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Abstract

We show a technique for amplifying commitment schemes that are non-malleable with respect
to identities of length t, into ones that are non-malleable with respect to identities of length
Ω(2t), while only incurring a constant overhead in round-complexity. As a result we obtain a
construction of O(1)log

∗n-round (i.e., “essentially” constant-round) non-malleable commitments
from any one-way function, and using a black-box proof of security.
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1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.
Their applications range from coin flipping [Blu83] to the secure computation of any efficiently
computable function [GMW91, GMW87]. In light of their importance, commitment schemes have
received a considerable amount of attention. This has resulted in a fairly comprehensive under-
standing of the hardness assumptions under which they can be realized [HILL99, Nao91, DPP94].

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where
an adversary, upon seeing a commitment to a specific value v, is able to commit to a related
value (say, v − 1), even though it does not know the actual value of v. This kind of attack
might have devastating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used for securely
implementing a contract bidding mechanism). The state of affairs is even worsened by the fact
that many of the known commitment schemes are actually susceptible to this kind of attack. In
order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the concept of
non-malleable commitments [DDN00]. Loosely speaking, a commitment scheme is said to be non-
malleable if it is infeasible for an adversary to “maul” a commitment to a value v into a commitment
to a related value ṽ.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [DDN00]
in the early 90’s. The security of their protocol relies on the minimal assumption of one-way func-
tions and requires O(log n) rounds of interaction, where n ∈ N is the length of party identities
(or alternatively, a security parameter). More recent results improved the round complexity by
making stronger assumptions: Barak [Bar02] presents a constant-round protocol for non-malleable
commitments whose security relies on the existence of trapdoor permutations and hash functions
that are collision-resistant against circuits of sub-exponential size. Pass and Rosen [PR05b] sub-
sequently showed that collision resistant hash functions secure against polynomially sized circuits
are sufficient to obtain a constant-round protocol.

But, despite two decades of research, there have been no improvements over the original DDN
construction, when only assuming the existence of one-way functions, leaving open the following
question.

Does there exist a sub-logarithmic non-malleable commitment scheme, assuming only
one-way functions?

Additionally, whereas the original DDN-construction only relies on “elementary” techniques and
has a black-box proof of security, the more recent works of [Bar02, PR05b] rely on non-black box
techniques [Bar01] and inherit the “heavy” machinery (e.g., the PCP theorem) associated with
them. Yet more recent work obtains round-efficient constructions using black-box proofs of secu-
rity by instead relying on non-standard hardness assumptions: Pandey, Pass and Vaikuntanathan
[PPV08] provide a construction of constant-round non-malleable commitments based on a new
hardness assumption with a strong non-malleability flavor1. Thus, given the current state-of-the-
art, it is unknown whether the round complexity of the DDN construction can be improved under

1More precisely, they assume the existence of, so called, adaptive one-way permutations—namely permutations
which remain one-way even when the adversary has access to an inversion oracle.
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any “standard” hardness assumptions, if restricting our attention to constructions with black-box
proofs of security.

1.1 Our Results

In this work we provide an affirmative answer to the above questions. We show the existence of
an O(1)log∗ n-round—i.e., “almost” constant-round—non-malleable commitment from only one-way
functions and using a black-box proof of security.

Theorem 1. Assume the existence of one-way functions. Then there exists a O(1)log∗ n-round
non-malleable commitment with a black-box proof of security.

Subsequent to the original publications of our work [LP09], Hoeteck Wee [Wee10] (following our
high-level approach, but using a different construction; see Section 1.4 for more details) improved
the round complexity to O(log∗ n). The round-complexity of our protocol can also be improved to
O(log∗ n) (by running some of our sub-protocols in parallel). We thus have the following theorem
(first established by Wee).

Theorem 2. Assume the existence of one-way functions. Then there exists a O(log∗ n)-round
non-malleable commitment with a black-box proof of security.

1.2 A New Technique: Non-malleability Amplification

To establish our main result we develop a new approach for obtaining number of possible identities
players can take (e.g., the DDN construction requires O(log n) rounds if the identity length is n
bits). Thus, if we consider only a small set of possible identities—say 8—then the DDN construction
results in a constant-round protocol. The problem, however, is that once the number of identities
grows the protocol also becomes more complicated (and requires more rounds).

We here consider the question of whether a t-non malleable commitment—i.e., a commitment
scheme that is non-malleable with respect to identities of length t—can be amplified into a t′-non
malleable commitment, where t′ > t; we call this task non-malleability amplification. Although
hardness amplification has been extensively studied in both cryptography and complexity theory,
we are not aware of any prior works that consider the question of amplifying non-malleability.

Our main result shows a general technique for amplifying “robust” t-non malleable commitments
into “robust” 2t−1-non malleable commitments, while only incurring a constant additive overhead in
round-complexity.2 We describe the notion of a robust non-malleable commitment shortly; formal
definitions can be found in Section 2.8 and 2.10.

Theorem 3. (Non-malleability Amplification) Let 〈C,R〉 be a k(n)-round robust t(n)-non
malleable commitment scheme with computational complexity p(n). Then, there exists a robust
(k(n) + 8)-round 2t(n)−1-non malleable commitment scheme 〈C ′, R′〉 with computational complexity
2t(n)p(n) + k(n)poly(n).

By repeatedly applying the non-malleability amplification theorem, we get the following gener-
alized version.

Corollary 1. (Generalized Non-malleability Amplification) Let 〈C,R〉 be a k(n)-round ro-
bust t(n)-non malleable commitment scheme, s.t. 3 ≤ t(n) ≤ n. Then, there exists a (O(l(n)) +
k(n))-round robust non-malleable commitment scheme 〈Ĉ, R̂〉, where l(n) = O(log∗ n− log∗ t(n)).

2In the conference version of this work [LP09], the amplification procedure incurred a constant multiplicative
overhead; this is why the final construction required O(1)log

∗ n round instead of O(log∗ n).
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Finally, by applying our amplification procedure O(log∗ n) times to any constant-round robust
3-non-malleable commitment based on one-way functions, we get a O(log∗ n)-round non-malleable
commitment from any one-way function.3 Theorem 2 is concluded by observing that e.g., the
non-malleable commitment protocols of [DDN00, LPV08] are robust. Given that we only need
a constant-round protocol that is non-malleable with respect a constant number of identities, it
actually suffices to start off with an exponential-round protocol (i.e., a protocol where the number
of rounds is exponential in the length of the identity); as we show in Appendix A, such a protocol
is significantly easier to construct.

Our Amplification Technique. In analogy with recent amplification techniques by Reingold
[Rei05] and Dinur [Din07] (see also the survey by Goldreich [Gol05]), our amplification consists
of two separate operations; each one performs “amplification” in a different “axis.” For instance,
Reingold [Rei05] considers as axes the connectivity, and the degree, of a graph: the first operation
improves the connectivity (by using a direct product), but degrades the degree. The second op-
eration improves (i.e., lowers) the degree of the graph, but degrades the connectivity. Combined
together, however, these operations improve the connectivity without loosing in degree.4 In our
case the two axes are:

1. the ratio between the number of identities and the number of rounds, and

2. the “quality” of non-malleability.

The first step shows how to (essentially) use a direct product to amplify non-malleability, while
keeping the round complexity constant, thus improving the ratio. This transformation, however,
degrades the “quality” of non-malleability. The second transformation shows how to restore the
original quality by only incurring a constant overhead in round complexity. Combined they yield
the desired amplification. More precisely, we proceeds as follows.

• Step 1: Improving identity/round ratio. Dolev, Dwork and Naor [DDN00] presented
a method for collapsing rounds in their protocol; the idea is to appropriately run n parallel
repetitions of a O(log n)-non malleable protocol. As recently demonstrated by Lin, Pass and
Venkitasubramaniam [LPV08], this approach—sometimes referred to as the “log n trick”—
can, in fact, be applied to any concurrently non-malleable commitment (using the definition
of [LPV08]); roughly speaking, a commitment scheme is concurrently non-malleable if non-
malleability holds even if the adversary is participating in an unbounded number of concurrent
executions. A first idea would be to simply iteratively apply this technique. The problem
is that the “log n-trick” requires the initial commitment scheme—the one that only needs
to work for “small” identities—to be concurrently secure, but the resulting commitment
scheme—the one that works for larger identities—will no longer be concurrently secure; in
fact, it is easily seen that it can be broken under a concurrent attack.

• Step 2: Restoring the “quality”: from stand-alone to concurrent security. To be
able to iteratively apply the “logn-trick” we present a method for compiling “robust” stand-
alone secure non-malleable commitment schemes into “robust” concurrently non-malleable
commitment schemes. Our main technical contribution lies in this step. The compilation
technique only requires the existence of one-way functions (which anyway is implied by the
existence of commitment schemes) and only increases the round complexity by a constant. A

3Note that if only start with a 2-non-malleable commitment our amplification theorem only gives us a commitment
that is non-malleable with respect to 22−1 = 2 bit identities; thus, no amplification.

4Dinur [Dam00] instead considers as axes the ratio of unsatisfied clauses in a SAT formula, and the alphabet size.
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first idea enabling this transformation is the fact that any (stand-alone) secure non-malleable
commitment (satisfying the definition of [LPV08]) already satisfies a “weak” notion of con-
current non-malleability. Using this insight, we next show how to turn a weak concurrent
non-malleable commitment into a “traditional” concurrent non-malleable commitment. The
key conceptual insight enabling this step is to consider a notion of non-malleability with re-
spect to arbitrary k-round protocols—that is, instead of only considering non-malleability in a
setting where both the left and the right interactions consist of executions of the same proto-
col, we consider a scenario where the left interaction might be any arbitrary k-round protocol.
In fact, in our construction, it suffices to consider non-malleability with respect to arbitrary
4-round protocols; we call such protocols robust commitment scheme. Relying on the above
two notions, we finally show a transformation from any robust stand-alone non-malleable
commitment scheme, into one that is both robust and concurrently non-malleable.

The complete amplification procedure is obtained by combining the above two steps, and the
fact that step 1 also preserves robustness of the non-malleable commitment scheme. More precisely,
the amplification theorem follows from the following two lemmas.

Lemma 1 (Improving identity/round). Let 〈C,R〉 be a k(n)-round robust concurrent t(n)-
non malleable commitment scheme with computational complexity p(n). Then, there exists a
k(n)-round robust 2t(n)−1-non malleable commitment scheme 〈C̃, R̃〉 with computational complexity
2t(n)−1p(n) + poly(n).

Lemma 2 (Improving concurrent security). Let 〈C̃, R̃〉 be a k(n)-round robust t(n)-non mal-
leable commitment scheme with computational complexity p(n). Then, there exists a (k(n) + 8)-
round robust concurrent t(n)-non malleable commitment scheme 〈Ĉ, R̂〉 with computational com-
plexity 2p(n) + k(n)poly(n).

