
 Predicting Faults from Cached History

Sunghun Kim 1

hunkim@csail.mit.edu

Thomas Zimmermann 2

tz @acm.org

E. James Whitehead, Jr. 3
ejw@cs.ucsc.edu

Andreas Zeller 2
zeller@acm.org

1
 Massachusetts Institute of

Technology, USA

2
 Saarland University,

Saarbrücken, Germany

3
 University of California,

Santa Cruz, USA

Abstract

We analyze the version history of 7 software sys-

tems to predict the most fault prone entities and files.

The basic assumption is that faults do not occur in

isolation, but rather in bursts of several related faults.

Therefore, we cache locations that are likely to have

faults: starting from the location of a known (fixed)

fault, we cache the location itself, any locations

changed together with the fault, recently added loca-

tions, and recently changed locations. By consulting

the cache at the moment a fault is fixed, a developer

can detect likely fault-prone locations. This is useful

for prioritizing verification and validation resources

on the most fault prone files or entities. In our evalua-

tion of seven open source projects with more than

200,000 revisions, the cache selects 10% of the source

code files; these files account for 73%-95% of faults—

a significant advance beyond the state of the art.

1. Introduction
Software quality assurance is inherently a resource-

constrained activity. In the majority of software pro-

jects, the time and people available are not sufficient

to eliminate all faults before a release. Any technique

that allows software engineers to reliably identify the

most fault-prone software functions provides several

benefits. It permits available resources to be focused

on the functions that have the most faults. Addition-

ally, such a list makes it possible to selectively use

time intensive techniques, such as software inspec-

tions, formal methods, and various kinds of static code

analysis.

Two important qualities of software fault predic-

tion algorithms are accuracy and granularity. The

accuracy is the degree to which the algorithm cor-

rectly identifies future faults. The granularity specifies

the locality of the prediction. Typical fault prediction

granularities are the executable binary [19], a module

(often a directory of source code) [11], or a source

code file [21]. For example, a directory level of granu-

larity means that predictions indicate a fault will occur

somewhere within a directory of source code. The

most difficult granularity for prediction is the entity

level (or below), where an “entity” is a function or

method.

We have developed an algorithm that, in our ex-

perimental assessment on seven open source projects,

is 73%-95% accurate at predicting future faults at the

file level and 46%-72% accurate at the entity level

with optimal options. This accuracy is better than or

equivalent to other efforts reported in the literature.

Moreover, we achieve this accuracy at the entity and

file level, which permits a more targeted allocation of

available resources because of the greater locality of

the predictions.

Our prediction algorithm is executed over the

change history of a software project, yielding a small

subset (usually 10%) of the project’s files or func-

tions/methods that are most fault-prone. The key in-

sight that drives our algorithm is the observation that

most faults are local. Put another way, faults do not

occur uniformly in time across the history of a func-

tion; they appear in bursts. Specifically, we believe

bug occurrences have four different kinds of locality:

Changed-entity locality. If an entity was changed

recently, it will tend to introduce faults soon.

New-entity locality. If an entity has been added re-

cently, it will tend to introduce faults soon.

Temporal locality. If an entity introduced a fault re-

cently, it will tend to introduce other faults soon.

Spatial locality. If an entity introduced a fault re-

cently, “nearby” entities (in the sense of logical

coupling) will also tend to introduce faults soon.

Following Hassan and Holt [11], we borrow the

notion of a cache from operating systems research,

and apply it for the purpose of fault prediction. We

use the cache as a convenient mechanism for holding

our current list of the most fault-prone entities, and for

aggregating multiple heuristics for maintaining the

cache. The switch to a cache involves a subtle but

important shift: instead of creating mathematical func-

tions that predict future faults, the cache selects and

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

removes entities based on specific criteria—in our

case the localities specified above. The ideal is to

minimize the size of cache while at the same time

maximizing its accuracy.

Unlike most existing research on fault prediction

that approximates faults simply with fixes, we use

bug-introducing changes. Following the definitions in

[22], a fix is a modification that repairs a software

fault; it tells us the location where a bug occurred

(which lines and files), but not the time when the bug

was introduced. However, the latter information is

crucial for the localities that we defined before; for

instance spatial locality requires the time when a fault

was introduced to identify nearby entities at that time.

We get the time information from bug-introducing

changes, the modifications that create faults. Hence,

the chronology is bug-introducing change(s), bug re-

port, and finally fix.

BugCache vs. FixCache. This paper describes and

evaluates algorithms for maintaining a cache based on

fault localities. There are two variants:

BugCache updates the cache at the moment a fault is

missed, that is, not found in the cache. We will use

BugCache to empirically show the presence of fault

localities. Since in practice, a change is not known to

be bug-introducing until the corresponding fix, Bug-

Cache is a theoretical model.

FixCache shows how to turn localities into a practical

fault prediction model. In contrast to BugCache, it has

a delayed update: when a fault is fixed, the algorithm

traces back to the corresponding bug-introducing

change, and only then is the cache updated based on

the bug-introducing localities.

This paper makes the following contributions:

Empirical evidence of fault localities. Evaluation of

the BugCache algorithm provides empirical evi-

dence that fault localities actually exist.

Very accurate fault prediction. By combining a

cache model with different heuristics for fault pre-

diction, the FixCache algorithm has an accuracy of

73%-95% using files and 46%-72% using meth-

ods/functions.

