
Properties of Signature Change Patterns

Sunghun Kim, E. James Whitehead, Jr., Jennifer Bevan
Dept. of Computer Science

 University of California, Santa Cruz
Santa Cruz, CA 95060 USA

{hunkim, ejw, jbevan}@cs.ucsc.edu

Abstract
Understanding function signature change properties

and evolution patterns is important for researchers
concerned with alleviating signature change impacts,
understanding software evolution, and predicting
future evolution patterns. We provide detailed
signature change properties by analyzing seven
software project histories to reveal multiple properties
of signature changes, including their kind, frequency,
correlation with other changes, number of parameter
changes, and evolution patterns of signature change
kinds. We show that signature changes can be used as
measurement aid for software evolution analysis.
1. Introduction
In procedural languages like C, the “function” is the
primary functional abstraction encapsulating program
behavior. In large, evolving software systems, a key
question concerns how these functional abstractions
fare over time. Designing to accommodate change is a
central design principle in software engineering, one
that raises the question of how functional abstractions
actually do change. Possible changes include function
body modification, variable renaming, moving
functions from one file to another, and function
signature changes [14]. In this paper we perform a
detailed examination of the evolutionary behavior of
the external interface to functional abstractions: the
function signature.

Examining changes to the external interface provides
insight into the evolution of the abstraction itself. If we
know the most frequent kinds of signature changes, we
better understand the common evolutionary stresses
affecting the abstraction. Total numbers of signature
changes, and correlations between signature changes
and function body changes, give insight into the
stability of a system’s modular decomposition, and
hence the stability of the abstraction over time.
Furthermore, detailed observation of signature changes
might reveal patterns to them, and hence patterns of
change to functional abstractions.

Other researchers have observed code changes, though
none have examined signature changes in the same
level of detail as we do in this paper. Kung et al.
identified types of code changes [14] and Counsell et al.
discussed the trends of changes in Java code [6]. Both
studies identified large granularity change types, such
as method body changes, method addition, method
deletion and whether the signature changed (but with
no differentiation of the different types of signature
changes). Their categorization of changes is useful for
understanding software changes as an overview, but is
insufficiently detailed to develop a strong
understanding of functional abstraction evolution.

To provide detailed signature change properties we
focus on fine-grained changes in function signatures,
categorizing them based on whether they increase,
decrease, or do not modify the data flow between caller
and callee. We show the properties of function
signature change patterns by answering the following
research questions: How often do signatures change?
What are the common signature change kinds? How
often does each kind appear? Does each project have
unique signature change patterns? Are there particular
sequences of signature change kind?

Understanding function signature change patterns is
important to researchers concerned with alleviating
signature change impacts, understanding software
evolution, and understanding evolution pattern change
sequences. We found correlations between signature
changes and other types of changes used in such
research, such as LOC and function body changes. This
result suggests that signature change patterns can
enhance other evolution analyses, such as finding hot
spots, unstable areas [4], or code decay [8].

Our analysis dataset is seven prominent open source
project histories: Apache 1.3 HTTP server, Apache 2.0
HTTP server, Apache Portable Runtime Library,
Apache Portable Runtime Library Utility, Subversion,
CVS, and GCC (see Table 1). These seven projects are
written in the C programming language.

Table 1. Analyzed open source projects. LOC indicates number of lines of .h and .c source files, including comments of
the latest transaction. Period shows the project history period for projects for which we directly accessed the SCM
repository. # of Txns indicates the number of transactions we extracted.

Project Software type LOC SCM Period # of Txns
Apache HTTP 1.3 (A 1.3) HTTP server 116,398 Subversion Jan 1996 ~ Mar 2005 7,747
Apache HTTP 2.0 (A 2) HTTP server modules 104,417 CVS Jul 1999 ~ Aug 2003 3,877
Apache Portable Runtime (APR) Portable C library 72,630 Subversion Jan 1999 ~ Feb 2005 5,990
APR utility (APU) Portable C library utility 33,660 Subversion Jul 1999 ~ Feb 2005 1,353
CVS SCM software 62,415 CVS Dec 1994 ~ Sep 2003 2,873
GCC C/C++ compiler 298,236 CVS Nov 1988 ~ Feb 1993 3,012
Subversion (SVN) SCM software 185,006 Subversion Aug 2001 ~ Mar 2005 6,029

For our analysis, we used Kenyon, a data extraction,
preprocessing, and storage backend designed to
facilitate software evolution research [5]. Using
Kenyon, we checked out all transactions of source code
from each project, and then extracted facts needed for
our analysis, including function signatures, call
dependencies, and LOC changes. We grouped
signatures by function name and observed patterns of
signature changes including signature change
frequency distributions (Section 4.1, 4.2, and 4.3),
observable signature change patterns (Section 4.4 and
4.5), and correlations with other project aspects
(Section 4.6 and 4.7). Based on the observations we
introduce nine signature change properties in Section 5.

