
Amplification of Chosen-Ciphertext Security

Abstract. Understanding the minimal assumptions from which we can build a public-
key encryption scheme secure against chosen-ciphertext attacks (a CCA-secure scheme,
for short) is a central question in both practical and theoretical cryptography. Following
the large body of work on hardness and correctness amplification, we ask the question of
how far we can weaken a CCA-secure encryption scheme so that an efficient construction
of a fully CCA-secure scheme from it can still be given.

We consider a weak CCA-secure encryption scheme that has decryption error (1 − α)/2
and is only weakly CCA secure in the sense that an adversary can distinguish encryptions
of different messages with possibly large advantage β < 1−1/poly. We show that whenever
α2 > β, the weak correctness and the weak CCA security properties can be simultaneously
amplified to obtain a fully CCA-secure encryption scheme with negligible decryption error.
Our approach relies both on a new hardcore lemma for the setting of CCA security, and
on an extension of a recently proposed approach to obtain CCA security by Hohenberger,
Lewko, and Waters (EUROCRYPT ’12) to handle large decryption errors.

Previously, such an amplification result was only known in the simpler case of security
against chosen-plaintext attacks, as shown by Dwork, Naor, and Reingold (EUROCRYPT
’04) and by Holenstein and Renner (CRYPTO ’05).

1 Introduction

1.1 Public-key encryption and CCA security

The seminal work of Goldwasser and Micali [16] introduced the notion of semantic security as the
basic security requirement for public-key encryption: It requires that no polynomial-time adversary
can distinguish encryptions of any two messages m0 and m1 of its choice, except with negligible
advantage, given only the public key. This is usually referred to as security against a chosen plaintext
attack, or CPA security, for short. However, it turns out that many applications require a stronger
notion of security known as (adaptive) chosen-ciphertext security (CCA security, for short) [44], where
the above indistinguishability requirement must hold true even for adversaries with the additional
ability to query a decryption oracle; for this reason, CCA security is considered to be the golden
standard for secure public-key encryption.

In contrast to the case of CPA security, where simple constructions from generic assumptions
(such as trapdoor permutations (TDP)) can be given, delivering CCA-secure schemes from general
assumptions proved itself to be a much more challenging problem. In particular, building a CCA-secure
scheme from a CPA-secure one remains a major longstanding open problem. Constructions additionally
relying on non-interactive zero-knowledge proof systems (NIZKs) are known [40,12,44,46]. But, so far,
all constructions of NIZKs require the existence (enhanced) TDPs, which are not known to be implied
by CPA-secure encryption; furthermore, known constructions based on NIZKs are all non-black-box.
It is in fact likely that no black-box construction of a CCA-secure scheme from a CPA-secure one
exists, as confirmed at least for a certain natural class of constructions [14]. For this reason, efficient
constructions have been instead given from more concrete families of assumptions, such as hash proof
systems and variants thereof [9,48], lossy TDFs [43], correlated-product secure TDFs [45], adaptive
TDFs [33], or using random oracles [2,3].

1.2 Our results: From weak to strong CCA security

In this paper, we ask and answer the following question:

“How far can we weaken CCA security and still provide a black-box construction of a CCA-
secure encryption scheme from a scheme only satisfying the weaker notion?”



Our approach builds upon the large body of works on security amplification, which considered a wide
range of cryptographic primitives such as one-way functions and permutations [50,15,10,18], pseudoran-
dom functions and permutations [38,36,11,37,47], collision-resistant hash functions [5], cryptographic
puzzles and CAPTCHAs [4,29,31], watermarking schemes [27], two-party protocols like commitment
and oblivious transfer [49,19,7,26], as well as interactive arguments [1,42,17,21,6]. Interestingly, limited
work has been devoted to amplification of public-key encryption. The problem was first considered by
Dwork, Naor, and Reingold [13] for CPA-secure public-key encryption. Constructions achieving better
parameters were later proposed by Holenstein [24] and by Holenstein and Renner [25]. However, the
question of amplifying CCA security has remained wide open ever since. This is the question that we
tackle and solve in this work.1

Modeling weak CCA encryption. Our model of weak CCA encryption extends naturally the
model of weak CPA encryption considered in [13,25]. We start from a bit-encryption2 scheme with key
generation algorithm Gen, encryption algorithm Enc, and decryption algorithm Dec, and weaken it in
two different directions, allowing both for non-negligible decryption errors as well as for non-negligible
adversarial advantage in a chosen-ciphertext attack. More concretely, for two given parameters 0 <
α, β ≤ 1, where α ≥ 1/p(κ) and β < 1−1/q(κ) for some polynomials p and q, we assume the following
two conditions:

(i) α-weak decryptability: The decryption error over a random key-pair and a random bit is

at most 1−α
2 , i.e. Pr

[
(pk, sk)

$← Gen, b
$← {0, 1} : Dec(sk,Enc(pk, b)) = b

]
≥ 1+α

2 . We stress that

this is a very weak guarantee, as it is taken over random choices of the keys and of the bit b, as
well as of the coins used to encrypt b.

(ii) β-weak security: We consider the usual CCA-security game where an adversary obtains first
the public key, and later a challenge ciphertext encrypting a random bit b. Moreover, the ad-
versary can ask arbitrary decryption queries, with the sole exception that after the adversary
obtains the challenge ciphertext, it cannot ask for its decryption. The task of the adversary is
to output a guess b′, and we are going to require that Pr [b′ = b] ≤ 1+β

2 for all polynomial-size
adversaries.

Justifying weak CCA security. There are several reasons why assuming the existence of such a
weak scheme is reasonable. Let us mention some natural examples.

- Within the general agenda of achieving CCA security from general assumptions, we may envision
that a construction of a weak CCA scheme is potentially much easier to find than a construction
of a full-fledged CCA-secure encryption scheme.

- An existing scheme designed to be CCA-secure may end up being less secure than expected due
to the discovery of a better concrete attack or due to implementation errors, as in the recently
discussed case of faulty key generation for RSA-based systems [34,22].

- It may be generally easier to build a CCA-secure scheme with large decryption errors. For example,
as pointed out in [32], an encryption scheme with a simple, easily learnable, decryption algorithm
must have large decryption error. In contrast to CPA encryption, reducing the decryption error
turns out to be a major challenge in the case of CCA encryption, even if the scheme is already
fully CCA secure.

Our main result. The question we are going to ask is whether for a certain α, β, there exists a
transformation which delivers a CCA-secure encryption scheme from any scheme which has α-weak
decryptability and β-weak security. We provide an affirmative answer to this question.

1 Note that in the secret-key setting, amplification of CCA security is, at least in principle, known to be feasible, as any
weak form of CCA security implies weak one-way functions, and these are sufficient to build CCA-secure symmetric-key
encryption via standard techniques.

2 As every meaningful encryption scheme has at least the ability to encrypt a binary value, this is the weakest possible
assumption in terms of message space of the basic scheme.
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Theorem 1 (Main theorem, informal). If α2 > β, there exists a black-box construction transform-
ing any scheme with α-weak decryptability and β-weak security into a CCA-secure encryption scheme
with negligible decryption error.

We cannot rule out that constructions achieving a wider range of parameters α and β exist. In
fact, we remark that the problem of determining the optimal parameters is open even in the simpler
case of amplifying weak CPA security. While the constraint α2 > β is shown [25] to be necessary
for a restricted class of CPA black-box amplifiers, we see little value in extending this result to CCA
security, as our amplifier itself is not within this class.

1.3 Our techniques

We now turn to a high-level overview of our techniques to amplify weak CCA encryption. Our approach
relies on different existing techniques, which we are going to extend, such as those for simultaneously
amplifying weak correctness and weak CPA security [25], and those for extending the message space
of CCA-secure encryption schemes [39,23]. We start by reviewing these works, before turning to a
description of our two main new techniques, namely hardcore lemmas for CCA-security and heavy-
ciphertext pre-sampling, and how they are used.

Amplification of CPA encryption. Given a public-key bit-encryption scheme PKE with α-weak
decryptability and β-weak security with respect to chosen-plaintext attacks, the Holenstein-Renner
(HR) construction [25] produces a fully CPA-secure encryption scheme with negligible decryption
error. To encrypt each message m, the HR construction invokes the basic bit-encryption scheme PKE
to encrypt several fresh random bits b1, · · · , bn under n public keys pk1, · · · , pkn, producing ciphertexts
c1, · · · , cn; the bits b1, · · · , bn are then carefully “combined” to generate a one-time-pad k for hiding
the actual message m, as well as some additional ciphertext component c′; the additional component c′

is used by the legitimate receiver, given the secret keys, to reconstruct the one-time pad, but it should
not leak any information about k to the adversary. The final ciphertext is c = (c1, . . . , cn, c

′,m⊕ k).
The reason why such a combiner can exist is that the probability that the legitimate receiver, given

the secret keys, can learn each individual bit bi from ci is (1 +α)/2, which we expect to be sufficiently
larger than the probability that the adversary learns bi from ci without the secret keys. To make this
intuition sound, one uses Impagliazzo’s hardcore lemma [28] and its tighter version by Holenstein [24]:
It implies that if PKE is β-weakly CPA secure, then, for each i, with probability 1−β (over the choice
of bi, the randomness for sampling pki and encrypting bi), the encryption of bi is a “hard instance”,
meaning that given its encryption ci, the bit bi is (computationally) indistinguishable from a random
independent bit. This gap between what an honest decryptor and an eavesdropper can recover can be
leveraged by an information-theoretically secure one-way key-agreement protocol as in the setting of
Maurer [35], which turns out to provide directly the right type of combiner.

From bit CCA encryption to string CCA encryption. It is well known that a CPA-secure
string encryption scheme can be built from a CPA-secure bit-encryption scheme via simple parallel
encryption of each bit. However, this approach does not lift to extending the message space of CCA-
secure bit encryption, as an adversary can easily maul a challenge ciphertext c1 · · · ci · · · cn of a n-bit
string b1 · · · bi · · · bn into another ciphertext c1 · · · c′i · · · cn of a related string b1 · · · 0 · · · bn, and thus
win in the CCA security game—additional structure is needed to retain CCA security. Myers and
shelat [39] showed that although this approach is not CCA secure, it satisfies a weaker adaptive
security property—called UCCA security—which requires indistinguishability to hold for adversaries
that can query a decryption oracle on any ciphertext c1, · · · , cn of their choice, except those that
“quote” the challenge ciphertext, denoted as c∗1, · · · , c∗n, at any of its components, that is ci = c∗i for
some i. Then, Myers and shelat, and later Hohenberger, Lewko, and Waters (HLW) [23], showed how
to construct a string CCA-secure scheme PKE from such a UCCA-secure string encryption scheme
PKEs.