Validation of adaptive fault prediction. FixCache is

an online learning approach [1], learning from

cache hits and misses. Thus it can easily adapt when

a system’s fault distribution changes. FixCache’s

high accuracy, equivalent in accuracy to the best

approaches in the literature, with smaller granularity,

demonstrates the utility of adaptive fault prediction

algorithms.

In the remainder of this paper, we discuss fault locali-

ties (Section 2) and then proceed to the caching algo-

rithms (Section 3). We also present details on the data

collection for our experiments (Section 4). The results

of experiments on seven projects at the file and entity

level are presented in two sections: one for empirical

evidence of localities (BugCache, Section 5) and one

for predicting future faults (FixCache, Section 6). We

discuss our results and list threats to validity (Section

7), before we close the paper with related work and

consequences (Sections 8 and 9).

2. Bug localities
Software engineering does not yet have a widely ac-

cepted model for why programmers create software

faults. Ko et al. [16] summarizes possible causes for

programming errors, using a model of chains of cogni-

tive breakdowns. (Note that “breakdowns” comes as a

plural; for many errors, there is more than one cause.)

Like Ko et al., we also consider cognitive break-

down as the source for faults. In particular, we assume

that faults do not appear individually, but rather in

bursts: either in the same entity (temporal locality) or

nearby entities (spatial locality). Furthermore, we as-

sume any code modification as risky, since the pro-

grammer might suffer a cognitive breakdown

(changed-entity and new-entity localities). We de-

scribe temporal and spatial locality in more detail be-

low.

2.1. Temporal locality
The intuition behind temporal locality is that faults are

not introduced individually and uniformly over time.

They rather appear in bursts within the same entities.

In other words, when a fault is introduced to an entity,

another fault will likely be introduced to the same

entity soon. An explanation for such bursts that pro-

grammers make their changes based on a poor or in-

correct understanding, thus injecting multiple faults.

Using temporal locality significantly differs from

using cumulative numbers of faults (or changes) to

predict future faults. Accumulated numbers result in

sluggish predictors that cannot adapt to new fault dis-

tributions. In particular, they would miss entities with

few, but recent faults. Such entities are more likely

exposed to new faults than entities with many old

faults.

The weighted time damp model by Graves et al. is

similar in spirit to temporal locality [10]. It more heav-

ily weights recent faults to predict future ones and was

one of the best models they observed. Compared to

the math heavy model in [10], temporal locality has a

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

simpler description and relies on bug-introducing

changes rather than on fixes.

Temporal locality also guides cache replacement

strategies for our algorithms. If there were no faults

for an entity in a long time, it is removed from the

cache (see Section 3.5).

2.2. Spatial locality
When programmers make changes based on incorrect

or incomplete knowledge, they likely cannot assess

the impact of their modifications as well. Thus, when

an entity has a fault, there is a good chance of other,

nearby entities also having faults. But what are nearby

entities? There are several ways to define distance in

software. One way is using physical distances among

entities. In this case, the entities in the same file or

directory would be nearby entities. Another way is

using logical coupling among software entities [3, 8]:

two entities are close to each other (logically coupled)

when they are frequently changed together.

We compute the distance between two entities us-

ing logical coupling. If two entities are changed to-

gether many times, we give them a short distance,

reflecting their logical “closeness”. We compute the

distance between any two entities e1 and e2 as follows:

distance(e1,e2)

1

count({e1,e2})
count({e1,e2}) ! 0

" otherwise

#$

%$
&$

'$&$

where count({e1,e2}) is the number of times e1 and e2

have been changed together.

2.3. Changed-entity and new-entity locality
Research shows that entities that changed recently are

more likely to be fault-prone than others. This has

been leveraged for fault prediction by using code

churn [19] and the “most recently modified/fixed”

heuristics [11]. In a similar fashion, new entities are

more likely to contain faults than existing ones [10].

We use these results to define additional localities:

(An entity that was changed recently likely contains

a fault (changed-entity locality).

(An entity that was added to a system recently likely

contains a fault (new-entity locality).

These two localities are used to pre-fetch changed and

added entities into the cache on the assumption they

will tend to introduce faults soon.

3. Operation of the cache
Our algorithm maintains a list (cache) of what it has

chosen as the most fault-prone software entities. The

cache size can be adjusted based on the resources that

are available for testing or verification. A typical

cache size is 10% of the total number of entities, since

this provides a reasonable tradeoff between size and

accuracy. Larger cache sizes result in higher hit rates

(better recall), but with the faults spread out over a

greater number of entities (lower precision).

3.1. Basic operation
The basic process of the cache algorithm is as follows:

Initialization:

1. Bug fix changes are extracted by mining a pro-

ject’s version archive and bug database.

2. Bug-introducing changes are identified at the file

and entity level, using the approach in [22].

3. Pre-load the cache with the largest entities (LOC)

in the initial project revision, creating the initial

state of the cache. (Optional)

Cache operation:

4. BugCache: If revision n introduces a fault in an

entity, the cache is probed to see if it is present. If

yes, count a hit, otherwise a miss.

FixCache: If revision n fixes a fault in an entity,

probe the cache to see whether the corresponding

entity is present. If yes, count a hit, otherwise a

miss.

5. If a fault is missed, determine the bug-introducing

change and fetch the entity (temporal locality) as

well as nearby entities (spatial locality) into the

cache for use in future fault predictions starting at

revision n+1. The algorithm only uses localities at

the time a fault was introduced, i.e., the revision

of the bug-introducing change.