When function names change, file-based SCM systems
like CVS and Subversion do not record the linkage
between old and renamed functions. A function name
change is only observed as a function deletion and a
new function addition. This is a potential source of
error in signature change evolution analysis, since it
artificially splits the transaction history of a functional
abstraction at the point where its name changes. The
origin of a renamed function is the same logical
function under its old name. To find the origins of
functions, Godfrey et al. proposed a human-assisted
origin analysis algorithm using dependencies and entity
analysis [10, 16]. In a similar vein, we implemented a
completely automated origin analysis algorithm to find
origins of new functions [11]. We reported preliminary
signature change properties in [12], and this paper
substantially extends the previous work by applying
origin analysis to improve the quality of results,
analyzing correlations between signature changes and
other changes, providing probability graphs of each
change kind, observing the number of parameter
changes, and analyzing bug introduction rates of
signature changes.

The remaining sections of the paper are as follows. In
section 2, we define and organize signature change
kinds. We discuss our experiment approach in section
3. Section 4 provides answers to our research questions
by performing several detailed signature change

analyses. In section 5, we list signature change
properties we uncovered during the analysis. We
discuss the limitations and applicability of our analysis
in section 6 and 7, and conclude in section 8.

2. Signature Change Kinds
Before presenting our results, we describe our fine-
grain taxonomy of signature change kinds. Signature
change kinds are informally defined in Table 2; more
formal definitions of signature changes are in [12].
To define the major categories of our taxonomy, we
use a data flow model between a function and a client.
A client calls a function by passing arguments (Arg)
and expecting returns (R) as shown in Figure 1. The
total data flow across the interface is the union of Arg
and R, defined in Definition 1. We note that data flows
can also occur by passing data in global variables.

Figure 1. Model of data flow across a function interface.

Definition 1 (Interface Data Flow)

Parameter Param ! {modifier, type, name, array/pointer,
order}

Argument Arg !a set of zero or more Param
Return parameter R !{modifier, type, array/pointer}

DF! Arg !R

Data flow invariant ! |DFold| = |DFnew|
Data flow increasing ! |DFold| < |DFnew|
Data flow decreasing ! |DFold| > |DFnew|

Broadly, when parameters or return values are added,
there is an increase in the amount of data flowing
across the interface between caller and callee, while
parameter deletion or removal of return values results
in reduction of data flow. Modifier changes or
parameter name changes have no impact on the data
flow. The fine-grain taxonomy of signature change
kinds based on the data flow model is shown in Table 2
and Table 3.

Table 2. Definitions of signature change kinds.

Change kind Description
Parameter addition (A) A parameter is added
Parameter deletion (D) A parameter is deleted
Parameter ordering change

only (OO)
Parameter ordering change
without addition or deletion
changes

Ordering change by
addition (OA)

Parameter ordering change
caused by parameter addition

Ordering change by
deletion (OD)

Parameter ordering change
caused by parameter deletion

Return type change (R) Return type changes excluding
RA and RD

Return type addition (RA) Return type change from the
void data type to other data
types

Return type deletion (RD) Return type change from other
data types to the void data type

Primitive type change (T) A primitive type of a parameter
changed

Complex type name
change (C)

The name of a complex data
type changed

Complex type inner
variable addition (CA)

One of members of a complex
data type added

Complex type inner
variable deletion (CD)

One of members of a complex
data type deleted

Function name change
(MN)

Function name changed

Parameter name change
(N)

Parameter name changed

Parameter modifier change
(M)

Modifier of a parameter
changed

Concept merge/splitting
change (CM/CS)

One or more parameters’
concept merged to a parameter
or a parameter’s concept split
to two more parameters

Array/Pointer operation
change (P)

Dimensions of pointer or array
parameter change

3. Investigation Approach
3.1 Extraction, Refinement, Analysis
Before presenting results from our signature change
observations, we briefly describe our analysis process.
We used a three phase-process to analyze signature
changes using the Kenyon system. The first phase
involves checking out all transactions and extracting
raw facts. We used Kenyon for this phase. Kenyon
checks out all transactions from a SCM repository and
invokes a fact extractor that we implemented to extract
raw facts such as function signatures, deltas between
two transactions, and added/deleted function
information. The extracted raw data is stored in a
DBMS.

