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Abstract 
Understanding function signature change properties 

and evolution patterns is important for researchers 
concerned with alleviating signature change impacts, 
understanding software evolution, and predicting 
future evolution patterns. We provide detailed 
signature change properties by analyzing seven 
software project histories to reveal multiple properties 
of signature changes, including their kind, frequency, 
correlation with other changes, number of parameter 
changes, and evolution patterns of signature change 
kinds. We show that signature changes can be used as 
measurement aid for software evolution analysis.  
1. Introduction 
In procedural languages like C, the “function” is the 
primary functional abstraction encapsulating program 
behavior. In large, evolving software systems, a key 
question concerns how these functional abstractions 
fare over time. Designing to accommodate change is a 
central design principle in software engineering, one 
that raises the question of how functional abstractions 
actually do change. Possible changes include function 
body modification, variable renaming, moving 
functions from one file to another, and function 
signature changes [14]. In this paper we perform a 
detailed examination of the evolutionary behavior of 
the external interface to functional abstractions: the 
function signature.  

Examining changes to the external interface provides 
insight into the evolution of the abstraction itself. If we 
know the most frequent kinds of signature changes, we 
better understand the common evolutionary stresses 
affecting the abstraction. Total numbers of signature 
changes, and correlations between signature changes 
and function body changes, give insight into the 
stability of a system’s modular decomposition, and 
hence the stability of the abstraction over time. 
Furthermore, detailed observation of signature changes 
might reveal patterns to them, and hence patterns of 
change to functional abstractions.  

Other researchers have observed code changes, though 
none have examined signature changes in the same 
level of detail as we do in this paper. Kung et al. 
identified types of code changes [14] and Counsell et al. 
discussed the trends of changes in Java code [6]. Both 
studies identified large granularity change types, such 
as method body changes, method addition, method 
deletion and whether the signature changed (but with 
no differentiation of the different types of signature 
changes). Their categorization of changes is useful for 
understanding software changes as an overview, but is 
insufficiently detailed to develop a strong 
understanding of functional abstraction evolution. 

To provide detailed signature change properties we 
focus on fine-grained changes in function signatures, 
categorizing them based on whether they increase, 
decrease, or do not modify the data flow between caller 
and callee. We show the properties of function 
signature change patterns by answering the following 
research questions: How often do signatures change? 
What are the common signature change kinds? How 
often does each kind appear? Does each project have 
unique signature change patterns? Are there particular 
sequences of signature change kind?  

Understanding function signature change patterns is 
important to researchers concerned with alleviating 
signature change impacts, understanding software 
evolution, and understanding evolution pattern change 
sequences. We found correlations between signature 
changes and other types of changes used in such 
research, such as LOC and function body changes. This 
result suggests that signature change patterns can 
enhance other evolution analyses, such as finding hot 
spots, unstable areas [4], or code decay [8]. 

Our analysis dataset is seven prominent open source 
project histories: Apache 1.3 HTTP server, Apache 2.0 
HTTP server, Apache Portable Runtime Library, 
Apache Portable Runtime Library Utility, Subversion, 
CVS, and GCC (see Table 1). These seven projects are 
written in the C programming language.  



Table 1. Analyzed open source projects. LOC indicates number of lines of .h and .c source files, including comments of 
the latest transaction. Period shows the project history period for projects for which we directly accessed the SCM 
repository. # of Txns indicates the number of transactions we extracted. 

Project Software type LOC SCM Period # of Txns 
Apache HTTP 1.3 (A 1.3) HTTP server 116,398 Subversion Jan 1996 ~ Mar 2005 7,747  
Apache HTTP 2.0 (A 2) HTTP server modules 104,417 CVS Jul 1999 ~ Aug 2003 3,877  
Apache Portable Runtime (APR) Portable C library 72,630 Subversion Jan 1999 ~ Feb 2005 5,990  
APR utility (APU) Portable C library utility 33,660 Subversion Jul 1999 ~ Feb 2005 1,353  
CVS SCM software 62,415 CVS Dec 1994 ~ Sep 2003 2,873  
GCC C/C++ compiler 298,236 CVS Nov 1988 ~ Feb 1993 3,012  
Subversion (SVN) SCM software 185,006 Subversion Aug 2001 ~ Mar 2005 6,029  

