
Adding Examples into Java Documents

Jinhan Kim, Sanghoon Lee, Seung-won Hwang

Pohang University of Science and Technology
Pohang, Korea

{wlsgks08,sanghoon,swhwang}@postech.edu

Sunghun Kim

Hong Kong University of Science and Technology
Hong Kong

hunkim@cse.ust.hk

Abstract—Code examples play an important role to explain
the usage of Application Programming Interfaces (APIs), but
most API documents do not provide sufficient code examples.
For example, for the JDK 5 documents (JavaDocs), only 2%
of APIs have code examples. In this paper, we propose a
technique that automatically augments API documents with
code examples. Our approach finds and embeds code examples
for more than 75% of the APIs in JavaDocs 5.

Keywords-API Documents; Examples; Structures; Code
Clustering; Ranking;

I. INTRODUCTION

Developers often reuse existing libraries such as Applica-

tion Programming Interfaces (APIs) to improve the produc-

tivity and quality of code [11], [10]. However, it is difficult

for developers to use APIs correctly without understanding

the intention and usage of APIs. For this reason, most

APIs provide documents, which describe input arguments,

output values, and the goal of the APIs. However, some

API documents are ambiguous, which may lead to misuse,

because most of them are written in a human readable

language. As a result, developers usually seek additional

formal information, such as code examples.

To satisfy these needs, MSDN from Microsoft [6] and

Leopard Reference Library from Apple [5] include a rich set

of code examples written by experts. Since making proper

code examples for all APIs in documents requires significant

human effort, most API documents often do not provide

enough code examples. For example, JDK 5 documents

(JavaDocs) contain descriptions of more than 27,000 APIs,

but only 2% of them (around 500 API descriptions) include

code examples.

As a result, developers seek additional code examples

using code search engines such as Koders [7] and Google

Code Search [1]. However, it is difficult for developers to

find appropriate code examples. For example, suppose a

developer want to find code examples of API “prepareState-

ment()” at the interface “Connection” and send a query

“Connection prepareStatement”. Figure 1 shows the top two

results of Koders [7]. The snippets of the top two results

highlight the comments in the code and do not provide

any usage information of “prepareStatement()”. For this

reason, developers typically need to send several queries and

Figure 1. Koders Top-2 results when the query is “Connection pre-
pareStatement”

examine the query results one by one to get proper code

examples, which is time comsuming.

To address this problem, automatic code example ex-

traction techniques [13], [21], [22] have been studied. For

example, Holmes and Murphy proposed a code example

recommendation technique by matching structures of given

code [13], and MAPO recommends source code by mining

the sequence of APIs [21], [22]. However, these approaches

require special tools such as Eclipse plug-in.

In a clear contrast, we aim at augmenting API documents

themselves with code examples, which is desirable because

of the following two reasons: First, API documents are

the first place to get the API usage information. Second,

developers do not need any special tool for accessing the

augmented API documents.

Toward this goal, in this paper, we propose an automatic

technique that extracts suitable code examples from code

repositories, and generates example oriented API documents
(eXoaDocs), which contain extracted code examples. We

then apply our technique to JDK 5 documents and generate

eXoaDocs for JDK 5. The generated eXoaDocs include code

examples of more than 20,000 APIs in JDK 5 (75% of entire

APIs).

Our contributions can be summarized as follows:

• Automatic code example generation technique: We

propose a technique that extracts code examples from

a repository, extracts semantic features from code ex-

amples, clusters them, and finds a representative code

example from each cluster.

• Generated eXoaDocs: We embed extracted code ex-

amples in existing API documents and generate eXoaD-

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.39

528

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.39

542

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.39

542

2009 IEEE/ACM International Conference on Automated Software Engineering

1527-1366/09 $29.00 © 2009 IEEE

DOI 10.1109/ASE.2009.39

540

Figure 2. Process Diagram of Automatic Generation of Example API Documents

ocs, augmenting more than 75% of the JDK 5 APIs.

• Evaluation: We manually inspect and measure the

quantity of generated code examples.

The remainder of this paper is organized as follows.

Section II presents the proposed automatic eXoaDocs gener-

ation technique. Section III evaluates generated eXoaDocs.