For the projects we analyzed, the transaction history
was stored using either the CVS or the Subversion
SCM system. An important issue in software evolution

research is the extraction of logical transactions from
the SCM repository. Since Subversion assigns a
transaction number per commit, there is no need to
recover transactions for Subversion-managed projects
[2]. CVS does not keep the original transaction
information, usually requiring a process of transaction
recovery [19]. Kenyon provides CVS transaction
recovery via a slicing time window algorithm [5].

Table 3. Taxonomy of signature change kinds. A *
indicates the item is only manually identifiable and hence
is not reported on in this paper.

Data flow
invariant

Function name change (MN)
Parameter ordering change only (OO)
Parameter name change (N)
Parameter modifier change (M)
*Concept merge/splitting change (CM/CS)
Array/Pointer operation change (P)
Return type change (R)
Primitive type change (T)
Complex type name change (C)

Data flow
increasing

Parameter addition (A)
Ordering change by addition (OA)
Return type addition (RA)
*Complex type inner variable addition (CA)

Data flow
decreasing

Parameter deletion (D)
Ordering change by deletion (OD)
Return type deletion (RD)
*Complex type inner variable deletion (CD)

The second phase refines the extracted raw data in the
DBMS. For example, we find origin relationships using
raw data such as added/deleted function information
and signatures. Section 3.2 below provides additional
detail on how we computed origin relationships. The
refined data is also stored in the DBMS. The final
phase analyzes signature change patterns using the raw
data and refined data in the DBMS. The signature data
is grouped by function name and applied origin
relationships. The grouped signatures are ordered by
transaction and stored in a signature change history
file.

We manually observed the signature change history file
to identify common signature changes. After analyzing
the signature change history files from various open
source projects, we found the common change kinds
shown in Table 2. While most of the change patterns
can be automatically identified by a static software
analysis, some change kinds, such as concept
merging/splitting changes are not automatically
identifiable, requiring knowledge of the project and
parameter concepts.

Based on these manually identified signature change
kinds, we implemented an automatic identifier that
reads a signature change history file, and annotates the
file based on the identified kinds. After the signature
change history file has been annotated, we calculate the
frequency of each change kind over a project’s history.

We also examine the sequence of signature change
kinds of a given function to identify any common
patterns in the signature evolution. The results from
these analyses are presented in Section 4.

3.2 Origin Analysis
It is natural to use a function name as an identifier to
track function signature changes. For example we can
observe signature changes of the ‘foo’ function over
transactions by finding the function name ‘foo’ in each
transaction’s source code. However, function names do
change, and existing SCM systems do not track this as
a logical change. Ideally, we would like signature
changes to be attributed to their logical function, even
if the function’s name changes over time. In this case,
there is an origin relation between the deleted function
and the new function [10]. In previous work, we
developed an automatic origin analysis algorithm that
compares two functions for identity using a total
similarity measure [11]. To simplify our signature
change analysis, we compute similarities using four
facts: function name, parameters, incoming calls, and
outgoing calls. Detailed algorithms and similarity
metrics are described in [11]. We use the automated
origin analysis results for our signature change
analysis.

4. Observations of Signature Changes
In this section we discuss the following detailed
properties of function signature changes:
Frequency distributions: We characterize the
distribution of various signature change types over a
project history (Section 4.1), the number of changes per
function (Section 4.2), and the number of parameter
changes (Section 4.3).
Observable patterns: We try to observe if there are
any project-specific patterns (Section 4.4) or noticeable
patterns in the sequence of change types (Section 4.5).

Correlations with other project aspects: We
observed correlation between signature changes and
other changes such as function body changes (Section
4.6) and bug-introducing changes (Section 4.7).

Based on these observations, we introduce nine
signature change properties in Section 5.

