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Abstract 
 

We analyze the version history of 7 software sys-

tems to predict the most fault prone entities and files. 

The basic assumption is that faults do not occur in 

isolation, but rather in bursts of several related faults. 

Therefore, we cache locations that are likely to have 

faults: starting from the location of a known (fixed) 

fault, we cache the location itself, any locations 

changed together with the fault, recently added loca-

tions, and recently changed locations. By consulting 

the cache at the moment a fault is fixed, a developer 

can detect likely fault-prone locations. This is useful 

for prioritizing verification and validation resources 

on the most fault prone files or entities. In our evalua-

tion of seven open source projects with more than 

200,000 revisions, the cache selects 10% of the source 

code files; these files account for 73%-95% of faults—

a significant advance beyond the state of the art. 

 

1. Introduction 
Software quality assurance is inherently a resource-

constrained activity. In the majority of software pro-

jects, the time and people available are not sufficient 

to eliminate all faults before a release. Any technique 

that allows software engineers to reliably identify the 

most fault-prone software functions provides several 

benefits. It permits available resources to be focused 

on the functions that have the most faults. Addition-

ally, such a list makes it possible to selectively use 

time intensive techniques, such as software inspec-

tions, formal methods, and various kinds of static code 

analysis.  

Two important qualities of software fault predic-

tion algorithms are accuracy and granularity. The 

accuracy is the degree to which the algorithm cor-

rectly identifies future faults. The granularity specifies 

the locality of the prediction. Typical fault prediction 

granularities are the executable binary [19], a module 

(often a directory of source code) [11], or a source 

code file [21]. For example, a directory level of granu-

larity means that predictions indicate a fault will occur 

somewhere within a directory of source code. The 

most difficult granularity for prediction is the entity 

level (or below), where an “entity” is a function or 

method. 

We have developed an algorithm that, in our ex-

perimental assessment on seven open source projects, 

is 73%-95% accurate at predicting future faults at the 

file level and 46%-72% accurate at the entity level 

with optimal options. This accuracy is better than or 

equivalent to other efforts reported in the literature. 

Moreover, we achieve this accuracy at the entity and 

file level, which permits a more targeted allocation of 

available resources because of the greater locality of 

the predictions. 

Our prediction algorithm is executed over the 

change history of a software project, yielding a small 

subset (usually 10%) of the project’s files or func-

tions/methods that are most fault-prone. The key in-

sight that drives our algorithm is the observation that 

most faults are local. Put another way, faults do not 

occur uniformly in time across the history of a func-

tion; they appear in bursts. Specifically, we believe 

bug occurrences have four different kinds of locality:  

Changed-entity locality. If an entity was changed 

recently, it will tend to introduce faults soon.  

New-entity locality. If an entity has been added re-

cently, it will tend to introduce faults soon. 

Temporal locality. If an entity introduced a fault re-

cently, it will tend to introduce other faults soon. 

Spatial locality. If an entity introduced a fault re-

cently, “nearby” entities (in the sense of logical 

coupling) will also tend to introduce faults soon. 

Following Hassan and Holt [11], we borrow the 

notion of a cache from operating systems research, 

and apply it for the purpose of fault prediction. We 

use the cache as a convenient mechanism for holding 

our current list of the most fault-prone entities, and for 

aggregating multiple heuristics for maintaining the 

cache. The switch to a cache involves a subtle but 

important shift: instead of creating mathematical func-

tions that predict future faults, the cache selects and 
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removes entities based on specific criteria—in our 

case the localities specified above. The ideal is to 

minimize the size of cache while at the same time 

maximizing its accuracy. 

Unlike most existing research on fault prediction 

that approximates faults simply with fixes, we use 

bug-introducing changes. Following the definitions in 

[22], a fix is a modification that repairs a software 

fault; it tells us the location where a bug occurred 

(which lines and files), but not the time when the bug 

was introduced. However, the latter information is 

crucial for the localities that we defined before; for 

instance spatial locality requires the time when a fault 

was introduced to identify nearby entities at that time. 

We get the time information from bug-introducing 

changes, the modifications that create faults. Hence, 

the chronology is bug-introducing change(s), bug re-

port, and finally fix. 
 

BugCache vs. FixCache. This paper describes and 

evaluates algorithms for maintaining a cache based on 

fault localities. There are two variants:  

BugCache updates the cache at the moment a fault is 

missed, that is, not found in the cache. We will use 

BugCache to empirically show the presence of fault 

localities. Since in practice, a change is not known to 

be bug-introducing until the corresponding fix, Bug-

Cache is a theoretical model. 