3 Here we briefly review the HLW construction. It uses PKEs as an inner encryption scheme

3 In fact, [23] showed a more general construction of string CCA encryption schemes from any encryption scheme that
is DCCA secure and unpredictable. In particular, UCCA security is a special case of DCCA security.
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PKEin = PKEs and two outer schemes PKEout,1, PKEout,2 that are CCA-1 and CPA secure respectively.
To encrypt a message m, the encryption algorithm proceeds by encrypting m together with two random
strings rout,1 and rout,2 into an inner ciphertext cin = Encin(pkin, (m, rout,1, rout,2)); it then encrypts the
inner ciphertext into two outer ciphertexts (cout,1, cout,2) using rout,1 and rout,2 respectively as the
randomness for encryption, that is, cout,i = Encout,i(pkout,i, cin; rout,i) for i = 1, 2; the final ciphertext
is simply (cout,1, cout,2). At a high level, the two outer schemes prevent the adversary from issuing a
decryption query for a ciphertext whose embedded inner ciphertext “quotes” that in the challenge
ciphertext, hence reducing CCA to UCCA security.

Our Approach. A seemingly plausible attempt for constructing a CCA-secure encryption scheme
from a weak scheme PKE with α-decryptability and β-weak CCA-security is to first try to show that
the HR construction PKE′, when instantiated with PKE as the basic bit-encryption scheme, is UCCA
secure, and subsequently plugging PKE′ as the inner encryption scheme into the HLW construction
PKE, and show that it yields a CCA-secure encryption scheme.

Unfortunately, we encounter the following two challenges: First, it is unclear whether the weak
CCA security of PKE is amplified through the construction of PKE′ to UCCA security; in particular,
known hardcore lemmas [28,24] only hold for games where the challenger is stateless, but the challenger
in the CCA security game is stateful (it changes its behavior before and after the challenge ciphertext
is generated). Second, it turns out that the security proof of the HLW construction requires the basic
scheme PKE to have “unpredictability”—that is, a random cipheretxt (of a random bit) of PKE has
high entropy and is almost impossible to blindly guess—which holds trivially for any fully-secure CPA
encryption scheme with negligible decryption error, but is not satisfied by a weak CCA encryption
scheme.

Overcoming these two difficulties turns out to be quite challenging and requires the adoption of
new techniques, for which we now provide a high-level overview.

Step 1: The Hardcore Lemma for CCA security and XCCA security. To overcome the
first difficulty, we prove a variant of Impagliazzo’s hardcore lemma which applies to CCA security
(Theorem 2 below): It implies that if a scheme is weakly β-CCA-secure, then with probability 1 − β
(over the randomness for choosing a random plaintext bit, for key generation, and for encryption),
given an encryption of a random bit b, b is indistinguishable from a random independent bit even
to adversaries with access to the decryption oracle. Our new hardcore lemma can be used to prove
that PKE′ satisfies an even stronger adaptive security property than UCCA, called XCCA (read as
“cross”-CCA), which guarantees indistinguishability even for adversaries with access to decryption
oracles that decrypts ciphertext of the basic scheme PKE under each individual component key of
PKE′, subject to the restriction that the decryption oracle for the i-th component does not answer
queries that “quote” the corresponding component in the challenge ciphertext. As we will see shortly,
this stronger security guarantee is quintessential for overcoming the second difficulty.

Finally, rather than presenting a direct proof of the hardcore lemma for CCA security, we provide
a general characterization of games for which hardcore lemmas exist, which extends beyond games
for which such lemmas are known [28,24,47]. Our hardcore lemma for CCA-security is then simply
derived as a special case. We believe this step to be of independent interest.

Step 2: From XCCA security to CCA security.We prove that the CCA security of PKE can be
based on the stronger XCCA security of the inner encryption PKE′, even if the underlying basic scheme
PKE is not sufficiently “unpredictable” – in contrast to the proof in [23]. This requires a substantially
different analysis than the one of [23], and in particular a new reduction. Concretely, we overcome
lack of unpredictability by introducing a new technique called heavy-ciphertext pre-sampling. Roughly
speaking, this technique allows the security reduction (from CCA security of PKE to XCCA security
of PKE′) to proactively predict and decrypt all highly likely ciphertexts of PKE, and the challenging
task is to prove that these are the only components of the inner challenge ciphertext an adversary
may indeed easily “quote” after seeing the challenge ciphertext.
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2 Preliminaries

We start by introducing some basic notations, and then move to reviewing definitions for public-
key encryption schemes, their correctness and their security. We review some basic constructions and
techniques to deal with encryption schemes in Appendix A.

2.1 Basic concepts and notation

Throughout this paper, a function f : N → [0, 1] is negligible if it vanishes faster than the inverse of
any polynomial p, i.e., for all c > 0 there exists κc such that f(κ) ≤ κ−c for all κ ≥ κc. The probability
distribution of a random variable X is usually denoted as PX , and we occasionally use the shorthand
PX(x) for Pr [X = x]. Adversaries are going to be modeled as non-uniform families of (randomized)
circuits for ease of exposition, but all results extend with some work to the uniform setting, as we
occasionally point out.

2.2 Weak and Strong CCA Secure Encryption

A public-key encryption scheme with message space M ⊆ {0, 1}∗ is a triple PKE = (Gen,Enc,Dec),
where (i) Gen is the (randomized) key generation algorithm, outputting a pair (pk, sk) consisting of
a public- and a secret-key, respectively (ii) Enc is the (randomized) encryption algorithm outputting
a ciphertext c = Enc(pk,m) for any message m ∈ M and a valid public key pk; and (iii) Dec is the
deterministic decryption algorithm such that Dec(sk, c) ∈ M ∪ {⊥}. All algorithms additionally take
(implicitly) as input the security parameter 1κ in unary form, and the message space M may also
depend on the security parameter κ. WheneverM = {0, 1}, we say that the scheme is a bit-encryption
scheme. We sometimes need to make the randomness used by Gen and Enc explicit: In these cases, we
write Gen(r) and Enc(pk,m; r) to highlight the fact that random coins r are used to generate keys by
Gen and to encrypt the message m, respectively.

Correctness of PKE.Throughout this paper, we say that the encryption scheme PKE with message

spaceM has decryption error δ if Pr
[
(pk, sk)

$← Gen, m
$←M : Dec(sk,Enc(pk,m)) 6= m

]
≤ δ, where

the probability is additionally over the random coins of Enc. Moreover, we say that a scheme is almost
perfectly correct, if for an overwhelming fraction of randomness r used by the key generation algorithm,
for (pk, sk) = Gen(r), and all messages m ∈M, we have Pr [Dec(sk,Enc(pk,m)) = m] = 1.

Security of PKE. In general, security of the scheme PKE = (Gen,Enc,Dec) is defined via the
following security game involving a challenger and an adversary A:

Game CCA2APKE:

(i) The challenger generates (pk, sk)
$← Gen and b

$← {0, 1}, and gives pk to A.
(ii) The adversary A asks decryption queries c, which are answered with the message

Dec(sk, c) ∈M∪ {⊥}.
(iii) The adversary A inputs (m0,m1) with |m0| = |m1| to the challenger, and receives a

challenge ciphertext c∗
$← Enc(pk,mb).

(iv) The adversary A asks further decryption queries c 6= c∗, which are answered with the
message Dec(sk, c) ∈M∪ {⊥}.

(v) The adversary A outputs a bit b′, and wins the game if b′ = b.

We refer to decryption queries in phase (ii) and (iv) as before-the-fact and after-the-fact decryption
queries, respectively. Moreover, in the case that PKE is a bit-encryption scheme we assume without
loss of generality that (m0,m1) = (0, 1), and hence Enc(pk, b) is the challenge ciphertext. We also
define the CCA2-advantage of the adversary A as AdvCCA2

PKE (A) = 2 · Pr [b′ = b] − 1. We say that an
encryption scheme is CCA-secure if AdvCCA2

PKE (A) is negligible for all polynomial-size adversaries A.
We say it is q-CCA-secure if this holds for adversaries making at most q decryption queries, whereas
it is CPA-secure if it is 0-CCA-secure. The following notation will also be convenient.
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Definition 1. For α, β ∈ [0, 1], a bit-encryption scheme PKE is (α, β)-CCA-secure if the following two
properties hold: (i) PKE has decryption error (1−α)/2, and (ii) For any polynomial-size adversary A,
we have AdvCCA2

PKE (A) ≤ β.

In passing, we point out that CPA-secure encryption with negligible decryption error implies one-way
functions [30], and in turn implies pseudorandom generators [20], all in a black-box way.

3 Hardness Amplification and the Hardcore Lemma for CCA Security

Informally speaking, Impagliazzo’s Hardcore Lemma [28] asserts that if for a predicate P it is mildly
hard to compute P (x) on a random input x given side information f(x) (i.e., say this can be done
with probability at most 1+ε

2 ), then there must exist a sufficiently large subset S (the “hardcore set”)
of the inputs such that when sampling x′ from S, it is infeasible to predict P (x′) from f(x′) noticeably
better than by random guessing. A tight proof where the set S contains a (1−ε)-fraction of the inputs
was given by Holenstein [24]. The main contribution of this section is deriving a similar statement
for (weak) CCA-secure encryption to be used in the analysis of our construction of a CCA-secure
encryption scheme later.

Recently, Tessaro [47] gave a hardcore lemma for interactive primitives, which is however not
sufficient to capture CCA security, as it only considers challengers with state independent of the
interaction. Here, in contrast, we present a new abstraction of existing proofs of hardcore lemmas,
which is of independent interest. Not only we apply it to derive the hardcore lemma for CCA security
of bit-encryption, but it also yields previous more restricted statements [28,47] as special cases.

Bit-guessing games. Let us took a more abstract look at games (such as the CCA-security game)
where the adversary is asked to guess a bit. Formally, we describe a bit-guessing game as a tuple
G = (PX , C, P ), where PX is a probability distribution with support X , C is an interactive stateful
machine taking an auxiliary input x ∈ X , and P : X → {0, 1} is a predicate. Combined with an

adversary A, G defines the following game: First, an input x
$← PX is sampled. The game then

continues with the interaction between the challenger C(x) and an adversary A, which then outputs a

bit b′
$← AC(x) (here the oracle C(x) keeps state). The goal of the adversary is to guess the bit P (x).

In particular, we define the G-advantage of A relative to a distribution P as

AdvGP (A) = 2 · Pr
[
x

$← P, b′
$← AC(x) : b = P (x)

]
− 1 . (1)

We say that G is (s, ε)-hard if AdvGPX
(A) ≤ ε for all s-size adversaries A. Definitions extend naturally

to the asymptotic setting.

Hardcore lemmas and measures. A measure M for a bit-guessing game G is a mapping M :
X → [0, 1], and its density is µ(M) =

∑
x∈X PX(x) · M(x). We associate with M the probability

distribution PM such that PM(x) := PX(x) · M(x)/µ(M) for all x ∈ X . The role of a measure is

that of adjoining an event E to the sampling of x
$← PX such that Pr

[
E
∣∣X = x

]
= M(x); then in

particular Pr [E ] = µ(M), and Pr
[
X = x

∣∣ E] = PM(x).