4.1 Frequency of Change Kinds
After identifying signature change kinds, we computed
the frequencies of each kind. Figure 2 shows the
signature change kind frequencies of each project as
percentages for each change kind. The percentage is
calculated by taking the number of observations of a
particular change kind, and dividing it by the total
number of signature changes observed for that project.
For example, in the SVN project, we observed 2347
parameter additions, and 9062 total signature changes,
resulting in a frequency percentage of 26%.
Note that a single observed signature change event
could match more than one change kind. For example,
a single signature change could potentially involve
parameter addition, parameter deletion, and ordering
changes. Figure 2 shows that the most common change
kinds are complex type name changes (average
27.25%), parameter addition (average 24.8%), ordering
only changes (average 15.7%), and parameter deletion
(average 14%). The array/pointer and primitive type
changes are relatively uncommon change kinds. Note
that the number of parameter addition changes is
almost double the number of parameter deletion
changes; note also that if multiple parameters are added
or deleted in a single change, only one change count
was recorded. Most complex data type name changes
are due to refactoring of a complex data type. For
example, in APR the complex type name, ‘ap_pool_t’
changed to ‘apr_pool_t’ (an ‘r’ was added to ‘ap’ to
make ‘apr’). Many other complex data type names for
this project had a similar change from ‘ap’ to ‘apr,’
indicating a global renaming event.

The number of return type and function name changes
of selected projects is shown in Table 5. In this table,
the count of total parameter changes is taken from
Table 4. The ratios for return type changes and function
name changes are similar. For example, return type
changes occur at 5~10% of the frequency of total
parameter changes.

Table 4. Counts of each change kind for the seven open source projects

Project
Parameter

Name
change

Only
ordering
change

Addition Deletion Modifier
change

Array/
Pointer

Complex
type name

change

Primitive
type

change

Total
changes

A 1.3 72 67 262 117 207 4 64 25 818
A 2 183 274 572 462 272 33 992 8 2796
APR 263 426 708 261 169 52 2188 113 4180
APU 53 61 99 50 10 1 271 11 556
CVS 37 244 404 299 117 28 10 4 1143
GCC 19 47 114 59 49 1 158 7 454
SVN 354 3510 2347 1137 694 27 973 20 9062

Figure 2. Per-project and average frequency for each signature change kind for seven open source projects.

Table 5. Numbers of parameter, return type, and function
name changes of selected projects

 A1.3 A2 APR APU
Total parameter changes 818 2796 4180 556

Return type changes 49 190 571 63
Function name changes 413 201 885 184

4.2 Distribution of Signature Changes
To show the distribution of signature changes across
functions, we counted the number of functions in SVN
having n signature changes, with n varying from 0 to
19 changes. SVN has 5925 unique functions after
applying the origin analysis result. Figure 3 shows that
3434 functions (58%) never changed their signature
and 94% of the functions had fewer than three
signature changes.
Table 6 shows the percentage of functions whose
signature never changed, and the percentage of
functions whose signature changed less than three
times. For example, in A2 57% of function signatures
never changed, and 90% of function signatures
changed less than three times. Note that GCC has a
small total number of changes, 454, and most
signatures changed only once or twice, resulting in
higher figures than other projects.
Table 6. Percentages of signatures that never change, and
change less than three times. For example, 56% of
function signatures in A 1.3 never changed, and 96% of
them changed less than three times.

A 1.3 A2 APR APU CVS GCC SVN
56/96 57/90 49/86 67/96 61/97 92/99 58/94

Another interesting ratio of signature changes can be
obtained by comparing the number of signature
changes and number of function body changes. Table 7
shows the body change to signature change ratios for
each project. For example, in the Apache 1.3 project,

on average, a function’s signature changes after its
body has changed 7.6 times. The correlation between
function signature and function body is discussed
further in Section 4.6. The ratios for CVS and GCC are
relatively high. These two projects have a relatively
small number of signature changes (CVS: 1143, GCC:
454) in spite of their relatively high number of
transactions (CVS: 2873 transactions, GCC: 3012
transactions).

Figure 3. Numbers of signature changes of functions in
the Subversion project. The x-axis is number of signature
changes, and the y-axis is the number of functions (log
scale).
Table 7. Function body : signature change ratios

 A 1.3 A2 APR APU CVS GCC SVN
Ratio 7.6:1 5.95:1 3.5:1 6.3:1 14.9:1 13.2:1 6.2:1

4.3 Number of Parameters
In Figure 2, we observed that the frequency of
parameter addition is almost twice that of parameter
deletion. Based on this, we hypothesized that the
average number of arguments would grow over time. If
true, we felt this would be a strong indicator of code
decay, since “more parameters” is a rough measure of
inter-function coupling (more data being passed) and

function complexity (more data means more processing
of that data). However, it was not entirely clear that the
number of parameters would grow, since a parameter
deletion event can delete more than one parameter, and
hence a small number of deletions could remove more
parameters than a large number of additions. Figure 4
shows the average number of arguments over the
transaction history of four projects.
There was no strong trend towards increasing numbers
of parameters. Apache 1.3 and Apache 2 show a slow
increase in parameter count, while APR rose, dipped,
then rose again. APU was similarly jagged, with a
sharp increase, then a slow taper.