 
For our analysis, we used Kenyon, a data extraction, 
preprocessing, and storage backend designed to 
facilitate software evolution research [5]. Using 
Kenyon, we checked out all transactions of source code 
from each project, and then extracted facts needed for 
our analysis, including function signatures, call 
dependencies, and LOC changes. We grouped 
signatures by function name and observed patterns of 
signature changes including signature change 
frequency distributions (Section 4.1, 4.2, and 4.3), 
observable signature change patterns (Section 4.4 and 
4.5), and correlations with other project aspects 
(Section 4.6 and 4.7). Based on the observations we 
introduce nine signature change properties in Section 5. 

When function names change, file-based SCM systems 
like CVS and Subversion do not record the linkage 
between old and renamed functions. A function name 
change is only observed as a function deletion and a 
new function addition. This is a potential source of 
error in signature change evolution analysis, since it 
artificially splits the transaction history of a functional 
abstraction at the point where its name changes. The 
origin of a renamed function is the same logical 
function under its old name. To find the origins of 
functions, Godfrey et al. proposed a human-assisted 
origin analysis algorithm using dependencies and entity 
analysis [10, 16]. In a similar vein, we implemented a 
completely automated origin analysis algorithm to find 
origins of new functions [11]. We reported preliminary 
signature change properties in [12], and this paper 
substantially extends the previous work by applying 
origin analysis to improve the quality of results, 
analyzing correlations between signature changes and 
other changes, providing probability graphs of each 
change kind, observing the number of parameter 
changes, and analyzing bug introduction rates of 
signature changes. 

The remaining sections of the paper are as follows. In 
section 2, we define and organize signature change 
kinds. We discuss our experiment approach in section 
3. Section 4 provides answers to our research questions 
by performing several detailed signature change 

analyses. In section 5, we list signature change 
properties we uncovered during the analysis. We 
discuss the limitations and applicability of our analysis 
in section 6 and 7, and conclude in section 8.  

2. Signature Change Kinds 
Before presenting our results, we describe our fine-
grain taxonomy of signature change kinds. Signature 
change kinds are informally defined in Table 2; more 
formal definitions of signature changes are in [12]. 
To define the major categories of our taxonomy, we 
use a data flow model between a function and a client. 
A client calls a function by passing arguments (Arg) 
and expecting returns (R) as shown in Figure 1. The 
total data flow across the interface is the union of Arg 
and R, defined in Definition 1. We note that data flows 
can also occur by passing data in global variables. 

 
Figure 1. Model of data flow across a function interface. 

 
Definition 1 (Interface Data Flow) 

Parameter Param ! {modifier, type, name, array/pointer, 
order} 

Argument Arg !a set of zero or more Param 
Return parameter R !{modifier, type, array/pointer} 

DF!  Arg !R 

Data flow invariant !  |DFold| = |DFnew| 
Data flow increasing ! |DFold| < |DFnew| 
Data flow decreasing ! |DFold| > |DFnew| 

 
Broadly, when parameters or return values are added, 
there is an increase in the amount of data flowing 
across the interface between caller and callee, while 
parameter deletion or removal of return values results 
in reduction of data flow. Modifier changes or 
parameter name changes have no impact on the data 
flow. The fine-grain taxonomy of signature change 
kinds based on the data flow model is shown in Table 2 
and Table 3. 



Table 2. Definitions of signature change kinds. 

Change kind Description 
Parameter addition (A) A parameter is added 
Parameter deletion (D) A parameter is deleted 
Parameter ordering change 

only (OO) 
Parameter ordering change 
without addition or deletion 
changes 

Ordering change by 
addition (OA) 

Parameter ordering change 
caused by parameter addition 

Ordering change by 
deletion (OD) 

Parameter ordering change 
caused by parameter deletion 

Return type change (R) Return type changes excluding 
RA and RD 

Return type addition (RA) Return type change from the 
void data type to other data 
types 

Return type deletion (RD) Return type change from other 
data types to the void data type 

Primitive type change (T) A primitive type of a parameter 
changed 

Complex type name 
change (C) 