We ask the question of which bit-guessing games admit a hardcore measure: Assuming the game
G is ε-hard for some ε ∈ [0, 1], we seek for a measure M with large density (e.g. µ(M) ≥ 1− ε) such
that conditioned on the associated event E , the game G is very hard to win. In [47], a proof that this
is true for the case where C(x) is stateless for each x was given. Our new approach extends this to
possibly stateful challengers, as in the case of CCA security.

Abstract hardcore lemmas. We give a simple sufficient condition on a bit-guessing game G =
(PX , C, P ) to admit a hardcore lemma. The condition is formulated in terms of the ability, for any
given x, to estimate the probability that a binary-output adversary for G, sampled according to a
given distribution over circuits, outputs one when run on C(x). In particular, we call an oracle O a size
s circuit sampler for G if, upon each invocation, it returns the description of a valid adversary A for
G of size s. For each such O, we define pO,G1 (x) as the probability that a randomly sampled adversary
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A $← O outputs one when run with C(x), i.e.,

pG,O1 (x) := Pr
[
B $← O, b′

$← BC(x) : b′ = 1
]
. (2)

The following definition captures the notion of a good estimation algorithm for pG,O1 (x) which can only
interact with C(x) and obtain samples from O, bur does not learn x and must be equally successful
on all such x.

Definition 2 (p1-estimator). Let G = (PX , C, P ) be a bit-guessing game. Then, a (s, s′, q, γ, η)-p1-
estimator for G is a size s circuit E outputting a real number in [0, 1], such that for all size-s′ circuit

samplers O, for all x, and with p1(x) = pG,O1 (x),

Pr
[
B1, . . . ,Bq

$← O, p1
$← EC(x)(B1, . . . ,Bq) : |p1 − p1(x)| > γ

]
< η . (3)

Note that in particular q · s′ ≤ s. The following theorem relates the existence of a hardcore lemma for
a certain game G with the existence of a p1-sampler for G. Its proof abstracts the ones of [24,47] for
special cases, and is deferred to Appendix B.

Proposition 1 (The Abstract Hardcore Lemma). Let s ∈ N and ε ∈ [0, 1]. Let G = (PX , C, P )
be a bit-guessing game which is (s, ε)-hard. Then, for all γ > 0, if for some s′ = s′(γ) there exists an
(s, s′, q, γ(1− ε)/4, γ(1− ε)/4)-p1-estimator for G, then there exists a measure M =Mγ such that:

(i) µ(M) ≥ 1− ε, (ii) For all s′-size adversaries B, AdvGPM(B) ≤ γ.

The hardcore lemma for CCA-security.We are now going to show a hardcore lemma for CCA-
security as an application of Proposition 1. Let PKE = (Gen,Enc,Dec) be a public-key bit encryption
scheme such that Gen and Enc take randomness of lengths ρGen and ρEnc, respectively. Formally, we
consider the bit-guessing game CCA2[PKE] = (PX , CCA, P ) where PX is the uniform distribution
on {0, 1}ρGen × {0, 1}ρEnc × {0, 1}, whereas CCA(rGen, rEnc, b) is the challenger for the CCA-security
game for PKE with challenge bit b, public key and secret key (pk, sk) = Gen(rGen), and challenge
ciphertext c∗ = Enc(pk, b; rEnc). Moreover, we define P (rGen, rEnc, b) = b. The following lemma gives
an appropriate p1-estimator for CCA2[PKE].

Lemma 1. For all PKE = (Gen,Enc,Dec) with message space {0, 1}, and all s′ ∈ N, γ, η ∈ (0, 1],
there exists a (s, s′, q, γ, η)-p1-estimator for CCA2[PKE] with q = O(log(1/η)/γ2) and s = s′ · q+O(1).

Proof. The estimator E , given pk from CCA, runs sequentially each of B1, . . . ,Bq on input pk until
they output their query (0, 1). All before-the-fact decryption queries are answered using the challenger
CCA. It then obtains a challenge ciphertext c∗, and then resumes the execution of Bi’s from the last
state before outputting (0, 1), again using the challenger to reply to decryption queries. Finally, let b′i
be the output of Bi; the estimator E outputs the average z = (1/q) ·

∑q
i=1 b

′
i. The error is at most γ

with probability at most η by the Chernoff bound. ut

We stress that the above lemma is only true for bit-encryption. Should we consider a larger set of
messages, each Bi could ask a different message pair, and the above estimation technique would fail.

The following theorem is a simple combination of Proposition 1 and Lemma 1.

Theorem 2 (Hardcore Lemma for CCA Security). Let α, β ∈ [0, 1], and let s ∈ N. Moreover,
let PKE = (Gen,Enc,Dec) be a public-key encryption scheme with message space {0, 1}, and assume
that AdvCCA2

PKE (A) ≤ β for all s-size adversaries A.

Then, for all γ > 0, there exists a measure M such that µ(M) ≥ 1−β, and Adv
CCA2[PKE]
PM

(B) ≤ γ
for all adversaries B with size s′, where s = O(s′ · log(1/γ(1− ε))/γ2(1− ε)2).
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Some remarks. We provide some important remarks on extensions of the above results.

Remark 1. We remark that the above results are for the non-uniform setting. This makes the pre-
sentation of the main ideas somewhat simpler, but we note that the abstract hardcore lemma above
extends to uniform security following the approach of [24], provided one can efficiently simulate the
interaction between an adversary and the given challenger.

Remark 2. Games where C(x) is stateless for each x easily yield a good sampler via sequential repeti-
tion, and therefore the results of [28,24,47] all easily follow from the abstract hardcore lemma.

Remark 3. Without giving further detail, we briefly point out that [47] provides a stronger result
for the case where C(x) is possibly not efficient, as e.g. |x| is exponentially large, yet the interaction
between an adversary and C(x) for a random x is efficiently simulatable; this won’t be necessary here,
but similar techniques can be applied.

4 From Weak to Strong CCA Security: The Construction and its Security

In this section, we present our construction to transform an (α, β)-CCA encryption scheme into a fully
CCA-secure encryption scheme. We start by reviewing some information-theoretic tools underlying
our construction, before turning to its description and security.

4.1 Information-theoretically secure key-agreement

We consider the problem of two parties, Alice and Bob, agreeing on a secret key with unconditional
security in a setting where they each hold values X1, . . . Xn and Y1 . . . , Yn, respectively, in presence of
an adversary obtaining values Z1, . . . , Zn; in particular, (Xi, Yi, Zi) are sampled independently from
a given tripartite probability distributions PXY Z for all i = 1, . . . , n. That is, (Xi, Yi, Zi) are possibly
correlated for each i, but independent across distinct indices i 6= j. Moreover, Alice and Bob are
connected via an authenticated channel, allowing them to exchange messages, which is however wire-
tapped by the adversary. The problem of secret-key agreement in this setting was first considered by
Maurer [35]. Here, we consider the special case where the channel only allows one-way communication
from Alice to Bob. The following definition formally captures such a protocol.

Definition 3 (One-way key-agreement). Let ε, δ : N → [0, 1], and let n, ` : N → N be mono-
tonically increasing functions. Moreover, let P = {Pκ}κ∈N be a family of sets of tripartite probability
distribution PXY Z . An (P, ε, δ, n, `)-one-way key agreement protocol is a probabilistic polynomial-time
protocol OKA = (KAEnc,KADec) such that for all κ ∈ N, all PXY Z ∈ Pκ, and for independent samples

(X1, Y1, Z1), . . . , (Xn, Yn, Zn)
$← PXY Z (where n = n(κ)), the following two properties hold:

Correctness. With probability 1− δ(κ), both parties output the same key, i.e.,

Pr
[
(C,K)

$← KAEnc(1κ, X1, . . . , Xn); K ′
$← KADec(1κ, Y1, . . . , Yn;C) : K = K ′

]
≥ 1− δ(κ) .

Security. SD((C,K,Z1, . . . , Zn); (C,K ′, Z1, . . . , Zn)) ≤ ε(κ), where (C,K)
$← KAEnc(1κ, X1, . . . , Xn),

and K ′
$← {0, 1}`(κ), and SD denotes statistical distance.

In the following for some α, β : N→ [0, 1], we consider a special set D(α, β) of tripartite probability
distributions introduced by Holenstein and Renner [25].

Definition 4 ([25]). Let α, β : N→ [0, 1]. We define D(α, β) = {Dκ(α, β)}κ∈N such that for all κ ∈ N,

PXY Z ∈ Dκ(α, β) if a triple (X,Y, Z)
$← PXY Z satisfies the following: (i) Pr [X = 0] = Pr [X = 1] = 1

2 ,

i.e., X is a uniform bit, (ii) Pr [X = Y ] ≥ 1+α(κ)
2 , and (iii) there exists an event E, defined on (X,Z),

such that Pr
[
X = 0

∣∣Z = z, E
]

= Pr
[
X = 1

∣∣Z = z, E
]

= 1
2 for all z, and Pr [E ] ≥ 1− β(κ).

We now discuss feasibility of one-way KA protocols for D(α, β). The following was proved by
Holenstein and Renner [25] and will be useful below. We give an asymptotic reformulation.
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Proposition 2. Let α, β : N → [0, 1] be such that α2 > β + Ω(1), and let ` : N → N be a polyno-
mial function. Then, there exists a polynomial-time (D(α, β), ε, δ, n, `)-one-way KA protocol such that
n(κ) = 1

7 · `(κ) · (α2 − β −O(1)) and moreover, ε(κ) is negligible in n(κ), and δ(κ) = 2−Θ(n(κ)).

There is no a-priori reason why α2 and β could not be closer, yet no better gap can be proven given
existing constructions of capacity-achieving error-correcting codes. In the error-free case, however, the
following better result is proven in Appendix C.

Proposition 3. Let p be a polynomial, ε′ : N → [0, 1], and ` : N → N be a polynomial function.
Then, there exists a D(1, 1 − 1

p(κ) , ε, δ, n, `)-one-way KA protocol where n(κ) = 2/(1 − β(κ)) · (`(κ) +

2 log(1/ε′(κ)) +O(1)), ε(κ) ≤ O(
√
ε′(κ)), and δ(κ) = 0.

4.2 The main construction

Let PKE = (Gen,Enc,Dec) be a bit-encryption scheme which is (α, β)-secure. Assuming the existence
of an information-theoretically secure one-way key agreement protocol for D(α, β), we present a con-
struction of a CCA-secure public-key encryption scheme PKE = (Gen,Enc,Dec), with message length
` = `(κ) and negligible decryption error, which makes black-box use of the basic scheme PKE.

