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ABSTRACT 
Automatic bug-finding tools have a high false positive rate: most 
warnings do not indicate real bugs. Usually bug-finding tools 
assign important warnings high priority. However, the 
prioritization of tools tends to be ineffective. We observed the 
warnings output by three bug-finding tools, FindBugs, JLint, and 
PMD, for three subject programs, Columba, Lucene, and Scarab. 
Only 6%, 9%, and 9% of warnings are removed by bug fix 
changes during 1 to 4 years of the software development. About 
90% of warnings remain in the program or are removed during 
non-fix changes – likely false positive warnings. The tools’ 
warning prioritization is little help in focusing on important 
warnings: the maximum possible precision by selecting high-
priority warning instances is only 3%, 12%, and 8% respectively.  

In this paper, we propose a history-based warning prioritization 
algorithm by mining warning fix experience that is recorded in 
the software change history. The underlying intuition is that if 
warnings from a category are eliminated by fix-changes, the 
warnings are important. Our prioritization algorithm improves 
warning precision to 17%, 25%, and 67% respectively. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement – Restructuring, reverse engineering, and 

reengineering, D.2.8 [Software Engineering]: Metrics – Product 

metrics, K.6.3 [Management of Computing and Information 

Systems]: Software Management – Software maintenance 

General Terms 

Algorithms, Measurement, Experimentation 

Keywords 

Fault, Bug, Fix, Bug-finding tool, Prediction, Patterns 

1. INTRODUCTION 
Bug-finding tools such as FindBugs [12], JLint [2], and PMD [6] 
analyze source or binary code and warn about potential bugs. 
These tools have a high rate of false positives: most warnings do 
not indicate real bugs [17]. Most bug-finding tools assign 
categories and priorities to warning instances, such as Overflow 

(priority 1) or Empty Static Initializer (priority 3). The tools’ 
prioritization is supposed to put important warnings at the top of 
the list, but the prioritization is not very effective [17]. We 
performed two experiments that support this observation. Our 
experiments use three bug-finding tools (FindBugs, JLint, and 
PMD) and three subject programs (Columba, Lucene, and Scarab). 

First, we measured the percentages of warnings that are actually 
eliminated by fix-changes, since generally a fix-change indicates 
a bug [7-9, 22]. We select a revision and determine warnings 
issued by the bug-finding tools. Only 6%, 9%, and 9% of 
warnings are removed by fix-changes during 1~4 years of the 
software change history of each subject program respectively – 
about 90% of warnings either remain or are removed during non-
fix changes.  

Second, we observed whether the tools’ warning prioritization 
(TWP) favors important warnings. The maximum possible 
warning precision by selecting high priority warning instances is 
only 3%, 12%, and 8% respectively. This fact indicates that TWP 
is ineffective. 

Our goal is to propose a new, program-specific prioritization that 
more effectively directs developers to errors. The new history-
based warning prioritization (HWP) is obtained by mining the 
software change history for removed warnings during bug fixes. 

A version control system indicates when each file is changed. A 
software change can be classified as a fix-change or a non-fix 
change. A fix-change is a change that fixes a bug or other 
problem. A non-fix change is a change that does not fix a bug, 
such as a feature addition or refactoring. 

Suppose that during development, a bug-finding tool would issue 
a warning instance from the Overflow category. If a developer 
finds the underlying problem and fixes it, the warning is probably 
important. (We do not assume the software developer is 
necessarily using the bug-finding tool.) On the other hand, if a 
warning instance is not removed for a long time, then warnings of 
that category may be neglectable, since the problem was not 
noticed or was not considered worth fixing.  

Using this intuition, we set a weight for each warning category to 
represent its importance. The weight of a category is proportional 
to the number of warning instances from that category that are 
eliminated by a change, with fix-changes contributing more to the 
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weight than non-fix changes. The weight of each category 
determines its priority. Selecting the top weighted warnings 
improves precision up to 17%, 25%, and 67% respectively – a 
significant improvement in warning precision. 

In previous research [13], we observed that some warnings are 
removed quickly, whereas others persist for a long time. 
Furthermore, we observed that warning lifetime is poorly 
correlated with tools’ priority. We extend the previous work as 
follows: 

• Use bug-fix information: We incorporate information 
regarding bug fixes instead of warning lifetime. 

• Prioritization algorithm: We propose a prioritization 
algorithm rather than merely observing the varying lifetimes 
of warnings. 

• Evaluation: We use the software change history to classify 
each warning as a true or false positive. Using that 
information, we show that the HWP algorithm improves the 
warning precision. 