We mention that Lemma 2 is interesting in its own right: it shows that it is sufficient to study
stand-alone non-malleable commitments to conclude the existence of concurrent non-malleable
commitments. Furthermore, as we discuss further in Section 1.4, we believe that the notion of
robust non-malleability (i.e., non-malleability with respect to arbitrary k-round protocols) is a
fundamental concept that might have other applications.

1.3 Applications to Round-efficient Secure Computation

Goldreich, Micali and Wigderson’s [GMW91] original work on secure multi-party computation
showed a O(n)-round multi-party computation protocol based on the existence of enhanced trap-
door permutations (TDPs), where n is the number of players in the execution. Subsequent
works improved the round-complexity by making stronger assumptions. Katz, Ostrovsky, and
Smith [KOS03] obtained a O(log n)-round protocol assuming TDPs and dense-crypto systems.
By additionally assuming the existence of hash-function collision-resistant against circuits of sub-
exponential size (and non-black-box technique), they also obtained a O(1)-round protocol. The
latter results was subsequently improved to Pass [Pas04], showing the existence of a O(1)-rounds
protocol assuming only TDPs and (standard) collision resistant hash functions (but still using
non-black box techniques). But so far, no (asymptotic) improvements to the round-complexity of
multi-party computation have been established assuming only TDPs.

Lin, Pass and Venkitasubramaniam [LPV09] recently show that the round complexity of non-
malleable commitments is intimately connected with the round complexity of protocols for secure
multi-party computation. More precisely, [LPV09] shows that the existence of k(n)-round robust
non-malleable commitments and the existence of TDPs implies the existence of O(k(n))–round
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secure multi-party computation. (In fact, as shown in [LPV09], a similar result also applies to
universally composable [Can01] secure computation in a number of set-up models or relaxed models
of security.) By combining their result with our new construction of non-malleable commitments,
we get that O(log∗ n) rounds suffice to construct a secure multi-party computation protocol, based
on only TDPs.

Theorem 4. Assume the existence of enhanced trapdoor permutations. Then there exists a O(log∗ n)-
round protocol for secure multi-party computation.

1.4 Subsequent Work and Perspective

Several recent works extend our technique.

Towards Constant-round Non-malleable Commitment from One-way function. Pass and
Wee [PW10] recently provide a construction of a constant-round non-malleable commitment scheme
assuming sub-exponential one-way functions. Their protocol is obtained by first constructing a
constant-round protocol that is log log log n-non malleable, and next applying our amplification
technique to obtain a full-fledged non-malleable commitment. The question of obtaining constant-
round commitments based on standard one-way functions is still open; by our work, it suffices to
construct a constant-round protocol that is non-malleable for log log log . . . log n length identities.

Black-box Non-malleability Amplification. The elegant recent work by Wee [Wee10] presents
a simplified non-malleability amplification technique. As mentioned, [Wee10] was first to achieve
a O(log∗ n)-round (as opposed to a O(1)log

∗n-round) protocol. Instead of amplifying robust non-
malleable commitments, Wee’s amplification procedure operates directly on robust concurrent non-
malleable commitments. Doing this simplifies the analysis of the amplification procedure. (On the
downside, we now need to bootstrap the amplification with a concurrently secure protocol; known
such protocols requires a quite complex analysis (see [LPV08]) even if we only need a protocol
that is O(1)-non malleable. In contrast, as we show in Appendix A, constructing a robust stand-
alone secure O(1)-non-malleable protocols is significantly simpler.) Even more interestingly, Wee
shows that his amplification procedure can be made black box—i.e., the new commitment scheme
(that works for longer identities) only invokes the original one as a black box. Unfortunately, the
notion of non-malleability achieved by this black-box construction is somewhat weaker than the
traditional definitions [DDN00, PR05b, LPV08]; however, as shown by Wee, this weaker notion
of non-malleability is actually sufficient for the purpose of secure multiparty computation. As a
consequence, Wee concludes a black-box version of Theorem 4. The problem of obtaining black-box
non-malleability amplification, while preserving the traditional notion of non-malleability, seems
like an interesting open question (that could lead to practical constructions of non-malleable com-
mitments).

Applications of Robust Non-malleable Commitment. We believe that the notion of ro-
bust non-malleability (i.e., non-malleability with respect to arbitrary k-round protocols) is the key
conceptual notion enabling our amplification procedure. A-posteriori, it seems quite natural to
consider a notion of non-malleability with respect to classes of protocols; it also seems natural that
such a notion is helpful when using non-malleable commitments as sub-protocols. We have recently
exploited this notion in other works where non-malleable commitments are used as sub-protocols
[LPV09, LPTV10].
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1.5 Outline

In Section 2 we provide some preliminaries and definitions of the new notions of non-malleability
we introduce. In Section 3 we prove Lemma 1, which, as mentioned, essentially follows using
[DDN00, LPV08]. Section 4, which contains the proof of Lemma 2, is the main technical part
of the paper. In Section 5, we show how to apply our non-malleability amplification theorem
to establish the generalized version of the non-malleability amplification theorem and conclude
Theorem 2. Finally, for completeness, in Appendix A we provide a simple construction of a robust,
but exponential-round, non-malleable commitment.

2 Preliminaries and Definitions

2.1 Notations

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote the set
{0, 2, . . . , n− 1}, and let {0, 1}n denote the set of n-bit strings. We denote by PPT probabilistic
polynomial time Turing machines. We assume familiarity with interactive Turing machines, denoted
ITM. Given a pair of ITMs, A andB, we denote by 〈A(x), B(y)〉(z) the random variable representing
the (local) output of B, on common input z and private input y, when interacting with A with
private input x, when the random tape of each machine is uniformly and independently chosen.

2.2 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

2.3 Indistinguishability

Definition 2 (Computational Indistinguishability). Let Y be a countable set. Two ensembles
{An,y}n∈N,y∈Y and {Bn,y}n∈N,y∈Y are said to be computationally indistinguishable (denoted by
{An,y}n∈N,y∈Y ≈ {Bn,y}n∈N,y∈Y ), if for every PPT “distinguishing” machine D, there exists a
negligible function ν(·) so that for every n ∈ N, y ∈ Y :

|Pr [a← An,y : D(1n, y, a) = 1]− Pr [b← Bn,y : D(1n, y, b) = 1]| < ν(n)

2.4 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89]
and arguments (a.k.a computationally-sound proofs) [BCC88]. Given a pair of interactive Turing
machines, P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output
of V , on common input x, when interacting with machine P with private input w, when the random
input to each machine is uniformly and independently chosen.
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Definition 3 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following two
conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x /∈ L, and every interactive machine B, Pr [〈B, V 〉(x) = 1]
≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

2.5 Witness Indistinguishable Proofs

The notion of witness indistinguishability (WI) was introduced by Feige and Shamir in [FS90].
Roughly speaking, an interactive proof is said to beWI if the verifier’s output is “computationally
independent” of the witness used by the prover for proving the statement. In this context, we focus
on languages L ∈ NP with a corresponding witness relation RL. Namely, we consider interactions
in which, on common input x, the prover is given a witness in RL(x). By saying that the output
is computationally independent of the witness, we mean that for any two possible NP-witnesses
that could be used by the prover to prove the statement x ∈ L, the corresponding outputs are
computationally indistinguishable.

Definition 4 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive
proof system for a language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for
every PPT ITM V ∗ and for every two sequences {w1

n,x}n∈N,x∈L∩{0,1}n and {w2
n,x}n∈N,x∈L∩{0,1}n,

such that w1
n,x, w

2
n,x ∈ RL(x) for every x, the following probability ensembles are computationally

indistinguishable.

• {〈P (w1
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

• {〈P (w2
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

2.6 Special-sound WI proofs

A 4-round public-coin interactive proof for the language L ∈ NP with witness relation RL is
special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and (δ′, α′, β′, γ′) such that
the initial two messages, δ, δ′ and α, α′, are the same but the challenges β, β′ are different, there is a
deterministic procedure to extract the witness from the two transcripts and runs in polynomial time.
Special-soundWI proofs for languages inNP can be based on the existence of 2-round commitment
schemes, which in turn can be based on one-way functions [GMW91, FS90, HILL99, Nao91].

2.7 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value
while keeping it secret from the receiver (this property is called hiding). Furthermore, the commit-
ment is binding, and thus in a later stage when the commitment is opened, it is guaranteed that
the “opening” can yield only a single value determined in the committing phase. In this work, we
consider commitment schemes that are statistically-binding, namely while the hiding property only
holds against computationally bounded (non-uniform) adversaries, the binding property is required
to hold against unbounded adversaries. We refer the reader to [Gol01] for a formal definition.
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Two-round (i.e., a single message from the receiver followed by a single message from the
committer) commitment schemes are known to exist based on the minimal assumption of one-way
functions [Nao91, HILL99].

Initial-binding. In this work we consider a specific type of statistically binding commitment
schemes, where the first message sent by the committer already determines the value committed
to. We call this property initial binding. In the sequel of the paper, a commitment scheme always
refers to a statistically-binding commitment with initial binding.

Tag-based Commitment Scheme. Following [PR05a, DDN00], we consider tag-based commit-
ment schemes where, in addition to the security parameter, the committer and the receiver also
receive a “tag”—a.k.a. the identity—id as common input.

2.8 Concurrent Non-Malleable Commitments

We recall the definition of concurrent non-malleability from [LPV08]. For convenience, we use
a slightly different presentation (based on indistinguishability instead of simulation); equivalence
follows using a standard argument (c.f. [GM84, PR05a]). Let 〈C,R〉 be a tag-based commitment
scheme, and let n ∈ N be a security parameter. Consider a man-in-the-middle adversary A (as
shown in figure 1) that, on inputs n and z (where z is received as an auxiliary input), participates in
m left and right interactions simultaneously. In the left interactions the man-in-the-middle adver-
sary A interacts with C, receiving commitments to values v1, . . . , vm, using identities id1, . . . , idm
of its choice. In the right interactions A interacts with R attempting to commit to a sequence
of related values ṽ1, . . . , ṽm, again using identities ĩd1, . . . , ĩdm of its choice. If any of the right
commitments are invalid, or undefined, its value is set to ⊥. For any i such that ĩdi = idj for
some j, set ṽi = ⊥—i.e., any commitment where the adversary uses the same identity as one of the
left interactions is considered invalid. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a random variable that
describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

Definition 5. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable (with respect
to itself) if for every polynomial p(·), and every PPT man-in-the-middle adversary A that par-
ticipates in at most m = p(n) concurrent executions, the following ensembles are computationally
indistinguishable.{

mimA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗{

mimA
〈C,R〉(v

′
1, . . . , v

′
m, z)

}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗

Further, a commitment scheme is said to be concurrent t(n)-non malleable, if it is secure against
all PPT man-in-the-middle adversaries that only select identities of length t(n). Below for con-
venience, when referring to concurrent non-malleable commitments, we mean concurrent n-non-
malleable commitments.

