D,Z .

Theorem 3. Let π and φ be protocols. Then π UC-emulates (resp., EUC-emulates) φ if and only if
π UC-emulates (resp., EUC-emulates) φ with respect to the dummy adversary.

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to (multiple copies of) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make trust assumptions on the underlying network. They are also instrumental in

26



stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let π be a protocol
that securely realizes F . The composed protocol ρπ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of π, with the contents of that message given to π as new input. Each output value generated
by a copy of π is treated as a message received from the corresponding copy of F . The copy of π
will start sending and receiving messages as specified in its code. Notice that if π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρπ.

The universal composition theorem. Let F be an ideal functionality. In its general form, the
composition theorem basically says that if π is a protocol that UC-realizes F (resp., EUC-realizes
F) then, for any F-hybrid protocol ρ, we have that an execution of the composed protocol ρπ

“emulates” an execution of protocol ρ. That is, for any adversary A there exists a simulator S such
that no environment machine Z can tell with non-negligible probability whether it is interacting
with A and protocol ρπ or with S and protocol ρ, in a UC (resp., EUC) interaction. As a corollary,
we get that if protocol ρ UC-realizes F (resp., EUC-realizes F), then so does protocol ρπ.8

Theorem 4 (Universal Composition [Can01, CDPW07]). Let F be an ideal functionality. Let ρ
be a F-hybrid protocol, and let π be a protocol that UC-realizes F (resp., EUC-realizes F). Then
protocol ρπ UC-emulates ρ (resp., EUC-emulates ρ).

An immediate corollary of this theorem is that if the protocol ρ UC-realizes (resp., EUC-realizes)
some functionality G, then so does ρπ.

8The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system. In [CDPW07] the theorem is extended to
protocols that share subroutines with arbitrary other protocols, as long as the composed protocol, ρπ, realizes F with
EUC security.

27



6 UC Security with Super-polynomial Helpers

We modify the definitions of UC security by giving the corrupted parties access to an external
“helper” entity, in a conceptually similar way to [PS04]. This entity, denoted H, is computationally
unbounded, and can be thought of as providing the corrupted parties with some judicious help.
(As we’ll see, this help will be used to assist the simulator to “reverse engineering” the adversary
in order to extract relevant information hidden in its communication.)

The definition uses the formalism of EUC security [CDPW07]. Specifically, we model the
helper entity as an ITM that is invoked directly by the environment, and that interacts with the
environment and the corrupted parties. More formally, let H be an ITM. An environment Z is
called aided by H if: (a) Z invokes a single instance H immediately after invoking the adversary;
(b) As soon as a party (i.e., an ITI) P is corrupted (i.e., P receives a corrupted message), Z lets
H know of this fact; (c) H interacts only with the environment and the corrupted ITMs. Then:

Definition 7. Let π and φ be protocols, and let H be a helper functionality (i.e., an ITM). We
say that π H-EUC-emulates φ if for any adversary A there exists an adversary S such that for any
environment Z that’s aided by H we have execφ,S,Z ≈ execπ,A,Z .

The meaningfulness of relativized UC security of course depends on the particular helper ITM
in use. Still, it is easy to see that if protocol π H-EUC-emulates protocol φ where H obeys the
above rules and runs in time T (n), then π UC-emulates φ according to a relaxed notion where
the adversary S can run in time poly(T (n)). As noted in the past, for many protocols and ideal
functionalities, this relaxed notion of security suffices even when T (n) = exp(n) [Pas03, PS04,
BS05, MMY06].

Universal Composition with super-polynomial helpers. The universal composition theo-
rem generalizes naturally to the case of EUC, even with super-polynomial helper functionalities:

Theorem (universal composition for relativized UC). Let F be an ideal functionality, let H be a
helper functionality, let π be an F-hybrid protocol, and let ρ be a protocol that H-EUC-realizes F .
Then protocol πρ H-EUC-emulates π.

Proof. The proof of Theorem 6 follows the same steps as the proof of Theorem 4 (see e.g. the proof
in [Can00]). The only difference is in the construction of the distinguishing environment Zπ (see
there). Recall that Zπ takes an environment Z that distinguishes between an execution of π and
an execution of πρ, and uses it to distinguish between an execution of ρ and an ideal evaluation of
F . For this purpose, Zπ emulates for Z an execution of πρ.