Parameter: Block size (see Section 3.3)

6. Also at revision n, pre-fetch entities that have

been created (new-entity locality) and modified

(changed-entity locality) since revision n-1.

Parameter: Pre-fetch size (see Section 3.4)

7. Since the size of the cache is fixed, we have to

remove entities, which are selected using a cache

replacement policy such as least recently used.

Parameter: Replacement policy (see Section 3.5)

8. Iterate over steps 4-7 to cover the existing change

and bug history.

Finally, the hit rate is computed by:

hit rate
of hit

of hit)# of miss

A hit rate close to 1 means, for BugCache, that the

localities described the fault distribution accurately

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

over time and, for FixCache, that it predicted most

future faults.

This approach is similar to on-line machine learn-

ing algorithms [1] in that our algorithm learns from

the fault distributions (hits and misses) and quickly

updates the prediction model (cache).

3.2. Bug cache vs. Fix cache
There are two variants of the caching algorithm.

BugCache updates the cache at the moment when a

fault, in the form of a bug-introducing change, is

missed. However, in practice a change is not known to

be bug-introducing until it is fixed. This means that

the BugCache needs to know the nature of a change in

advance, and hence it is a tool to empirically show the

presence of fault localities rather than a deployable

fault prediction algorithm.

In contrast, FixCache shows how to turn localities

into a practical fault prediction model that can be used

in any software project. FixCache does not update

when a fault (bug-introducing change) is missed—it

waits until the fix. In other words it has a delayed up-

date: when a fault is fixed, the cache is updated based

on the localities that existed when the fault was intro-

duced. The hit rates for FixCache are computed at the

time of the fix, the last moment when the fault was

still alive.

The difference between BugCache and FixCache is

sketched in Figure 1. BugCache computes hit rates

and updates the cache when a fault is introduced tbug;

FixCache waits until a fault is fixed (tfix). Both use the

localities at the time the fault was introduced (tbug).

3.3. Cache update
When we miss a fault in an entity, our cache algorithm

loads nearby entities (spatial locality). We adapt the

notion of block size from cache terminology to de-

scribe the upper bounds on how many entities are

loaded. A block size of b indicates that we load the b-

1 closest entities (i.e., the ones with the shortest dis-

tance) along with the faulty entity itself. In our analy-

sis, we investigate the effect of different block sizes.

3.4. Pre-fetches
We use pre-fetching techniques to improve the hit rate

of the bug cache. Pre-fetching means that we load

entities for which we have not yet encountered a fault.

Our motivation is as follows: assume we would load

entities only when we encounter a fault (or a fix in

case of FixCache). As a consequence, we would have

inevitable misses since we start with an empty cache.

Additionally, it would be impossible to predict faults

for entities that have exactly one fault in their lifetime

(this fault is a mandatory miss). In order to reduce the

miss count, we pre-fetch potential fault-prone entities

in advance by using the algorithms described below.

Initial pre-fetch. Initially the cache is empty, and in

the absence of pre-fetching, this would lead to many

misses. We avoid this and initialize the cache with

entities likely to have faults as predicted by greatest

lines of code (LOC). The relation between faults and

LOC has been revealed in several studies so far [10,

21].

Per-revision pre-fetch. We pre-fetch entities that

were modified or created between two revisions (new-

entity and changed-entity locality). We start with the

entities that have the highest number of LOC. Addi-

tionally, we unload entities that were deleted. The pre-

fetch size parameter controls the maximum number

pre-fetches per revision.

3.5. Cache replacement policies
When the cache is full, our algorithm has to unload

entities before it can load new ones. Ideally, we would

keep the entities with greatest potential for new faults.

A replacement policy describes which entities to

unload first. In operating systems a frequently used

policy is least recently used (LRU), which first re-

places the element used the longest time ago. We de-

veloped LRU-like policies for our fault-caching algo-

rithms. Specifically, we used the observation that enti-

ties with many changes or prior faults are likely to

Table 1. Cache replacement policies.

Id
Last found

fault/hit (ago)

Cumulative

changes

Cumulative

faults

1 1 day 30 1

2 10 days 20 5

3 9 days 10 7

4 2 days 5 4

tbug

BugCache

1. Check:

 in cache?

2. If miss, update

with localities

tbug

FixCache

1. Check:

 in cache?

3. If miss, update

with localities at tbug

tÞx

2. Identify bug-introducing change

Figure 1. BugCache vs. FixCache

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

have further faults [10, 11, 21] to create weighted

LRU algorithms based on previous changes and faults.

Least recently used (LRU). This algorithm unloads

the entity that has the least recently found fault (hit).

Consider a cache with the entities shown in Table 1.

Based on the classical LRU algorithm, Entity 2 would

be unloaded, since it is the least recently used entity.

LRU weighted by number of changes (CHANGE).

When an entity has changed many times in the past, it

is more likely to have faults in the future [10]. We

want to keep such entities in the cache as long as pos-

sible. Consequently, we unload the entity with the

least number of changes. According to this policy,

Entity 4 in Table 1 would be unloaded.

LRU weighted by number of previous faults (BUG).

This policy is similar to the change-weighted LRU. It

removes the entity with the least number of observed

faults. The intuition here is that when an entity has

had many faults, it will likely continue to have faults.