At the highest level, our construction PKE follows the paradigm recently proposed by Hohenberger,
Lewko, and Waters [23]. In particular, it consists of an inner scheme PKEin = (Genin,Encin,Decin) and
two outer schemes PKEout,1 = (Genout,1,Encout,1,Decout,1) and PKEout,2 = (Genout,2,Encout,2,Decout,2),
all three of which will be built from PKE, and specified below. For ? ∈ {in, (out, 1), (out, 2)}, let us
further denote by `?, ρ? and t? the message, randomness, and ciphertext lengths of PKE?, respectively.
We are going to require `in = `+ ρout,1 + ρout,2 as well as `out,1 = `out,2 = tin. A formal description of
PKE is given in Figure 1, on the left: We encrypt the message m, together with two random values
rout,1 and rout,2, obtaining an inner ciphertext cin, which is then encrypted twice with the two outer
schemes, using rout,1 and rout,2 as the respective random coins. Decryption recovers the message by
decrypting the ciphertext via Decout,1 and Decin using the corresponding secret keys, and then checks
validity of the ciphertext by re-encrypting the inner ciphertext using the public keys and the recovered
random coins.

We now turn to describing the construction of the component schemes PKEin, PKEout,1 and PKEout,2

from the basic scheme PKE.

The inner scheme. Let OKA = (KAEnc,KADec) be a (D(α, β), ε, δ, n, `in)-one-way key agreement
protocol such that ε and δ are negligible, and known (recall that PKE is (α, β)-CCA secure). We define
PKEin = (Genin,Encin,Decin) as in Figure 1, on the right: It behaves as the construction from [25] to
amplify security and correctness of a weak CPA-secure encryption scheme. (We will prove below that
it actually achieves stronger security when using an (α, β)-CCA secure encryption scheme.) It encrypts
random bits b1, . . . , bn with the basic scheme, and then generates a session key k via KAEnc(b1, . . . , bn),
and a ciphertext c′, and uses the key k as an one-time pad. Decryption via KADec is then obvious. It
is easy to see that the decryption error of this scheme is inherited from OKA, i.e., it is upper bounded
by exactly δ.

The outer schemes. We now instantiate the two outer schemes. The following description is fairly
high-level, but sufficient to fully specify the construction. We refer the reader unfamiliar with the basic
components to Appendix A for a self-contained review.

We first derive a CPA-secure public-key encryption scheme PKE`,ρout with message length ` = poly(κ)
and randomness length ρ = ω(log(κ)) from the basic scheme PKE which also enjoys almost-perfect
correctness:4

1. We use the same construction as in PKEin to achieve a CPA-secure scheme PKE′out, with message
length truncated to 1-bit. CPA-security of the resulting scheme follows from the proof in [25] or
from the stronger Lemma 2 below. Let ρ be the randomness length of PKE′out.

4 In the following, we are not going to optimize the complexity of the scheme; it is clear that some modifications can
be done to save on complexity.
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Scheme PKE = (Gen,Enc,Dec):

Key generation Gen(1κ):

- (pkin, skin)
$← Genin(1κ),

(pkout,i, skout,i)
$← Genout,i(1

κ) for i = 1, 2.

- Return (pk = (pkin, pkout,1, pkout,2), sk =
(skin, skout,1, pkout,1, pkout,2)).

Encryption Enc(pk,m): // m ∈ {0, 1}`

- rout,1
$← {0, 1}ρout,1 and rout,2

$← {0, 1}ρout,2

- cin
$← Encin(pkin,m ‖ rout,1 ‖ rout,2)

- cout,i ← Encout,i(pkout,i, cin; rout,i) for i =
1, 2.

- Output ciphertext cout,1 ‖ cout2 .

Decryption Dec(sk, c = cout,1 ‖ cout2):
- c′in ← Decout,1(skout,1, cout,1)
- m′ ‖ r′out,1 ‖ r′out,2 ← Decin(skin, c

′
in)

- If Encout,i(pkout,i, c
′
in; r′out,i) = cout,i for i =

1, 2 then return m, else return ⊥.

Scheme PKEin = (Genin,Encin,Decin):

Key generation Genin(1κ):

- (pk1, sk1), . . . , (pkn, skn)
$← Gen(1κ)

- Return (pk = (pk1, . . . , pkn), sk =
(sk1, . . . , skn)).

Encryption Encin(pk,m): // m ∈ {0, 1}`in
- b1, . . . , bn

$← {0, 1}
- ci

$← Enc(pk[i], bi) for all i = 1, . . . , n

- (k, c′)
$← KAEnc(b1, . . . , bn)

- Return ciphertext (c1, . . . , cn, c
′,m ⊕

k).

Decryption Decin(sk, c = (c1, . . . , cn, c
′, c′′)):

- b′i ← Dec(sk[i], ci) for i = 1, . . . , n
- k′ ← KADec(b′1, . . . , b

′
n; c′)

- Return plaintext m′ = c′′ ⊕ k′.

Fig. 1. Descriptions of public-key encryption schemes PKE and PKEin.

2. For δ being the decryption error of PKE′out, we apply the transformation given in Appendix A by
Lemma 4 to enforce almost-perfect correctness, reducing randomness length to ρ′ = 1

4 ·log(1/δ(κ)) =

ω(log(κ)) via a PRG G : {0, 1}ρ′ → {0, 1}ρ, whose existence is implied by the existence of PKE′out
in a black-box fashion [30,20].

3. We then use parallel repetition of ` copies of PKE′′out to obtain PKE`,ρout, possibly using a PRG again
to shorten the overall randomness length to ρ.

We are going to let PKEout,2 = PKE
`out,2,ρout,2
out , whereas to obtain the first outer scheme PKEout,1, we

are going to invoke Theorem 4 based on PKE
`out,1,ρ
out (for some ρ = poly(κ)), and then finally use a

PRG to reduce the randomness length to ρout,1. The resulting scheme is then 1-CCA secure, and is
almost-perfectly correct.

4.3 CCA Security of PKE

We turn to our main result and show that our construction PKE is indeed CCA secure.

Theorem 3. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-CCA-secure, and
OKA is a (D(α, β), ε, δ, n, `in)-one-way key-agreement protocol. Then, PKE is a CCA-secure encryption
scheme with negligible decryption error.

In particular, by Propositions 2 and 3, we achieve amplification whenever α2 > β + Ω(1), and
whenever α = 1 and β < 1− 1

p(κ) for some polynomial p.

Overview of the Security Proof. Towards showing the CCA security of PKE, we first show that
it follows from Theorem 2 that the inner encryption scheme PKEin satisfies a strong adaptive security
property, which we refer to as XCCA (to be read as “cross”-CCA) security. We are then going to
reduce the CCA security of PKE to the XCCA security of PKEin using the 1-CCA security of PKEout,1

and the CPA security of PKEout,2, combined with their almost perfect correctness. This second step
resembles the proof of [23] only at a first glance, as it will require a completely different technique to
handle the fact that ciphertexts of the basic scheme PKE are not sufficiently unpredictable.
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Before proceeding to describing the two steps in more details, we first describe the XCCA security
game. For simplicity, here we only define the XCCA game w.r.t. the concrete scheme PKEin; one
can easily generalize the definition to a larger class of encryption schemes whose ciphertext contains
multiple component ciphertexts of a base encryption scheme, similarly to [39]; we omit the details here.
The game proceeds almost identically to the CCA game except that instead of having access to the
decryption oracle for the whole encryption scheme, the adversary has access to the decryption oracles
of the basic encryption scheme PKE using each of the component secret keys; the i’th decryption oracle
using the i’th component secret key is denoted as Dec(sk[i], ·). As a result, the adversary cannot make
any after-the-fact decryption queries that is the same as any of the component ciphertexts encrypted
using one of the component public keys pk[i] in the challenge ciphertext.

Game XCCAAPKEin
:

(i) The challenger generates (pk, sk)
$← Genin and b

$← {0, 1}, and gives pk to A.
(ii) The adversary A asks decryption queries (i, c), which are answered with the message

Dec(sk[i], c) ∈ {0, 1,⊥}.
(iii) The adversary A outputs (m0,m1) with |m0| = |m1| = `in to the challenger, and

receives a challenge ciphertext c∗
$← Encin(pk,mb), where c∗ = (c1, · · · , cn, c′, c′′).

(iv) The adversary A asks further decryption queries (i, c 6= ci), which are answered with
the message Dec(sk[i], c) ∈ {0, 1,⊥}.

(v) The adversary A outputs a bit b′, and wins the game if b′ = b.

Similar to the CCA game, we define the XCCA-advantage of the adversary A as AdvXCCA
PKEin

(A) =
2 · Pr [b′ = b] − 1. We say that PKEin is XCCA-secure if no polynomial sized adversary can achieve a
non-negligible advantage in the XCCA game.

We remark that the XCCA game is closely related to the notion of UCCA security defined in [39],
and the similar notion of DCCA security in [23]: In comparison, in the UCCA security game w.r.t.
PKEin, the adversary only has access to the decryption oracle of the whole encryption scheme, but
is not allowed to make any after-the-fact query that quotes any of the component ciphertexts in the
challenge ciphertext (in DCCA a more fine grained control on disallowed queries is considered). As we
will see shortly, the stronger security guarantee given by XCCA is crucial for our proof to succeed.

With the definition of the XCCA game in mind, the remainder of the proof proceeds via the
following two lemmas.

Lemma 2. Let ε and δ be two negligible functions. Assume that PKE is (α, β)-secure, and OKA is a
(D(α, β), ε, δ, n, `in)-one-way KA protocol. Then, PKEin is XCCA-secure.

Lemma 3. Assume that PKEin, PKEout,1 and PKEout,2 are respectively XCCA, 1-CCA and CPA se-
cure, and PKEout,1 and PKEout,2 have almost-perfect correctness, then PKE is CCA secure.

We now turn to describing the high level ideas behind the proofs of both lemmas, and defer their
formal proofs to Appendices D and E, respectively.

Proof Sketch of Lemma 2: We are going to use the hardcore lemma for CCA-security (Theorem 2) to
show that PKEin is XCCA secure. Informally speaking, in the XCCA game, with respect to each random
bit bi used to generate the component ci of the challenge ciphertext, the adversary is participating in
an independently and randomly executed CCA game for PKE: Indeed, each random bit bi is encrypted
using an independently and randomly chosen public key pk[i] and random coins, and the adversary has
access to the decryption oracle Dec(sk[i], ·). Thus, by the hardcore lemma, each of these CCA games has
probability 1− β of delivering an “hard instance”, and thus the corresponding bit bi remains hidden
to the adversary, i.e., it looks (pseudo-)random with probability 1 − β. More precisely, each triple

(bi,Dec(sk[i], ci), ci), with ci
$← Enc(pk[i], bi) is computationally indistinguishability from a sample
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from a valid distribution from D(α, β). In this case, then it simply follows from the fact that OKA
is a (D(α, β), ε, δ, n, `in)-one-way key agreement scheme that the key k output by KAEnc(b1, · · · , bn)
remains random and thus the message mb is hidden.