Now, in the presence of the helper H, Zρ must emulate for Z also the interaction with H. Note
that Zπ cannot run H on its own, since H may well be super-polynomial in complexity. Instead,
Zπ will forward to the external instance of H each message sent to H by Z. Similarly, whenever
any of the corrupted parties that Zπ locally runs sends a message to H, Zπ externally invokes a
party with the same ID and code, corrupts it, and instructs it to send the query to the external
instance of H. The responses of H are handled analogously.

Note that the proof uses the fact that the helper functionality H does not take messages directly
from the adversary. Indeed, Zπ cannot emulate for the external instance of H messages coming
from the adversary.

28



7 Realizing Any Functionality Using CCA-Secure Commitments

We here show how to realize any functionality by relying on our construction of CCA-secure com-
mitments. Let 〈C,R〉 be a commitment scheme that is robust CCA-secure w.r.t. a decommitment
oracle O. Furthermore, assume that O can be computed in subexponential time; note that our
construction of CCA secure commitments can easily be instantiated with bit-commitments using a
“scaled-down” the security parameter in order to ensure this property. Consider a helper function-
ality H that “breaks” commitments of 〈C,R〉 in the same way as O does, subject to the condition
that player Pi in a protocol instance sid can only query the functionality on commitments that
uses identity (Pi, sid). More precisely, every party Pi in a secure computation can simultaneously
engage with H in multiple sessions of the commit phase of 〈C,R〉 as a committer using identity Pi,
where the functionality simply forwards all the messages internally to the decommitment oracle O,
and forwards Pi the decommitment pair returned from O at the end of each session. See figure 5
for a formal description of the functionality. Clearly this functionality can also be implemented in
sub-exponential time.

Functionality H

Initialization: Upon receiving an input (Init,Pi, sid, k) from party Pi in the protocol instance
sid, if there is a previously recorded session (Pi, sid, i), ignore this message; otherwise, initialize
a session of 〈C,R〉 with O using identity (Pi, sid), and record session (Pi, sid, i).

Accessing O: Upon receiving an input (Mesg,Pi, sid, k,m) from party Pi in the protocol
instance sid, if there is no previously recorded session (Pi, sid, i), ignore the message; otherwise,
forward m to O in the ith session that uses identity (Pi, sid), obtain a reply m′, and return
(Mesg,Pi, sid, i,m

′) to Pi.

Figure 5: The ideal functionality H

We have now the following theorem:

Theorem 5. Let ε be any positive constant. Assume the existence of enhanced trapdoor permu-
tations. Then for every well-formed functionality9 F , there exists a O(nε)-round protocol Π that
H-EUC-emulates F .

Towards proving the theorem, we first show how to implement the ideal commitment function-
ality Fcom in the H-EUC-model, and then show how to realize any functionality using Fcom.

Realizing Fcom: The ideal commitment functionality Fcom, as presented in Figure 6, acts as a
physical “lock-box” for the players in a secure computation: it enables a player (Pi) to commit to a
receiver (Pj) a string m in a perfectly hiding way, by simply having Pi send m to the functionality
in a commit phase; and later, in a reveal phase, it ensures that the commitment is opened in a
perfectly binding way, by sending the unique previously recorded string m to Pj .

Lemma 2. Let ε be any positive constant. There exists a O(nε)-round protocol πcom that H-EUC-
emulates Fcom.

Proof. The committer Pi and the receiver Pj , on input (Commit, (Pi, Pj , sid), v) to Pi and (Commit,

(Pi, Pj , sid)) to Pj , proceed as follows:

9See [CLOS02] for a definition of well-formed functionalities.

29



Functionality Fcom

Commit Phase: Upon receiving an input (Commit, sid, x) from C, verify that sid = (C,R, sid′)
for some R, else ignore the input. Next, record x and generate a public delayed output
(Receipt, sid) to R. Once x is recorded, ignore any subsequent Commit inputs.

Reveal Phase: Upon receiving an input (Open, sid) from C, proceed as follows: If there
is a recorded value x then generate a public delayed output (Open, sid, x) to R. Otherwise, do
nothing.

Figure 6: The ideal commitment functionality Fcom

Stage 1: the receiver Pj picks a random secret r ∈ {0, 1}n, and commits to r using the CCA-secure
commitment scheme 〈C,R〉, and using (Pj , sid) as the identity of the interaction.

Stage 2: the committer Pi commits to the value v using 〈C,R〉, and using (Pi, sid) as the identity
of the interaction.