The name of a complex data 
type changed 

Complex type inner 
variable addition (CA) 

One of members of a complex 
data type added 

Complex type inner 
variable deletion (CD) 

One of members of a complex 
data type deleted 

Function name change 
(MN) 

Function name changed 

Parameter name change 
(N) 

Parameter name changed 

Parameter modifier change 
(M) 

Modifier of a parameter 
changed 

Concept merge/splitting 
change (CM/CS) 

One or more parameters’ 
concept merged to a parameter 
or a parameter’s concept split 
to two more parameters 

Array/Pointer operation 
change (P) 

Dimensions of pointer or array 
parameter change 

3. Investigation Approach 
3.1 Extraction, Refinement, Analysis 
Before presenting results from our signature change 
observations, we briefly describe our analysis process. 
We used a three phase-process to analyze signature 
changes using the Kenyon system. The first phase 
involves checking out all transactions and extracting 
raw facts. We used Kenyon for this phase. Kenyon 
checks out all transactions from a SCM repository and 
invokes a fact extractor that we implemented to extract 
raw facts such as function signatures, deltas between 
two transactions, and added/deleted function 
information. The extracted raw data is stored in a 
DBMS. 

For the projects we analyzed, the transaction history 
was stored using either the CVS or the Subversion 
SCM system. An important issue in software evolution 

research is the extraction of logical transactions from 
the SCM repository. Since Subversion assigns a 
transaction number per commit, there is no need to 
recover transactions for Subversion-managed projects 
[2]. CVS does not keep the original transaction 
information, usually requiring a process of transaction 
recovery [19]. Kenyon provides CVS transaction 
recovery via a slicing time window algorithm [5]. 

Table 3. Taxonomy of signature change kinds. A * 
indicates the item is only manually identifiable and hence 
is not reported on in this paper. 

Data flow 
invariant 

Function name change (MN) 
Parameter ordering change only (OO) 
Parameter name change (N) 
Parameter modifier change (M) 
*Concept merge/splitting change (CM/CS) 
Array/Pointer operation change (P) 
Return type change (R) 
Primitive type change (T) 
Complex type name change (C)     

Data flow 
increasing 

Parameter addition (A) 
Ordering change by addition (OA) 
Return type addition (RA) 
*Complex type inner variable addition (CA) 

Data flow 
decreasing 

Parameter deletion (D) 
Ordering change by deletion (OD) 
Return type deletion (RD) 
*Complex type inner variable deletion (CD) 

The second phase refines the extracted raw data in the 
DBMS. For example, we find origin relationships using 
raw data such as added/deleted function information 
and signatures. Section 3.2 below provides additional 
detail on how we computed origin relationships. The 
refined data is also stored in the DBMS. The final 
phase analyzes signature change patterns using the raw 
data and refined data in the DBMS. The signature data 
is grouped by function name and applied origin 
relationships. The grouped signatures are ordered by 
transaction and stored in a signature change history 
file.  

We manually observed the signature change history file 
to identify common signature changes. After analyzing 
the signature change history files from various open 
source projects, we found the common change kinds 
shown in Table 2. While most of the change patterns 
can be automatically identified by a static software 
analysis, some change kinds, such as concept 
merging/splitting changes are not automatically 
identifiable, requiring knowledge of the project and 
parameter concepts.  

Based on these manually identified signature change 
kinds, we implemented an automatic identifier that 
reads a signature change history file, and annotates the 
file based on the identified kinds. After the signature 
change history file has been annotated, we calculate the 
frequency of each change kind over a project’s history. 



We also examine the sequence of signature change 
kinds of a given function to identify any common 
patterns in the signature evolution. The results from 
these analyses are presented in Section 4. 

3.2 Origin Analysis 
It is natural to use a function name as an identifier to 
track function signature changes. For example we can 
observe signature changes of the ‘foo’ function over 
transactions by finding the function name ‘foo’ in each 
transaction’s source code. However, function names do 
change, and existing SCM systems do not track this as 
a logical change. Ideally, we would like signature 
changes to be attributed to their logical function, even 
if the function’s name changes over time. In this case, 
there is an origin relation between the deleted function 
and the new function [10]. In previous work, we 
developed an automatic origin analysis algorithm that 
compares two functions for identity using a total 
similarity measure [11]. To simplify our signature 
change analysis, we compute similarities using four 
facts: function name, parameters, incoming calls, and 
outgoing calls. Detailed algorithms and similarity 
metrics are described in [11]. We use the automated 
origin analysis results for our signature change 
analysis.  