With this policy, Entity 1 in Table 1 would be

unloaded.

4. Data collection and fact extraction
Data used in the evaluation of the BugCache and Fix-

Cache was collected using the Kenyon infrastructure

[4] (Apache 1.3, JEdit, Subversion, and PostgreSQL)

and APFEL [6] (Columba, Eclipse, and Mozilla).

Analyzed open source projects are shown in Error!

Reference source not found.. Details of the data col-

lection process are described below.

4.1. Transaction recovery
In order to measure the impact of co-change for spa-

tial locality, we need transactions that alter the entire

product rather than just single files. In Subversion [2],

such transactions are directly available. CVS, however,

provides only versioning at file level, disregarding co-

change information between files. To recover per-

product transactions from CVS archives, we group the

individual per-file changes using a sliding window

approach [25]: two subsequent changes by the same

author and with the same log message are part of one

transaction if they are at most 200 seconds apart.

4.2. Finding fixes and bug-introducing changes
In order to find bug-introducing changes, bug fixes

must first be identified by mining change log mes-

sages. We use two approaches: searching for key-

words such as "Fixed" or "Bug" [17] and searching for

references to bug reports like “#42233” [5, 7, 22].

This allows us to identify whether an entire transac-

tion contains a bug fix. If it does, we then need to

identify the specific file change that introduced the

bug.

Once we know that a transaction contains a fix, we

first list files changed in the transaction and then use

the annotation features of CVS and Subversion to

identify bug-introducing changes [22]. In the example

below revision 1.42 fixes a fault in line 36. This line

was introduced in revision 1.23 (when it was line 15).

Thus revision 1.23 contains a bug-introducing change.

1.23: Bug-introducing 1.42: Fix
 … …

15: If (foo==null) { 36: if (foo!=null) {

16: foo.bar(); 37: foo.bar();

 … …

Additionally, bug databases are used (if available) to

eliminate false positives. For example, bug-

introducing changes that were made after the bug was

reported cannot be bug-introducing changes for that

particular bug. More details on how to locate bug-

introducing changes are presented in previous work,

including techniques that reduce the number of false

positives [15, 22].

Table 1. Analyzed open source projects. The period shows the analyzed project timespan. The number of revisions

indicates the num ber of revisions we extracted. The num ber of entities indicates number of functions or methods in the last

revision. The number of bugs indicates the number of bug-introducing changes we extracted by mining the change logs and

change histories of each project. For the Eclipse project we use only the core.jdt module due to the large size of the entire project.
Similarly, we use only the mozilla/content/ module for the Mozilla project.

 Number of

Project Lang. Software type SCM Period Revisions Entities Files Bugs

Apache HTTP 1.3 C HTTP server Subversion 01/1996 ~ 07/2005 7,747 2,113 154 1,954

Subversion C SCM software Subversion 08/2001 ~ 07/2005 6,029 3,693 255 1,566

PostgreSQL C DBMS CVS 04/1996 ~ 08/2005 14,650 8659 598 19,902

Mozilla C/C++ Web browser CVS 03/1998 ~ 01/2005 109,636 8203 396 52,265

JEdit Java Editor CVS 09/2001 ~ 06/2005 1,386 5429 420 3,060

Columba Java Mail Client CVS 11/2002 ~ 07/2005 2,848 8428 1428 720

Eclipse Java IDE CVS 04/2001 ~ 01/ 2005 78,948 33214 3330 15,217

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

4.3. Fine-grained changes
In addition to bug-introducing changes, we need a list

of co-changed entities for computing spatial locality.

From CVS and Subversion we get a list of co-changed

files. For method co-changes we perform an additional

analysis. First, compute a text diff between revisions.

From this diff, determine modified line numbers,

which are then mapped to the surrounding methods.

This approach is described in detail in [25]. Similarly,

we obtain the methods that were added or deleted be-

tween revisions (needed for pre-fetching new entities

and removing deleted ones).

5. Bug Cache Evaluation
The BugCache algorithm has multiple parameters that

can be modified, all of which affect its hit rate. It is

possible to modify the cache size, block size, pre-fetch

size, and cache replacement policy. To determine

which combination of parameters yields the highest hit

rate, we literally tried them all. We performed a brute

force cache analysis that iterated through multiple

option combinations, and compared the results to rea-

son about fault localities (Section 5.1). We also meas-

ured the impact of cache replacement policies (Section

5.2) and the relative contributions of each fault local-

ity (Section 5.3).

5.1. Hit rates
The first experiment used constant cache options: a

cache size of 10%, block size of 5%, and a pre-fetch

size of 1% of the total number of elements (depending

on the granularity, either files or entities). For example

for Subversion with 3,693 functions, the cache size is

369, block size is 184, and pre-fetch size is 36. Fig-

ures 2 and 3 show the hit rates at the file and entity

(method/function) level. The file level hit rates are

57%-93%, and entity level hit rates are 28%-68% de-

pending on the cache replacement policy. These re-

sults provide initial empirical evidence for the pres-

ence of fault localities, especially at the file level.