FixCache shows how to turn localities into a practical 

fault prediction model. In contrast to BugCache, it has 

a delayed update: when a fault is fixed, the algorithm 

traces back to the corresponding bug-introducing 

change, and only then is the cache updated based on 

the bug-introducing localities.  
 

This paper makes the following contributions: 

Empirical evidence of fault localities. Evaluation of 

the BugCache algorithm provides empirical evi-

dence that fault localities actually exist.  

Very accurate fault prediction. By combining a 

cache model with different heuristics for fault pre-

diction, the FixCache algorithm has an accuracy of 

73%-95% using files and 46%-72% using meth-

ods/functions.  

Validation of adaptive fault prediction. FixCache is 

an online learning approach [1], learning from 

cache hits and misses. Thus it can easily adapt when 

a system’s fault distribution changes. FixCache’s 

high accuracy, equivalent in accuracy to the best 

approaches in the literature, with smaller granularity, 

demonstrates the utility of adaptive fault prediction 

algorithms. 

In the remainder of this paper, we discuss fault locali-

ties (Section 2) and then proceed to the caching algo-

rithms (Section 3). We also present details on the data 

collection for our experiments (Section 4). The results 

of experiments on seven projects at the file and entity 

level are presented in two sections: one for empirical 

evidence of localities (BugCache, Section 5) and one 

for predicting future faults (FixCache, Section 6). We 

discuss our results and list threats to validity (Section 

7), before we close the paper with related work and 

consequences (Sections 8 and 9). 

 

2. Bug localities 
Software engineering does not yet have a widely ac-

cepted model for why programmers create software 

faults. Ko et al. [16] summarizes possible causes for 

programming errors, using a model of chains of cogni-

tive breakdowns. (Note that “breakdowns” comes as a 

plural; for many errors, there is more than one cause.)  

Like Ko et al., we also consider cognitive break-

down as the source for faults. In particular, we assume 

that faults do not appear individually, but rather in 

bursts: either in the same entity (temporal locality) or 

nearby entities (spatial locality). Furthermore, we as-

sume any code modification as risky, since the pro-

grammer might suffer a cognitive breakdown 

(changed-entity and new-entity localities). We de-

scribe temporal and spatial locality in more detail be-

low. 

 

2.1. Temporal locality 
The intuition behind temporal locality is that faults are 

not introduced individually and uniformly over time. 

They rather appear in bursts within the same entities. 

In other words, when a fault is introduced to an entity, 

another fault will likely be introduced to the same 

entity soon. An explanation for such bursts that pro-

grammers make their changes based on a poor or in-

correct understanding, thus injecting multiple faults. 

Using temporal locality significantly differs from 

using cumulative numbers of faults (or changes) to 

predict future faults. Accumulated numbers result in 

sluggish predictors that cannot adapt to new fault dis-

tributions. In particular, they would miss entities with 

few, but recent faults. Such entities are more likely 

exposed to new faults than entities with many old 

faults.  

The weighted time damp model by Graves et al. is 

similar in spirit to temporal locality [10]. It more heav-

ily weights recent faults to predict future ones and was 

one of the best models they observed. Compared to 

the math heavy model in [10], temporal locality has a 
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simpler description and relies on bug-introducing 

changes rather than on fixes. 

Temporal locality also guides cache replacement 

strategies for our algorithms. If there were no faults 

for an entity in a long time, it is removed from the 

cache (see Section 3.5). 

 

2.2. Spatial locality 
When programmers make changes based on incorrect 

or incomplete knowledge, they likely cannot assess 

the impact of their modifications as well. Thus, when 

an entity has a fault, there is a good chance of other, 

nearby entities also having faults. But what are nearby 

entities? There are several ways to define distance in 

software. One way is using physical distances among 

entities. In this case, the entities in the same file or 

directory would be nearby entities. Another way is 

using logical coupling among software entities [3, 8]: 

two entities are close to each other (logically coupled) 

when they are frequently changed together. 

We compute the distance between two entities us-

ing logical coupling. If two entities are changed to-

gether many times, we give them a short distance, 

reflecting their logical “closeness”. We compute the 

distance between any two entities e1 and e2 as follows: 

distance(e1,e2)  

1

count({e1,e2})
count({e1,e2}) ! 0

" otherwise

#$

%$
&$

'$&$

where count({e1,e2}) is the number of times e1 and e2 

have been changed together.