4. Observations of Signature Changes 
In this section we discuss the following detailed 
properties of function signature changes: 
Frequency distributions: We characterize the 
distribution of various signature change types over a 
project history (Section 4.1), the number of changes per 
function (Section 4.2), and the number of parameter 
changes (Section 4.3). 
Observable patterns: We try to observe if there are 
any project-specific patterns (Section 4.4) or noticeable 
patterns in the sequence of change types (Section 4.5).  

Correlations with other project aspects: We 
observed correlation between signature changes and 
other changes such as function body changes (Section 
4.6) and bug-introducing changes (Section 4.7). 

Based on these observations, we introduce nine 
signature change properties in Section 5.  

4.1 Frequency of Change Kinds 
After identifying signature change kinds, we computed 
the frequencies of each kind. Figure 2 shows the 
signature change kind frequencies of each project as 
percentages for each change kind. The percentage is 
calculated by taking the number of observations of a 
particular change kind, and dividing it by the total 
number of signature changes observed for that project. 
For example, in the SVN project, we observed 2347 
parameter additions, and 9062 total signature changes, 
resulting in a frequency percentage of 26%. 
Note that a single observed signature change event 
could match more than one change kind. For example, 
a single signature change could potentially involve 
parameter addition, parameter deletion, and ordering 
changes. Figure 2 shows that the most common change 
kinds are complex type name changes (average 
27.25%), parameter addition (average 24.8%), ordering 
only changes (average 15.7%), and parameter deletion 
(average 14%). The array/pointer and primitive type 
changes are relatively uncommon change kinds. Note 
that the number of parameter addition changes is 
almost double the number of parameter deletion 
changes; note also that if multiple parameters are added 
or deleted in a single change, only one change count 
was recorded. Most complex data type name changes 
are due to refactoring of a complex data type. For 
example, in APR the complex type name, ‘ap_pool_t’ 
changed to ‘apr_pool_t’ (an ‘r’ was added to ‘ap’ to 
make ‘apr’). Many other complex data type names for 
this project had a similar change from ‘ap’ to ‘apr,’ 
indicating a global renaming event. 

The number of return type and function name changes 
of selected projects is shown in Table 5. In this table, 
the count of total parameter changes is taken from 
Table 4. The ratios for return type changes and function 
name changes are similar. For example, return type 
changes occur at 5~10% of the frequency of total 
parameter changes. 

Table 4. Counts of each change kind for the seven open source projects 

Project 
Parameter 

Name 
change 

Only 
ordering 
change 

Addition Deletion Modifier 
change 

Array/ 
Pointer 

Complex 
type name 

change 

Primitive 
type 

change 

Total 
changes 

A 1.3 72 67 262 117 207 4 64 25 818 
A 2 183 274 572 462 272 33 992 8 2796 
APR 263 426 708 261 169 52 2188 113 4180 
APU 53 61 99 50 10 1 271 11 556 
CVS 37 244 404 299 117 28 10 4 1143 
GCC 19 47 114 59 49 1 158 7 454 
SVN 354 3510 2347 1137 694 27 973 20 9062 



 

Figure 2. Per-project and average frequency for each signature change kind for seven open source projects.  
 

Table 5. Numbers of parameter, return type, and function 
name changes of selected projects 

 A1.3 A2 APR APU 
Total parameter changes 818 2796 4180 556 

Return type changes 49 190 571 63 
Function name changes 413 201 885 184 

4.2 Distribution of Signature Changes 
To show the distribution of signature changes across 
functions, we counted the number of functions in SVN 
having n signature changes, with n varying from 0 to 
19 changes. SVN has 5925 unique functions after 
applying the origin analysis result. Figure 3 shows that 
3434 functions (58%) never changed their signature 
and 94% of the functions had fewer than three 
signature changes.  
Table 6 shows the percentage of functions whose 
signature never changed, and the percentage of 
functions whose signature changed less than three 
times. For example, in A2 57% of function signatures 
never changed, and 90% of function signatures 
changed less than three times. Note that GCC has a 
small total number of changes, 454, and most 
signatures changed only once or twice, resulting in 
higher figures than other projects. 
Table 6. Percentages of signatures that never change, and 
change less than three times. For example, 56% of 
function signatures in A 1.3 never changed, and 96% of 
them changed less than three times. 