Figure 4. Average number of parameters vs. transaction
number for four projects

We wondered if this phenomenon could be explained
by the existence of a “per-project threshold” for the
number of function parameters. The idea here is that
developers have an upper bound for the length of
parameter lists they will tolerate. If the number of
parameters gets close to the threshold value, developers
will split or refactor the function. To determine if this
threshold effect was at work, we took the Apache 2
project (which shows slow growth) and observed the
maximum, minimum, and current count of parameters
for each function. Figure 5 shows rough trends in the
growth and shrinkage of function parameter lists for
Apache 2; functions that have a current value
(parameter number in the latest revision) greater than
their minimum have an upward arrow (the parameter
list grew), the others have a downward arrow (the
parameter list shrank). Alas, there is scant evidence for
this threshold hypothesis, with more functions growing
than shrinking, especially at high parameter counts.
What Figure 5 does indicate is that frequency
distributions may be a better characterization of
parameter list length than an average number of
parameters, since the data is inherently quantized.
Figure 6 shows the frequency distribution of parameter

list length for 4 projects. It shows that the most
common parameter list lengths are 1, 2 and 3, with a
long tail of longer list lengths.

Figure 5. Each position in the x-axis represents a function.
The y-axis represents the count of parameters. An arrow
shows the parameter number change, max/min to current
parameter count, per a function. The smoothed line shows
the interpolated maximum number of parameters.

Figure 6. Parameter count frequency showing number of
parameters vs. percentage of functions.

4.4 Unique Signature Change Patterns
We have shown that different projects have different
signature change patterns. But does each project have
its own unique signature change pattern? If that is the
case, we can analyze part of a project’s history to
reveal the patterns for the entire project. Based on
previous change patterns, we could roughly predict
future change patterns, since they would be similar. We
explored this hypothesis by taking two projects,
Subversion and Apache 1.3, and observed signature
change kind frequencies by analyzing the first 100,
200, 300, 500, 1000, 1500, 2000, 3000, 5000 and all
transactions (6029 for SVN and 7747 Apache 1.3) to
see if there is a unique signature change pattern for
each project.
Figure 7 shows the percentage of major signature
change kinds by analyzing various transaction
numbers. Clearly SVN and Apache 1.3 have different
signature change patterns. For example, SVN has
almost 50% ordering-only changes, as compared to
fewer than 10% for Apache 1.3.

SVN

0

10

20

30

40

50

60

Parameter
name

change

Only
ordering
changes

Additon Deletion Modifier
change

Complex
type name

change

100

200

300

500

1000

1500

2000

5000

6029

A 1.3

0

10

20

30

40

50

60

Parameter
name

change

Only
ordering
changes

Additon Deletion Modifier
change

Complex
type name

change

100

200

300

500

1000

1500

2000

5000

7747

Figure 7. Major change kind frequency with various
transaction ranges

However, within the same project, the frequency
results from analyzing various transaction ranges such
as 1-100, 1-200, and 1-300 generally converge. When
the first 1000~1500 transactions are used as training
data, the percentage of each change kind is almost the
same as the result for the whole history. We need to
observe other projects, but the results strongly suggest
that each project has its own unique signature change
pattern and analyzing the first 1000 ~ 1500 transaction
(about one year in calendar time for these two projects)
will reveal this pattern.

4.5 Signature Change Sequences
We wondered whether a signature change kind depends
on the previous changes. For example, consider a
hypothetical project where a return type change (R) is
80% likely if the previous three changes are, in order, a
parameter addition change (A), parameter deletion
change (D), and an ordering change (O). For this
project, when this known signature change evolution
sequence occurred (A, D, O), we could make
predictions about the likely next signature change (an
R).
To determine whether the probability of a change
depends on previous changes, we computed all possible
conditional probabilities of signature changes, and
show the probabilities using graphs similar to Bayesian
Networks [1]. For example, when the signature of a
function changes in this order: A, D, O, R, and A (See