Proof Sketch of Lemma 3: We base the CCA security of PKE on the XCCA security of PKEin via a
black-box reduction. At a high level, the reduction B participates in the XCCA game for PKEin and
internally emulates the CCA game for PKE to a CCA-adversary A succeeding with non-negligible
advantage γ as follows:

- It receives the public key pk in the XCCA game and internally generates the public key pk
by sampling key pairs (pkout,1, skout,1) and (pkout,2, skout,2) for the two outer schemes to produce
pk = (pk, pkout,1, pkout,2) and gives it to A.

- To emulate the challenge ciphertext c∗ of PKE that encrypts either m0 or m1 chosen by A in the
emulated CCA game, B first chooses random rout,1 and rout,2, and obtains the challenge ciphertext
c∗in of PKEin that encrypts mb‖rout,1‖rout,2 for a random b ∈ {0, 1} chosen in the XCCA game. It
then produces c∗ honestly by encrypting c∗out,1 = Encout,1(c

∗
in; rout,1) and c∗out,2 = Encout,2(c

∗
in; rout,2).

- Finally, it emulates the decryption oracle Dec(sk, ·) for A by using the secret key skout,1 it sampled
itself, as well as the decryption oracles {Dec(sk[i], ·)}i∈[n] in the XCCA game.

It is easy to see that as long as A does not ask any after-the-fact queries whose inner ciphertext
(embedded in the first outer ciphertext) “quotes” the inner challenge ciphertexts c∗in, i.e., it does not
share a common component ciphertext, B always decrypts queries from A perfectly and consequently
also emulates the view of A perfectly.

It is therefore tempting to try to show that the probability that A “quotes” is negligible. Indeed,
this is the approach taken by [39,23]. The rationale in their proof is that if the basic scheme PKE
has unpredictability — a random ciphertext of a random bit has high entropy and is hard to blindly
guess — then the fact that A manages to quote would violate the 1-CCA security of the first outer
scheme or the CPA-security of the second outer scheme. In [23], a series of hybrids is used to remove
the circular dependence between the inner challenge ciphertext and the randomness used in its two
outer encryptions, and move to a setting where A’s view is statistically independent from the inner
challenge ciphertext, but the quoting probability is negligibly close to the original one. One can then
easily show that unpredictability of PKE yields that quoting occurs with negligible probability only.

Unfortunately, this approach fails completely in our setting, as our basic encryption scheme PKE
does not ensure unpredictability; in fact, it is possible to build an (α, β)-CCA-secure scheme where
ciphertexts have very low min-entropy. We address this via a new technique, called heavy ciphertext
pre-sampling: We observe that if A can blindly guess some component ciphertext ci in c∗in, then ci is a
ciphertext value which appears with sufficiently large probability when encrypting a random bit under
pk[i]. Hence, we can hope that the same value is hit by the reduction B by simply generating a large
number of random encryptions (of random bits) of PKE under pk[i]; call these pre-sampled ciphertexts.
Since the component ciphertexts in c∗in are generated identically to the pre-sampled ciphertexts, the
probability that A’s guess collides with the former is the same as the probability it collides with any
of the pre-sampled ciphertexts. Setting the size of the pre-sampling large enough, say poly(1/ε), the
reduction can exhaust all the component ciphertexts that A may “quote” with probability 1 − ε, for
any ε. Furthermore, due to the strong security provided by the XCCA game, the reduction B, with
access to the decryption oracles of the component ciphertexts, can obtain the decrypted values of
these pre-sampled ciphertexts before-the-fact. This is crucial, since even if we know that a ciphertext
is obtained by encrypting some bit d, its actual decryption could well be equal 1− d due to the weak
α-correctness.

Intuitively this solves the problem, as whenever A makes an after-the-fact query that “quotes” c∗in,
B can still decrypt by using either the external decryption oracles (for components that do not quote)
or the decrypted values of the pre-sampled ciphertexts (for these that quote). This will allow us to
show that B succeeds in emulating the view of A with high probability, and thus the CCA security of
PKE reduces to the XCCA security of PKEin.
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A Basic Tools

We reviews some basic constructions in the realm of secure encryption that are known from the
literature, and that are going to be used throughout the paper.

From one-bit to multi-bit CPA security. Let PKE = (Gen,Enc,Dec) be a CPA-secure bit-
encryption scheme with negligible decryption error. Then, the following construction PKE` is a CPA-
secure encryption scheme with `-bit message space (we omit the simple standard proof via a hybrid
argument). Key generation produces a public-key / secret-key pair (pk, sk), were (pk[i], sk[i]) are
obtained by running Gen with independent randomness. Encryption of an `-bit message m is defined
as Enc`(pk,m) = Enc(pk[1],m1) ‖ · · · ‖Enc(pk[`],m`), where m1, . . . ,m` are the bits of m. Decryption
is obvious. Note that if PKE is almost-perfectly correct, then so is PKE`.

From CPA to 1-CCA security. We will invoke the following result by Cramer et al [8] to build a
1-CCA secure encryption scheme from a CPA-secure one.

Theorem 4 ([8]). There exists an efficient black-box construction of a 1-CCA secure public-key en-
cryption scheme with negligible decryption error from any CPA-secure encryption scheme with negligi-
ble decryption error. Moreover, if the underlying CPA-secure scheme is almost-perfectly correct, then
the resulting 1-CCA secure scheme is also almost perfectly correct.

From negligible error to almost-perfect correctness. We review a technique by Dwork,
Naor, and Reingold [13] to increase correctness of schemes with negligible decryption error to almost-
perfect security via sparsification of the randomness space.

Concretely, let PKE = (Gen,Enc,Dec) be an encryption scheme with message space {0, 1}m(κ) and
randomness length ρ(κ). Fix now ρ′ such that ρ′(κ) ≤ ρ(κ) for all κ. We construct a new public-key
encryption scheme PKE′ = (Gen′,Enc′,Dec′), using a PRG G : {0, 1}ρ′(κ) → {0, 1}ρ(κ) as follows. First,

we have Gen′, on input 1κ, generates (pk, sk)← Gen(1κ) as well as a random string r
$← {0, 1}ρ(κ). The

public key is then pk′ = (pk, r), whereas the secret key is sk′ = sk. In particular we have Dec′ = Dec.

Moreover, we have Enc′((pk, r),m) first generates r′
$← {0, 1}ρ′ , and then outputs Enc(pk,m;G(r′)⊕r).

Lemma 4. Assume that G : {0, 1}ρ′(κ) → {0, 1}ρ(κ) is a secure PRG, then PKE′ satisfies the following
two properties:

(i) If PKE has decryption error δ, then PKE′ is perfectly correct for a fraction 1− 2m(κ)+ρ′(κ) · δ(κ)
of the randomness used to generate keys.

(ii) For all adversaries A, AdvCCA2
PKE′ (A) ≤ AdvCCA2

PKE (A) + ν(κ), for some negligible function ν.

Proof. It follows directly from the fact that PKE has decryption error δ that for all r′ ∈ {0, 1}ρ′(κ) the
following inequality holds.

Pr
[
(pk, sk)

$← Gen(1κ), r
$← {0, 1}ρ(κ), x $←M : Dec(sk,Enc(pk, x;G(r′)⊕ r)) 6= x

]
< δ(κ) ,

as G(r′)⊕ r is a uniformly distributed random ρ(κ)-bit string. Therefore, by a union bound we have
that,

Pr
[
(pk, sk)

$← Gen(1κ), r
$← {0, 1}ρ(κ), x $←M :

∃r′ ∈ {0, 1}ρ′(κ) s.t. Dec(sk,Enc(pk, x;G(r′)⊕ r)) 6= x
]
< δ(κ)2ρ

′(κ) .

Now, the probability that (pk, sk) and r are chosen such that there exists x and r′ with an decryption
error, that is, Dec(sk,Enc(pk, x;G(r′)⊕ r)) 6= x is upper bounded by

Pr
[
(pk, sk)

$← Gen(1κ), r
$← {0, 1}ρ(κ) :

∃ x ∈M, r′ ∈ {0, 1}ρ′(κ) s.t. Dec(sk,Enc(pk, x;G(r′)⊕ r)) 6= x
]
< δ(κ)2ρ

′(κ)+m(κ) .

This concludes the proof for correctness. The statement about security follows from PRG security of
G, since G(r′)⊕ r is pseudorandom. ut
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B Proof of the Abstract Hardcore Lemma (Proposition 1)

Proof (of Proposition 1). Let us fix γ > 0, and assume towards a contradiction that an (s, s′, q, γ(1−
ε)/4, γ(1− ε)/4)-p1-estimator E for G exists, yet the claim of the proposition is false. That is, for all
measures M with µ(M) ≥ 1− ε, there exists an s′-size adversary B with AdvGPM(B) > γ.

We can think of this situation in terms of the following two-player zero-sum game. Player 1 chooses
as its pure strategy a deterministic adversary B of size s′, whereas Player 2 chooses as its pure strategy
a measure M such that µ(M) = 1 − ε and M(x) ∈ {0, 1} for all, except at most one, x. The payoff

forM and B is then exactly Pr
[
x′

$← PM, b
′ $← BC(x′) : b′ = P (x′)

]
. It is easy to see that both sets of

pure strategies are finite. Given mixed strategies defined by probability distributions p1 and p2 over
pure strategies, it is easy to verify that their expected payoff equals

Pr
[
B $← O1, x

′ $← PM2 , b
′ $← BC(x′) : b′ = P (x′)

]
where O1 is an s′-size circuit sampler sampling B with probability p1(B), whereas M2 is such that
M2(x) =

∑
M p2(M) · M(x), and has again density µ(M2) ≥ 1− ε.

The above assumption of the proposition being false tells us that for every mixed strategy of Player
2 there exists a pure strategy for Player 1 such that the payoff is at least 1+γ

2 . By Von Neumann’s
Min-Max Theorem (cf. e.g. [41]), we also have that there exists a mixed strategy of Player 1 such that
for all pure strategies of Player 2 the expected payoff is larger than 1+γ

2 . In other words, this means
that there exists a size s′ circuit sampler O such that for all measures M with µ(M) = 1 − ε and
M(x) ∈ {0, 1} for all but one x,

Pr
[
x′

$←M, B $← O, b′
$← BC(x′) : b′ = P (x′)

]
>

1 + γ

2
. (4)

We are now going to use the oracle O to obtain an oracle adversary AO breaking ε-security of the
game G. First define δ and δ1 such that for all x ∈ X ,

δ(x) := 2 · Pr
[
B $← O, b′

$← BC(x) : b′ = P (x)
]
− 1

δ1(x) := 2 · Pr
[
B $← O, b′

$← BC(x) : b′ = 1
]
− 1 .