A 1.3 A2 APR APU CVS GCC SVN 
56/96 57/90 49/86 67/96 61/97 92/99 58/94 

Another interesting ratio of signature changes can be 
obtained by comparing the number of signature 
changes and number of function body changes. Table 7 
shows the body change to signature change ratios for 
each project. For example, in the Apache 1.3 project, 

on average, a function’s signature changes after its 
body has changed 7.6 times. The correlation between 
function signature and function body is discussed 
further in Section 4.6. The ratios for CVS and GCC are 
relatively high. These two projects have a relatively 
small number of signature changes (CVS: 1143, GCC: 
454) in spite of their relatively high number of 
transactions (CVS: 2873 transactions, GCC: 3012 
transactions). 

 
Figure 3. Numbers of signature changes of functions in 
the Subversion project. The x-axis is number of signature 
changes, and the y-axis is the number of functions (log 
scale).  
Table 7. Function body : signature change ratios  

 A 1.3 A2 APR APU CVS GCC SVN 
Ratio 7.6:1 5.95:1 3.5:1 6.3:1 14.9:1 13.2:1 6.2:1 

4.3 Number of Parameters 
In Figure 2, we observed that the frequency of 
parameter addition is almost twice that of parameter 
deletion. Based on this, we hypothesized that the 
average number of arguments would grow over time. If 
true, we felt this would be a strong indicator of code 
decay, since “more parameters” is a rough measure of 
inter-function coupling (more data being passed) and 



function complexity (more data means more processing 
of that data). However, it was not entirely clear that the 
number of parameters would grow, since a parameter 
deletion event can delete more than one parameter, and 
hence a small number of deletions could remove more 
parameters than a large number of additions. Figure 4 
shows the average number of arguments over the 
transaction history of four projects. 
There was no strong trend towards increasing numbers 
of parameters. Apache 1.3 and Apache 2 show a slow 
increase in parameter count, while APR rose, dipped, 
then rose again. APU was similarly jagged, with a 
sharp increase, then a slow taper. 

 
Figure 4. Average number of parameters vs. transaction 
number for four projects 

We wondered if this phenomenon could be explained 
by the existence of a “per-project threshold” for the 
number of function parameters. The idea here is that 
developers have an upper bound for the length of 
parameter lists they will tolerate. If the number of 
parameters gets close to the threshold value, developers 
will split or refactor the function. To determine if this 
threshold effect was at work, we took the Apache 2 
project (which shows slow growth) and observed the 
maximum, minimum, and current count of parameters 
for each function. Figure 5 shows rough trends in the 
growth and shrinkage of function parameter lists for 
Apache 2; functions that have a current value 
(parameter number in the latest revision) greater than 
their minimum have an upward arrow (the parameter 
list grew), the others have a downward arrow (the 
parameter list shrank). Alas, there is scant evidence for 
this threshold hypothesis, with more functions growing 
than shrinking, especially at high parameter counts.  
What Figure 5 does indicate is that frequency 
distributions may be a better characterization of 
parameter list length than an average number of 
parameters, since the data is inherently quantized. 
Figure 6 shows the frequency distribution of parameter 

list length for 4 projects. It shows that the most 
common parameter list lengths are 1, 2 and 3, with a 
long tail of longer list lengths.  

 
Figure 5. Each position in the x-axis represents a function. 
The y-axis represents the count of parameters. An arrow 
shows the parameter number change, max/min to current 
parameter count, per a function. The smoothed line shows 
the interpolated maximum number of parameters. 

 
Figure 6. Parameter count frequency showing number of 
parameters vs. percentage of functions. 