Stage 3: the committer Pi commits to 0n using 〈C,R〉, and using (Pi, sid) as the identity of the
interaction.

Finally, on input (Open, (Pi, Pj , sid)) to both Pi and Pj , the committer Pi decommits to the value
v in a reveal phase, by sending v to Pj and then provides a strongly WI proof of the statement
that either it has committed to v in Stage 2, or that it has committed to a valid decommitment
pair (r, d) of the Stage 1 commitment, in Stage 3. The receiver Pj accepts if the proof is convincing,
and rejects otherwise.

Next we proceed to show that π is indeed a secure realization of Fcom. Below we describe the
technique for simulating the protocol execution of π in the ideal-world, where parties have access
to the ideal commitment functionality Fcom, and give a proof that the simulation in the ideal-world
setting is indistinguishable from a real-world execution of π. Recall that we only need to prove
that π H-EUC-emulates Fcom; hence in both the ideal and real worlds, the environment and the
adversary have access to the H functionality.

Let A be any PPT adversary. The simulator S for A in the ideal world internally simulates
a real-world execution with A: it simulates A’s interaction with the environment Z and the func-
tionality H, by simply forwarding the communications between A and Z or H; furthermore, it
simulates the commit and reveal phases of the commitment 〈C,R〉 for A as follows:

Strategy 1: If the Committer (Pi) is honest and the Receiver (Pj) is corrupted, the sim-
ulator need to be able to complete the commit phase of the protocol on behalf of the committer
without actually knowing the committed value v (which Fcom will not disclose until the reveal
phase is initiated). Thus, the simulator needs to be able equivocate the commitment so that
it can be opened to the proper value v in the subsequent reveal phase.

Towards this, in the commit phase, the simulator first forwards the 〈C,R〉 commitment from
A (controlling Pj) in Stage 1 to the functionality H. Since the receiver Pj is corrupted, H
accepts commitments with identity Pj from S, and returns S a valid decommitment pair (r, d)
if the commitment is accepting. (Note that it follows from the efficient verifiability property of
〈C,R〉 that if a commitment of 〈C,R〉 is accepting, then except from negligible probability, it is
valid, and further by the statistically binding property, has a unique committed value, in which
case, H would return a valid decommitment pair to this value.) Next the simulator completes

30



the commit stage by committing to 0n in Stage 2, and committing to the decommitment pair
(r, d) in Stage 3. Then, later, in the reveal phase, S can open to any value v, by sending v
to A and proving in the strongly WI proof that it has committed to a decommitment of the
Stage 1 commitment in Stage 3.

Strategy 2: If the Committer (Pi) is corrupted and the Receiver (Pj) is honest, the sim-
ulator will need to learn the committed value v from the committer in order to correctly
provide the corresponding commit phase input to Fcom.

The simulator S emulates the messages from the receiver Pj for A (controlling Pi), by following
the honest receiver strategy; additionally, it forwards the Stage 2 commitment of 〈C,R〉 from
A to the decommitment functionality H, and uses the committed value returned from the
functionality as the commit phase input. More precisely, let (v, d) be the decommitment pair
returned from H; S then sends the message (Commit, (Pi, Pj , sid), v) to Fcom, if the Stage 2
commitment from A is accepting; otherwise, it does nothing.

Strategy 3: If both the Committer (Pi) and the Receiver (Pj) are honest, since the ad-
versary A reads the communications between all parties, S needs to be able to simulate the
commit phase between two honest parties for A, without knowing the value committed to
by Pi, and later equivocate the simulated commitment to open to any value that Pi reveals.
This task is almost the same as that in the first case, except that the receiver now is honest.
Then S simulates the messages from the receiver Pj by following the honest receiver strategy;
and simulates the messages from the committer Pi by applies Strategy 1 against the honest
receiver strategy.

Below we analyze each of the simulation strategies above, and show that the environment Z’s
interactions with S in the ideal-world is indistinguishable from that with A in the real-world in
each of the cases.