 

2.3. Changed-entity and new-entity locality 
Research shows that entities that changed recently are 

more likely to be fault-prone than others. This has 

been leveraged for fault prediction by using code 

churn [19] and the “most recently modified/fixed” 

heuristics [11]. In a similar fashion, new entities are 

more likely to contain faults than existing ones [10]. 

We use these results to define additional localities:  

( An entity that was changed recently likely contains 

a fault (changed-entity locality). 

( An entity that was added to a system recently likely 

contains a fault (new-entity locality). 

These two localities are used to pre-fetch changed and 

added entities into the cache on the assumption they 

will tend to introduce faults soon. 

 

3. Operation of the cache 
Our algorithm maintains a list (cache) of what it has 

chosen as the most fault-prone software entities. The 

cache size can be adjusted based on the resources that 

are available for testing or verification. A typical 

cache size is 10% of the total number of entities, since 

this provides a reasonable tradeoff between size and 

accuracy. Larger cache sizes result in higher hit rates 

(better recall), but with the faults spread out over a 

greater number of entities (lower precision).  

 

3.1. Basic operation 
The basic process of the cache algorithm is as follows: 

Initialization: 

1. Bug fix changes are extracted by mining a pro-

ject’s version archive and bug database.  

2. Bug-introducing changes are identified at the file 

and entity level, using the approach in [22].  

3. Pre-load the cache with the largest entities (LOC) 

in the initial project revision, creating the initial 

state of the cache. (Optional) 

Cache operation: 

4. BugCache: If revision n introduces a fault in an 

entity, the cache is probed to see if it is present. If 

yes, count a hit, otherwise a miss. 

FixCache: If revision n fixes a fault in an entity, 

probe the cache to see whether the corresponding 

entity is present. If yes, count a hit, otherwise a 

miss. 

5. If a fault is missed, determine the bug-introducing 

change and fetch the entity (temporal locality) as 

well as nearby entities (spatial locality) into the 

cache for use in future fault predictions starting at 

revision n+1. The algorithm only uses localities at 

the time a fault was introduced, i.e., the revision 

of the bug-introducing change. 

Parameter: Block size (see Section 3.3) 

6. Also at revision n, pre-fetch entities that have 

been created (new-entity locality) and modified 

(changed-entity locality) since revision n-1.  

Parameter: Pre-fetch size (see Section 3.4) 

7. Since the size of the cache is fixed, we have to 

remove entities, which are selected using a cache 

replacement policy such as least recently used.  

Parameter: Replacement policy (see Section 3.5) 

8. Iterate over steps 4-7 to cover the existing change 

and bug history.  

Finally, the hit rate is computed by: 

hit rate  
# of hit

# of hit)# of miss
 

A hit rate close to 1 means, for BugCache, that the 

localities described the fault distribution accurately 
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over time and, for FixCache, that it predicted most 

future faults. 

This approach is similar to on-line machine learn-

ing algorithms [1] in that our algorithm learns from 

the fault distributions (hits and misses) and quickly 

updates the prediction model (cache). 

 

3.2. Bug cache vs. Fix cache 
There are two variants of the caching algorithm. 

BugCache updates the cache at the moment when a 

fault, in the form of a bug-introducing change, is 

missed. However, in practice a change is not known to 

be bug-introducing until it is fixed. This means that 

the BugCache needs to know the nature of a change in 

advance, and hence it is a tool to empirically show the 

presence of fault localities rather than a deployable 

fault prediction algorithm. 

In contrast, FixCache shows how to turn localities 

into a practical fault prediction model that can be used 

in any software project. FixCache does not update 

when a fault (bug-introducing change) is missed—it 

waits until the fix. In other words it has a delayed up-

date: when a fault is fixed, the cache is updated based 

on the localities that existed when the fault was intro-

duced. The hit rates for FixCache are computed at the 

time of the fix, the last moment when the fault was 

still alive. 

The difference between BugCache and FixCache is 

sketched in Figure 1. BugCache computes hit rates 

and updates the cache when a fault is introduced tbug; 

FixCache waits until a fault is fixed (tfix). Both use the 

localities at the time the fault was introduced (tbug). 

 

3.3. Cache update 
When we miss a fault in an entity, our cache algorithm 

loads nearby entities (spatial locality). We adapt the 

notion of block size from cache terminology to de-

scribe the upper bounds on how many entities are 

loaded. A block size of b indicates that we load the b-

1 closest entities (i.e., the ones with the shortest dis-

tance) along with the faulty entity itself. In our analy-

sis, we investigate the effect of different block sizes. 