Table 3 for the change pattern abbreviations), we
generate a change sequence, ‘ADORA’. We examined
all signature change sequences whose length is larger
than two. We assumed that change sequences with
fewer than three changes are rarely associated with
common evolution paths. After having an array of the
sequences, we computed probabilities for each change
such as A, O, C, and D. We also computed
probabilities of each change if previous changes are
certain kinds, such as A, O, C and D. The probability
graphs of APR and Apache2 projects are shown in
Figure 8. The graphs show only high probability nodes
to reduce clutter. The total number of analyzed change
patterns of APR is 1494, and Apache2 is 1082.
The results show that the probability of specific
signature change kinds occurring does vary based on
previous changes. For example, in APR the probability
of change kind C is 0.94 if the two previous changes
were O, and then C. In this case, if we observe O and
then C changes, the next change will very likely be C.
The two graphs (a) and (b) have different probabilities,
but we believe the probabilities are consistent within a
single project as we discussed in Section 4.4.

Figure 8. Probability graphs of APR and Apache2. Each
node indicates change kind and Edge shows evolution
path. A number in the arrow indicate the probability to
get to the node.

4.6 Correlations
If there are correlations between signature changes and
other changes, such as changes in LOC or changes in
the number of function body modifications, we could
use signature change patterns for other software
analysis such as identifying unstable areas [4] of code
or code decay areas [8]. For example, if a certain
function’s signature changes many times over a
project’s history, it may indicate the function is not
stable or the function is decayed.
To measure correlations between signature changes and
other changes, we used Pearson’s correlation measure
[7]. First, we observed the number of function changes
and signature changes to see if there are correlations.
We also observed correlations between LOC changes
and signature changes. Table 8 shows the Pearson’s
correlation value for the correlation between signature
changes and LOC changes, and signature changes and
function body changes. All projects have similar
correlations between signature changes and LOC
changes, except APR and APU. Since APR and APU
are libraries, their maintainers work to avoid changing
APIs, changing signatures only when it is absolutely
necessary. When they decide to change signatures, they
change many signatures at the same time. Note that
APR and APU have correlations between signature
changes and body changes.

Table 8. Correlations of signature changes and changed
LOC and function body changes

 A 1.3 A2 APR APU CVS GCC SVN
LOC 0.38 0.73 0.08 0.17 0.51 0.57 0.44
Body 0.44 0.47 0.62 0.51 0.45 0.19 0.65

Overall there are weak correlations between signature
changes and other changes. One of the reasons that
they have weak correlation is that only 57% of function
signatures (on average) ever change, as shown in
Section 4.1. Since there are correlations between
signature changes and other kinds of changes, we can
use signature change patterns for software analysis
such as identifying unstable areas or detecting code
decay, instead of LOC or other change patterns.
Determining other ways in which signature change
patterns can improve software maintenance analysis
remains future work.

4.7 Signature Change and Bug
Introduction
We analyzed two of our projects, Apache 1.3 and
Subversion, to determine if there is a correlation
between code modifications where a signature is
changed, and increased frequency of bugs. We identify
bug introducing changes using the fix-inducing

identification algorithm described in [13, 15]. We
group changes in two folds: changes with signature
change and changes without signature change. Then we
count the number of buggy changes in two folds.
Consider the change history for the function ‘foo()’ as
shown in Figure 9. The change log at transaction n
(Rev n) states “Fixed issue #355”, which indicates that
it is a fix change. It means the function at transaction n-
1 has one or more problematic lines, which are fixed in
transaction n by changing them. When were the
problematic lines added in the first place? SCM
systems such as CVS [3] and Subversion [2] provide an
annotation feature that shows information about when
each line of a file was modified, and by whom. Using
the SCM annotation information, we can determine
when the problematic lines were initially added.
Suppose the problematic lines were added in
transaction 3. This means the file at transaction 2 does
not have the problematic lines, so they were added in
the change between transaction 2 and 3. This change
introduced a bug into the software, and hence we call it
a bug-introducing change. All other changes, such as
the change between transactions 1 and 2 in Figure 9,
are clean changes. Details on the algorithm used for
identifying bug-introducing changes are given in [15].

Figure 9. The foo function change history

To determine whether signature-modifying changes
introduce more (or fewer) bugs, we separate changes
into two groups: signature-modifying changes and non-
signature-modifying changes. Then we identify and
count the numbers of bug introducing changes in each
group. Table 9 shows bug-introducing change counts
and rates of the two groups (signature and non-
signature changes) of selected projects. For example,
Apache 1.3 has 6,373 non-signature changes. Among
them, 1,084 (17%) are buggy changes. Apache 1.3 has
526 signature changes, and among them 124 (23.6%)
of them are buggy changes. For both projects, the
signature change group has a higher percentage of
changes that are buggy.