In the remainder of the paper, we start by presenting background 
on bug-finding tools (Section 2) and then report our experiment to 
measure the precision of warnings (Section 3). Section 4 
introduces our new HWP algorithm that mines the software 
change history (Section 4). We discuss our assumptions and 
threats to the validity (Section 5).  We round off the paper with 
related work (Section 6) and conclusions (Section 7). 

2. BACKGROUND 
Bug-finding tools for Java such as ESC/Java [10], PMD [6], JLint 
[2], and FindBugs [12] are widely used [21]. Most bug-finding 
tools use syntactic pattern matching, model checking, or type 
checking to identify potential bugs. These tools are good at 
detecting common bugs such as null pointer dereferencing. 

In this research, we use three bug-finding tools, FindBugs, JLint, 
and PMD. FindBugs analyzes Java bytecode to find pre-defined 
errors [12]. JLint also analyzes Java bytecode and performs 
syntactic checking and data flow analysis to find potential bugs 
[2]. PMD finds syntactic error patterns from source code [6]. 

Bug-finding tools warn about potential bugs with location 
information (filename and line number). For example, Figure 1 
shows a FindBugs warning example [12]. The warning indicates a 
potential bug: the bug category is EI_EXPOSE_REP, the priority 
is 2, and the location is line 139 of the ConstructorInfo.java file. 

EI org.apache.commons.modeler.ConstructorInfo.getSignature() 
may expose internal representation by returning 
org.apache.commons.modeler.ConstructorInfo.parameters  

Bug type EI_EXPOSE_REP, Priority: 2 

In class org.apache.commons.modeler.ConstructorInfo  
[…] 

Field org.apache.commons.modeler.ConstructorInfo.parameters  

At ConstructorInfo.java:[line 139]  

Figure 1. A FindBugs warning example [12]. 

The priority given by tools represents the importance of the 
warning. If the priority is 1, the tool author believes the warning 
is likely to indicate a real, important bug. If the priority is 3 or 4, 
the warning may be neglectable.  

3. MEASURING WARNING PRECISION 
Each warning issued by a bug-finding tool either indicates an 
underlying issue that is important enough for a developer to 
notice and consider worth fixing, or it is a false positive (never 
noticed or not worth fixing). This section describes how we make 
this determination for each warning instance, and presents results 
from three subject programs. The intuition is that if a warning is 
eliminated by a fix change and the warning line number indicates 
a line that was modified in the bug fix, then the warning category 
probably indicates a real bug.  

We consider a line to be a bug-related if it is modified by a fix-
change, since in order to resolve a problem the line was changed 
or removed. Our approach is to mark each line of a file at a 
revision as bug-related or clean. A bug may have multiple 
manifestations or possible fixes, but a bug-finding tool should aim 
to indicate at least one of those to the developer, and ideally 
should indicate lines that the developer chooses to fix.  

If a warning reports a bug-related line, then the warning is a true 
positive: 

%100
#

#
×

−
=

warningsof

linesrelatedbugonwarningsof
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Otherwise, the warning is a false positive: 

precisionratepositivefalse −= %100  

 

Table 1 briefly describes the three analyzed subject programs. 
They have about 2~5 years of program history with 1,398 ~ 2,483 
revisions. 

Table 1. Analyzed subject programs. The number n is the maximum revision of each program. We evaluate the HWP algorithm at 
revision n/2.  *The number of FindBugs warnings in Columba is high and many are STYLE related (240 warnings). ** Similarly, Lucene 
has many race-condition-related JLint warning instances. Still, the HWP algorithm by mining the software history increases warning 
precision significantly for all three subject programs. †††† For Scarab, about half of the total revisions (1,241) were committed in one year. 

Revision n/2 # of warning instances at revision n/2 
Program 

Software 

type 
Period 

Date # of files LOC FindBugs JLint PMD 

# of 

revisions 

(n) 

# of 

compilable 

revisions 

Columba 
Email 
Client 

11/25/2002 ~ 
06/29/2004 

09/11/2003 870 121K *448 509 1,374 1,703 1,486 

Lucene 
Search 
Engine 

10/19/2001~ 
11/9/2006 

08/30/2004 233 37K 66 **518 929 1,398 1,160 

Scarab 
Issue 

tracker 
1/2/2002 ~ 
11/8/2006 

† 12/10/2002 314 64K 57 556 870 2,483 1,947 



3.1 Extracting Software Change History and 

Warnings 
Kenyon [3] is a system that extracts source code change histories 
from SCM systems such as CVS and Subversion. Kenyon 
automatically checks out the source code of each revision and 
extracts change information such as the change log, author, 
change date, source code, and change deltas.  

Kenyon ignores revisions that cannot be compiled (see Table 1). 
Using the three bug-finding tools, FindBugs, JLint, and PMD, 
Kenyon gets warning instances for each revision of each subject 
program.  