Analysis of the first case: Consider the following three hybrids:

Hybrid H1 proceeds identically to the ideal-execution, except that, in H1 the ideal commit-
ment functionality Fcom discloses the commited value v to S, once it receives it from
Pi; S then commits to v honestly, instead of 0n, in Stage 2 of the commit phase sim-
ulated for A, using 〈C,R〉 and identity (Pi, sid). Then the only difference between the
ideal-execution and H1 lies in the value committed to in Stage 2 of the simulation of
π. Since H “breaks” commitments of 〈C,R〉 in the same way as O does, it follows
from the CCA-security w.r.t. O of 〈C,R〉 that, the execution in H1 is indistinguishable
from that in the ideal-world, provided that H does not “break” any commitments of
〈C,R〉 using identity (Pi, sid). (Recall that CCA-security holds only if the adversary
does not query the decommitment oracle on any commitment using the same identity
as the left interaction.) The last requirement holds, since H only accepts queries on
commitments from the adversary or the environment, using their own identities, i.e.,
the identities of the corrupted parties; therefore, H never “breaks” any commitment
with identity (Pi, sid) (which belongs to an honest party). Hence we conclude that the
ideal-execution is indistinguishable from H1.

Hybrid H2 proceeds the same as H1 does, except that S further emulates the reveal phase
honestly for A, i.e., it proves in the strongly WI proof in the reveal phase that it has
committed to v honestly in Stage 2 of the commit phase. Since the only difference
between H1 and H2 lies in the witness used in the proof in the reveal phase, it follows

31



from the robustness w.r.t. O property of 〈C,R〉 and the strongly WI property of the
proof that, executions in H1 and H2 are indistinguishable.

Hybrid H3 proceeds the same as H2 does, except that, S commits to 0n, instead of the
secret r, in Stage 3 of the commit phase. Since the only difference between H2 and H3

lies in the value committed to (using 〈C,R〉) in Stage 3 of the commit phase simulated
for A, it follows from the same argument as in H1 that the executions in H2 and H3 are
indistinguishable.

Finally, as the view of A in H3 is emulated perfectly as in the real-execution, we have that
the output of Z in H3 is identical to that in the real-execution. It then follows using a hybrid
argument that the ideal and the real executions are indistinguishable in the first case.

Analysis of the second case: In this case, since the simulator S emulates the honest receiver
Pj perfectly for A (controlling the committer Pi), the views of A in the ideal and real worlds
are identically distributed. Furthermore, we show that the commited value that S extracts
from A is almost always the same as the value that A opens to in the reveal phase. Hence the
outputs of the honest receiver Pj in the ideal and real woulds are (almost always) identical,
and thus so are the outputs of the environment.

Recall that in this case, S sends the value v that A commits to in Stage 2 (obtained from
H) as the commit phase input to Fcom. Assume for contradiction that v is not the value A
opens to later in the reveal stage, with non-negligible probability. Then by the soundness of
the proof in the reveal stage, A must have committed to the secret r (i.e., the committed
value of Stage 1) in Stage 3, with non-negligible probability. Then we can construct an
adversary A′ that violates the CCA-security w.r.t. O of 〈C,R〉. In the experiment INDb,
The adversary A′O, internally emulates an ideal-execution with A and Z, by emulating the
functionality H using O; it emulates the commit and reveal phases for A as S does, except
that, it forwards the commitment of 〈C,R〉 it receives from the external committer to A as
Stage 1—in INDb, the external commitment is a commitment to value rb, from {r0, r1} chosen
by A′, and uses identity id again chosen by A′; here A′ selects r0 and r1 at ramdom and sets id
to be (Pj , sid)—furthermore, A′ also forwards the Stage 3 commitment from A to O to obtain
a decommitment pair (u, d), and outputs u at the end of the execution. Since A′ emulates the
ideal-execution perfectly for A and Z, the probability that A, in emulation by A′, commits to
the secret in Stage 3 of the commit phase is identical to that in the ideal-execution. Therefore,
by our hypothesis, in IND0, where the secret is set to r0, the probability that A commits to r0

in Stage 3 is non-negligible. However, in IND1, the probability that A commits to r0 in Stage
3 is at most 1/2n, as the ideal-execution is simulated completely without using r0. Therefore
the outputs of A′ in IND0 and IND1 are distinguishable. Furthermore, since A′ only forwards
O the commitments from A and Z, which use identities of the corrupted parties, A′ never
queries O on any commitment that uses the identity of the left interaction (Pj , sid). Hence
A′ violates the CCA-security w.r.t. O of 〈C,R〉.

Analysis of the third case: In this case, S simulates the interaction between two honest parties
for A. Since the simulation strategy is the same as that in the first case, it follows from the
same proof that the real and ideal executions are indistinguishable in this case.