The BugCache hit rates describe how well it mod-

els the fault distribution within a project. In order to

obtain the optimal “fit”, we identified the options that

describe the fault distribution most accurately by run-

ning a brute force analysis. The cache size was fixed

at 10% of the total number of entities or files. Then we

changed the block size, pre-fetch sizes, and cache re-

placement policy, and observed the resulting hit rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

a
c
h

e
 1

.3

(1
5

/7
/1

)

S
u

b
v
e

rs
io

n

(2
6

/1
3

/2
)

P
o

s
tg

re
S

Q
L

(6
0

/3
0

/6
)

M
o

z
ill

a

(4
0

/2
0

/4
)

J
E

d
it

(4
2

/2
1

/4
)

C
o

lu
m

b
a

(1
4

3
/7

1
/1

4
)

E
c
lip

s
e

(3
3

3
/1

6
6

/3
3

)

LRU

BUG

CHANGE

Figure 2. Hit rates, file level. We varied the cache

replacement policies. The cache size is 10%, block size is

5%, and pre-fetch size is 1% of the total number of files.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
p
a
c
h
e
 1

.3

(2
1
1
/1

0
5
/2

1
)

S
u
b
v
e
rs

io
n

(3
6
9
/1

8
4
/3

6
)

P
o
s
tg

re
S

Q
L

(8
6
6
/4

3
3
/8

6
)

M
o
z
ill

a

(8
0
2
/4

0
1
/8

0
) J
E

d
it

(5
4
3
/2

7
1
/5

4
)

C
o
lu

m
b
a

(8
4
2
/4

2
1
/8

4
)

E
c
lip

s
e

(3
3
2
1
/1

6
6
0
/3

3
2
)

LRU

BUG

CHANG

Figure 3. Hit rates, method level. We varied the

cache replacement policies. Cache size is 10%, block size is

5%, and pre-fetch size is 1% of the total number of methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

a
c
h

e
 1

.3

(1
5

/7
/0

/L
R

U
)

S
u

b
v
e

rs
io

n

(2
6

/6
/0

/L
R

U
)

P
o

s
tg

re
S

Q
L

(6
0

/1
/0

/L
R

U
)

M
o

z
ill

a

(4
0

/1
7

/0
/L

R
U

)

J
e

d
it

(4
2

/1
7

/0
/L

R
U

)

C
o

lu
m

b
a

(1
4

3
/4

6
/0

/B
U

G
)

E
c
lip

s
e

(3
3

3
/3

3
1

/0
.B

U
G

)

Projects wih (cache size/block size/pre-fetch size/cache replacement policy)

Figure 4. Optimal hit rates, file level. We set the

cache size to 10% of the total number of files and determined

the optimal parameter combination (block size, pre-fetch

size, cache replacement policy) via brute force analysis.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
p

a
c
h

e
 1

.3

(2
1

1
/1

2
7

/2
4

/B
U

G
)

S
u

b
v
e

rs
io

n

(3
6

9
/3

6
6

/5
4

/B
U

G
)

P
o

s
tg

re
S

Q
L

(8
6

6
/3

4
7

/1
0

2
/B

U
G

)

M
o

z
ill

a

(8
0

2
/6

4
1

/9
6

/L
R

U
) J
e

d
it

(5
4

3
/1

/4
2

/B
U

G
)

C
o

lu
m

b
a

(8
4

2
/8

4
1

/1
3

2
/B

U
G

)

E
c
lip

s
e

(3
3

2
1

/6
6

5
/0

/B
U

G
)

Projects wih (cache size/block size/pre-fetch size/cache replacement policy)

Figure 5. Optimal hit rates, method level. We set

the cache size to 10% of the total number of methods and

determined the optimal parameter combination (block size,

pre-fetch size, cache replacement policy) using brute force.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Block sizes and pre-fetch sizes were varied from 0 to

100% of the cache size with a step of 5%.

The best option combinations for each project and

the resulting hit rates are shown in Figures 4 (file

level) and 5 (entity level). At the file level, all projects

have a pre-fetch size of 0. This indicates that changed

and new-entity localities are not very common at the

file level. This changes when the granularity is func-

tions/methods: except for Eclipse, all projects show

empirical evidence for changed and new-entity locali-

ties.

The projects also differ in the block size: while

JEdit has a block size of one method, Columba has a

block size of 841 methods. Having a small block size

indicates that temporal locality dominates over spatial

locality (not many nearby entities have to be loaded

and most errors are local). Having a big block size

means that some events in the history changed the

fault distribution dramatically, causing most of the

cache to be replaced in one operation. However, such

events are the exception; typically only a small part of

the cache is replaced. Recall that block size is the

maximum number of elements to be replaced, not the

average number.

An important implication of these results is that

fault distributions vary across projects and thus fault

prediction algorithms need to be adapted to a specific

project [20].

5.2. Cache Replacement Policy
We implemented three cache replacement policies

(LRU, BUG, and CHANGE) to unload elements from

the cache. To see which algorithm works best for a

given set of cache parameters, we performed an ex-

periment using the same values for the cache size,

block size, and pre-fetch size, varying only the cache

replacement policy.

Figures 2 and 3 show the resulting hit rates. At the

file level, the LRU policy has the best results for 4 out

of the 7 projects, with BUG having the best results for

the remaining 3. At the function/method level, BUG

has the best results for all projects, except for Mozilla

(LRU). Interestingly, the CHANGE policy works

poorly at both granularities. This is somewhat contrary

to the results of Hassan and Holt [11], where the most-

frequently-modified heuristic was one of the best fault

predictors.