Section IV surveys related work, and Section V concludes

this paper.

II. OUR APPROACH

This section presents the process of automatic eXoaDocs

generation.

Figure 2 shows the overview of our technique that con-

sists of four main modules, summarization, representation,

diversification, and ranking. First, we build a repository of

candidate code examples by leveraging an existing search

engine, Koders, for each API. We then summarize code

examples and extract semantic features from code examples.

Finally, we cluster and rank code examples to find the most

representative code examples from each API.

We describe the details of each module as follows:

• Summarization: We summarize candidate code ex-

amples into small and relevant snippets. First, from

candidate code examples, we identify relevant methods

using the given API. If there is no such method, we

cannot find code examples for the given API. Second,

we analyze the Abstract Syntax Tree (AST) of the

identified methods and find related lines to the given

API. We slice only these lines and generate summarized

code examples for the given API.

• Representation: We extract semantic features from the

summarized code for clustering and ranking. Semantic

features in a code example can be represented in a

vector, as explored in DECKARD [17]. Each element

in the vector represents the count of occurrence of each

specific semantic node type. We exploit these vectors

to compare each code to cluster and rank vectors.

• Diversification: We cluster the summarized codes into

different usage types to present diverse types of usages,

using k-means clustering algorithm. However, as it is

non-trivial to determine the number of cluster k, we

vary k from two to five and choose a desirable number

k using heuristic measures.

• Ranking: We rank the summarized codes in each

cluster to select the most representative code example

from each cluster, combining several measures for

ranking such as representativeness, conciseness, and

correctness.

III. EXAMPLE EVALUATION

This section evaluates the quality of code examples in

eXoaDocs generated, by manually inspecting the quantity

of code examples in eXoaDocs.

Table I
THE NUMBER OF EXAMPLES IN EACH PACKAGE IN JAVADOCS AND

EXOADOCS

of # of methods # of methods
package name methods with examples with examples

in JavaDocs (%) in eXoaDocs (%)
java.applet 45 0 (0.00%) 39 (86.67%)
java.awt 3906 69 (1.77%) 3195 (81.80%)
java.beans 361 6 (1.66%) 335 (92.80%)
java.io 593 20 (3.37%) 571 (96.29%)
java.lang 1133 39 (3.44%) 962 (84.91%)
java.math 112 1 (0.89%) 103 (91.96%)
java.net 452 8 (1.77%) 404 (89.38%)
java.nio 457 16 (3.50%) 405 (88.62%)
java.rmi 467 16 (3.43%) 139 (29.76%)
java.security 790 15 (1.90%) 630 (79.75%)
java.sql 674 7 (1.04%) 590 (87.54%)
java.text 353 12 (3.40%) 305 (86.40%)
java.util 1931 81 (4.19%) 1591 (82.39%)
javax.accessibility 168 0 (0.00%) 122 (72.62%)
javax.activity 0 0 (-) 0 (-)
javax.crypto 215 2 (0.93%) 158 (73.49%)
javax.imageio 722 6 (0.83%) 427 (59.14%)
javax.management 1141 9 (0.79%) 880 (77.13%)
javax.naming 466 22 (4.72%) 321 (68.88%)
javax.net 199 3 (1.51%) 140 (70.35%)
javax.print 432 9 (2.08%) 342 (79.17%)
javax.rmi 73 0 (0.00%) 56 (76.71%)
javax.security 193 12 (6.22%) 122 (63.21%)
javax.sound 418 2 (0.48%) 361 (86.36%)
javax.sql 426 14 (3.29%) 264 (61.97%)
javax.swing 8327 84 (1.01%) 6251 (75.07%)
javax.transaction 13 0 (0.00%) 13 (100.00%)
javax.xml 348 7 (2.01%) 320 (91.95%)
org.ietf 105 4 (3.81%) 60 (57.14%)
org.omg 2356 16 (0.68%) 1029 (43.68%)
org.w3c 265 1 (0.38%) 150 (56.60%)
org.xml 297 9 (3.03%) 195 (65.66%)
total 27438 490 (1.79%) 20480 (74.64%)

Figure 3 illustrates an example page of eXoaDocs. Fig-

ure 3(a) shows a popularity bar of each API. Using this

bar, developers can easily locate the frequently used APIs.