Table 9. Bug-introducing change counts and percentages
of signature and non-signature changes of the selected
projects and transactions. We analyzed changes in
Apache 1.3 (A1.3) and Subversion (SVN) during the first
5000 transactions.

Non-signature changes Signature changes

Project # of
changes

of
buggy

changes

% of
buggy

changes

of
changes

of
buggy

changes

% of
buggy

changes
A1.3 6,373 1,084 17 526 124 23.6
SVN 20,193 763 3.78 4,903 256 5.22

The bug introduction percentages of signature changes
are higher than those of non-signature changes. In the
case of Apache 1.3, the difference is high enough (6%)
to be significant. For Subversion, the difference is
1.4%, which may not be significant. These results are
indicative that changes that modify signatures carry a
greater risk of introducing bugs than those that modify
only function bodies. Repeating this analysis on a
larger dataset is necessary to fully establish this
correlation.

5. Properties of Signature Changes
Based on the results presented in Section 4, we can
now define some general properties of software
signature changes. The properties we define here are
based on results of signature analysis of relatively
small number of projects, but can serve as a basis for
comparison between our signature change properties
and those found by others.
Property 1. The most common signature change kinds
are, in order, complex data type, parameter addition,
parameter ordering, and parameter deletion.
Property 2. Over half of all function signatures never
change. 90% of functions change signatures less than
three times.
Property 3. For every 5- to 15 function body changes,
there is a signature change.
Property 4. The average number of parameters
remains relatively constant over time.
Property 5. Functions typically have parameter lists
with 1, 2, or 3 parameters.
Property 6. There are weak correlations between
signature changes and other changes, such as LOC and
function body changes.
Property 7. Each project has its own signature change
patterns, and these patterns can be discovered after
analyzing the first 1000 to 1500 transactions.
Property 8. Probability of a change kind depends on
previous changes.
Property 9. Signature changes tend to introduce more
bugs than non-signature (only function body) changes.

6. Threats to Validity
The results presented in this paper are based on a
selected set of seven open source projects. This set
includes major open source projects, but other open
source or commercial software projects may not have
the same properties we presented here. We analyzed
only projects written in the C programming language;
software written in other procedural programming
languages may have different signature change
patterns. Projects written in Object Oriented
Programming (OOP) languages such as Java, C++, or
C# will certainly have different signature change
properties, because the language abstractions go
beyond simple functional boundaries.
Some open source projects have transactions that
cannot be compiled and contain syntactically invalid
source code. In these cases, we had to guess at the
signatures or skip the invalid parts of the code. We
ignored ‘#ifdef’ statements because we cannot
determine the real definition value. Ignoring ‘#ifdef’
caused us to add some extra signatures which will not
be compiled in the real program.

7. Applicability
In general, function signature changes occur for many
reasons, from behavior-neutral data restructuring to
modifications of the abstraction that the function is
meant to represent. The ability to classify the kinds
and patterns of signature changes allows software
evolution researchers to enhance their own results.
Instability analysis [4] could use signature change
analysis and the inferred data flow changes to segregate
instabilities based on collapsing data isolation from
those based on an evolving concept of program
functionality. Systems that use logical coupling or
association rules to produce a history-based change-
impact set, such as Gall et al. [9], Zimmerman et al.
[18], or Ying et al. [17] could use the project-specific
change patterns to provide more context for their
suggestions. For example, instead of simply “users
who changed X also changed Y”, an addendum of “but
the only change in Y was because X.foo() changed its
signature” would certainly be insightful, and indeed
could affect the overall categorization of returned
suggestions. The benefit of signature change analysis
is not limited to software evolution analysis but is also
applicable to software maintenance. Based on these
results, a more complete ontological framework that
includes a conceptual meaning for each parameter with
its data type certainly seems possible. With such a
framework, it may be possible to accommodate
ordering changes and parameter deletion changes by
automatically generating glue code that resolves the
signature mismatch problem.

8. Future Work and Conclusions
Among change kinds, the most common change kinds
are complex type changes, parameter addition,
ordering-only changes, and parameter deletion. In
future work we hope to use this result to alleviate the
impact of signature changes, by automatically
generating “glue code” to temporarily bridge
mismatched signatures. Observing signature change
properties of projects in OOP languages is also future
work.