5.3. Bug Localities
BugCache combines four fault localities for its model.

But are the contributions of the localities the same? To

measure the relative predictive strength of each local-

ity, each entity was marked with the reason (initial

prefetch, or kind of locality) that caused it to be

loaded. Figure 6 shows for the Apache 1.3 project the

ratio of reasons why hit entities were loaded into the

cache. The results show that faults have strong tempo-

ral (59%) and spatial (18%) locality, and weak

changed entity (4%) and new entity (1%) locality. The

initial pre-fetch is surprisingly effective, accounting

for 18% of the total hits.

One possible explanation for these results is that

faults indeed occur in bursts, in most cases locally

within one single entity. However, there are enough

cases where errors affect multiple entities, and hence

spatial locality succeeds in predicting them. When no

data is available, code complexity (as represented by

LOC) acts as a strong predictor of faults. Changed and

new-entity locality predicted only small portions of

faults.

6. Fix Cache Evaluation
The previous section provided empirical evidence for

the presence of fault localities in software projects.

But how can we leverage fault localities for predic-

tion?

A typical application of the FixCache prediction

algorithm is as follows: Whenever a fault is found and

fixed, our algorithm automatically identifies the

change to the original code that introduced the fault.

Then it updates the cache using the localities from the

moment this bug-introducing change was applied. A

manager then can use the list for quality assurance—

for example, she can test or review the entities in the

bug cache with increased priority. Developers can also

directly benefit from FixCache. If a developer is

working on entities in the cache, he can be made

aware that he is working on a potentially instable or

fault-prone part of the software.

While faults can only become part of the cache as

soon as they are fixed, the cache still contains suspi-

cious locations based on recent changes. In particular,

the cache would also direct resources to newly added

Changed entity

locality

4% Spatial locality

18%

Temporal

locality

59%

New entity

locality

1%

Initial prefetch

18%

Figure 6. Contribution of initial pre-fetch and
fault localities on method level for Apache 1.3.
Cache size is 211, block size is 127, pre-fetch size is

24, replacement policy is BUG. The hit rate is 59.6%.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

or changed locations. All in all, we expect that a cache

will help directing efforts to those entities, which are

most likely to contain errors—thus FixCache can as-

sist in increasing quality and reducing effort.

6.1. Evaluation
We performed the FixCache analysis over the same

set of seven projects and again selected the best cache

parameters for each project with brute force. The

cache size was set to 10% of files or entities respec-

tively.

Figure 7 compares the results of FixCache to the

ones of BugCache for files. For most projects there

seems to be a small drop in accuracy (2-4%). Figure 8

shows the comparison for entities. Except for Subver-

sion, the results stay the same or improve. These re-

sults indicate that fault localities and the FixCache

algorithm can predict future faults.

In summary, the hit rates (predictive accuracy) are

73-95% at the file level, with typical performance in

the low to mid 80s. The most directly comparable

work is by Hassan and Holt [11], which also uses a

caching approach, but at the module level. For a cache

size of 10% of all modules, their hit rates vary from

45%-82%. The hit rates we observed for FixCache are

better and more fine-grained, which is typically harder

to predict. Ostrand et al. [21] predicted fault density of

files using negative binomial linear regression. Using

this method and they selected 20% of all files, which

predicted 71-93% of future faults. FixCache achieves

a comparable accuracy, but with only 10% of files,

twice the precision.

On entity level we used again a cache size of 10,

with the cache holding 10% of all project entities. For

FixCache the best hit rates range from 46-72% (see

Figure 8). As expected, predicting bugs at the fine-

grained entity level is more difficult than predicting

bugs at coarser granularity.

6.2. Discussion
Why does the cache model have better predictive ac-

curacy than previous prediction models? Most models

found in the literature use fault correlated factors and

develop a model to predict future faults. Once devel-

oped, the model is static, and incorporates all previous

history and factors. In contrast, the cache model is

dynamic and is able to adapt more quickly to new fault

distributions, since fault occurrences directly affect

the model. This approach is similar to on-line machine

learning algorithms [1] in that the cache learns from

the fault distributions of each project. Even though

projects have different fault distributions, the cache

model adaptively learns from hits and misses to up-

date its prediction model. This adaptation approach

results in better predictive power.

The selection of cache options and replacement

policies affects the hit rate. The options vary across

projects due to differing fault and change distributions.

We observed the following rules of thumb: 7-15% of

the total number of files/entities is a good cache size.

For entities, we suggest a block size of 30-50% and a

pre-fetch size of 10-30% of the cache size. The BUG

cache replacement policy works for most cases. How-

ever, cache options should be periodically optimized

by brute force analysis on past predictions. We are

currently working on building such self-configuring

caches.

7. Threats to Validity
We identify the following threats to validity.

Systems examined might not be representative.

Seven systems were examined in this paper, more than

any other work reported in the literature. In spite of

this, it is still possible that we accidentally chose sys-

tems that have better (or worse) than average cache hit

rates. Since we intentionally chose systems for which

we could identify fixes based on the change descrip-

tion log (required for determination of bug-

introducing changes), we might have a project selec-

tion bias.

Systems are all open source. All systems examined

in this paper are developed as open source. Hence

they might not be representative of closed-source de-

velopment since different development processes

could lead to different fault localities. Despite being

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apache 1.3 Subversion PostgreSQL Mozilla Jedit Columba Eclipse

Projects (cache options are omitted)

BugCache

FixCache

Figure 7. Optimal hit rates, file level, for Bug-
Cache and FixCache.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Apache 1.3 Subversion PostgreSQL Mozilla Jedit Columba Eclipse

Projects (cache options are omitted)

BugCache

FixCache

Figure 8. Optimal hit rates, entity level, for
BugCache and FixCache.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

open source, several of the analyzed projects have

substantial industrial participation.