(5)

Note that in particular δ(x) = δ1(x) iff P (x) = 1, whereas δ(x) = −δ(x) otherwise. We also observe

that δ1(x) = 2 · pG,O1 (x)− 1, and the definition of O yields E
x′

$←PM
[δ(x′)] > γ for all measuresM with

µ(M) = 1− ε and M(x) ∈ {0, 1} for all but one x. We now are going to define one such measure: To
this end we fix an ordering x1, x2, . . . of the elements of X such that δ(x1) ≤ δ(x2) ≤ · · · , and define
M∗ : X → [0, 1] to be the unique measure with µ(M∗) = 1− ε and such that there exists an i∗ with
M∗(xi) = 1 for all i < i∗,M∗(xi∗) ∈ [0, 1], andM∗(xi) = 0 for all i > i∗. We let δ∗ = δ(xi∗) and note
that δ∗ > γ, as otherwise E

x′
$←PM∗

[δ(x′)] ≤ γ.

Recall now that E is the (s, s′, q, γ(1−ε)/4, γ(1−ε)/4)-p1-estimator guaranteed to exist. We consider
the following adversary AO:

Adversary AO: // (Inefficient) adversary for game G interacting with C(x)

(1) Sample B1, . . . ,Bq
$← O

(2) z
$← E(B1, . . . ,Bq)

(3) δ1 ← max{−δ∗,min{δ∗, 2 · z − 1}} // value rounded to [−δ∗, δ∗]
(4) Output 1 with probability 1

2 + δ1
2δ∗ .

We now consider the experiment where AO interacts with C(x) for x
$← PX , and shows that it guesses

P (x) with probability larger than 1+ε
2 . Define the event bad that estimate of z is more than γ(1− ε)/4

off the actual value of p1(x). Recall that Pr [bad] ≤ γ(1− ε)/4 by definition. First, note that for each

input x ∈ X , the probability that AO guesses the right bit P (x) when interacting with C(x) is 1
2 + δ(x)

2δ∗ ,
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where δ(x) = δ1 if P (x) = 1, and δ(x) = −δ1 if P (x) = 0. Then, note that conditioned on bad not
occurring, we have

∣∣δ(x)− δ(x)
∣∣ < γ(1 − ε)/2. Summarizing, the probability that A guesses P (x)

satisfies

Pr

[
x

$← PX , b
′ $←

(
AO
)C(x)

: b′ = P (x)

]
=

1

2
+

1

2δ∗
· E
x

$←PX

[
δ(x)

]
≥ 1

2
+

1

2δ∗
· E
x

$←PX

[δ(x)]− γ(1− ε)
4δ∗

− γ(1− ε)
4

≥ 1

2
+

1

2δ∗
· E
x

$←PX

[δ(x)]− γ(1− ε)
2δ∗

.

In particular, the probability is larger than 1+ε
2 by the fact that

E
x

$←PX

[δ(x)] = (1− ε) · E
x′

$←M∗

[
δ(x′)

]
+ ε · E

x′′
$←M∗

[
δ(x′′)

]
> (1− ε) · γ + ε · δ∗ .

To conclude the proof, we observe that an adversary A, without access to O, guessing with probability
also larger than 1+ε

2 can be obtained by non-deterministically fixing the choice of B1, . . . ,Bq to the
optimal one. ut

C Proof of Proposition 3

Proof (of Proposition 3). As shown in [25], it suffices to give a protocol for the distribution PXY Z
where X = Y is a random bit, Z is such that it equals ⊥ with probability 1 − β, and X with
probability β. Note that conditioned on Z = ⊥, X is uniform. Clearly, PXY Z ∈ D(1, β). Let now

(X1, Y1, Z1), . . . , (Xn, Yn, Zn)
$← PXY Z . By the Chernoff Bound, the adversary sees Zi = ⊥ for at least

(1−β) ·n/2 = `+ 2 log(1/ε) +O(1) components of (Z1, . . . , Zn), except with probability e−(1−β)n/8 =
O(
√
ε′ · e−`(κ)/4). The encryption KAEnc sets the ciphertext C to be the seed S of a two-universal

family of hash functions with input length n(κ), and output length `(κ), whereas the derived key is
K = hS(X1, . . . , Xn). Naturally, KADec also outputs K ′ = hS(Y1, . . . , Yn) = K given S. Given any
outcome of Z1, . . . , Zn, and conditioned on the even that at least a fraction (1−β)/2 of the coordinates
has value ⊥, X1, . . . , Xn has entropy `(κ) + 2 log(1/ε′(κ)) + O(1), and the resulting key K is ε′-close
to uniform by the Leftover-hash Lemma [20], given C = S and Z1, . . . , Zn. ut

D Formal Proof of Lemma 2

Let us fix an arbitrary polynomial p, and let γ such that γ(κ) = 1/p(κ), and moreover, let A be a
polynomial-size adversary. We are going to prove that for any such p and any such A, the advantage
of A in breaking XCCA security of PKEin is at most n(κ) · γ(κ) + ε(κ). Since ε(κ) is negligible, n(κ)
is polynomial, and p can be chosen to be arbitrarily large, it follows that PKEin is XCCA secure.

Let us consider the XCCA game with adversary A, denoted XCCAA(κ). First off, for ease of no-
tation, we let rGen[i] be the randomness used by Gen to generate the pair (pk[i], sk[i]) = Gen(rGen[i]).

Moreover, in the process of generating the challenge ciphertext c∗ = (c1, . . . , cn, c
′, c′′)

$← Encin(pk,mb),
we define b[i] and r[i] as the random bit and randomness used to generate the i-th ciphertext compo-
nent ci = Enc(pk[i],b[i]; r[i]), respectively. Let now s′′(κ) be the size of A, and letM be the measure
guaranteed to exist for the game CCA2 by Theorem 2 for adversaries of size s(κ), where

s(κ) = O((s′′(κ) + poly(κ))/γ(κ)2(1− β(κ))2) .

(We are not going to specify the function s(κ) exactly, but it will clear that it can be defined more
precisely depending on the construction of adversary Ai in the proof of Claim 1 below, which will be
equal to s′(κ) = s′′(κ) + poly(κ).)

The proof proceeds by introducing two additional games, XCCAA1 (κ) and XCCAA2 (κ). We are going
to prove that the probabilities of A winning XCCAA(κ) and XCCAA1 (κ) are closely related by the
hardcore lemma for CCA-security, whereas we are going to show that the probabilities are close for
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XCCAA1 (κ) and XCCAA2 (κ) because of the information-theoretic security of the underlying one-way key
agreement protocol. Finally, it will be easy to see that no adversary can win in XCCAA2 (κ).

Concretely, we first modify the XCCAA(κ) game into game XCCAA1 (κ) in that the process of sam-
pling the challenge ciphertext c∗ is modified as follows:

(1) For all i ∈ [n], first, we generate r[i] and b[i] uniformly at random and independently as before,
and let the i-th ciphertext component be ci = Enc(pk[i],b[i]; r[i]).

(2) Then, for all i ∈ [n], we sample a bit c[i] which equals 1 with probability pi =M(rGen[i], r[i],b[i]),
and 0 with probability 1− pi. Intuitively, this corresponds to deciding whether (rGen[i], r[i],b[i])
are a “hard” instance or not according to the hardcore measure M.

(3) Again for all i ∈ [n], we sample bit b′[i] such that b′[i] = b[i] if c[i] = 0, whereas b′[i]
$← {0, 1} if

c[i] = 1, i.e., in the latter case b′[i] is set to a uniform random bit.

(4) We then let (k, c′)
$← KAEnc(b′[1], . . . ,b′[n]), and c′′ = mb ⊕ k, i.e., we use the bits b′[i] instead

of b[i] to generate the key used in the encryption.

(5) The final challenge ciphertext is c∗ = (c1, . . . , cn, c
′, c′′).

We also consider a final game XCCAA2 (κ) where the key k is simply sampled randomly and indepen-
dently of anything else.

The final statement follows by the straightforward combination of the following three claims, which
are proved individually below.

Claim 1 For all adversaries A of size s′′, we have

Pr
[
A wins in XCCAA(κ)

]
≤ Pr

[
A wins in XCCAA1 (κ)

]
+ n(κ) · γ(κ) .

Claim 2 For all adversaries A (possibly computationally unbounded),

Pr
[
A wins in XCCAA1 (κ)

]
≤ Pr

[
A wins in XCCAA2 (κ)

]
+ ε(κ) .

Claim 3 For all adversaries A (possibly computationally unbounded),

Pr
[
A wins in XCCAA2 (κ)

]
=

1

2
.

Proof (Of Claim 1). We define hybrid experiments XCCAA(i, κ) for i = 0, . . . , n which are defined
as XCCAA1 (κ), but with the exception that b′[j] = b[j] holds for all j = 1, . . . , n − i, whereas b′[j]
is defined as in XCCAA1 (κ) otherwise. In particular, by definition it is easy to see that XCCAA(0, κ) and
XCCAA(n, κ) equal XCCAA(κ) and XCCAA1 (κ), respectively. Therefore, with qi = Pr

[
A wins in XCCAA(i, κ)

]
,

we clearly obtain

Pr
[
A wins in XCCAA(κ)

]
− Pr

[
A wins in XCCAA1 (κ)

]
=

n−1∑
i=0

qi − qi+1 .

We are now going to upper bound with γ the difference qi−qi+1 for all i = 0, . . . , n−1, which concludes
the proof.

To this end, assume towards a contradiction that qi − qi+1 > γ. Then, we consider a variant of
XCCAA(i + 1, κ) called XCCAA(−i, κ) where, whenever c[i] = 1, instead of setting b′[i] to a random
bit, we set b′[i] = 1−b[i], and let q−i be the corresponding success probability of A in XCCAA(−i, κ).
Then, qi − q−i > 2γ, since qi+1 = 1

2qi + 1
2q−i.

Using this, we are going to construct an adversary Ai which contradicts the hardcore lemma.
The adversary will need to know M in the following description, which may not be efficiently im-
plementable. However, we note that we can de-randomize the Ai, and in this case, it is easy to see
computing M is not necessary any more by fixing the best randomness.
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Adversary Ai(pk): // Plays the CCA2 game for PKE

(1) Sample public keys (pk[j], sk[j])
$← Gen(1κ) for j 6= i, and set pk[i]← pk.

(2) Choose a simulated challenge bit d
$← {0, 1}

(3) Simulate an execution of A in the XCCA game for PKEin with challenge bit
d and keys (pk, sk). In particular, A’s decryption queries (j, c) for j 6= i are
answered directly as Dec(sk[j], c) by Ai, whereas queries (i, c) are forwarded
directly to the decryption oracle.

(4) When A requests the encryption of (m0,m1) with |m0| = |m1| = `in, the
adversary Ai construct the challenge ciphertext c̃∗ = (c̃1, . . . , c̃n, c̃

′, c̃′′) as
follows, and gives it back to A:
(a) It sets up b[j], c[j], and b′[j] for j 6= i as in XCCAA1 .