 

3.4. Pre-fetches 
We use pre-fetching techniques to improve the hit rate 

of the bug cache. Pre-fetching means that we load 

entities for which we have not yet encountered a fault. 

Our motivation is as follows: assume we would load 

entities only when we encounter a fault (or a fix in 

case of FixCache). As a consequence, we would have 

inevitable misses since we start with an empty cache. 

Additionally, it would be impossible to predict faults 

for entities that have exactly one fault in their lifetime 

(this fault is a mandatory miss). In order to reduce the 

miss count, we pre-fetch potential fault-prone entities 

in advance by using the algorithms described below. 

Initial pre-fetch. Initially the cache is empty, and in 

the absence of pre-fetching, this would lead to many 

misses. We avoid this and initialize the cache with 

entities likely to have faults as predicted by greatest 

lines of code (LOC). The relation between faults and 

LOC has been revealed in several studies so far [10, 

21]. 

Per-revision pre-fetch. We pre-fetch entities that 

were modified or created between two revisions (new-

entity and changed-entity locality). We start with the 

entities that have the highest number of LOC. Addi-

tionally, we unload entities that were deleted. The pre-

fetch size parameter controls the maximum number 

pre-fetches per revision. 

 

3.5. Cache replacement policies 
When the cache is full, our algorithm has to unload 

entities before it can load new ones. Ideally, we would 

keep the entities with greatest potential for new faults. 

A replacement policy describes which entities to 

unload first. In operating systems a frequently used 

policy is least recently used (LRU), which first re-

places the element used the longest time ago. We de-

veloped LRU-like policies for our fault-caching algo-

rithms. Specifically, we used the observation that enti-

ties with many changes or prior faults are likely to 

Table 1. Cache replacement policies. 

Id 
Last found 

fault/hit (ago) 

Cumulative 

changes 

Cumulative 

faults 

1 1 day 30 1 

2 10 days 20 5 

3 9 days 10 7 

4 2 days 5 4 

tbug

BugCache

1. Check:

    in cache?

2. If miss, update 

with localities

tbug

FixCache

1. Check:

    in cache?

3. If miss, update 

with localities at tbug

tÞx

2. Identify bug-introducing change

Figure 1. BugCache vs. FixCache 
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have further faults [10, 11, 21] to create weighted 

LRU algorithms based on previous changes and faults. 

Least recently used (LRU). This algorithm unloads 

the entity that has the least recently found fault (hit). 

Consider a cache with the entities shown in Table 1. 

Based on the classical LRU algorithm, Entity 2 would 

be unloaded, since it is the least recently used entity.  

LRU weighted by number of changes (CHANGE). 

When an entity has changed many times in the past, it 

is more likely to have faults in the future [10]. We 

want to keep such entities in the cache as long as pos-

sible. Consequently, we unload the entity with the 

least number of changes. According to this policy, 

Entity 4 in Table 1 would be unloaded.  

LRU weighted by number of previous faults (BUG). 

This policy is similar to the change-weighted LRU. It 

removes the entity with the least number of observed 

faults. The intuition here is that when an entity has 

had many faults, it will likely continue to have faults. 

With this policy, Entity 1 in Table 1 would be 

unloaded. 

 

4. Data collection and fact extraction 
Data used in the evaluation of the BugCache and Fix-

Cache was collected using the Kenyon infrastructure 

[4] (Apache 1.3, JEdit, Subversion, and PostgreSQL) 

and APFEL [6] (Columba, Eclipse, and Mozilla). 

Analyzed open source projects are shown in Error! 

Reference source not found.. Details of the data col-

lection process are described below.  

 

4.1. Transaction recovery 
In order to measure the impact of co-change for spa-

tial locality, we need transactions that alter the entire 

product rather than just single files. In Subversion [2], 

such transactions are directly available. CVS, however, 

provides only versioning at file level, disregarding co-

change information between files. To recover per-

product transactions from CVS archives, we group the 

individual per-file changes using a sliding window 

approach [25]: two subsequent changes by the same 

author and with the same log message are part of one 

transaction if they are at most 200 seconds apart. 

 

4.2. Finding fixes and bug-introducing changes 
In order to find bug-introducing changes, bug fixes 

must first be identified by mining change log mes-

sages. We use two approaches: searching for key-

words such as "Fixed" or "Bug" [17] and searching for 

references to bug reports like “#42233” [5, 7, 22]. 