Fault and fix data is incomplete. Even though we

selected projects with a high quality of historic data,

we still can only extract a subset of all faults (typically

40%-60% of those reported in bug tracking systems).

However, we are confident that the hit rate improves

with the quality of the dataset.

Entities change their names. Entities are identified

by file name, function name, and signature. As a con-

sequence an entity’s history is lost when it is renamed.

To some extent, this effect is weakened by the new-

entity pre-fetch since renaming entities is captured as

simultaneous deletion and addition. Origin analysis

can recognize when elements change their names [9,

14, 24]. In future work, we will investigate whether

adopting origin analysis increases the hit rate.

8. Related Work
Previous work on fault prediction falls into one of the

following categories: identifying problematic entities,

usually modules, with software quality metrics [11, 12,

13, 21] and predicting fault density of entities using

software change history [10, 19].

8.1. Identifying problematic entities
Hassan and Holt proposed a caching algorithm for

fault-prone modules, called the top-ten list [11]. They

used four factors separately: modules that were most

frequently modified, most recently modified, most

frequently fixed, and most recently fixed. Like our

cache, their top-ten list is dynamically maintained, i.e.,

changes over time. However, our approach combines

all four factors to derive synergy. Additionally, we use

spatial locality (logical coupling) as a predictor, which

boosts the performance of our approach. Furthermore

Hassan and Holt predicted at the module level of

granularity, where a module is a collection of files. In

contrast, we predict for individual files and methods,

which is of greater benefit for developers and testers.

Ostrand et al. predicted fault density of files with a

negative binomial linear regression model [21]. With

their model, they selected 20% of all files as the most

problematic ones in a project. This list predicted 71-

93% of future faults. This compares most directly to

Figure 7, where we predict 73-95% of future faults,

but with greater precision (10% vs. 20% of all files).

Khoshgoftaar and Allen proposed stepwise multi-

ple regression on software complexity metrics such as

LOC and cyclomatic complexity to predict future fault

density [12, 13]. Their top 10% of modules identified

64% and the top 20% identified 82% of all faults.

Since they rely on complexity metrics (and fixing a

fault does not change them much), their predictions

tend to be static over time and do not easily adapt to

new fault densities.

8.2. Predicting fault density
Graves et al. assumed that modules that were changed

recently are more fault-prone than modules that were

changed a long time ago [10]. They built a weighted

time damp model to predict faults from changes over

where recent changes are weighted over older ones.

This model improved predictive accuracy substantially,

which provides additional empirical evidence for the

locality of faults.

Mockus et al. identified properties of changes,

such as number of changed subsystems, number of

changed lines, whether the change is a fix [18]. They

used these properties to predict the risk of changes

with logistic regression. The most significant factor

was whether the change is a fix, meaning that fixes are

more risky than other changes. To some extent this is

similar to our temporal fault locality.

 liwerski et al. computed the risk of code locations

by the percentage of bug-introducing changes [23].

However, they did not evaluate whether past risk pre-

dicts future risk. Additionally, their risk concept is

static and does not adapt to new change information.

Nagappan et al. observed that relative code churn

measures such as changed-LOC/LOC predict future

faults better than absolute code churn measures such

as changed-LOC [19]. Nagappan et al. studied Win-

dows binaries, i.e., components. Hence it is unclear

how well their approach works at more fine-grained

levels. Our cache algorithms use absolute measures.

However, relative measures are intriguing, and we

will explore their application to caching in the future.

9. Conclusions and future work
If we know that a fault has occurred, it is useful to

search its vicinity for further faults. Our FixCache

model predicts these further faults with high accuracy:

At the file level, it can cover about 73-95% of future

faults; at the function/method level, it covers 46-72%

of future faults—with a cache size of only 10%. This

is a significantly better accuracy and lower granularity

than found in the previous state of the art. The cache

can serve as a priority list to test and inspect software

whenever resources are limited (i.e., always).

The FixCache is able to adapt more quickly to re-

cent software change history data, since the fault oc-

currences directly affect the model. This is another

significant advantage over static models, which con-

stitute the state of the art. We are the first to use spa-

tial locality as a bug predictor, and the combination of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

four locality concepts again shows significant advan-

tages.

Even so, we still see room for improvement. Our

future work will concentrate on the following topics.

 In our study, option combinations for each project

vary due to the various fault or change distribu-

tions of different projects. We are currently inves-

tigating self-adaptive cache algorithms that will

learn from hits/misses and change cache options

for the next prediction.

 We showed that different levels of software

granularity result in different hit rates. We can de-

sign hierarchical caches that simultaneously fetch

entities at different granularities such as modules,

files, and methods.

 Finally, we are currently working on integrating

FixCache into history-aware programming tools

such as eROSE [26]. This way, whenever a fault

is fixed, the tool can automatically suggest further

locations to be examined for related faults.

Overall, we expect that future approaches will see

software history not only as a series of revisions and

changes, but also as a series of successes and fail-

ures—and as a source for continuous awareness and

improvement. The FixCache is a first step in this di-

rection.