(b) Sets e
$← {0, 1}

(c) It obtains the challenge ciphertext c∗ = Enc(pk, b; rEnc) from the underly-
ing game, and sets c̃i = c∗.

(d) It encrypts c̃j
$← Enc(pk[j],b[j]) for j 6= i.

(e) It runs (k, c̃′)
$← KAEnc(b′[1], . . . ,b′[i − 1], e,b[i + 1], . . . ,b[n]) and sets

c̃′′ = md ⊕ k
(5) It then goes on answering after-the-fact decryption queries by A as above.
(6) When the adversary A outputs d′ ∈ {0, 1}, if d = d′ then Ai outputs e,

otherwise output 1− e.

Note that the complexity of Ai is s′(κ) as defined above, and we now analyze the success probabil-
ity of Ai in contradicting the hardcore lemma. Concretely, Ai interacts with CCA(rGen, rEnc, b) for

(rGen, rEnc, b)
$← PM, and outputs a guess b′. We are going to prove that b′ = b with probability larger

than 1+γ
2 , contradicting the hardcore lemma.

We first observe that the probability that Ai guesses b is the sum of the probability that the
simulated A guesses d given e = b and the probability that A is wrong in guessing d given e = 1− b,
i.e., it equals

Pr [e = b] · Pr
[
d′ = d

∣∣b[i] = b
]

+ Pr [e = 1− b] · Pr
[
d′ = 1− d

∣∣b[i] = 1− b
]

=
1

2
+

Pr
[
d′ = d

∣∣ e = b
]
− Pr

[
d′ = d

∣∣ e = 1− b
]

2
,

since Pr [e = b] = Pr [e = 1− b] = 1
2 . Also, note that in both XCCAA(i, κ) and XCCAA(−i, κ), condi-

tioned on c[i] = 1, the randomness rGen[i] to generate (pk[i], sk[i]), the randomness rEnc[i] and b[i])
used to generate the challenge ciphertext are sampled exactly according to PM, as it is easy to verify,
and therefore Ai, conditioned on e = b, perfectly simulates an execution of XCCAA(i, κ) conditioned
on c[i] = 1. With a similar argument, we have that Ai, conditioned on e = 1− b, perfectly simulates
an execution of XCCAA(−i, κ) conditioned on c[i] = 1. Since in both games, Pr [c[i] = 1] = µ(M) ≤ 1,
then for ∆ = Pr

[
d′ = d

∣∣ e = b
]
− Pr

[
d′ = d

∣∣ e = 1− b
]
, we have

∆ = Pr
[
A wins in XCCAA(i, κ)

∣∣ c[i] = 1
]
− Pr

[
A wins in XCCAA(−i, κ)

∣∣ c[i] = 1
]

=
Pr
[
A wins in XCCAA(i, κ) ∧ c[i] = 1

]
− Pr

[
A wins in XCCAA(−i, κ) ∧ c[i] = 1

]
µ(M)

=
Pr
[
A wins in XCCAA(i, κ)

]
− Pr

[
A wins in XCCAA(−i, κ)

]
µ(M)

> γ ,

because of the fact that

Pr
[
A wins in XCCAA(i, κ) ∧ c[i] = 0

]
= Pr

[
A wins in XCCAA(−i, κ) ∧ c[i] = 0

]
,
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since both XCCAA(i, κ) and XCCAA(−i, κ) are identical as long as c[i] = 0. ut

Proof (Of Claim 2). In games XCCAA1 and XCCAA2 , let us look at the distribution PXY Z where X =
b′[i], Z = Enc(pk[i],b[i]), and Y is arbitrary such that it equals X with probability 1+α

2 (for any i,
as the distribution is independent of i). Then, it is easy to see that PXY Z ∈ D(α, β). Moreover, given

samples Z1, . . . , Zn, as well as (K,C ′)
$← KAEnc(X1, . . . , Xn) and K ′

$← {0, 1}`in , we can simulate
the challenge ciphertext distributions in XCCAA1 and XCCAA2 . It is therefore easy to verify that the
statistical distance between the challenge ciphertexts in XCCAA1 and XCCAA2 is at most ε(κ), and so
the difference in the probability of adversary outputting one in both games. ut

Proof (Of Claim 3). This is obvious by the fact that the key k being independent of anything else
ensures that the encryptions of m0 and m1 are perfectly indistinguishable. ut

E Formal Proof of Lemma 3

Assume, towards a contradiction, that PKE is not CCA secure: There is a polynomial-sized adversary
A and a polynomial p, such that, for infinitely many κ ∈ N, A achieves advantage 1/p(κ) in the CCA
game with security parameter κ, denoted as CCA2A

PKE
(κ). Then, we construct another polynomial-sized

adversary B that violates the XCCA security of the inner encryption scheme PKEin; in particular, B
achieves advantage 1/2p(κ) in the game XCCABPKEin

(κ) for infinitely many κ’s.

Fix one κ ∈ N. Let τ(κ) be an upper bound on the the size of A. On a high level, the machine B on
input 1κ participates externally in the XCCABPKEin

(κ) game, and internally tries to emulate an execution

of CCA2A
PKE

(κ); in particular, B has access to all the component decryption oracles {Dec(sk[i], ·)}i∈[n]
externally, and needs to emulate the decryption oracle Dec(sk, ·) for the adversary A internally. More
precisely, B proceeds in the following five stages:

Stage 1—Heavy Ciphertext Pre-sampling: Set

Γ = Γ (κ) = ω(log(κ)) · 4p(κ) · τ(κ) · n .

After receiving externally a public key pk, for each component key pk[i], B internally samples Γ

random component ciphertexts, that is, for each j ∈ [Γ ], B sets eij
$← Enc(pk[i], rij) for a fresh

randomly sampled bit rij . Furthermore, B obtains the decrypted bit bij of eij , by querying the
external decryption oracle Dec(sk[i], ·) on eij .

5 Then it records (eij , bij).

As we will see shortly in Stage 5, the pre-sampled ciphertexts and decrypted bits {(eij , bij)}i∈[n],j∈[Γ ]
are very instrumental for emulating answers to after-the-fact queries from A.

Stage 2—Answering Before-the-Fact Queries: B internally generates the public- and secret-key

pairs of the two outer schemes, (pkout,i, skout,i)
$← Genout,i for i = 1, 2. After sending the adversary

A the public key pk = (pkin, pkout,1, pkout,2), it emulates the decryption oracle Dec(sk, ·) for A as
follows:

Given a query c = (cout,1, cout,2) from A, B first decrypts cout,1 using the secret key skout,1 to obtain
the inner ciphertext c′in = (c′1, · · · , c′n, , γ′, η′). B does not know the secret key sk for decrypting
the inner ciphertext; instead, it uses the external decryption oracles Dec(sk[i], ·) to decrypt each
of the component ciphertexts c′1, · · · , c′n to obtain the encrypted bits b′1, · · · , b′n; it then recovers
the encrypted message (m′, r′out,1, r

′
out,2) from γ′ and η′ as algorithm Decin does. Finally, it checks

consistency of the ciphertext, that is, whether cout,i = Encout,i(pkout,i, c
′
in; r′out,i) for i = 1, 2, and

returns m′ if the ciphertext is consistent and ⊥ otherwise.

Stage 3—Generating Challenge Messages: After receiving the two challenge messages m∗0,m
∗
1

from A, B samples random strings r∗out,1, r
∗
out,2, and sends externally two challenge messages

m∗0‖r∗out,1‖r∗out,2 and m∗1‖r∗out,1‖r∗out,2.

5 Recall that bij 6= rij may well hold, as the decryption algorithm may be subject to large error!
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Stage 4—Emulating Challenge Ciphertext: Upon receiving the challenge ciphertext

c∗in = Encin(pk,m∗b‖r∗out,1‖r∗out,2)

for some random bit b, B generates the challenge ciphertext of PKE for A by encrypting c∗in
using public keys of the two outer schemes and randomness r∗out,1 and r∗out,2, that is, c∗out,i =
Encout,i(pkout,i, c

∗
in; r∗out,i) for i = 1, 2. It then sends (c∗out,1, c

∗
out,2) to A.

Stage 5—Answering After-the-Fact Queries: B emulates answers to A’s after-the-fact decryp-
tion queries (cout,1, cout,2) almost the same as it did with before-the-fact queries in Stage 2, except
that, after obtaining the inner ciphertext c′in = (c′1, · · · , c′n, γ′, η′), if one of the component cipher-
text c′i coincides with the corresponding component in the challenge ciphertext c∗i , B cannot query
the external decryption oracle Dec(sk[i], ·) (after-the-fact) to obtain the decrypted bit b′i.
When this happens for some component, B simply checks whether c′i is one of the pre-sampled
component ciphertext eij , if so it also obtains the decrypted bit b′i = bij ; otherwise, it outputs fail.

Output: Finally, B outputs the bit b′ returned by A.

We show that except with probability 1/2p(κ), B in game XCCABPKEin
(κ) emulates the view of

A in CCA2A
PKE

(κ) perfectly; then if A has advantage 1/p(κ) in the CCA game, B achieves 1/2p(κ)

advantage in the XCCA game. Note that B emulates the public key and challenge ciphertext of PKE
for A perfectly; furthermore, it emulates the decryption oracle Dec(sk, ·) for A perfectly in Stage 2 by
decrypting before-the-fact queries as the algorithm Dec does using the secret key skout,1 and the external
component decryption oracles Dec(sk[i], ·). For the same reason, B also emulates the decryption oracle
Dec(sk, ·) perfectly in Stage 5, provided that it can decrypt all the component ciphertexts using either
the external decryption oracles or the set of pre-sampled component ciphertexts and decrypted bits.
Therefore, conditioned on that B does not output fail, it emulates the view of A perfectly. As we
show below in Claim 4, the probability that B outputs fail is bounded by 1/2p(κ); then, except with
probability 1/2p(κ), B emulates the view of A perfectly, and thus has advantage 1/2p(κ) in the XCCA
game. This contradicts with the XCCA security of PKEin and concludes the lemma.

Claim 4 For all sufficiently large κ ∈ N, the probability that B outputs fail in an execution of
XCCABPKEin

(κ) is smaller than 1/2p(κ).

Proof. Recall that the outer encryption scheme PKEout,i, i = 1, 2, has almost perfect correctness,
that is, with overwhelming probability, a randomly generated key pair (pkout,i, skout,i) has perfect
correctness. It is easy to see that it suffices to show that conditioned on that the two outer encryption
key pairs (pkout,1, skout,1) and (pkout,2, skout,2) sampled by B have perfect correctness, the probability
that B outputs fail is smaller than 1/3p(κ). Therefore, below we bound the probability that B outputs
fail, assuming implicitly that the outer encryption keys have perfect correctness; when referring to the
value encrypted in the an outer ciphertext, we mean the unique value decrypted from that ciphertext.