We also consider relaxed notions of concurrent non-malleability: one-one, one-many, and many-
one secure non-malleable commitments (See Figure 2 below.) In a one-one (a.k.a., a stand-alone
secure) non-malleable commitment, we consider only adversaries A that participate in one left and
one right interaction; in one-many, A participates in one left and many right, and in many-one, A
participates in many left and one right.

As shown in [LPV08], any protocol that is one-many non-malleable is also concurrent non-
malleable.

8



A

C R

Com(vm)

Com(vi)

Com(v1)

Com(ṽm)
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Figure 1: A concurrent man-in-the-middle adversary.
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·· ·

·· ·
A

Com(vm)

Com(vi)

Com(v1)

Com(ṽ)
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Figure 2: Restricted man-in-the-middle adversaries.

Proposition 1 ([LPV08]). Let 〈C,R〉 be a one-many concurrent non-malleable commitment. Then,
〈C,R〉 is also a concurrent non-malleable commitment.

We remark that our notion of non-malleability (from [LPV08]) is stronger than that in [DDN00,
PR05b, PR05a] in that we consider not only the values committed to by the adversary, but also
the view of the adversary. This property is used when establishing proposition 1, and will be used
extensively in the remainder of the paper.

2.9 Weak Concurrent Non-Malleability

The standard concurrent non-malleability requires that no matter what values an adversary receives
commitments to, the view of the adversary, combined with the values it commits to (on the right)
are indistinguishable. This means that for any property P , the probability that P holds on the view
V and committed values ṽ1, . . . , ṽm changes by at most a negligible amount. We here consider a
relaxed notion of non-malleability, which focuses on a restricted class of properties P ; furthermore
we only require that the probability that P holds does not “jump” from negligible to non-negligible.
More precisely, we will be interested only in properties existQ, which hold if the adversary manages
to generate a view V and commit to some value v, such that Q(V, v) holds; formally, given a
predicate Q, define existsQ(V, ṽ1, . . . , ṽm) = 1 iff ∃1 ≤ i ≤ m, s.t. Q(V, ṽi) = 1.

Definition 6. A commitment scheme 〈C,R〉 is said to be weak one-many non-malleable (with respect
to itself) if for every polynomial p(·), every PPT man-in-the-middle adversary A that participates
in one left interaction and at most m = p(n) right interactions, and every binary predicate Q, there
exists a negligible function ε(·), such that, for every n ∈ N, v1, v2 ∈ {0, 1}n, z ∈ {0, 1}∗ it holds that:

Pr
[
existsQ(mimA

〈C,R〉(v1, z)) = 1
]
≤ m× Pr

[
existsQ(mimA

〈C,R〉(v2, z)) = 1
]

+ ε(n)

Whereas one-one non-malleability does not imply one-many non-malleability, it does imply weak
one-many non-malleability.
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Proposition 2. Let 〈C,R〉 be a stand-alone non-malleable commitment. Then, 〈C,R〉 is also a
weak one-many non-malleable commitment.

Proof. Assume, for contradiction, that 〈C,R〉 is not weak one-many non-malleable; that is, there
exists an adversary A, a predicate Q, and a polynomial p(·) such that for infinitely many n ∈ N ,
there exists v1, v2 ∈ {0, 1}n, and z ∈ {0, 1}∗ such that,

Pr
[
existsQ(mimA

〈C,R〉(v1, z)) = 1
]
≥ m× Pr

[
existsQ(mimA

〈C,R〉(v2, z)) = 1
]

+
1

p(n)

We construct a machine B that violates the one-one non-malleability property of 〈C,R〉. B(z)
acts as a man-in-the-middle adversary, participating in one left and one right interaction of 〈C,R〉.
Internally, it simulates a one-many man-in-the-middle execution of 〈C,R〉 with A(z): on the left,
it simply forwards messages from the external committer to A, while on the right, it picks one
of the right interactions at random and forwards it to the outside receiver; the rest of the right
interactions are honestly emulated. Since B perfectly simulates the one-many man-in-the-middle
execution for A, the probability that existsQ holds in simulation by B is

• p1 = Pr
[
existsQ(mimA

〈C,R〉(v1, zn)) = 1
]
, when the external committer commits to v1, and

• p2 = Pr
[
existsQ(mimA

〈C,R〉(v2, zn)) = 1
]
, when the external committer commits to v2.

Since the value B commits to is simply the value A commits to in a randomly picked right inter-
action, the probability that Q holds on the value B commits to is

• at least p1
m when receiving a commitment to v1, and

• at most p2, on receiving a commitment to v2.

Thus, Q distinguishes the value B commits to, on receiving commitments to v1 or v2, with proba-
bility p1

m − p2 ≥ 1
mp(n) , which contradicts the stand-alone non-malleability of 〈C,R〉.

2.10 Robustness: Non-Malleability w.r.t. k-round Protocols

The concept of non-malleability is traditionally only considered in a setting where a man-in-the
middle adversary is participating in two (or more) executions of the same protocol. We here
consider a notion of non-malleability with respect to arbitrary k-round protocols.

Consider a one-many man-in-the-middle adversary A (as shown in figure 3) that participates in
one left interaction—communicating with a machine B—and many right interactions—acting as a
committer using the commitment scheme 〈C,R〉. As in the standard definition of non-malleability,
A can adaptively choose the identities in the right interactions. We denote by mimB,A

〈C,R〉(y, z) the

random variable consisting of the view of A(z) in a man-in-the-middle execution when communicat-
ing with B(y) on the left and honest receivers on the right, combined with the values A(z) commits
to on the right. Intuitively, we say that 〈C,R〉 is one-many non-malleable w.r.t B if mimB,A

〈C,R〉(y1, z)

and mimB,A
〈C,R〉(y2, z) are indistinguishable, whenever interactions with B(y1) and B(y2) cannot be

distinguished.

Definition 7. Let 〈C,R〉 be a commitment scheme, and B a PPT ITM. We say the commitment
scheme 〈C,R〉 is one-many non-malleable w.r.t. B, if for every two sequences {y1

n}n∈N and {y2
n}n∈N ,

y1
n, y

2
n ∈ {0, 1}n, such that, for all PPT ITM Ã, it holds that{

〈B(y1
n), Ã(z)〉(1n)

}
n∈N,z∈{0,1}∗

≈
{
〈B(y2

n), Ã(z)〉(1n)
}
n∈N,z∈{0,1}∗
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AB(y)

Com(ṽm)

Com(ṽi)

Com(ṽ1)

·· · ·· ·

·· ·

Figure 3: A concurrent man-in-the-middle adversary with respect to protocol B on input y.

then it also holds that, for every PPT one-many man-in-the-middle adversary A,{
mimB,A

〈C,R〉(y
1
n, z)

}
n∈N,z∈{0,1}∗

≈
{
mimB,A

〈C,R〉(y
2
n, z)

}
n∈N,z∈{0,1}∗

We say that 〈C,R〉 is one-many non-malleable w.r.t k-round protocols if 〈C,R〉 is one-many non-
malleable w.r.t any machine B that interacts with the man-in-the-middle adversary in k rounds.
Such commitment schemes are easy to construct: any commitment scheme that is “extractable”
and has more than k “rewinding slots” is directly one-many non-malleable w.r.t. k-round protocols.
(A formal proof of this is obtained identically to the proof of Claim 5; See Section 4.2.2). In this
work, we focus on non-malleability w.r.t 4-round protocols; we call such protocols robust.

As mentioned earlier, to bootstrap the amplification technique, we need a constant-round robust
O(1)-non-malleable commitment scheme. By observing that the O(log n)-round non-malleable
commitment protocol of [LPV08] (which is based on [DDN00]) contains O(log n) “rewinding slots”,
we directly get:

Theorem 5. Assume the existence of one-way functions. Then there exists a constant-round robust
O(1)-non-malleable commitment scheme.

But, to obtain a constant-round O(1)-non-malleable commitment schemes, it suffices to device
an protocol whose round complexity grows exponentially with the length of the identities. For self-
containment, we provide a simple construction of such a protocol in Appendix A (thus providing
an alternative, simpler, proof of Theorem 5).

3 Proof of Lemma 1—The DDN “log n trick”

Given a robust t(n)-concurrently non-malleable commitment scheme 〈C,R〉, we construct a robust
2t(n)−1-non malleable commitment scheme 〈C̃, R̃〉, following the construction by Dolev, Dwork and
Naor [DDN00].

Description of the Protocol 〈C̃, R̃〉(id) [DDN00, LPV08]: Let l be the length of the identity
id, l = |id| = 2t(n)−1. To commit to value v ∈ {0, 1}n, choose l random shares r0, . . . , rl−1 ∈ {0, 1}n,
such that v = r0 ⊕ . . .⊕ rl−1. Then for each 0 ≤ i ≤ l − 1, commit to ri (in parallel) using 〈C,R〉
with identity (i, idi), where idi is the ith bit of id.

The protocol 〈C̃, R̃〉 consists of 2t(n)−1 parallel executions of 〈C,R〉 with t(n)-bit identities.
Thus, the round complexity of 〈C̃, R̃〉 is the same as 〈C,R〉, and the computational complexity
increases by a factor of 2t(n)−1. Hiding and initial-binding follows using standard techniques.
Moreover, as is shown in [LPV08], 〈C̃, R̃〉 is stand-alone non-malleable.

Proposition 3 ([LPV08]). If 〈C,R〉 is concurrently non-malleable, then 〈C̃, R̃〉 is stand-alone
non-malleable.
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Furthermore, it is easy to see that 〈C̃, R̃〉 is also robust.

Proposition 4. If 〈C,R〉 is one-many non-malleable w.r.t. arbitrary k-round protocols, then 〈C̃, R̃〉
is also one-many non-malleable w.r.t. arbitrary k-round protocols.

Proof. Consider some adversary A, machine B, distinguisher D, inputs x1, x2, and z, such that
D distinguishes the view of A and the values it commits to using 〈C̃, R̃〉, after interacting with B
on inputs x1 or x2, with probability ε. Note that A can also be viewed as a one-many adversary
for 〈C,R〉 (with respect to B). Now, consider the distinguisher D′ that on input the view and
values {ṽji } committed to by A using 〈C,R〉—where ṽji denotes the jth “share” of the ith value

committed to by A using 〈C̃, R̃〉, lets ṽi = ⊕j∈[l]ṽ
j
i and outputs D(V, ṽ1, . . . , ṽm). It follows that

D′ distinguishes the view of A and the values it commits to using 〈C,R〉, after interacting with B
on inputs x1 or x2 with probability ε, which therefore must be negligible (in n) by the robustness
of 〈C,R〉.