We have provided a detailed taxonomy and
categorization of signature change kinds found in C
functions. We also presented the nine key properties
we discovered during this analysis. Among these
properties, we found that there exist correlations
between signature and function body changes (Property
6). Property 7 reveals that each project has a unique
signature change pattern, and we only need
approximately the first 1500 transactions to find it. The
patterns found from these training transactions can be
used to predict future changes patterns. We also found
that changing signatures introduces more bugs than
changing only function bodies (Property 9). While
several of our results will be strengthened with the
addition of more analyzed datasets, our work so far
indicates that signature change analysis could
eventually be used to enhance the results of other types
of software evolution and maintenance research.

9. Acknowledgements
We thank Kai Pan and Mark Slater for their valuable
feedback on this paper. We especially thank Kevin
Greenan, and the Storage Systems Research Center at
UCSC for allowing the use of their cluster for our
research. Work on this project is supported by NSF
Grant CCR-01234603 and a Cooperative Agreement
with NASA Ames Research Center.

10. References
[1] E. Alpaydin, Introduction to Machine Learning: The

MIT Press, 2004.
[2] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K.

Hancock, and B. Collins-Sussman, "Subversion Project
Homepage," 2005, http://subversion.tigris.org/.

[3] B. Berliner, "CVS II: Parallelizing Software
Development," Proc. of Winter 1990 USENIX
Conference, Washington, DC, pp. 341-351, 1990.

[4] J. Bevan and E. J. Whitehead, Jr., "Identification of
Software Instabilities," Proc. of 2003 Working
Conference on Reverse Engineering (WCRE 2003),
Victoria, Canada, pp. 134-145, 2003.

[5] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,
"Facilitating Software Evolution with Kenyon," Proc. of
the 2005 European Software Engineering Conference
and 2005 Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.

[6] S. Counsell, Y. Hassoun, R. Johnson, K. Mannock, and
E. Mendes, "Trends in Java Code Changes: the key to
Identification of Refactorings?," Proc. of 2nd Int'l
Conference on Principles and Practice of Programming
in Java, Kilkenny City, Ireland, pp. 45-48, 2003.

[7] R. E. Courtney and D. A. Gustafson, "Shotgun
Correlations in Software Measures," Software
Engineering Journal, vol. 8, pp. 5-13, 1992.

[8] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, "Does Code Decay? Assessing the Evidence
from Change Management Data," IEEE Transactions on
Software Engineering, vol. 27, pp. 1-13, 2001.

[9] H. Gall, K. Hajek, and M. Jazayeri, "Detection of
Logical Coupling Based on Product Release History,"
Proc. of International Conference on Software
Maintenance (ICSM '98), pp. 190-198, 1998.

[10] M. Godfrey and L. Zou, "Using Origin Analysis to
Detect Merging and Splitting of Source Code Entities,"
IEEE Transactions on Software Engineering, vol. 31,
pp. 166-181, 2005.

[11] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When
Functions Change Their Names: Automatic Detection of
Origin Relationships " Proc. of 12th Working
Conference on Reverse Engineering (WCRE 2005),
Pennsylvania, USA, 2005.

[12] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of
Signature Change Patterns," Proc. of Int'l Workshop on
Mining Software Repositories, St. Louis, Missouri USA,
2005.

[13] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead,
Jr., "Automatic Identification of Bug Introducing
Changes," Proc. of 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE
2006), Tokyo, Japan, 2006.

[14] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Chen, "Change Impact Identification in Object
Oriented Software Maintenance," Proc. of Int'l
Conference on Software Maintenance, Victoria, BC
Canada, pp. 202-211, 1994.

[15] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?," Proc. of Int'l Workshop on
Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, pp. 24-28, 2005.

[16] Q. Tu and M. W. Godfrey, "An Integrated Approach for
Studying Architectural Evolution," Proc. of Int'l
Workshop on Program Comprehension (IWPC 2002),
Paris, France, 2002.

[17] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-
Carroll, "Predicting Source Code Changes by Mining
Change History," IEEE Transactions of Software
Engineering, vol. 30, pp. 574-586, 2004.

[18] T. Zimmerman, P. Weissgerber, S. Diehl, and A. Zeller,
"Mining Version Histories to Guide Software Changes,"
Proc. of Int'l Conference on Software Engineering
(ICSE '04), Edinburgh, Scotland, UK, pp. 563-572,
2004.

[19] T. Zimmermann and P. Weißgerber, "Preprocessing
CVS Data for Fine-Grained Analysis," Proc. of Int'l
Workshop on Mining Software Repositories (MSR
2004), Edinburgh, Scotland, 2004.