4.4 Unique Signature Change Patterns  
We have shown that different projects have different 
signature change patterns. But does each project have 
its own unique signature change pattern? If that is the 
case, we can analyze part of a project’s history to 
reveal the patterns for the entire project. Based on 
previous change patterns, we could roughly predict 
future change patterns, since they would be similar. We 
explored this hypothesis by taking two projects, 
Subversion and Apache 1.3, and observed signature 
change kind frequencies by analyzing the first 100, 
200, 300, 500, 1000, 1500, 2000, 3000, 5000 and all 
transactions (6029 for SVN and 7747 Apache 1.3) to 
see if there is a unique signature change pattern for 
each project. 
Figure 7 shows the percentage of major signature 
change kinds by analyzing various transaction 
numbers. Clearly SVN and Apache 1.3 have different 
signature change patterns. For example, SVN has 
almost 50% ordering-only changes, as compared to 
fewer than 10% for Apache 1.3. 
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Figure 7. Major change kind frequency with various 
transaction ranges  

However, within the same project, the frequency 
results from analyzing various transaction ranges such 
as 1-100, 1-200, and 1-300 generally converge. When 
the first 1000~1500 transactions are used as training 
data, the percentage of each change kind is almost the 
same as the result for the whole history. We need to 
observe other projects, but the results strongly suggest 
that each project has its own unique signature change 
pattern and analyzing the first 1000 ~ 1500 transaction 
(about one year in calendar time for these two projects) 
will reveal this pattern. 

4.5 Signature Change Sequences 
We wondered whether a signature change kind depends 
on the previous changes. For example, consider a 
hypothetical project where a return type change (R) is 
80% likely if the previous three changes are, in order, a 
parameter addition change (A), parameter deletion 
change (D), and an ordering change (O). For this 
project, when this known signature change evolution 
sequence occurred (A, D, O), we could make 
predictions about the likely next signature change (an 
R).  
To determine whether the probability of a change 
depends on previous changes, we computed all possible 
conditional probabilities of signature changes, and 
show the probabilities using graphs similar to Bayesian 
Networks [1]. For example, when the signature of a 
function changes in this order: A, D, O, R, and A (See 

Table 3 for the change pattern abbreviations), we 
generate a change sequence, ‘ADORA’. We examined 
all signature change sequences whose length is larger 
than two. We assumed that change sequences with 
fewer than three changes are rarely associated with 
common evolution paths. After having an array of the 
sequences, we computed probabilities for each change 
such as A, O, C, and D. We also computed 
probabilities of each change if previous changes are 
certain kinds, such as A, O, C and D. The probability 
graphs of APR and Apache2 projects are shown in 
Figure 8. The graphs show only high probability nodes 
to reduce clutter. The total number of analyzed change 
patterns of APR is 1494, and Apache2 is 1082.  
The results show that the probability of specific 
signature change kinds occurring does vary based on 
previous changes. For example, in APR the probability 
of change kind C is 0.94 if the two previous changes 
were O, and then C. In this case, if we observe O and 
then C changes, the next change will very likely be C. 
The two graphs (a) and (b) have different probabilities, 
but we believe the probabilities are consistent within a 
single project as we discussed in Section 4.4. 

 
Figure 8. Probability graphs of APR and Apache2. Each 
node indicates change kind and Edge shows evolution 
path. A number in the arrow indicate the probability to 
get to the node.  



4.6 Correlations 
If there are correlations between signature changes and 
other changes, such as changes in LOC or changes in 
the number of function body modifications, we could 
use signature change patterns for other software 
analysis such as identifying unstable areas [4] of code 
or code decay areas [8]. For example, if a certain 
function’s signature changes many times over a 
project’s history, it may indicate the function is not 
stable or the function is decayed.  
To measure correlations between signature changes and 
other changes, we used Pearson’s correlation measure 
[7]. First, we observed the number of function changes 
and signature changes to see if there are correlations. 
We also observed correlations between LOC changes 
and signature changes. Table 8 shows the Pearson’s 
correlation value for the correlation between signature 
changes and LOC changes, and signature changes and 
function body changes. All projects have similar 
correlations between signature changes and LOC 
changes, except APR and APU. Since APR and APU 
are libraries, their maintainers work to avoid changing 
APIs, changing signatures only when it is absolutely 
necessary. When they decide to change signatures, they 
change many signatures at the same time. Note that 
APR and APU have correlations between signature 
changes and body changes.  