We note, however, that 〈C̃, R̃〉 is not concurrently non-malleable. Consider the following man-
in-the-middle adversary A that participates in one left and two right interactions: on the left, A
receives a commitment of 〈C̃, R̃〉 using identity idL, where idL is l bits long and l is even; on the
right, A chooses identities id1

R and id2
R, such idL 6= id1

R, idL 6= id2
R, but the first l/2 bits of id1

R are
the same as those in idL, and the last l/2 bits of id2

R are the same as those in idL. To complete
the two right commitments, A simply forwards the first l/2 parallel executions of 〈C,R〉 in the left
interaction to the first right commitment (as the first l/2 parallel executions), and the remaining
l/2 parallel executions in the left to the second right interaction (as the last l/2 parallel executions);
for the remaining parallel executions on the right, A commits to 0 using 〈C,R〉. By construction,
the XOR of the two values committed to in the the right executions equals to the value committed
to on the left, and thus 〈C̃, R̃〉 cannot be concurrently non-malleable.

In the next section, we show how to restore concurrent non malleability.

4 Proof of Lemma 2—The Strengthening Technique

The logn trick in the previous section allows us to increase the length of identities used in a non-
malleable commitment protocol while keeping the round complexity constant. The transformation,
however, weakens the quality of non-malleability; namely, we need to start off with a concurrently
non-malleable protocol, but after the transformation we only get back a stand-alone non-malleable
protocol. We provide a technique for restoring concurrent non malleability without sacrificing too
much in round complexity.

More specifically, the strengthening technique to be introduced shows how to transform any
robust stand-alone non-malleable commitment into a robust concurrent non-malleable commitment,
while only increasing the round complexity by a constant. Below we first present a strengthening
technique that increases the round complexity by a constant multiplicative factor, and then show
how to improve the round complexity further by running different subprotocols in parallel.

4.1 The Protocol 〈Ĉ, R̂〉

For simplicity of exposition, our description below relies on the existence of one-way functions with
efficiently recognizable range, but the protocol can be easily modified to work with any arbitrary
one-way function (by simply providing a witness hiding proof that an element is in the range of
the one-way function; see Remark 4.2 for more details). Given an k(n)-round robust stand-alone
non-malleable commitment protocol 〈C̃, R̃〉, the construction of 〈Ĉ, R̂〉 proceeds as follows. To
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commit to a value v, the Committer and the Receiver, on common input the identity id ∈ {0, 1}l,
and 1n, where n is the security parameter, proceed in six stages:

Stage 1 the Receiver picks a random string r ∈ {0, 1}n, and sends its image s = f(r), through a
one-way function f with an efficiently recognizable range, to the Committer. The Committer
checks that s is in the range of f and aborts otherwise. Furthermore, the receiver also sends in
parallel the first message of a commitment of com, where com is any two-round statistically-
binding string commitment.

Stage 2 the Committer sends the second message of a commitment of com to v.

Stage 3 the Committer commits to v (again) using 〈C̃, R̃〉 and identity id.

Stage 4 the Committer commits to 0n using 〈C̃, R̃〉 and identity id.

Stage 5 the Committer performs a 4-round WISSP proof 〈P, V 〉 of the statement that it has
committed to 0n in Stage 4, or it knows a pre-image of s.

Stage 6 the Committer proves that it has committed to value v in both Stage 2 and 3, or a pre-
image of s in Stage 4. This is proved using k(n) + 1 sequential invocations of the 4-round
WISSP protocol 〈P, V 〉.

Let ∆ be a transcript of the protocol 〈C̃, R̃〉. We define the value committed to in the transcript to
be the value committed to in Stage 2 (using com) of ∆. That is, in the reveal stage, the committer
needs to reveal the committed value and the randomness used in Stage 2 of the protocol as the
decommitment. A formal description of the protocol appears in Figure 4.
It is easy to see that 〈Ĉ, R̂〉 has 6k(n)+10 ≤ 16k(n) rounds. Furthermore, it follows using standard
techniques that 〈Ĉ, R̂〉 is a commitment scheme.

Proposition 5. 〈Ĉ, R̂〉 is a statistically binding commitment scheme, with initial binding.

of Proposition 5. The binding property follows directly from the statistically binding property of
com used in Stage 2. The protocol is initial binding by construction, since the first message from
the committer is (the second message of) the com commitment. For the hiding property, we show
that any adversary R∗ that violates the hiding property of 〈Ĉ, R̂〉 can be used to violate the hiding
property of 〈C̃, R̃〉. More precisely, given any adversaryR∗ (without loss of generality, deterministic)
that distinguishes commitments made using 〈Ĉ, R̂〉, we construct a machine R′ that distinguishes
commitments made using 〈C̃, R̃〉. Let s be the first message sent by R∗. R′ on auxiliary input
r, such that, s = f(r), proceeds as follows. It internally incorporates R∗ and simulates a 〈Ĉ, R̂〉
commitment to R∗ by committing to 0 in Stage 2 and forwarding the external commitment made
using 〈C̃, R̃〉 to R∗ in Stage 3. For the rest of the commitment, it uses the “fake witness” r.
More specifically, it commits to r instead of 0n in Stage 4, and then gives WI proofs that it has
committed to a pre-image of s in Stage 6; in Stage 5, it proves its knowledge of a pre-image of s.
Finally, it outputs whatever R∗ outputs. From the hiding property of com, 〈C̃, R̃〉 and the WI
property of Stage 5 and 6, it follows that R′ distinguishes the commitments made using 〈C̃, R̃〉, if
R∗ distinguishes the commitments made using 〈Ĉ, R̂〉.

4.2 Proof of Concurrent Non-malleability

To prove that 〈Ĉ, R̂〉 is a robust concurrent non-malleable commitment we need to show the fol-
lowing two claims.
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Protocol 〈Ĉ, R̂〉

Common Input: A security parameter 1n and an identity id ∈ {0, 1}l.

Auxiliary Input for Committer: A string v ∈ {0, 1}n.

Commit Stage

Stage 1

R uniformly chooses r ∈ {0, 1}n

R → C: s = f(r) and the first message m of a commitment of com.

C aborts if s is not in the range of f .

Stage 2

C → R: the second message c of a commitment of com to v, in reply to m.

Stage 3

C→ R: a commitment to v using the protocol 〈C̃, R̃〉. Let T1 be the transcript generated.

Stage 4

C→ R: a commitment to 0n using the protocol 〈C̃, R̃〉. Let T2 be the transcript generated.

Stage 5

C → R: a WISSP proof of 〈P, V 〉 of the statement that:

• either T2 is a valid a commitment to 0n,

• or there exists a value r, s.t s = f(r).

Stage 6

C → R: k(n) + 1 WISSP proofs of 〈P, V 〉 of the statement:

• either there exists a value v, s.t (m, c) is a valid commitment to v using com and
T1 is a valid commitment to v using 〈C̃, R̃〉,

• or there exists a value r s.t s = f(r) and T2 is a valid commitment to r using
〈C̃, R̃〉.

Reveal Stage

C → R: (v, σ)

R outputs 1 if the honest committer of com, on receiving private input v, random tape σ,
and message m in the first round, outputs c; it outputs 0 otherwise.

Figure 4: A Concurrent Non-Malleable Commitment Scheme 〈Ĉ, R̂〉
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(i) The simplified case (ii) The general case

Figure 5: The simplified case and the general case.

Proposition 6. 〈Ĉ, R̂〉 is one-many non-malleable w.r.t 4-round protocols.

Proposition 7. 〈Ĉ, R̂〉 is one-many non-malleable.

The proof of Proposition 6 follows using standard techniques (by reducing the robustness prop-
erty of 〈Ĉ, R̂〉 to that of 〈C̃, R̃〉) and we thus postpone it to Section 4.2.1. We here turn to the
proof of Proposition 7. Below, for simplicity of notation, unless otherwise specified, we view the
Stage 2 commitment as a non-interactive commitment; however, the reader should keep in mind
that it is actually a two-round commitment where the first round sent in Stage 1.

of Proposition 7. We want to prove that for any man-in-the-middle adversary A that participates
in one left execution and many right executions, the following ensembles are indistinguishable:{

mimA
〈Ĉ,R̂〉(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗{

mimA
〈Ĉ,R̂〉(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

Assume, for contradiction, that there exists a PPT A, a distinguisher D and a polynomial p(n),
such that for infinitely many n ∈ N , there exist v1, v2, z such that D distinguishes mimA

〈Ĉ,R̂〉(v1, z)

and mimA
〈Ĉ,R̂〉(v2, z) with probability 1

p(n) . Towards reaching a contradiction, we first consider a

simplified case, in which A is restricted to always send its first message (i.e, the Stage 2 commitment)
in the right interactions after receiving the first message (again, the Stage 2 commitment) in the
left interaction, as shown in Figure 5 (i). Intuitively, it suffices to consider this simplified case as
the values A commits to (in Stage 2 on the right) before receiving the first message on the left are
trivially independent of the value committed to on the left.

Analysis of the simplified case: We proceed to analyze the case when A always sends its first
message in the right interaction after receiving the first message of the left interaction. We define
a sequence of hybrid experiments H0, . . . ,H5. In each of these experiments, we show that the view
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of A, combined with the values A commits to in Stage 3 on the right are, indistinguishable. (Note
that we here consider the values that A commits to in Stage 3, and not the values committed to in
Stage 2 as in the definition of mimA

〈Ĉ,R̂〉.)

Furthermore, in each of these experiments, we also show that, except with negligible probability,
A is never able to commit to a “fake” witness r—that is, a pre-image of s (the Stage 1 message
from a right receiver)—in Stage 4 of any successful right interactions that has a different identity
from the left interaction. Below, we let hybi(v, z) denote the random variable describing the view
of A(z), combined with the values it commits to in Stage 3 of the right interactions in hybrid Hi

(as usual, the committed value is replaced with ⊥ if the right interaction fails or if A has copied
the identity of the left interaction).

Hybrid H0 Hybrid H0 consists of an “honest” emulation of mimA
〈Ĉ,R̂〉(v, z). Note that it follows

directly from the one-wayness of f and the proof of knowledge property of Stage 5, that,
except with negligible probability, A never commits to a “fake” witness r in any successful
right execution (or else we can use A to invert f). Furthermore, note that hyb0(v, z) is
identically defined to mimA

〈Ĉ,R̂〉(v, z) except that in mimA
〈Ĉ,R̂〉(v, z) we consider the values

committed to by A in Stage 2, whereas in hyb0(v, z) we consider the values committed to
in Stage 3. However, by the soundness of the Stage 6 proof system, it holds that, in every
successful right interaction, either the values committed to in Stage 2 and 3 are the same, or
A has committed to a “fake” witness in Stage 4. Since the latter only happens with negligible
probability, we have that the combined and view and values committed by A in hyb0(v, z)
and mimA

〈Ĉ,R̂〉(v, z) are statistically close.