32



Realizing Any Functionality: First note that to realize any well-formed functionality, it suffices
to realize the ideal oblivious transfer functionality FOT [Rab05, EGL85], which allows a receiver
to obtain one out of two bits held by a sender, without revealing to the sender the identity of its
selection, as presented in Figure 7. By previous works [Kil92, DBOW88, GMW91, IPS08], this
suffices for unconditionally implementing any functionality.

Functionality FOT

1. Upon receiving input (Sender, sid, b0, b1) from party S, verify that sid = (S,R, sid′) for some
identity R and b0, b1 ∈ {0, 1}; else ignore the input. Next, record b0, b1 and generate a public
delayed output (Sender, sid) to R. Ignore further (Sender, ...) inputs.

2. Upon receiving input (Receiver, sid, i) from R, where i ∈ {0, 1}, wait until a value
b0, b1 is recorded, and then send a private delayed output (Output, sid, bi) to R and halt.

3. Upon receiving a message (Corrupt, sid, P) from the adversary, where P ∈ {S,R},
send b0, b1 to the adversary. Furthermore, if S is corrupted, the adversary now provides values
b′0, b

′
1 with each b′j ∈ {0, 1}, and no output was yet written to R, then output (Output, sid, b′i) to

R and halt.

Figure 7: The Oblivious Transfer functionality, FOT

Towards securely realizing FOT, we would like to rely on the the CLOS-BMR protocol [CLOS02,
DBR90]—a constant-round protocol that UC-realize FOT in the Fcom-hybrid model—and simply
realize Fcom using our H-EUC secure implementation (described above). If the CLOS-BMR pro-
tocol had been a H-EUC realization of FOT, then the resulting composed protocol would also be
H-EUC secure (and we would be done). But recall that UC-security does not necessarily imply
H-EUC security (since now the environment is endowed by the super-polynomial oracle H). One
way around this problem would be to rely on subexponentially-hard trapdoor permutations in the
CLOS-BMR protocol. We take a different route (which dispenses of the extra assumptions): Since
the CLOS-BMR protocol is constant-round, we can rely on the robust CCA-security property of
O to prove that CLOS-BMR (relying on standard, polynomially-hard, trapdoor permutations) in
fact is secure also w.r.t H. More precisely,

Lemma 3. Assume the existence of enhanced trapdoor permutations. Then, there exists a constant-
round Fcom-hybrid protocol πOT that H-EUC-emulates FOT.

Proof. To prove this lemma, we rely on the previous results from [CLOS02, DBR90]10.

Theorem 6 ([CLOS02, DBR90]). Assume the existence of enhanced trapdoor permutations. Then,
there exists a constant-round Fcom-hybrid protocol ρOT that UC-realizes FOT, with a black-box se-
curity proof.

We show that the protocol ρOT that UC-emulates FOT also H-EUC-emulates FOT. By The-
orem 3, it suffices to show that, for the dummy adversary D, (which simply forwards messages
between the honest parties, using ρOT, and the environment,) there exists a simulator S, such that
no environment Z, with access to the helper functionality H, can distinguish its interactions with
D or S. Note that since the dummy adversary D never accesses H, it is also a valid real-world

10Previous results in [CLOS02, DBR90] showed that, assuming the existence of enhanced trapdoor permutations,
for every (non-reactive) function g, there exists a constant-round Fcom-hybrid protocol that UC-securely evaluates
this function. Here we only relies on this result applied to a specific function, that is, the oblivious transfer function.

33



adversary in the UC-model. Then by the definition of UC-security, there exists a simulator S′, such
that no environment Z ′ that obeys the rules of interaction for UC, can distinguish its interaction
with D (and the honest parties using the Fcom-hybrid protocol ρOT in the real-world), from its
interaction with S′ (and the honest parties using FOT in the ideal-world). Then let B1 be the
compound machine that contains D, the honest parties, and Fcom in the real-world, and B2 the
compound machine that contains S′, the honest parties, and FOT in the ideal-world. We have that:

• no UC-environment Z ′ can tell apart its interaction with B1 or B2, and

• both B1 and B2 are constant-round ITMs—since the dummy adversary D simply forwards
messages between the honest parties and the environment, the interaction with B1 consists
of only messages in the protocol ρOT, and hence has some constant number of rounds k;
furthermore, by the indistinguishability of the interaction with B1 and B2, the interaction
with B2 also contains only k rounds.