Table 8. Correlations of signature changes and changed 
LOC and function body changes 

 A 1.3 A2 APR APU CVS GCC SVN 
LOC 0.38 0.73 0.08 0.17 0.51 0.57 0.44 
Body 0.44 0.47 0.62 0.51 0.45 0.19 0.65 

 

Overall there are weak correlations between signature 
changes and other changes. One of the reasons that 
they have weak correlation is that only 57% of function 
signatures (on average) ever change, as shown in 
Section 4.1. Since there are correlations between 
signature changes and other kinds of changes, we can 
use signature change patterns for software analysis 
such as identifying unstable areas or detecting code 
decay, instead of LOC or other change patterns. 
Determining other ways in which signature change 
patterns can improve software maintenance analysis 
remains future work. 

4.7 Signature Change and Bug 
Introduction 
We analyzed two of our projects, Apache 1.3 and 
Subversion, to determine if there is a correlation 
between code modifications where a signature is 
changed, and increased frequency of bugs. We identify 
bug introducing changes using the fix-inducing 

identification algorithm described in [13, 15]. We 
group changes in two folds: changes with signature 
change and changes without signature change. Then we 
count the number of buggy changes in two folds.  
Consider the change history for the function ‘foo()’ as 
shown in Figure 9. The change log at transaction n 
(Rev n) states “Fixed issue #355”, which indicates that 
it is a fix change. It means the function at transaction n-
1 has one or more problematic lines, which are fixed in 
transaction n by changing them. When were the 
problematic lines added in the first place? SCM 
systems such as CVS [3] and Subversion [2] provide an 
annotation feature that shows information about when 
each line of a file was modified, and by whom. Using 
the SCM annotation information, we can determine 
when the problematic lines were initially added. 
Suppose the problematic lines were added in 
transaction 3. This means the file at transaction 2 does 
not have the problematic lines, so they were added in 
the change between transaction 2 and 3. This change 
introduced a bug into the software, and hence we call it 
a bug-introducing change. All other changes, such as 
the change between transactions 1 and 2 in Figure 9, 
are clean changes. Details on the algorithm used for 
identifying bug-introducing changes are given in [15].  
 

 
Figure 9. The foo function change history 
 

To determine whether signature-modifying changes 
introduce more (or fewer) bugs, we separate changes 
into two groups: signature-modifying changes and non-
signature-modifying changes. Then we identify and 
count the numbers of bug introducing changes in each 
group. Table 9 shows bug-introducing change counts 
and rates of the two groups (signature and non-
signature changes) of selected projects. For example, 
Apache 1.3 has 6,373 non-signature changes. Among 
them, 1,084 (17%) are buggy changes. Apache 1.3 has 
526 signature changes, and among them 124 (23.6%) 
of them are buggy changes. For both projects, the 
signature change group has a higher percentage of 
changes that are buggy. 



Table 9. Bug-introducing change counts and percentages 
of signature and non-signature changes of the selected 
projects and transactions. We analyzed changes in 
Apache 1.3 (A1.3) and Subversion (SVN) during the first 
5000 transactions. 

Non-signature changes Signature changes 

Project # of 
changes 

# of 
buggy 

changes 

% of 
buggy 

changes 

# of 
changes 

# of 
buggy 

changes 

% of 
buggy 

changes 
A1.3 6,373 1,084 17 526 124 23.6 
SVN 20,193 763 3.78 4,903 256 5.22 

The bug introduction percentages of signature changes 
are higher than those of non-signature changes. In the 
case of Apache 1.3, the difference is high enough (6%) 
to be significant. For Subversion, the difference is 
1.4%, which may not be significant. These results are 
indicative that changes that modify signatures carry a 
greater risk of introducing bugs than those that modify 
only function bodies. Repeating this analysis on a 
larger dataset is necessary to fully establish this 
correlation. 