Figure 3(b) shows extracted code examples. About two to

five code examples are provided for each API. Developers

can find more examples by clicking the More examples link.

529543543541

Figure 3. An example page of generated eXoaDocs

We manually inspected the quality of code examples

in eXoaDocs for JDK 5. Table I shows the number of

code examples in each package. In the original JavaDocs,

no package has code examples for more than 5% of the

APIs. In contrast, most packages in eXoaDocs have code

examples for more than 70% of the APIs and frequently

used packages, such as java.io, cover more than 95% of the

APIs. Overall, while only 490 APIs in JavaDocs have code

examples, more than 20,000 APIs in eXoaDocs have code

examples (i.e., 75% of the entire APIs in JavaDocs).

IV. RELATED WORK

A. Example Recommendation

MSDN from Microsoft [6], Leopard Reference Library

from Apple [5], and PHP API documents [8] provide a large

set of code examples written by experts. Alternatively, Java

Examples [3] and KodeJava [4] collect code examples from

developers. Though these code examples, provided manually

by experts, are of high quality and easy to understand,

manually providing code examples is time consuming, which

explains why, most API documents do not have enough code

examples.

There are many automatic code example recommenda-

tion systems [13], [19], [21], [22] to address this prob-

lem. Holmes and Murphy proposed a source code exam-

ple recommendation technique by matching structures of

given code [13]. XSnippet [19] provides a context-sensitive

code assistant framework which recommends sample code

snippets. MAPO analyzes source codes and mines frequent

API usage sequences [21], [22]. These proposed techniques

are similar to ours in the sense that they use their own

repositories and recommend code examples automatically.

However, we also observe three key differences. First,

developers need to use special tools such as Eclipse plug-

in to use their techniques. In contrast, developers do not

need to use any special tool for accessing code examples

in eXoaDocs. Second, they try to provide as many code

examples as they can find, which may include redundant

530544544542

usages, while, eXoaDocs cluster redundant usages into a

cluster and present only the most representative one per each

cluster using ranking. Third, eXoaDocs provide popularity

information, which may guide developers find APIs even

when they do not know the names APIs to use in advance.

Related to this popularity information, there are few

existing systems that identify commonly used APIs [20],

[14], [15]. For example, SpotWeb [20] finds commonly

reused APIs and PopCon [14], [15] finds popular APIs based

on API calls in existing software. While these systems only

give popularity information, our eXoaDocs provide both

popularity information and code examples for the APIs.

B. Code Search

Existing code search engines, such as Koders [7] and

Google Code Search [1], get query keywords such as an API

name and class name, retrieve source codes in a repository,

and find source codes where the query keywords occur

frequently. Because they treat source code as simple text

and ignore semantic context of source code, they cannot

distinguish useless information such as comments. As a

result, they fail to find appropriate source code examples.

Meanwhile, there are some approaches to study se-

mantic features of source codes. DeMIMA [12] and

DECKARD [17] analyze semantic features of source code

and find clones with similar semantic features. We adopt this

idea of extracting semantic features in our work for gener-

ating good code examples and find similar code examples

for finding different types of API usages.

V. CONCLUSION

Code examples play a major role in explaining the usage

of APIs. However, as making code examples manually

requires huge human effort, most API documents do not

provide enough code examples. To address this problem,

we proposed a technique that generates code examples auto-

matically and embedded them into existing API documents,

JavaDocs. Our evaluation results show that eXoaDocs embed

source code examples for more than 20,000 APIs, or 75%

of the entire APIs in JDK 5.

Our future work includes:

• Comparing our code examples with other tools. We

need to compare the results of eXoaDocs with other

tools for evaluating the quality of result code examples.

• Performing user studies. We need to conduct real-life

user studies for evaluating how eXoaDocs affect the

software development process.

• Applying adaptive ranking algorithms. We designed an

adaptive ranking algorithm, and we are now collecting

user feedback. We need to evaluate the quality of

ranking adapting to these feedbacks.

• Building a software repository. Currently, our code

example results depend on search results of Koders.

Building a more general software repository to collect

proper code example candidates will be the next step.