This allows us to identify whether an entire transac-

tion contains a bug fix. If it does, we then need to 

identify the specific file change that introduced the 

bug. 

Once we know that a transaction contains a fix, we 

first list files changed in the transaction and then use 

the annotation features of CVS and Subversion to 

identify bug-introducing changes [22]. In the example 

below revision 1.42 fixes a fault in line 36. This line 

was introduced in revision 1.23 (when it was line 15). 

Thus revision 1.23 contains a bug-introducing change. 
 

1.23: Bug-introducing 1.42: Fix  
 …  … 

15: If (foo==null) { 36: if (foo!=null) { 

16:     foo.bar(); 37:     foo.bar(); 

 …  … 
 

Additionally, bug databases are used (if available) to 

eliminate false positives. For example, bug-

introducing changes that were made after the bug was 

reported cannot be bug-introducing changes for that 

particular bug. More details on how to locate bug-

introducing changes are presented in previous work, 

including techniques that reduce the number of false 

positives [15, 22]. 

 

Table 1. Analyzed open source projects. The period shows the analyzed project timespan. The number of revisions 

indicates the num ber of revisions we extracted. The num ber of entities indicates number of functions or methods in the last

revision. The number of bugs indicates the number of bug-introducing changes we extracted by mining the change logs and

change histories of each project. For the Eclipse project we use only the core.jdt module due to the large size of the entire project. 
Similarly, we use only the mozilla/content/ module for the Mozilla project. 

     Number of 

Project Lang. Software type SCM Period Revisions Entities Files Bugs 

Apache HTTP 1.3 C HTTP server Subversion 01/1996 ~ 07/2005 7,747 2,113 154 1,954

Subversion  C SCM software Subversion 08/2001 ~ 07/2005 6,029 3,693 255 1,566

PostgreSQL C DBMS CVS 04/1996 ~ 08/2005 14,650 8659 598 19,902

Mozilla C/C++ Web browser CVS 03/1998 ~ 01/2005 109,636 8203 396 52,265

JEdit Java Editor CVS 09/2001 ~ 06/2005 1,386 5429 420 3,060

Columba Java Mail Client CVS 11/2002 ~ 07/2005 2,848 8428 1428 720

Eclipse Java IDE CVS 04/2001 ~ 01/ 2005 78,948 33214 3330 15,217
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4.3. Fine-grained changes 
In addition to bug-introducing changes, we need a list 

of co-changed entities for computing spatial locality. 

From CVS and Subversion we get a list of co-changed 

files. For method co-changes we perform an additional 

analysis. First, compute a text diff between revisions. 

From this diff, determine modified line numbers, 

which are then mapped to the surrounding methods. 

This approach is described in detail in [25]. Similarly, 

we obtain the methods that were added or deleted be-

tween revisions (needed for pre-fetching new entities 

and removing deleted ones). 

5. Bug Cache Evaluation  
The BugCache algorithm has multiple parameters that 

can be modified, all of which affect its hit rate. It is 

possible to modify the cache size, block size, pre-fetch 

size, and cache replacement policy. To determine 

which combination of parameters yields the highest hit 

rate, we literally tried them all. We performed a brute 

force cache analysis that iterated through multiple 

option combinations, and compared the results to rea-

son about fault localities (Section 5.1). We also meas-

ured the impact of cache replacement policies (Section 

5.2) and the relative contributions of each fault local-

ity (Section 5.3). 

 

5.1. Hit rates 
The first experiment used constant cache options: a 

cache size of 10%, block size of 5%, and a pre-fetch 

size of 1% of the total number of elements (depending 

on the granularity, either files or entities). For example 

for Subversion with 3,693 functions, the cache size is 

369, block size is 184, and pre-fetch size is 36. Fig-

ures 2 and 3 show the hit rates at the file and entity 

(method/function) level. The file level hit rates are 

57%-93%, and entity level hit rates are 28%-68% de-

pending on the cache replacement policy. These re-

sults provide initial empirical evidence for the pres-

ence of fault localities, especially at the file level. 