Claim 1. For every PPT adversary A, it holds that:{
mimA

〈Ĉ,R̂〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hyb0(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Hybrid H1 Hybrid H1 proceeds identically to H0 except that the left execution is emulated by
finding a fake witness r, using a brute-force search, and next using this r when emulating
Stage 5; everything else remains the same. It then follows from the one-many non-malleability
with respect to 4-round protocols of Stage 3 and the witness indistinguishability property of
Stage 5 of the left interaction, that the view of A and the values it commits to in Stage 3
on the right are indistinguishable to those in H0. To formalize this, recall that the notion of
non-malleability with respect to 4-round protocols only guarantees indistinguishability if the
left 4-round interaction is efficiently computable. This holds here since, as we only consider
the simplified case, the Stage 2 commitments on the right are always sent after the Stage 2
commitment on the left, and hence, so are the Stage 3 commitments on the right. Thus the
fake witness r is determined, and can be fixed non-uniformly, before any Stage 3 commitment
on the right begins; then, given r, the rest of the left interaction, and in particular the 4-round
WI proof, can be generated efficiently. Therefore, robustenss can be applied here.

Claim 2. For every PPT adversary A, it holds that:

{hyb0(v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈ {hyb1(v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

The proof of Claim 2 (which simply formalizes the above argument) can be found in Sec-
tion 4.2.2. Additionally, by the same property of the protocol in Stage 4, it follows using
exactly the same proof as for Claim 2 that, except with negligible probability, A never com-
mits to a “fake” witness in any successful right interactions (since this was the case in H0.)
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Claim 3. There exists some negligible function µ, such that for every PPT adversary A, and
every inputs v, z ∈ {0, 1}∗, the probability that A commits to a “fake” witness, in a successful
right interaction that uses a different identity from the left interaction, in hyb1(v, z), is smaller
than µ(n).

Hybrid H2 Hybrid H2 proceeds identically to H1 except that the left execution is emulated by
committing to the fake witness r in Stage 4. Since (by the scheduling constraint on A in the
simplified case) Stage 4 of the right interactions start after Stage 2 of the left interaction, it
follows from the one-many weak non-malleability of Stage 4 that A can only commit to a fake
witness with negligible probability. A formal proof of Claim 4 below appears in Section 4.2.2.

Claim 4. There exists some negligible function µ, such that for every PPT adversary A, and
every input v, z ∈ {0, 1}∗, the probability that A commits to a “fake” witness, in a successful
right interaction that uses a different identity from the left interaction, in hyb2(v, z), is smaller
than µ(n).

It only remains to show that the combined view and values committed to by A in Stage 3
are indistinguishable to those in H1. On a high-level, this follows from the fact that the
commitment in Stage 4 only has k(n) rounds, but Stage 6 consists of k(n) + 1 special-sound
proofs. Thus, for each execution on the right, there exists some special-sound proof that does
not contain any of the Stage 4 messages from the left execution; thus we can use rewindings to
extract the witness used in this proof without rewinding Stage 4 on the left. Since we already
showed that A can only commit to a fake witness with negligible probability, it follows from
the special soundness of the proof that, except with negligible probability, the value extracted
out are the values committed to by A in Stage 3. It now follows from the hiding property of
Stage 4 on the left (and the fact that Stage 4 of the left interaction is never rewound) that
the the view combined with the values extracted out (which in turn are statistically close to
the values committed to by A in Stage 3) are indistinguishable to those in hybrid H1. The
proof of Claim 5 below can be found in Section 4.2.2.

Claim 5. For every PPT adversary A, it holds that:

{hyb1v, z}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈ {hyb2v, z}n∈N,v∈{0,1}n,z∈{0,1}∗

Hybrids H1
3 to H

k(n)+1
3 In hybrids H1

3 to H
k(n)+1
3 , we change the witness used in the k(n) + 1

WISSP proofs in Stage 6 of the left interaction. More specifically, the experiment H i
3

proceeds identically to H2, except that in the first i Stage 6 proofs on the left, we use the
fact that we have committed to a fake witness r in Stage 4. As the only difference between
two consecutive hybrids H i

3 and H i+1
3 is the witness used in a single WISSP proof (i.e., the

i + 1’th proof) on the left, it follows using the same argument as in hybrid H1 (i.e., from
the one-many non-malleability of Stage 3 and 4 w.r.t to 4-round protocols and the witness
indistinguishability of the 4-round proofs in Stage 6) that the combined view and values
committed to by A in Stage 3 are indistinguishable, and that A almost never commits to
a fake witness in any successful right interaction that uses a different identity from the left

interaction. We conclude by a hybrid argument that this holds also in hybrid H
k(n)+1
3 .

Hybrid H4 Hybrid H4 proceeds identically to H
k(n)+1
3 except that Stage 3 of the left execution is

emulated by committing to 0. It follows using the same argument as in hybrid H2 that the
combined view and values committed to by A in Stage 3 are indistinguishable (from those in
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H
k(n)+1
3 ), and that A only commits to a fake witness in a successful right interaction with a

different identity from the left interaction with negligible probability.

Hybrid H5 Hybrid H5 proceeds identically to H4 except that the Stage 2 commitment of the left
execution is emulated by committing to 0. It follows using the same argument as in hybrid
H1 (relying on the non-malleability w.r.t. 4-round protocols property of Stage 3 on the right)
and the the hiding property of the Stage 2 commitment on the left that the combined view
and values committed to by A in Stage 3 are indistinguishable from those in H4. (Note that
“non-malleability w.r.t. 1-round protocols” (of Stage 3 on the right) suffices here since Stage
2 only contains a single message (i.e., the second message of the commitment using com);
furthermore, note that the hiding property of this (two-round) commitments holds no matter
what first message the receiver has sent in Stage 1).

It follows by a hybrid argument that,{
mimA

〈Ĉ,R̂〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hyb5(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Since the above holds for every value v, we have{
mimA

〈Ĉ,R̂〉(v1, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hyb5(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗{

mimA
〈Ĉ,R̂〉(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hyb5(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

Finally, since by definition of hyb5, it holds that for every v1, v2 and z, hyb5(v1, z) = hyb5(v2, z),
the following ensembles are indistinguishable.{

mimA
〈Ĉ,R̂〉(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗{

mimA
〈Ĉ,R̂〉(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

,

which concludes the proof for the simplified case.

Analysis of the General Case: Next we consider the general case where the adversary might
send some Stage 2 commitments on the right earlier than the Stage 2 commitment of the left
interaction, as shown in Figure 5 (ii). Let Γ(A, v, z) denote the distribution of the joint views τ
of A and the right receivers, such that after τ , the left committer immediately sends the Stage 2
commitment in the left interaction. By our hypothesis, it follows using an averaging argument that
for at least a fraction 1

2p(n) of the joint views τ in Γ(A, v, z),

• D distinguishes
{
mimA

〈Ĉ,R̂〉(v1, z)|τ
}

and
{
mimA

〈Ĉ,R̂〉(v2, z)|τ
}

with probability at least 1
2p(n) ,

where
{
mimA

〈Ĉ,R̂〉(v, z)|τ
}

denotes the output of mimA
〈Ĉ,R̂〉(v, z) conditioned on the event that

the execution is consistent with τ .

Furthermore, by the one-wayness of f , and the proof of knowledge property of Stage 5, it follows
that, except with negligible probability, A never commits to a “fake” witness in any successful right
executions in an honest man-in-the-middle execution. Therefore, for at least a fraction 1

3p(n) of the

joint views τ in Γ(A, v, z), the following two conditions hold:

• D distinguishes
{
mimA

〈Ĉ,R̂〉(v1, z)|τ
}

and
{
mimA

〈Ĉ,R̂〉(v2, z)|τ
}

with probability at least 1
2p(n) ;
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• A only commits to a fake witness in any successful right interactions in the experiment{
mimA

〈Ĉ,R̂〉(v1, z)|τ
}

or
{
mimA

〈Ĉ,R̂〉(v2, z)|τ
}

with negligible probability.

We call such a joint view τ “good”. Consider any “good” view τ . Without loss of generality
(by a renumbering of right interactions) we assume that only the first ` right interactions have
their Stage 2 commitments sent inside τ ; in the remaining m − ` right interactions, A sends the
Stage 2 commitment after τ . By the statistically binding property of com, except with negligible
probability, the values A commits to in Stage 2 in the first ` right interactions are decided by τ ;
let ṽ1, . . . , ṽ` be the committed values. Now consider a man-in-the-middle execution in which A
and the right receivers are fed with their view in τ . We show that there exists a distinguisher D′

that distinguishes the view and the values A commits to, after τ , with probability at least 1
2p(n) .

D′, on input ρ, ṽ`+1, . . . , ṽm, and auxiliary input τ, ṽ1, . . . , ṽ`, simply outputs D(τ‖ρ, ṽ1, . . . , ṽm).

As D distinguishes
{
mimA

〈Ĉ,R̂〉(v1, z)|τ
}

and
{
mimA

〈Ĉ,R̂〉(v2, z)|τ
}

with probability at least 1
2p(n) , D′

also distinguishes the view and values committed to by A, after τ , with probability at least 1
2p(n) .

Finally, recall that the proof of the simplified case only relies on the following two facts about A:

• A always sends the Stage 2 commitments on the right after receiving the Stage 2 commitment
from the left committer, and

• A only never commits to a “fake” witness in any successful right interactions with negligible
probability.

For every “good” τ , it holds that, in a man-in-the-middle execution consistent with τ ,

• In the last m − ` right interactions, A sends the Stage 2 commitments after receiving the
Stage 2 commitment from the left committer, and

• A only commits to a “fake” witness in any successful right interactions with negligible prob-
ability.

Therefore, it follows using exactly the same proof as that for the simplified case that the view and
the value A commits to in the last m−` right interactions, i.e., after τ , are indistinguishable, which
gives a contradiction.

Remark. The protocol 〈Ĉ, R̂〉 described above uses a one-way function with efficiently recognizable
range in its first stage. It can be easily modified to work with any arbitrary one-way function, by
adding one more stage after Stage 1. In this new stage, the receiver provides a witness hiding proof
that the message it sends in Stage 1 is in the range of the one-way function; the committer then
verifies the proof and aborts if it is not convincing. It follows by the same proofs as above that the
modified protocol is a robust concurrent non-malleable commitment scheme.