Given the two properties above, we show that S′ is also a valid simulator for D in the H-EUC-
model, that is, no environment Z, in the H-EUC-model, can tell apart its interactions with D (and
the honest parties using ρOT), from that with S′ (and honest parties using FOT). In other words,
no environment Z, having access to H, can tell aparts its interaction with B1 or B2. Suppose not,
and that there is an environment Z that distinguishes interactions with B1 and B2. Then by the
robustness w.r.t. O of 〈C,R〉, and the fact that both B1 and B2 are constant-round ITMs, there
exists a simulator Z ′′, such that, the interacion between Bi and ZH, is indistinguishable from that
between Bi and Z ′′. Therefore the environment Z ′′, without access to H, also distinguishes the
interactions with B1 and B2. However, this contradicts with the first property above. Hence, we
conclude the lemma.

Finally, given FOT, we can securely realize any well-formed functionalities.

Lemma 4. For every well-formed functionality F , there exists a constant-round FOT-hybrid pro-
tocol ρ that H-EUC-emulates F .

Proof. This lemma follows essentially from the previous works [Kil92, DBOW88, GMW91, IPS08],
which showed that for any well-formed functionality F , there exists a constant-round protocol π
that UC-securely realizes F in the FOT-hybrid model, with a black-box security proof. In fact,
it follows syntactically from the same proof as in [Kil92, DBOW88, GMW91, IPS08] that this
result holds even for environments that run in sub-exponential time. In particular, for the dummy
adversary D in the H− EUC model, (who, as argued in the proof of Lemma 3, does not accesses
the helper functionality and thus is also a valid UC-adversary), there exists a simulator S in the
ideal world, such that no sub-exponential time environment can tell part its interactions with D
or S. Since the helper functionality H can be implemented in sub-exponential time, we can view
environments in the H-EUC model as sub-exponential time machines. Thus, combining Theorem 3,
we have that π also H-EUC-emulates F .

References

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages
377–391, 1991.

34



[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the net -
concurrent composition via super-polynomial simulation. In FOCS, pages 543–552,
2005.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, pages 143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations of
Computer Science, page 136, Washington, DC, USA, 2001. IEEE Computer Society.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
CSFW, pages 219–, 2004.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In TCC, pages 61–85, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO
’01, pages 19–40, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC ’00, pages 235–244, 2000.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally
composable two-party computation without set-up assumptions. In EUROCRYPT,
pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[DBOW88] S. Goldwasser D. Ben-Or and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pages 1–10, 1988.

[DBR90] S. Micali D. Beaver and P. Rogaway. The round complexity of secure protocols. In
STOC ’90, pages 503–513, 1990.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability con-
jecture and a new non-black-box simulation strategy. In FOCS, pages 251–260, 2009.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637–647, 1985.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, 1986.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in pres-
ence of immoral majority. In CRYPTO, pages 77–93, 1990.

35



[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game.
In STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 218–229, New York, NY, USA, 1987. ACM.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):690–
728, 1991.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography — Basic Applications. Cambridge Uni-
versity Press, 2004.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In STOC ’01, pages 560–569, 2001.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition. In TCC ’04, pages
203–222, 2004.

[LP09] Huijia Lin and Rafael Pass. Non-malleability amplification. In STOC ’09, pages 189–
198, 2009.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In TCC ’08, pages 571–588,
2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In STOC ’09, pages 179–188, 2009.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental security
from number theoretic assumptions. In TCC, pages 343–359, 2006.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In CRYPTO, pages
392–404, 1991.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol
composition. In EUROCRYPT, pages 160–176, 2003.

36



[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions
and applications. In CRYPTO 2008: Proceedings of the 28th Annual conference on
Cryptology, pages 57–74, Berlin, Heidelberg, 2008. Springer-Verlag.

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In FOCS, pages 404–413, 2003.

[PR05] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, pages
563–572, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS ’02, pages 366–375, 2002.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal
composability without trusted setup. In STOC, pages 242–251, 2004.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round con-
current zero-knowledge. In TCC ’08, pages 553–570, 2008.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium on Security
and Privacy, pages 184–, 2001.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, Report 2005/187, 2005.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-knowledge
proofs. In Eurocrypt ’99, pages 415–432, 1999.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
STOC, pages 387–394, 1990.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In CRYPTO, pages 433–444, 1991.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

37