The BugCache hit rates describe how well it mod-

els the fault distribution within a project. In order to 

obtain the optimal “fit”, we identified the options that 

describe the fault distribution most accurately by run-

ning a brute force analysis. The cache size was fixed 

at 10% of the total number of entities or files. Then we 

changed the block size, pre-fetch sizes, and cache re-

placement policy, and observed the resulting hit rate. 
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Figure 2. Hit rates, file level. We varied the cache 

replacement policies. The cache size is 10%, block size is 

5%, and pre-fetch size is 1% of the total number of files. 
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Figure 3. Hit rates, method level. We varied the

cache replacement policies. Cache size is 10%, block size is 

5%, and pre-fetch size is 1% of the total number of methods.
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Figure 5. Optimal hit rates, method level. We set 

the cache size to 10% of the total number of methods and 

determined the optimal parameter combination (block size, 

pre-fetch size, cache replacement policy) using brute force.
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Block sizes and pre-fetch sizes were varied from 0 to 

100% of the cache size with a step of 5%.  

The best option combinations for each project and 

the resulting hit rates are shown in Figures 4 (file 

level) and 5 (entity level). At the file level, all projects 

have a pre-fetch size of 0. This indicates that changed 

and new-entity localities are not very common at the 

file level. This changes when the granularity is func-

tions/methods: except for Eclipse, all projects show 

empirical evidence for changed and new-entity locali-

ties.  

The projects also differ in the block size: while 

JEdit has a block size of one method, Columba has a 

block size of 841 methods. Having a small block size 

indicates that temporal locality dominates over spatial 

locality (not many nearby entities have to be loaded 

and most errors are local). Having a big block size 

means that some events in the history changed the 

fault distribution dramatically, causing most of the 

cache to be replaced in one operation. However, such 

events are the exception; typically only a small part of 

the cache is replaced. Recall that block size is the 

maximum number of elements to be replaced, not the 

average number. 

An important implication of these results is that 

fault distributions vary across projects and thus fault 

prediction algorithms need to be adapted to a specific 

project [20]. 

 

5.2. Cache Replacement Policy 
We implemented three cache replacement policies 

(LRU, BUG, and CHANGE) to unload elements from 

the cache. To see which algorithm works best for a 

given set of cache parameters, we performed an ex-

periment using the same values for the cache size, 

block size, and pre-fetch size, varying only the cache 

replacement policy.  

Figures 2 and 3 show the resulting hit rates. At the 

file level, the LRU policy has the best results for 4 out 

of the 7 projects, with BUG having the best results for 

the remaining 3. At the function/method level, BUG 

has the best results for all projects, except for Mozilla 

(LRU). Interestingly, the CHANGE policy works 

poorly at both granularities. This is somewhat contrary 

to the results of Hassan and Holt [11], where the most-

frequently-modified heuristic was one of the best fault 

predictors. 

 

5.3. Bug Localities 
BugCache combines four fault localities for its model. 

But are the contributions of the localities the same? To 

measure the relative predictive strength of each local-

ity, each entity was marked with the reason (initial 

prefetch, or kind of locality) that caused it to be 

loaded. Figure 6 shows for the Apache 1.3 project the 

ratio of reasons why hit entities were loaded into the 

cache. The results show that faults have strong tempo-

ral (59%) and spatial (18%) locality, and weak 

changed entity (4%) and new entity (1%) locality. The 

initial pre-fetch is surprisingly effective, accounting 

for 18% of the total hits. 

One possible explanation for these results is that 

faults indeed occur in bursts, in most cases locally 

within one single entity. However, there are enough 

cases where errors affect multiple entities, and hence 

spatial locality succeeds in predicting them. When no 

data is available, code complexity (as represented by 

LOC) acts as a strong predictor of faults. Changed and 

new-entity locality predicted only small portions of 

faults. 

 

6. Fix Cache Evaluation 
The previous section provided empirical evidence for 

the presence of fault localities in software projects. 

But how can we leverage fault localities for predic-

tion?  

A typical application of the FixCache prediction 

algorithm is as follows: Whenever a fault is found and 

fixed, our algorithm automatically identifies the 

change to the original code that introduced the fault. 

Then it updates the cache using the localities from the 

moment this bug-introducing change was applied. A 

manager then can use the list for quality assurance—

for example, she can test or review the entities in the 

bug cache with increased priority. Developers can also 

directly benefit from FixCache. If a developer is 

working on entities in the cache, he can be made 

aware that he is working on a potentially instable or 

fault-prone part of the software. 

While faults can only become part of the cache as 

soon as they are fixed, the cache still contains suspi-

cious locations based on recent changes. In particular, 

the cache would also direct resources to newly added 

Changed entity 

locality

4% Spatial locality

18%

Temporal 

locality

59%

New entity 

locality

1%

Initial prefetch

18%

 
Figure 6. Contribution of initial pre-fetch and 
fault localities on method level for Apache 1.3.
Cache size is 211, block size is 127, pre-fetch size is 

24, replacement policy is BUG. The hit rate is 59.6%.
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or changed locations. All in all, we expect that a cache 

will help directing efforts to those entities, which are 

most likely to contain errors—thus FixCache can as-

sist in increasing quality and reducing effort. 