• Precise analysis. To find lines related with the given

API, we used a simple method analysis technique by

parsing source code. However, our technique sometimes

failed to analyze the exact type of variables or classes

due to the limitations reported in [16]. Overcoming

these limitations will lead to higher quality code ex-

amples.

eXoaDocs generated for JDK 5 are accessible at http://

exoa.postech.ac.kr.

VI. ACKNOWLEDGMENTS

Our thanks to Yungbum Jung, Jinsun Her, Chris Bird,

Mike Ernst and the anonymous reviewers of ASE for valu-

able and helpful suggestions on earlier versions of this paper.

This project is partially supported by the Engineering

Research Center of Excellence Program of Korea Ministry of

Education, Science and Technology (MEST) / Korea Science

and Engineering Foundation (KOSEF), grant number R11-

2008-007-03003-0.

REFERENCES

[1] Google Code Search, 2009. http://www.google.com/
codesearch.

[2] Java 2 Platform SE 5.0 API Specification: JavaDoc, 2009.
http://java.sun.com/j2se/1.5.0/docs/api/.

[3] Java Examples (example source code), 2009. http://java2s.
com/.

[4] Learn Java Programming by Examples, 2009. http://www.
kodejava.org/.

[5] Leopard Reference Library, 2009. http://developer.apple.com/
referencelibrary/index.html.

[6] MSDN Library, 2009. http://msdn.microsoft.com/en-us/
library/default.aspx.

[7] Open Source Code Search Engine, 2009. http://www.koders.
com.

[8] PHP: Hypertext Preprocessor, 2009. http://www.php.net.

[9] S. Bajracharya and C. Lopes. Mining search topics from
a code search engine log. In MSR 2009: 6th IEEE Working
Conference on Mining Software Repositories, New York, NY,
USA, 2009. ACM.

[10] P. Devanbu, S. Karstu, W. Melo, and W. Thomas. Analytical
and empirical evaluation of software reuse metrics. In ICSE
’96: Proceedings of the 18th international conference on
Software engineering, pages 189–199, Washington, DC, USA,
1996. IEEE Computer Society.

[11] J. E. Gaffney and T. A. Durek. Software reuse—key to
enhanced productivity: some quantitative models. Inf. Softw.
Technol., 31(5):258–267, 1989.

531545545543

[12] Y.-G. Guéhéneuc and G. Antoniol. Demima: A multilayered
approach for design pattern identification. volume 34, pages
667–684, Piscataway, NJ, USA, 2008. IEEE Press.

[13] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE ’05: Proceedings
of the 27th international conference on Software engineering,
pages 117–125, New York, NY, USA, 2005. ACM.

[14] R. Holmes and R. J. Walker. Informing eclipse api production
and consumption. In eclipse ’07: Proceedings of the 2007
OOPSLA workshop on eclipse technology eXchange, pages
70–74, New York, NY, USA, 2007. ACM.

[15] R. Holmes and R. J. Walker. A newbie’s guide to eclipse apis.
In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 149–152,
New York, NY, USA, 2008. ACM.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. In PLDI ’88: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language
design and Implementation, pages 35–46, New York, NY,
USA, 1988. ACM.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones.
In 29th International Conference on Software Engineering
(ICSE), 2007.

[18] D. Kramer. Api documentation from source code comments:
a case study of javadoc. In SIGDOC ’99: Proceedings
of the 17th annual international conference on Computer
documentation, pages 147–153, New York, NY, USA, 1999.
ACM.

[19] N. Sahavechaphan and K. T. Claypool. Xsnippet: mining for
sample code. In OOPSLA, pages 413–430, 2006.

[20] S. Thummalapenta and T. Xie. Spotweb: detecting framework
hotspots via mining open source repositories on the web.
In MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, pages 109–112,
New York, NY, USA, 2008. ACM.

[21] T. Xie and J. Pei. Mapo: mining api usages from open source
repositories. In MSR ’06: Proceedings of the 2006 interna-
tional workshop on Mining software repositories, pages 54–
57, New York, NY, USA, 2006. ACM.

[22] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. In Proc. the
23rd European Conference on Object-Oriented Programming
(ECOOP 2009), July 2009.

532546546544