Usually bug-finding tools allow developers to tune output options 
to issue more or less warnings. We used the tools’ default options 
for our experiments. 

3.2 Fix Changes 
We identify fix changes by mining change log messages in the 
software history. Two approaches for this step are widely used: 
searching for keywords such as "Fixed" or "Bug" [19] and 
searching for references to bug reports like “#42233” [7, 9, 22]. 
We use the former technique. The detailed keywords used to 
identify fixes for each program are shown in Table 2. Chen et al. 
studied open source change log quality and their correctness [5]. 
They checked the correctness of each change log and found that 
almost all logs are correct.  

Some open source projects have strong guidelines for writing 
change logs. For example, 100% of Columba’s change logs used 
in our experiment have a tag such as ‘[bug]’, ‘[intern]’, ‘[feature]’, 
and ‘[ui]’. Lucene and Scarab do not use tags in change logs, but 
they have good quality change logs. 

Table 2. Keywords for fix commit identification. 

Program Fix change identification keywords 

Columba [bug], [bugfix] 

Lucene Patch, fix, bug 

Scarab Patch, fix bug, issue number  

 

3.3 Bug-Related Lines 
After identifying fix changes, we observe what lines have been 
deleted or changed (delta) in these fix changes. A line, l is a bug-
related line iff l is modified or removed during any fix-change. 

Suppose there is a fix change between revision 6 and revision 7 as 
shown at the right of Figure 2. Two lines at revision 6 are fixed 
and the fixed code appears at revision 7. We mark the two lines at 
revision 6 as bug-related, since the two lines are modified to 
resolve a problem. Now, consider the previous revision 5 
(assuming the revision numbers are consecutive). If the two 
marked lines at revision 6 are not changed between revision 5 and 
revision 6, the bug-related marks in these lines are propagated to 
the previous revision. If the change between revision 5 and 
revision 6 is a fix, the modified lines at revision 5 are marked as 
bug-related. Suppose the change between revision 4 and revision 
5 is non-fix. The changed part of the code at revision 4 is not 
marked as bug-related. 

Revision 6 Revision 7

If (x!=y &&
z!=x) {

If (x==y &&
z==x) {Fix

Revision 5

If (x!=y &&
z!=x) { Marks

Fix

Revision 4

Non-fix

Marks

Marks

 

Figure 2. Marking bug-related lines. Code changes are 

highlighted. Bug-related lines are marked with “X”. 

 

Starting at the last revision, this process can mark all lines of the 
files at any revision as either bug-related or clean. Our 
experiments use revision n/2 (n is the maximum revision of each 
program). The bug-related marks of a revision are used as an 
oracle set – the marked lines are used to measure the precision of 
warnings assuming the marks are all correct. 

Table 3 shows that 4% to 12% of lines at revision n/2 are marked 
as bug-related. 

 

Table 3. Marked bug-related line LOC and percentages, at 

revision n/2. 

Program LOC (K) 
Bug-related 

marked LOC 

Bug-related 

marked LOC % 

Columba 121K 5,336 4% 

Lucene 37K 2,608 7% 

Scarab 64K 7,899 12% 

 

This marking algorithm is similar to algorithms for identifying 
buggy changes [15, 22]. While identifying buggy changes focuses 
on finding when a bug was introduced, our buggy-marking 
algorithm tries to identify bug-related lines of files at a revision. 

3.4 False Positive Rates 
To compute false positive rates, we compare the warnings to bug-
related lines. If a warning matches any bug-related line, we 
assume the warning is correct. Otherwise, it is a false positive 
warning. 

For example, suppose lines 3, 4, 6, 8, and 9 are marked as bug-
related in a file at revision n/2 as shown in Figure 3. Suppose a 
bug-finding tool warns about lines 1, 3, 5, and 8. Then, the 
precision of warnings is 50% (two correct warnings out of 4 
warnings) and recall is 40% (found 2 bug-related lines out of 5 
bug-related lines). 

In the same way, we compute warning precision for three subject 
programs, Columba, Lucene, and Scarab. First we mark lines in 
all files at revision n/2 (n is the maximum revision of each 
program) as bug-related or clean by mining the software change 
history between revision n/2 and revision n. Next we run three 
bug-finding tools (FindBugs, JLint, and PMD) on all files at 
revision n/2 to identify warnings. Finally, we compare warnings 
and marked bug-related lines to compute precision and recall.  



Revision n/2

Bug-finding 
tools

Revision n/2

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

 

Figure 3. Measuring false positives. On the left, bug-related 
lines as indicated by mining fix-changes in the software change 
history. On the right, warnings issued by bug-finding tools. 