 

6.1. Evaluation 
We performed the FixCache analysis over the same 

set of seven projects and again selected the best cache 

parameters for each project with brute force. The 

cache size was set to 10% of files or entities respec-

tively.  

Figure 7 compares the results of FixCache to the 

ones of BugCache for files. For most projects there 

seems to be a small drop in accuracy (2-4%). Figure 8 

shows the comparison for entities. Except for Subver-

sion, the results stay the same or improve. These re-

sults indicate that fault localities and the FixCache 

algorithm can predict future faults. 

In summary, the hit rates (predictive accuracy) are 

73-95% at the file level, with typical performance in 

the low to mid 80s. The most directly comparable 

work is by Hassan and Holt [11], which also uses a 

caching approach, but at the module level. For a cache 

size of 10% of all modules, their hit rates vary from 

45%-82%. The hit rates we observed for FixCache are 

better and more fine-grained, which is typically harder 

to predict. Ostrand et al. [21] predicted fault density of 

files using negative binomial linear regression. Using 

this method and they selected 20% of all files, which 

predicted 71-93% of future faults. FixCache achieves 

a comparable accuracy, but with only 10% of files, 

twice the precision.  

On entity level we used again a cache size of 10, 

with the cache holding 10% of all project entities. For 

FixCache the best hit rates range from 46-72% (see 

Figure 8). As expected, predicting bugs at the fine-

grained entity level is more difficult than predicting 

bugs at coarser granularity.  

 

6.2. Discussion 
Why does the cache model have better predictive ac-

curacy than previous prediction models? Most models 

found in the literature use fault correlated factors and 

develop a model to predict future faults. Once devel-

oped, the model is static, and incorporates all previous 

history and factors. In contrast, the cache model is 

dynamic and is able to adapt more quickly to new fault 

distributions, since fault occurrences directly affect 

the model. This approach is similar to on-line machine 

learning algorithms [1] in that the cache learns from 

the fault distributions of each project. Even though 

projects have different fault distributions, the cache 

model adaptively learns from hits and misses to up-

date its prediction model. This adaptation approach 

results in better predictive power. 

The selection of cache options and replacement 

policies affects the hit rate. The options vary across 

projects due to differing fault and change distributions. 

We observed the following rules of thumb: 7-15% of 

the total number of files/entities is a good cache size. 

For entities, we suggest a block size of 30-50% and a 

pre-fetch size of 10-30% of the cache size. The BUG 

cache replacement policy works for most cases. How-

ever, cache options should be periodically optimized 

by brute force analysis on past predictions. We are 

currently working on building such self-configuring 

caches. 

 

7. Threats to Validity 
We identify the following threats to validity. 

Systems examined might not be representative. 

Seven systems were examined in this paper, more than 

any other work reported in the literature. In spite of 

this, it is still possible that we accidentally chose sys-

tems that have better (or worse) than average cache hit 

rates. Since we intentionally chose systems for which 

we could identify fixes based on the change descrip-

tion log (required for determination of bug-

introducing changes), we might have a project selec-

tion bias.  

Systems are all open source. All systems examined 

in this paper are developed as open source. Hence 

they might not be representative of closed-source de-

velopment since different development processes 

could lead to different fault localities. Despite being 
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open source, several of the analyzed projects have 

substantial industrial participation. 

Fault and fix data is incomplete. Even though we 

selected projects with a high quality of historic data, 

we still can only extract a subset of all faults (typically 

40%-60% of those reported in bug tracking systems). 

However, we are confident that the hit rate improves 

with the quality of the dataset.  

Entities change their names. Entities are identified 

by file name, function name, and signature. As a con-

sequence an entity’s history is lost when it is renamed. 

To some extent, this effect is weakened by the new-

entity pre-fetch since renaming entities is captured as 

simultaneous deletion and addition. Origin analysis 

can recognize when elements change their names [9, 

14, 24]. In future work, we will investigate whether 

adopting origin analysis increases the hit rate. 

 

8. Related Work 
Previous work on fault prediction falls into one of the 

following categories: identifying problematic entities, 

usually modules, with software quality metrics [11, 12, 

13, 21] and predicting fault density of entities using  

software change history [10, 19]. 