References
[1] E. Alpaydin, Introduction to Machine Learning: The MIT Press,

2004.

[2] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K. Hancock, and

B. Collins-Sussman, "Subversion Project Homepage," 2005.

[3] J. Bevan and E. J. Whitehead, Jr., "Identification of Software

Instabilities," Proc. of 2003 Working Conference on Reverse

Engineering (WCRE 2003), Victoria, Canada, 2003.

[4] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facili-

tating Software Evolution with Kenyon," Proc. of the 2005

European Software Engineering Conference and 2005 Founda-

tions of Software Engineering (ESEC/FSE 2005), Lisbon, Por-

tugal, 2005.

[5] D. Cubranic and G. C. Murphy, "Hipikat: Recommending perti-

nent software development artifacts," Proc. of 25th Interna-

tional Conference on Software Engineering (ICSE), Portland,

Oregon, 2003, pp. 408-418.

[6] V. Dallmeier, P. Weißgerber, and T. Zimmermann, "APFEL: A

Preprocessing Framework For Eclipse," http://www.st.cs.uni-

sb.de/softevo/apfel/, 2005.

[7] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release

History Database from Version Control and Bug Tracking Sys-

tems," Proc. of 2003 Int'l Conference on Software Maintenance

(ICSM'03), 2003, pp. 23-32.

[8] H. Gall, M. Jazayeri, and J. Krajewski, "CVS Release History

Data for Detecting Logical Couplings," Proc. of Sixth Interna-

tional Workshop on Principles of Software Evolution (IW-

PSE'03), Helsinki, Finland, 2003, pp. 13-23.

[9] M. W. Godfrey and L. Zou, "Using Origin Analysis to Detect

Merging and Splitting of Source Code Entities," IEEE Trans. on

Software Engineering, vol. 31, pp. 166- 181, 2005.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting

Fault Incidence Using Software Change History," IEEE Trans-

actions on Software Engineering, vol. 26, pp. 653-661, 2000.

[11] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic

Fault Prediction," Proc. of International Conference on Soft-

ware Maintenance (ICSM 2005), Budapest, Hungary, 2005, pp.

263-272.

[12] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone

Software Modules," Software Quality Journal, vol. 11, pp. 19-

37, 2003.

[13] T. M. Khoshgoftaar and E. B. Allen, "Predicting the Order of

Fault-Prone Modules in Legacy Software," Proc. of The Ninth

International Symposium on Software Reliability Engineering,

Paderborn, Germany, 1998, pp. 344-353.

[14] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions

Change Their Names: Automatic Detection of Origin Relation-

ships," Proc. of 12th Working Conference on Reverse Engineer-

ing (WCRE 2005), Pittsburgh, PA, USA, 2005, pp. 143-152.

[15] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, Jr.,

"Automatic Identification of Bug Introducing Changes," Proc.

of International Conference on Automated Software Engineer-

ing (ASE 2006), Tokyo, Japan, 2006.

[16] A. J. Ko and B. A. Myers, "A Framework and Methodology for

Studying the Causes of Software Errors in Programming Sys-

tems," Journal of Visual Languages and Computing, vol. 16, pp.

41-84, 2005.

[17] A. Mockus and L. G. Votta, "Identifying Reasons for Software

Changes Using Historic Databases," Proc. of International Con-

ference on Software Maintenance (ICSM 2000), San Jose, Cali-

fornia, USA, 2000, pp. 120-130.

[18] A. Mockus and D. M. Weiss, "Predicting Risk of Software

Changes," Bell Labs Technical Journal, vol. 5, pp. 169-180,

2002.

[19] N. Nagappan and T. Ball, "Use of Relative Code Churn Meas-

ures to Predict System Defect Density," Proc. of 2005 Int'l Con-

ference on Software Engineering (ICSE 2005), Saint Louis,

Missouri, USA, 2005, pp. 284-292.

[20] N. Nagappan, T. Ball, and A. Zeller, "Mining Metrics to Predict

Component Failures," Proc. of 2006 Int'l Conference on Soft-

ware Engineering (ICSE 2006), Shanghai, China, 2006, pp.

452-461.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Predicting the

Location and Number of Faults in Large Software Systems,"

IEEE Transactions on Software Engineering, vol. 31, pp. 340-

355, 2005.

[22] J. liwerski, T. Zimmermann, and A. Zeller, "When Do

Changes Induce Fixes?," Proc. of Int'l Workshop on Mining

Software Repositories (MSR 2005), Saint Louis, Missouri, USA,

2005.

[23] J. liwerski, T. Zimmermann, and A. Zeller, "HATARI: Rais-

ing Risk Awareness. Research Demonstration," Proc. of the

2005 European Software Engineering Conference and 2005

Foundations of Software Engineering (ESEC/FSE 2005), Lis-

bon, Portugal, 2005, pp. 107-110.

[24] P. Weißgerber and S. Diehl, "Identifying Refactorings from

Source-Code Changes," Proc. of International Conference on

Automated Software Engineering (ASE 2006), Tokyo, Japan,

2006, pp. 231-240.

[25] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data

for Fine-Grained Analysis," Proc. of Proc. Intl. Workshop on

Mining Software Repositories (MSR), Edinburgh, Scotland,

2004.

[26] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, "Min-

ing Version Histories to Guide Software Changes," IEEE Trans.

Software Eng., vol. 31, pp. 429-445, 2005.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