4.2.1 Proof of Proposition 6

Proof. Assume that there exists some adversary A, machine B, distinguisher D and a polynomial
p, such that for infinitely many n there exist x1, x2, z such that D distinguishes the combined view
and values committed to by A(z) when interacting with B on input either x1 or x2, with probability

1
p(n) . We show that there exist an adversary A′ and a distinguisher D′ such that D′ distinguishes

only the view of A′(z) in interactions with B on inputs x1 and x2.
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Fix one such n, x1, x2 and z. Given A, we construct an adversary Ã attacking the non-
malleability of 〈C̃, R̃〉 with respect to B. More specifically, Ã(z) externally interacts with B on
input either x1 or x2; internally, it incorporates A(z) and forwards all the messages from B to A;
furthermore, it forwards externally all the 〈C̃, R̃〉 commitments in Stage 3 from the right interactions
of A; finally it outputs whatever A outputs. We show that there exists a distinguisher D̃ that
distinguishes the combined view and committed values of Ã, with probability 1

p(n) . D̃, on input the

view V and values ṽ1, . . . , ṽm committed to by Ã, reconstructs the view and values committed to
by A in the emulation by Ã. This is done by reconstructing the view VA of A from V, and setting
ṽ′k = ṽk if interaction k succeeds and ⊥ otherwise. It then invokes the distinguisher D on the
reconstructed view VA and values ṽ′k, and outputs the output of D. Notice that the view of A in
simulation by Ã is identically distributed to that in a real execution. By the one-wayness of f and
the proof of knowledge property of Stage 5, we know that, except from negligible probability, none
of the Stage 4 commitment in any successful right interaction would be a commitment to a “fake”
witness (i.e., a pre-image of the first message s sent by the receiver). Therefore, it follows from the
soundness of the Stage 6 argument that, in simulation by Ã, except with negligible probability, the
value A commits to in Stage 3 of any successful right interaction is the same as that in Stage 2 (and
hence, by definition, the value A commits to in the corresponding right interaction). Thus, except
with negligible probability, VA combined with the values ṽ′k are identically distributed to the view
and values committed to by A in a real execution. Therefore D̃ distinguishes the view and values
committed to by Ã with probability at least 1

2p(n) .

It then follows from the robustness of 〈C̃, R̃〉 that there exists an adversary A′, a distinguisher
D′, and a polynomial q, such that for infinitely many n, D′ distinguishes, just the view of A′ in
interactions with B on input either x1 or x2 with probability 1

q(n) .

4.2.2 Proof of Claims

In the proofs below, we say that an adversary is “well-behaved” if it always sends its first message
in the right interactions after receiving the first message in the left interaction (i.e., the adversary
respect the scheduling constraint for the Simplified Case).

of Claim 2. Assume, for contradiction, that there exists a well-behaved adversary A, a distinguisher
D and a polynomial p, such that, for infinitely many n, v, and z, D distinguishes hyb0(v, z) and
hyb1(v, z) with probability 1

p(n) . We show how this violates robustness of 〈C̃, R̃〉.
Towards this goal, first note that the two experiments H0 and H1 proceed identically before

Stage 2 commitment of the left interaction is sent. Therefore, there must exist a partial joint
view τ of all parties that defines the execution before Stage 2 of the left interaction, such that D
distinguishes {hyb0(v, z)‖τ} and {hyb1(v, z)‖τ} with probability at least 1

p(n) , where {hybi(v, z)‖τ}
denotes the outcome of hybi(v, z) conditioned on that the event that the execution is consistent
with joint view τ ; let s be denote the first left message in τ and let r denote a pre-image of s
through f . Consider the machine B(bn), which upon receiving a statment x, and two witnesses
for x, w0, w1, provides a WISSP proof of the statement x using witness wb. Since WISSP is a
4-round protocol (where the first message is sent from the verifier), B thus also defines a 4-round
protocol (as x,w0, w1 can be sent with the first message from the WISSP verifier). It follows
directly from the WI property of the WISSP proof that no (non-uniform) PPT adversary can
distinguish interactions with B(0n) and B(1n).

We now construct an adversary Ã such that the view and values that Ã commitment to after
interacting with B(0n) and B(1n) can be distinguished by a distinguisher D̃ (that appropriately
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incorporates D). Ã, upon receiving v, z, τ and r as auxiliary input, internally emulates a man-in-
the-middle execution with A from τ as follows. It honestly emulates the left committer and right
receivers for A with the following two exceptions:

• To emulate the Stage 5 proof of the left interaction, it externally sends B the statement x
and the witnesses w0, w1—w0, is a valid decommitment to the Stage 4 commitment protocol
(since Ã honestly emulated Stage 4, it knows this decommitment information), w1 instead is
the “fake witness” r. It next forwards the WISSP proof from B to A.

• In Stage 3 of the right interactions, it externally forwards messages from A to an honest
receiver of 〈C̃, R̃〉. (Note that since A is well-behaved the Stage 3 commitment has not yet
stated in τ so this can be done.)

The distinguisher D̃, on input the view V and the values v1, . . . , vm committed to by Ã, reconstructs
the view and values committed to by A in Stage 3 in emulation by Ã, by extracting the view VA of
A from V, and setting the values ṽ′k committed to by A to vk if the right interaction k is accepting
and has a different identity from the left interaction in VA and ⊥ otherwise. D̃ then invokes the
distinguisher D on the reconstructed view VA and committed values ṽ′k, and outputs the output of
D. Since Ã, in interaction with B(bn), perfectly emulates the view of A in the hybrid experiment
Hb, the extracted view VA and committed values ṽ′k are identically distributed to {hybb(v, z)‖τ}.
It follows that D̃ distinguishes the view and the values committed to by Ã using 〈C̃, R̃〉 with
probability 1

p(n) , which contradicts with the robustness of 〈C̃, R̃〉.

of Claim 4. Below, we say that the man-in-the-middle adversary cheats, if it manages to commit
to a “fake” witness in any successful right interaction that uses a different identity from the left
interaction. Now, assume for contradiction that there exists a well-behaved adversary A, and a
polynomial p, such that, for infinitely many n, v and z, the probability that A cheats in H2 is 1/p(n).
We show that there exists a PPT adversary B that violates the weak one-many non-malleability
of 〈C̃, R̃〉.

Take any such n, v and z. Note that (since A is well-behaved) the hybrids H1 and H2 proceed
identically before the Stage 2 commitment of the left interaction is sent; furthermore, by Claim 3,
except from negligible probability, A never cheats in H1. It follows using an averaging argument
(just as in analysis of the General Case in Section 4.2), there exists a partial joint view ρ of all
parties that defines the execution before Stage 2 of the left interaction, such that, conditioned on
that the execution being consistent with ρ, the probability that A cheats in H2 is at least 1/2p(n),
whereas the probability in H1 is negligible; let r be a pre-image of the first left-message in ρ.

Then, the adversary B, upon receiving ρ and r as auxiliary inputs, internally emulates a man-
in-the-middle execution with A from ρ as follows. It emulates the left committer and the right
receivers honestly (from the joint view ρ), except that it externally forwards messages from A in
Stage 4 of the left and right interactions to an honest committer (on the left), and honest receivers
(on the right) of the commitment 〈C̃, R̃〉. By construction, B perfectly emulates the view of A in H1

whenever it it receives a commitment to 0n from the external committer, and perfectly emulates the
view of A in H2 whenever it it receives a commitment to the “fake” witness r. By our assumption,
it follows that the probability that A cheats in the emulation by B changes from being negligible
(when receiving a commitment to 0n to (at least) 1/p(n) (when receiving a commitment to the
fake witness). Now, consider the local property Q defined as follows: Q, on input a view V of B
and one of its committed values ṽ, outputs 1, if and only if, (1) ṽ is a “fake” witness of some right
interaction i in the emulated man-in-the-middle execution in V, and (2) the interaction is successful
and uses a different identity from the left interaction. The probability that existsQ holds on the
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view and values committed to by B is identical to the probability that A cheats in the emulation by
B. But, as noted above, this probability changes from being negligible to 1

p(n) when changing the
external left commitment from 0n to r. This contradicts with the weak one-many non-malleability
of 〈C̃, R̃〉.

of Claim 5. Assume, for contradiction, that there exists a well-behaved adversary A, a distinguisher
D, and a polynomial function p(·), such that, for infinitely many n ∈ N , v ∈ {0, 1}n and z ∈ {0, 1}∗,
the distinguisher D distinguishes hyb1(v, z) and hyb2(v, z) with probability 1

p(n) . We construct an

expected PPT adversary B that breaks the hiding property of 〈C̃, R̃〉. Below we are only concerned
with the last three messages of aWISSP proof and, thus, for simplicity of notation, we view them
as 3-round protocols (α, β, γ).

Consider any n, v and z for which the above happens. Notice that H1 and H2 proceed identically
before the Stage 2 commitment of the left interaction is sent; furthermore, by Claim 3 and 4, it
holds that, except from negligible probability, A never cheats in H1 and H2. It again follows using
an averaging argument (just as in the analysis of the General Case in Section 4.2) that, there
exists a partial joint view ρ of all parties that defines the execution before Stage 2 of the left
interaction, such that, D distinguishes {hyb1(v, z)‖τ} and {hyb2(v, z)‖τ} with probability 1/2p(n),
and conditioned on the execution being consistent with ρ, the probability that A cheats is negligible;
let r be a pre-image of the first left-message in ρ.

On a high-level, B, on receiving τ and r as auxiliary input, externally acts as a receiver of a
〈C̃, R̃〉 commitment, and tries to distinguish commitments to 0 and r. Internally, B incorporates
A and proceeds in the following three phases.

1. In the first phase, B emulates a man-in-the-middle execution with A from ρ, by emulating
the left committer and the right receivers honestly, from ρ, except that it forwards messages
from A in Stage 4 of the left interaction externally. We call this phase the “Main Execution
Phase” and denote ∆ the transcript of messages of this phase.

2. In the second phase, B attempts to extract the values A commits to on the right, via rewinding
the special sound proofs in Stage 6 of the protocol. More precisely, for each right interaction,
B finds the firstWISSP proof (α, β, γ) in ∆, such that, during its the execution, no messages
belonging to Stage 4 of the left interaction are exchanged. (Such a WISSP proof must exist
since there are more WISSP proofs than the number of rounds of Stage 4.) B then rewinds
the proof by sending new random challenges β′ until a second transcript (α, β′, γ′) is obtained.
In each rewinding, B emulates the left and right interactions for A exactly the same as in
the Main Execution Phase, except that it cancels every rewinding in which A expects a new
message in Stage 4 of the left interaction. Finally, it computes the witness of the proof if
β′ differs from β; it aborts and outputs fail if β′ = β or the extracted witness is not a valid
decommitment to Stage 2. Additionally, B cuts off its execution after 2n steps; it halts and
output fail in this case. This phase is called the “Extraction Phase”.