5. Properties of Signature Changes 
Based on the results presented in Section 4, we can 
now define some general properties of software 
signature changes. The properties we define here are 
based on results of signature analysis of relatively 
small number of projects, but can serve as a basis for 
comparison between our signature change properties 
and those found by others. 
Property 1. The most common signature change kinds 
are, in order, complex data type, parameter addition, 
parameter ordering, and parameter deletion. 
Property 2. Over half of all function signatures never 
change.  90% of functions change signatures less than 
three times. 
Property 3. For every 5- to 15 function body changes, 
there is a signature change.  
Property 4. The average number of parameters 
remains relatively constant over time.  
Property 5. Functions typically have parameter lists 
with 1, 2, or 3 parameters.  
Property 6. There are weak correlations between 
signature changes and other changes, such as LOC and 
function body changes. 
Property 7. Each project has its own signature change 
patterns, and these patterns can be discovered after 
analyzing the first 1000 to 1500 transactions. 
Property 8. Probability of a change kind depends on 
previous changes. 
Property 9. Signature changes tend to introduce more 
bugs than non-signature (only function body) changes. 

6. Threats to Validity 
The results presented in this paper are based on a 
selected set of seven open source projects. This set 
includes major open source projects, but other open 
source or commercial software projects may not have 
the same properties we presented here. We analyzed 
only projects written in the C programming language; 
software written in other procedural programming 
languages may have different signature change 
patterns. Projects written in Object Oriented 
Programming (OOP) languages such as Java, C++, or 
C# will certainly have different signature change 
properties, because the language abstractions go 
beyond simple functional boundaries.  
Some open source projects have transactions that 
cannot be compiled and contain syntactically invalid 
source code. In these cases, we had to guess at the 
signatures or skip the invalid parts of the code. We 
ignored ‘#ifdef’ statements because we cannot 
determine the real definition value. Ignoring ‘#ifdef’ 
caused us to add some extra signatures which will not 
be compiled in the real program.  

7. Applicability 
In general, function signature changes occur for many 
reasons, from behavior-neutral data restructuring to 
modifications of the abstraction that the function is 
meant to represent.  The ability to classify the kinds 
and patterns of signature changes allows software 
evolution researchers to enhance their own results.  
Instability analysis [4] could use signature change 
analysis and the inferred data flow changes to segregate 
instabilities based on collapsing data isolation from 
those based on an evolving concept of program 
functionality.  Systems that use logical coupling or 
association rules to produce a history-based change-
impact set, such as Gall et al. [9], Zimmerman et al. 
[18], or Ying et al. [17] could use the project-specific 
change patterns to provide more context for their 
suggestions.  For example, instead of simply “users 
who changed X also changed Y”, an addendum of “but 
the only change in Y was because X.foo() changed its 
signature” would certainly be insightful, and indeed 
could affect the overall categorization of returned 
suggestions.  The benefit of signature change analysis 
is not limited to software evolution analysis but is also 
applicable to software maintenance.  Based on these 
results, a more complete ontological framework that 
includes a conceptual meaning for each parameter with 
its data type certainly seems possible.  With such a 
framework, it may be possible to accommodate 
ordering changes and parameter deletion changes by 
automatically generating glue code that resolves the 
signature mismatch problem. 



8. Future Work and Conclusions 
Among change kinds, the most common change kinds 
are complex type changes, parameter addition, 
ordering-only changes, and parameter deletion. In 
future work we hope to use this result to alleviate the 
impact of signature changes, by automatically 
generating “glue code” to temporarily bridge 
mismatched signatures.  Observing signature change 
properties of projects in OOP languages is also future 
work.  

We have provided a detailed taxonomy and 
categorization of signature change kinds found in C 
functions.  We also presented the nine key properties 
we discovered during this analysis. Among these 
properties, we found that there exist correlations 
between signature and function body changes (Property 
6). Property 7 reveals that each project has a unique 
signature change pattern, and we only need 
approximately the first 1500 transactions to find it. The 
patterns found from these training transactions can be 
used to predict future changes patterns. We also found 
that changing signatures introduces more bugs than 
changing only function bodies (Property 9). While 
several of our results will be strengthened with the 
addition of more analyzed datasets, our work so far 
indicates that signature change analysis could 
eventually be used to enhance the results of other types 
of software evolution and maintenance research. 
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