Recall that B outputs fail when A (in emulation by B) makes an after-the-fact decryption query
(cout,1, cout,2) that has the inner ciphertext c′in = (c′1, · · · , c′n, γ′, η′) decrypted from cout,1 “quote” the
inner ciphertext c∗in = (c∗1, · · · , c∗n, γ∗, η∗) of the challenge ciphertext (i.e., ∃i ∈ [n] such that c′i = c∗i ),
yet the quoted component ciphertext c∗i is not one of the pre-sampled component ciphertexts (i.e.,
c∗i 6= eij for all j ∈ [Γ ]); we denote this event as quote. Thus, it is equivalent to bound the probability
that event quote occurs in an execution with A as emulated by B. Towards this, we introduce a
sequence of hybrids H0 to H5, where H0 emulates the view of A identically as B does. We show that in
every two subsequent hybrids, the probabilities that event quote occurs differ by at most a negligible
amount and the probability that event quote occurs in H5 is bounded by 1/4p(κ). Therefore, we derive
that the probability that quote occurs in H0 is at most 1/3p(κ), and so is the probability that quote
occurs in an execution of B.

Hybrid H0 internally runsA and emulates its view identically as B does, by acting as B and entities in
the game XCCABPKEin

(κ) (including the external challenger and the decryption oracles Dec(sk[i], ·)).
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By construction, we have that:

Pr[quote occurs in execution of B] = Pr[quote occurs in H0] .

Hybrid H1 proceeds identically to H0, except that the inner-ciphertext c∗in of the challenge ciphertext
encrypts an all-zero string, instead of (m∗b , r

∗
out,1, r

∗
out,2) (for some random bit b). We claim that the

probability that quote occurs in H1 is negligibly close to that in H0. First note that in both H0

and H1, whether the event quote occurs can be efficiently decided using the secret key skout,1 of
the first outer encryption scheme. Furthermore, since in the two hybrids the secret key sk of the
inner encryption scheme is only used for emulating the component decryption oracles Dec(sk[i], ·),
if the probabilities that quote occurs differ by a non-negligible amount, we can use A to construct
a machine to violate the XCCA security of the inner encryption scheme. This summarized by the
following subclaim.

SubClaim 1 There is a negligible function µ1, such that, for all κ ∈ N,

|Pr[quote occurs in H0]− Pr[quote occurs in H1]| ≤ µ1(κ) .

Hybrid H2 proceeds identically to H1, except that the second outer-ciphertext c∗out,2 of the challenge
ciphertext encrypts an all-zero string, instead of the inner-ciphertext c∗in. Note that the secret key
skout,2 of the second outer encryption scheme is never used in the execution of H1 and H2, and the
random string rout,2 used to generate cout,2 is uniformly randomly sampled and independent of all
other messages. (Furthermore, as discussed above, whether quote occurs or not can be efficiently
decided using the first outer secret key skout,1.) Therefore, it follows from the semantic security of
the second outer encryption scheme PKEout,2 that the probabilities that quote occurs in H1 and
H2 differ by at most a negligible amount.

SubClaim 2 There is a negligible function µ2, such that, for all κ ∈ N,

|Pr[quote occurs in H1]− Pr[quote occurs in H2]| ≤ µ2(κ) .

Hybrid H3 proceeds identically to H2, except that H3 emulates the decryption oracle Dec(sk, ·) for
A using the secret key skout,2 of the second outer encryption scheme (as opposed to skout,1 of
the first outer encryption scheme), and the secret key sk of the inner ciphertext (instead of the
external decryption oracles Dec(sk[i], ·) together with the pre-sampled component ciphertexts and
decrypted bits {eij , bij}i∈[n],j∈[Γ ]). More precisely, H3 emulates Dec(sk, ·) as follows: Upon receiving
a decryption query (cout,1, cout,2) from A, H3 decrypts the second outer ciphertext cout,2 using skout,2
to obtain an inner ciphertext c′′in = (c′′1, · · · , c′′n, γ′′, η′′); it then decrypts each of c′′i using sk[i] to
obtain the decrypted bit b′′i , and recovers the message (m′′, r′′out,1, r

′′
out,2) as algorithm Decin does;

finally it check consistency of the ciphertext by checking whether cout,i = Encout,i(pkout,1, c
′′
in; r′′out,i)

for i = 1, 2. Note that this way of emulating the decryption oracle Dec(sk, ·) uses only skout,2
and sk, but not skout,1 and {eij , bij}i∈[n],j∈[Γ ]; therefore H3 never outputs fail. However, the event
quote (defined w.r.t. the unique inner-ciphertexts encrypted in the first outer ciphertexts of the
decryption queries from A) is still well defined.
We claim that the probability that quote occurs in H2 and H3 are identical. This is because the
only difference between the two hybrids lies in how the decryption oracle Dec(sk, ·) is emulated.
In H2, before event quote occurs, the decryption oracle Dec(sk, ·) are emulated perfectly. In H3,
given that the key pairs of the two outer encryption schemes have perfect correctness, the plaintext
computed using skout,2 and sk is always the same as that returned by the real decryption oracle
using skout,1 and sk. Thus before quote occurs, the views of A are identical in the two hybrids and
so are the probabilities that event quote occurs.

Pr[quote occurs in H2] = Pr[quote occurs in H3] .

Hybrid H4 proceeds identically to H3, except that the first outer-ciphertext c∗out,1 of the challenge
ciphertext encrypts an all-zero string, instead of the inner-ciphertext c∗in. Note that in both H3 and
H4 the secret key skout,1 of the first outer encryption scheme is never used. It seems that, as in
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Hybrid H2, it should follow directly from the semantic security of the first outer encryption scheme
that the probabilities that quote occurs in the two hybrids differ by at most a negligible amount.
However, this argument does not go through: Unlike in H2 where whether quote occurs can be
efficiently decided using skout,1, when relying on the semantic security of PKEout,1, skout,1 cannot
be used and thus event quote cannot be efficiently detected. This problem can be circumvented by
instead relying on the CCA-1 security of PKEout,1.
Assume for contradiction that the probability that quote occurs in H3 and H4 differ by an inverse
polynomial probability 1/q(κ), then we can construct an adversary C that violates the 1-CCA
security of PKEout,1. Adversary C after receiving a public key pkout,1 and a challenge ciphertext
c∗out,1 encrypting either c∗in or an all-zero string, emulates internally an execution of H3 or H4 with
A, and outputs the first outer-ciphertext cout,1 of a randomly chosen decryption query from A; let
cin be the inner-ciphertext encrypted in cout,1. By construction of C, the view of A in emulation
by C when it receives externally an encryption to c∗in is identical to that in H3, and that when it
receives an encryption to an all-zero string is identical to that in H4. Since A takes at most τ(κ)
steps, it follows from our hypothesis that the probabilities that cin “quotes” c∗in differ by at least
1/q(κ)τ(κ), when C receives an encryption to c∗in or an all-zero string. This violates the 1-CCA
security of PKEout,1.

SubClaim 3 There is a negligible function µ3, such that, for all κ ∈ N,

|Pr[quote occurs in H3]− Pr[quote occurs in H4]| ≤ µ3(κ) .

Hybrid H5 proceeds identically to H4, except that it samples the inner-ciphertext c∗in of the challenge
ciphertext and the pre-sampled component-ciphertexts {eij}i∈[n],j∈[Γ ] at the end of the execution.
(The decrypted bits bij ’s of eij ’s are no longer computed.) Note that this is possible because
already in H4, c

∗
in and eij ’s are no longer used (as the challenge ciphertext (c∗out,1, c

∗
out,2) consists

of encryptions to all-zero strings, and the decryption oracle Dec(sk, ·) is emulated using skout,2 and
sk). Still, the event quote defined w.r.t. the decryption queries from A, c∗in and eij ’s remains well
defined. Since the view of A in H5 is identical to that in H4, we have:

Pr[quote occurs in H4] = Pr[quote occurs in H5]

Next we show that the probability that quote occurs in H5 is bounded by 1/4p(κ).

SubClaim 4

Pr[quote occurs in H5] ≤
1

4p(κ)
.

Proof. Recall that A takes at most τ(κ) steps; therefore it makes at most τ(κ) decryption queries
in its execution. Towards bounding the probability that quote occurs, we show that for all i ∈ [n]
and q ∈ [τ(κ)], the probability that quote occurs w.r.t. the i’th component ciphertext in the q’th
decryption query from A is bounded by 1/4p(κ)τ(κ)n. Formally, let cqin = (cq1, · · · , c

q
n, γq, ηq) denote

the inner-ciphertext encrypted in the first outer-ciphertext of the q’th decryption query, and c∗in =
(c∗1, · · · , c∗n, γ∗, η∗) that in the challenge ciphertext. Recall that H5 proceeds by first completing an
execution with A, and then sampling the challenge inner-ciphertext c∗in and component ciphertexts
{eij}; let rA denote the randomness used in the execution with A, rc in generating c∗i , and re in
generating the eij ’s. We show

∀i ∈ [n], q ∈ [τ(κ)], PrrA,rc,re [c
q
i = c∗i ∧ ∀j ∈ [Γ ], cqi 6= eij ] ≤

1

4p(κ)τ(κ)n
, (*)

Then by a union bound, it follows that the probability that quote occurs is bounded by 1/4p(κ).
To show equation (*), since in H5, the execution with A completes before c∗in and {eij}i∈[n],j∈[Γ ] are
sampled, it suffices to show that fixing any execution with A which decides a cqi , the probability
that cqi coincides with c∗i but not any of eij ’s is bounded by 1/4p(κ)τ(κ)n, that is, equation (*)
holds for all possible rA deciding cqi . In other words, we show:

∀i ∈ [n], q ∈ [τ(κ)], rA Prrc,re [c
q
i = c∗i ∧ ∀j ∈ [Γ ], cqi 6= eij ] ≤

1

4p(κ)τ(κ)n
.
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Assume for contradiction that there is a fixed execution with A deciding cqi , for which the above
inequality does not hold. Then it implies that:

Prrc [c
q
i = c∗i ] >

1

4p(κ)τ(κ)n
.

Since each eij is generated identically as the i’th component ciphertext c∗i of the challenge ciphertext
is generated, we have that for all j ∈ [Γ ].

Prre [c
q
i = eij ] >

1

4p(κ)τ(κ)n

Furthermore, since all eij ’s are generated randomly and independently, we have that,

Prre [∀j ∈ [Γ ], cqi 6= eij ] <

(
1− 1

4p(κ)τ(κ)n

)Γ
≤ negl(κ) .

The last inequality holds since Γ = ω(log(κ))4p(κ)τ(κ)n. This gives a contradiction, and concludes
the proof of this subclaim.
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