 

8.1. Identifying problematic entities 
Hassan and Holt proposed a caching algorithm for 

fault-prone modules, called the top-ten list [11]. They 

used four factors separately: modules that were most 

frequently modified, most recently modified, most 

frequently fixed, and most recently fixed. Like our 

cache, their top-ten list is dynamically maintained, i.e., 

changes over time. However, our approach combines 

all four factors to derive synergy. Additionally, we use 

spatial locality (logical coupling) as a predictor, which 

boosts the performance of our approach. Furthermore 

Hassan and Holt predicted at the module level of 

granularity, where a module is a collection of files. In 

contrast, we predict for individual files and methods, 

which is of greater benefit for developers and testers.  

Ostrand et al. predicted fault density of files with a 

negative binomial linear regression model [21]. With 

their model, they selected 20% of all files as the most 

problematic ones in a project. This list predicted 71-

93% of future faults. This compares most directly to 

Figure 7, where we predict 73-95% of future faults, 

but with greater precision (10% vs. 20% of all files).  

Khoshgoftaar and Allen proposed stepwise multi-

ple regression on software complexity metrics such as 

LOC and cyclomatic complexity to predict future fault 

density [12, 13]. Their top 10% of modules identified 

64% and the top 20% identified 82% of all faults. 

Since they rely on complexity metrics (and fixing a 

fault does not change them much), their predictions 

tend to be static over time and do not easily adapt to 

new fault densities.  

 

8.2. Predicting fault density 
Graves et al. assumed that modules that were changed 

recently are more fault-prone than modules that were 

changed a long time ago [10]. They built a weighted 

time damp model to predict faults from changes over 

where recent changes are weighted over older ones. 

This model improved predictive accuracy substantially, 

which provides additional empirical evidence for the 

locality of faults.  

Mockus et al. identified properties of changes, 

such as number of changed subsystems, number of 

changed lines, whether the change is a fix [18]. They 

used these properties to predict the risk of changes 

with logistic regression. The most significant factor 

was whether the change is a fix, meaning that fixes are 

more risky than other changes. To some extent this is 

similar to our temporal fault locality.  

 liwerski et al. computed the risk of code locations 

by the percentage of bug-introducing changes [23]. 

However, they did not evaluate whether past risk pre-

dicts future risk. Additionally, their risk concept is 

static and does not adapt to new change information. 

Nagappan et al. observed that relative code churn 

measures such as changed-LOC/LOC predict future 

faults better than absolute code churn measures such 

as changed-LOC [19]. Nagappan et al. studied Win-

dows binaries, i.e., components. Hence it is unclear 

how well their approach works at more fine-grained 

levels. Our cache algorithms use absolute measures. 

However, relative measures are intriguing, and we 

will explore their application to caching in the future. 

 

9. Conclusions and future work 
If we know that a fault has occurred, it is useful to 

search its vicinity for further faults. Our FixCache 

model predicts these further faults with high accuracy: 

At the file level, it can cover about 73-95% of future 

faults; at the function/method level, it covers 46-72% 

of future faults—with a cache size of only 10%. This 

is a significantly better accuracy and lower granularity 

than found in the previous state of the art. The cache 

can serve as a priority list to test and inspect software 

whenever resources are limited (i.e., always). 

The FixCache is able to adapt more quickly to re-

cent software change history data, since the fault oc-

currences directly affect the model. This is another 

significant advantage over static models, which con-

stitute the state of the art. We are the first to use spa-

tial locality as a bug predictor, and the combination of 
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four locality concepts again shows significant advan-

tages. 

Even so, we still see room for improvement. Our 

future work will concentrate on the following topics. 

  In our study, option combinations for each project 

vary due to the various fault or change distribu-

tions of different projects. We are currently inves-

tigating self-adaptive cache algorithms that will 

learn from hits/misses and change cache options 

for the next prediction. 

  We showed that different levels of software 

granularity result in different hit rates. We can de-

sign hierarchical caches that simultaneously fetch 

entities at different granularities such as modules, 

files, and methods.  

  Finally, we are currently working on integrating 

FixCache into history-aware programming tools 

such as eROSE [26]. This way, whenever a fault 

is fixed, the tool can automatically suggest further 

locations to be examined for related faults. 

Overall, we expect that future approaches will see 

software history not only as a series of revisions and 

changes, but also as a series of successes and fail-

ures—and as a source for continuous awareness and 

improvement. The FixCache is a first step in this di-

rection. 
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