3. Finally, in the “Output Phase”, B outputs the view of A and all the values extracted, with
the following exception: a value vi is replaced by ⊥, if in the right interaction, A fails, or uses
the same identity as the left interaction.

A formal description of the procedure of B appears in figure 6. We have the following two claims.

Subclaim 1. B runs in expected polynomial time.

Subclaim 2. The output of B satisfies the following:
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Description of B
Input: B receives auxiliary input τ , z and r
Procedure: B interacts externally as a receiver using 〈C̃, R̃〉. Internally it incorporates A(z)
and proceeds in the following three phases.

Main Execution Phase Emulates a one-many man-in-the-middle execution of 〈Ĉ, R̂〉.

• Feed the view in τ to A and all right receivers.

• Forward the external 〈C̃, R̃〉 commitment in as Stage 4 of the left interaction.

• Emulate the rest of all interactions and complete the execution with A as in hybrid H1.

Let ∆ be the transcript of messages obtained.

Extraction Phase For k ∈ [m], if interaction k is convincing, and its identity is different from
the left interaction, do:

• In ∆, find the firstWISSP proof (α, β, γ) in Stage 6, such that no left Stage 4 messages
are exchanged during its execution.

• Repeat until a second proof transcript (α, β′, γ′) is obtained:

Emulate all interactions as in the Main-Execution Phase, except that for the left inter-
action, if A expects a message in Stage 4 of the left interaction, cancel the execution,
rewinds to the beginning of β and continue.

Note that, since (by the scheduling constraint in the simplified case) interactions k has
its Stage 6 occurring after τ , none of the rewinding can make A request a message
appearing in τ again.

• If β 6= β′, extract witness w from (α, β, γ) and (α, β′, γ′). Otherwise halt and output
fail.

• If w contains is a valid decommitment (v, r′′) for the Stage 3 commitment of 〈Ĉ, R̂〉 in
interaction k, then set v̂k = v. Otherwise halt and output fail.

Output Phase For every interaction k that is not convincing, or whose identity is the same
as the left interaction, set v̂k =⊥. Output (v̂1, . . . , v̂m) and the view of A from the Main
Execution Phase.

Finally, if B runs for more than 2n steps, halt and output fail.

Figure 6: The construction of B.
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• If B receives a commitment to 0, the output is statistically close to the outcome of {hyb1(v, z)‖τ}.

• If B receives a commitment to r, the output is statistically close to the outcome of {hyb2(v, z)‖τ}.

Then, by the assumption that, D distinguishes {hyb1(v, z)‖τ} and {hyb2(v, z)‖τ} with probability
at least 1/2p(n), D also distinguishes the outputs of B with probability at least 1/3p(n). Since this
holds for infinitely many n, B violates the hiding property of 〈C̃, R̃〉.

of Subclaim 1. We show that B runs in expected polynomial time. This follows using essentially
the same proof as in [LPV08]; for completeness, we provide the analysis below.

Note that the time spent by B in the Main Execution Phase is poly(n), since A is a strict
polynomial time machine. We show below that the expected time spent by B in the Extraction
Phase is poly(n). To bound the expected running time, we assume for simplicity that B does not
check the fail conditions and may run for more than 2n steps (since this only increases the running
time).

Recall that in the Extraction Phase, B rewinds A from the first SSP proof that is not interleaved
with the Stage 4 of the left interaction. Let Tk(i) be the random variable that describes the time
spent rewinding the ith SSP proof in Stage 6 of interaction k. We show that E[Tk(i)] ≤ poly(n)
and then, by linearity of expectation, conclude that the expected time spent by B in the Extraction
phase is ∑

k

∑
i

E[Tk(i)] ≤
∑
k

∑
i

poly(n) ≤ poly(n),

We proceed to bound E[Tk(i)]. Let (α, β, γ) be the ith SSP proof in Stage 6 of the kth right
interaction; and Γ the set of all (partial) transcript ρ, such that, after ρ, the challenge β of the i’th
slot of the k’th interaction is immediately sent. Given one ρ ∈ Γ, let Pr [ρ] denote the probability
that ρ occurs as a prefix of the execution emulated in the Main Execution phase. Furthermore, let
pρ denote the probability that ρ is rewound in B, i.e. pρ is the probability that, conditioned on
the prefix ρ occurring, the right interaction k is convincing, and (α, β, γ) is the first SSP proof in
the interaction such that no left Stage 4 message is exchanged during its execution. Recall that
B rewinds until it finds another transcript of the proof (α, β, γ); it cancels every rewinding for
which A fails, or requests a left Stage 4 message. We claim that the probability of cancelling a
rewinding from ρ is at most 1 − pρ, since in every rewinding that is cancelled, either A fails or
a left Stage 4 message is about to be exchanged, and conditioned on ρ, the probability of a view
occurring in a rewinding from ρ is same as occurring in the Main Execution phase (as B emulates
the left committer and right receivers in a rewinding the same as it does in the Main Execution
phase). Thus, the expected number of rewindings is at most 1

pρ
. Therefore, the expected number

of rewindings from ρ is at most pρ · 1
pρ

= 1 and each rewinding takes at most poly(n) steps, i.e.

E[Tk(i)|ρ] ≤ poly(n)

Thus,

E[Tk(i)] =
∑
ρ∈Γ

E[Tk(i)|ρ]× Pr [ρ]

≤ poly(n)×
∑
ρ∈Γ

Pr [ρ] ≤ poly(n)
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of Subclaim 2. We now argue that the output distribution of B is correct. This follows from the
following two claims.

1. Upon receiving a commitment to 0, the output of B—conditioned on not outputting fail—is
statistically close to the outcome of {hyb1(v, z)‖τ}. Furthermore, upon receiving a commit-
ment to r, the output of B—conditioned on not outputting fail—is statistically close to the
outcome of {hyb2(v, z)‖τ}.

2. B outputs fail with only negligible probability.

For the first of these claims, note that B perfectly emulates the execution of H1 from τ (upon
receiving a commitment to 0) or H2 (upon receiving a commitment to r) for A. Furthermore, for
every convincing right interaction k that has a different identity than the left interaction, B finds
the first SSP proof that does not interleave with Stage 4 of the left interaction, (as previously
mentioned, such a proof must exist, since there are more SSP proofs than messages in Stage 4)
and will rewind that interaction, and eventually output fail or a valid decommitment of Stage 3.
Conditioned on the event that B does not output fail, by the statistical-binding property of 〈C̃, R̃〉,
it follows that, except with negligible probability, the witnesses extracted by B are the values
committed to by A in Stage 3.

For the second claim, recall that B outputs fail only in the following cases:

B runs for more than 2n steps: We know that the expected running time of B is poly(n).
Using Markov inequality, we conclude that the probability that B runs more than 2n steps is
at most poly(n)

2n .

The same proof transcript is obtained: This case occurs if B picks some challenge β in the
Extraction Phase that appeared as a challenge in the Main Execution Phase. As B runs for
at most 2n steps, it picks at most 2n challenges. Furthermore, the length of each challenge
is 2n. By applying the union bound, we obtain that the probability that a β is picked twice
is at most 2n

22n
. Since there are at most polynomially many challenges picked in the Main

Execution Phase, using the union bound again, we conclude that the probability of obtaining
the same transcript is negligible.

The witness extracted is not a valid decommitment: Suppose, for some successful inter-
action k that has a different identity from the left interaction, the witness extracted is not
the decommitment information. Then, by the special-soundness, it follows that it must be
a “fake” witness r for the interaction, and that A must have committed to r in Stage 4 of
the interaction. However, this contradicts with the fact that conditioned on τ , A can only
commit to a fake witness with negligible probability in such a right interaction.

4.3 Improving the Round Complexity

Editorial Remark: The improvements in this section were added after Hoeteck Wee announced a
(different) construction of a O(log∗ n)-round non-malleable commitment scheme from any one-way
function [Wee10]. Our original amplification procedure in [LP09] did not use these improvements
and resulted in a O(1)log∗ n round non-malleable commitment.
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The strengthening technique presented in Section 4 transforms a k(n)-round robust stand-alone
non-malleable commitment 〈C̃, R̃〉 into a robust concurrent non-malleable commitment 〈Ĉ, R̂〉,
with 6k(n) + 10 rounds. Iterating this procedure would yield a O(1)log

∗n-round full-fledged non-
malleable commitment from one-way function. But, by simply running the last four stages of
〈Ĉ, R̂〉 in “parallel”, we can get a construction which only increases the round complexity by an
additive constant. Let 〈C̃, R̃〉 be a robust stand-alone non-malleable commitment scheme with
initial binding; without loss of generality, we assume that the protocol has an even number of
rounds, with k/2 messages from each of the committer and the receiver, and the first message is
from the receiver. Next, replace the last four stages in the construction of 〈Ĉ, R̂〉 with the following
two stages (i.e., we keep the first two stages untouched).

Stage 3 the Committer and the Receiver exchange the first two messages of a commitment to v
and a commitment to 0n, from the Committer to the Receiver, using 〈C̃, R̃〉 and id, in parallel.
Let (m1,m2) and (m′1,m

′
2) be the transcript generated. By the initial binding property of

〈C̃, R̃〉, m2 and m′2 determines the values committed to in the two commitments.

Stage 4 the Committer and the Receiver perform the following in parallel:

• exchange the remaining k(n)− 2 messages of the commitment to v using 〈C̃, R̃〉 and id.

• exchange the remaining k(n)−2 messages of the commitment to 0n using 〈C̃, R̃〉 and id.

• the Committer provides a 4-round WISSP proof 〈P, V 〉 of the statement that the
committed value decided by (m′1,m

′
2) is 0n, or it knows a pre-image of s.

• the Committer proves that it has committed to value v in both Stage 2 and (m1,m2),

or a pre-image of s in (m′1,m
′
2). This is proved using l(n) = k(n)

2 + 1 invocations of a
4-round WISSP protocol 〈P, V 〉. More specifically, let (δ, α, β, γ) denote a transcript
of 〈P, V 〉; the Committer and the Receiver first exchange the first two messages (δ, α)
of the l(n) arguments of 〈P, V 〉, in parallel ; next, they exchange the last two messages,
(β, γ), of the l(n) arguments, in sequence.

It is easy to see that the protocol 〈Ĉ, R̂〉 has at most k(n) + 8 rounds. Furthermore, it follows
exactly as in Section 4.2 that 〈Ĉ, R̂〉 is a robust concurrent non-malleable commitment (note that
the proof in Section 4.2 never relied on the fact that the sub-protocols in 〈Ĉ, R̂〉 after Stage 2 were
sequentially run) .

5 Concluding Theorem 1

Corollary 1 (Restated). Let 〈C,R〉 be a k(n)-round robust stand-alone t(n)-non malleable com-
mitment scheme, s.t. 3 ≤ t(n) ≤ n. Then, there exists a k(n)+O(l(n))-round robust non-malleable
commitment scheme 〈Ĉ, R̂〉, where l(n) = O(log∗ n− log∗ t(n)).

Proof. Define 〈Cj , Rj〉 to be the commitment scheme obtained after applying Theorem 3 j times on
〈C,R〉. Let roundj(n) and complexj(n) be the round and computational complexity of 〈Cj , Rj〉, and
idj(n) be the maximal length of the identities that 〈Cj , Rj〉 can accommodate. By assumption, we
have that round0(n) = k(n), complex0(n) = poly(n) and id0(n) = t(n). Furthermore, by Theorem 3,
it holds that, for any j

1. roundj(n) ≤ roundj−1(n) + 8.

2. idj(n) = 2id
j−1(n)−1.
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3. complexj(n) = 2idj(n)complexj−1(n) + roundj−1(n)p(n)

where p(n) = poly(n). Let l(n) = max(
{
j : idj(n) ≤ n

}
). By the second condition above, we

have that idl(n)(n) ≥ log n+ 1 and idl(n)−1(n) ≤ log n+ 1. Furthermore, since idj+2(n) > 2id
j(n), we

have that l(n) = O(log∗ n− log∗ t(n)). It follows that,

• log n+ 1 ≤ idl(n) ≤ n.

• roundl(n)(n) ≤ round0(n) + 8l(n) ≤ k(n) + 8l(n)

Next we show that complexl(n)(n) is also polynomially bounded. As roundj ≤ roundj+1, we have
that for every j ≤ l(n), roundj+1(n) is bounded by a polynomial q. It follows that

complexj(n) = 2idjcomplexj−1(n) + p(n)q(n)

Expand the equation for complexl(n)(n).

complexl(n)(n) = 2l(n)

l(n)∏
j=1

idj(n)

 complex0(n) +

l(n)∑
l′=2

2l(n)−l′+1

l(n)∏
j=l′

idj(n)

 p(n)q(n)


Since the second term of the right hand side is polynomially related to the the first term, it suffices
to bound the first term.

2l(n)

l(n)∏
j=1

idj(n)

 complex0(n) = 2l(n)poly(n)

l(n)∏
j=1

idj(n)

≤poly(n)idl(n)
(
idl(n)−1(n)

)l(n)

≤poly(n)n(log n+ 1)O(log∗ n−log∗ t(n))

≤poly(n)n(log n+ 1)log logn = poly(n)

Therefore 〈C l(n), Rl(n)〉 is a robust idl(n)-non malleable commitment scheme, and idl(n) ≥ log n+
1. To obtain a robust n-non malleable commitment scheme 〈Ĉ, R̂〉, we simply view 〈C l(n), Rl(n)〉
as a (log n+ 1)-non malleable commitment, and apply the amplification theorem once.

By setting t(n) to 3 in Corollary 1, we get:

Lemma 3. Let 〈C,R〉 be a constant-round robust 3-non malleable commitment scheme with compu-
tational complexity poly(n). Then, there exists a O(log∗ n)-round robust non-malleable commitment
scheme 〈C ′, R′〉.
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Protocol 〈C,R〉

Common Input: An identity id ∈ {0, 1}t and 1n.

Auxiliary Input for Committer: A string v ∈ {0, 1}n.

Stage 1:

C uniformly chooses v1 ∈ {0, 1}n, σ1, σ2 ∈ {0, 1}poly(n); and sets v2 = v ⊕ v1
C → R: c1 = com(v1, σ1) and c2 = com(v2, σ2).

Stage 2:

C → R: id + 6 WISSP proofs of the statement that there exist values v1 and σ1 s.t.
c1 = com(v1, σ1).

Stage 3:

C → R: 2t − id + 6 WISSP proofs of the statement that there exist values v2 and σ2 s.t.
c2 = com(v2, σ2).

Figure 7: A O(2t)-Round Robust t-Non-Malleable Commitment Scheme 〈Ĉ, R̂〉

A A Simple Exponential-round Robust Non-Malleable Commit-
ment

In this section we present a O(2t)-round t-non-malleable robust commitment. The commitment
scheme 〈C,R〉 proceeds as follows: to commit to a value v, the Committer and the Receiver, on
common input a t-bit identity id ∈ {0, 1}t, and 1n, where n is the security parameter, proceed in 3
stages:

Stage 1 the Committer chooses 2 random shares v1, v2 ∈ {0, 1}n, such that v = v1⊕ v2, and sends
c1 = com(v1) and c2 = com(v2), where com is any two-round statistically-binding string
commitment.

Stage 2 the Committer proves that c1 is a valid commitment to value v1. This is proved using
id + 5 sequential invocations of a 4-round WISSP protocol 〈P, V 〉.

Stage 3 the Committer proves that c2 is a valid commitment to value v2. This is proved using
2t − id + 5 sequential invocations of the 4-round WISSP protocol 〈P, V 〉.

A formal description of the protocol can be found in Figure 7.
Below we show that the protocol is robust and t-non-malleable. The robustness essentially

follows from the fact that both random shares v1 and v2 are extractable (from the WISSP proofs
in Stage 2 and 3 respectively) and have at least 5 “rewinding slots” (a rewinding slot consists of
the challenge and reply pair of a WISSP proof). Then, since the committed value v is completely
decided by v1 and v2, we conclude that the protocol is non-malleable w.r.t. any 4-round protocols.
A formal proof proceeds just as in Claim 5.

We proceed to show that the protocol is t-non malleable. Note that the commitment scheme
would still be hiding if we were to reveal one of the shares committed to (since each of the shares
is individually random). To prove non-malleability, we show that both the shares commited in the
right interaction can be extracted out (by rewinding), while only rewinding one of the Stage 2 and
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com(v1)com(v2)
com(v′1)com(v′2)

com(v1)com(v2)
com(v′1)com(v′2)

(i) (ii)

Figure 8: Two schedulings of a man-in-the-middle execution of 〈C,R〉.

3 of the left interaction. But since each stage proves knowledge only of one of the shares on the left,
such a rewinding can reveal only one of the share and thus the left interaction still remains hiding
and non-malleability follows. To show this, we consider two case: either the man-in-the-middle
attacker A “aligns” the left and right interactions (that is, it sends the challenge of the i’th left-
proof, in between the challenge and reply pair of the i’th right-proof), or it does not (see Figure 8 (i)
and (ii) respectively). In case A aligns (and the left and right interactions have different identities),
there must be one stage in the left interaction that contains more proofs than its counterpart in the
right interaction; let it be Stage a (for instance, a = 3 in Figure 8 (i)). This means we can extract
(using rewinding) both the shares committed to on the right while only rewinding Stage a on the
left. In case the left and right interactions are not aligned, there must be one right-proof that does
not “contain” any left challenge messages (e.g. the first right-proof in Figure 8 (ii)); hence we can
rewind this right-proof to extract one of the shares, without rewinding any left-proofs. The other
share can then be easily extracted while only rewinding one of the stages on the left.

We proceed to a formal proof of non-malleability. On a high-level, the proof follows from
the same paradigm as [LPV08], (which, in turn, follows [DDN00]). We first consider another
commitment scheme 〈C ′, R′〉 that is a close variant of the original protocol 〈C,R〉. 〈C ′, R′〉 proceeds
identically to 〈C,R〉, except that the receiver is allowed to request an arbitrary number of proofs for
each of the random shares; to request a proof for vb, it simple sends b to the committer. Furthermore,
at any point of the protocol execution, the receiver can request the decommitment information for
one of commitments, cb, by sending (open, b). It is easy to see that 〈C ′, R′〉 is hiding as each share
is individually random. (A formal proof proceed by simulation using a standard argument.)

We next construct an extractor E that after interacting with C ′, outputs a simulated view of A
(that is identically distributed to the view of A after interacting with C̄), and furthermore extracts
out the value A commits to on the right (via rewinding the WISSP proofs in Stage 2 and 3). E
externally interacts with committer C ′, and internally proceeds in the following three phases.

• In the Main Execution Phase, it emulates a man-in-the-middle execution with A, where
messages in the left interaction are emulated by forwarding appropriate messages from the
external commitment of 〈C ′, R′〉. Let ∆ denote the simulated view of A.

• In the Rewinding Phase, it attempts to extract the value A commits to in ∆, if the right
interaction is successful and has a different identity than the left interaction. To do so, it
finds one “rewinding slot” in each of Stage 2 and 3 of the right interaction, such that, they
are both “aligned” with proofs belonging to the same stage of the left interaction (see figure 8
(i)), or one of them is not “aligned” with any proof on the left (see figure 8 (ii)). (As argued
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before, there must exist such two slots, if the left and right identities are different.) Let Stage
j be the stage on the left that is aligned with the two rewinding slots, and Stage k be the
one that is not. E, then, rewinds each of the two slots by sending new random challenges
to A, until a second transcript of the slot is obtained, and hence the corresponding witness
can be computed5. In each rewinding, it emulates the man-in-the-middle execution with A
as follows.

– If A expects a new Stage 1 message, it starts a new session with C ′, and forwards the
Stage 1 message of the new session to A.

– If A expects a message in Stage j of the left interaction, it requests C ′ to reveal the
random share corresponding to Stage j, and emulates C̄ in Stage j honestly using v.

– If A expects a new complete proof in Stage k of the left interaction, it simply requests
for a new proof from C ′ and forwards the proof to A. However, if A sends (only) a
challenge message and expects a new reply in Stage k, it cancels the rewinding.

• Finally, in the Output Phase, it outputs the view ∆ and v = w1 ⊕ w2, where w1 and w2 are
the two witnesses extracted; in the case where the right interaction fails or uses the same
identity as the left interaction, it sets v = ⊥.

It is easy to see that the simulated view ∆ of A by E is perfect and that, whenever the right
interaction in ∆ is successful and uses a different identity from the left interaction, E would (almost
always) extract out two witnesses w1 and w2; by the special soundness of 〈P, V 〉, these are the shares
committed to and thus the value committed to is extracted. Hence the output of E is statistically
close to the combined view and committed value by A in a real execution with C̄. Furthermore,
it follows using the same argument as in Claim 5 that the expected running time of E is bounded
by a polynomial. Therefore, it follows from the hiding property of 〈C ′, R′〉 that the combined view
and value committed to by A in the real execution is indistinguishable, no matter which value A
receives commitment to in the left interaction. It follows that 〈C,R〉 is non-malleable.

5In the rare case, where the same transcript in ∆ is obtained again, E simply aborts the extraction phase and set
v = fail
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