3.5 Grouping Warnings  
To help understand tool performance, we group warning 
categories by tool name and warning priorities, as shown in Table 
4. The All group contains all warning categories output by bug-
finding tools. The Tools’ priority 1 group includes FindBugs 1, 
PMD 1, and JLint warnings. In the same way, we group warning 
categories by tool and each tool-specific priority levels. For 
example, the PMD 2 group includes all priority 2 warnings issued 
by PMD. Additionally, the FindBugs(1-3) group aggregates all 
warnings issued by FindBugs, and the PMD(1-4) group combines 
all PMD warnings. 

As shown in Table 4, the bug-finding tools have a total of 349 
categories (such as Overflow or Empty Static Initializer). The 
bug-finding tools issue warnings from 89 categories for Columba 
at revision n/2. Among them, 25 warning categories are set as 
priority 1 by the tools.  

Many warning categories are concentrated in one priority, which 
limits the ability of the tools to differentiate. For example, most 
PMD warning categories have priority 3. Similarly, FindBugs 2 
includes most FindBugs warning instances.  

Table 4.  Number of categories in each group. 
†

The FindBugs 

warning priorities are context-sensitive and the same warning 
categories may have different priorities. ‡‡‡‡ By default, FindBugs 

reports only priority 1 and 2 warnings. *JLint does not provide 
priority information so we assume all warnings are priority 1. 

Categories observed  

at revision n/2  
Number of 

categories 
Columba Lucene Scarab 

All 349 89 54 62 

Tools’ priority 1 N/A 25 17 20 

FindBugs(1-3) 271 47 15 27 

FindBugs 1 †  9 2 8 

FindBugs 2 †  38 13 19 
‡ FindBugs 3 †  0 0 0 
*JLint  30 16 15 12 

PMD(1-4) 44 26 24 23 

PMD 1 1 0 0 0 

PMD 2 3 3 1 3 

PMD 3 37 22 21 18 

PMD 4 3 1 2 2 
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Figure 4. Warning precision for three subject programs. The 
‘*’ mark indicates that no warning from the group is issued for the 
subject program. For example, for the three subject programs, 
PMD issued no priority 1 warnings. 

 



3.6 Warning Precision and Recall 
The precision of each warning group in Table 4 at revision n/2 is 
shown in Figure 4. The overall precision in Figure 4 is low, 
around 6-9%, indicating that over 90% of warnings at revision n/2 
are not fixed by revision n (about 1~4 years later).  

In the bug prediction literature, line-based prediction is 
considered a hard problem, and our numbers are consistent with 
previous results. Most research tries to predict bugs at the module, 
file, and function level [11, 16, 20]. Line-based prediction 
precision is about 7.9~16.1% [14].  

Figure 4 shows that the prioritization of tools is not very effective. 
If tools’ prioritization were effective, the higher priority warnings 
would have also high precision. For example, the precision of 
tools’ priority 1 warnings should be higher (probably much 
higher) than that of All: Columba shows the opposite pattern. 
Similarly, the precision of PMD 3 in Lucene is lower than that of 
PMD 4.   

Figure 5 shows the recall of all warnings for three subject 
programs. Recall shows how many bugs (marked as bug-related 
lines) are caught by warnings. The recall range is 2%~5%.  
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Figure 5. Warning recall of three subject programs. 

The reason for this low recall is that line-based prediction is a 
hard problem, and that tools can only catch certain types of bugs, 
not all bugs. Recent studies indicate the most prevalent type of 
bug is semantic or program specific [14, 18]. These kinds of bugs 
cannot be easily detected by generic bug-finding tools. Most of all, 
we marked bug-related lines based on fix-changes. Usually a fix-
change includes multiple lines, but bug-finding tools may predict 
only one or two on these lines correctly. This is probably 
sufficient to help programmers locate and fix the error. 

Our goal is improving precision by mining the software change on 
warnings given by bug-finding tools. Improving recall requires 
modifying bug-finding tools and is beyond this research. 

4. PRIORITIZATION ALGORITHM 
We showed that the tools’ warning prioritization is not effective 
at identifying important warnings. How can we find warnings that 
are more important? Our solution is mining the fix-changes and 
warning removal experience that is recorded in the software 
change history. 

 

4.1 Warning Instance and Warning Category 
Our technique sets the priority of each warning category (for 
example, Zero Operand is more important than Empty Static 

Initializer), but it does not differentiate among warning instances 
in the same category (for example, Zero Operand on line 10 has 
the same importance as Zero Operand on line 50). Once we set a 
weight for a warning category, the weight determines the priority 
of all warnings in the category. 

This suggests that our technique will be most effective when the 
categories are relatively fine-grained and internally homogeneous 
(with respect to their importance and weight). If a bug-finding 
tool uses only one warning category, our technique would be 
unable to differentiate among warning instances, and hence 
unable to set weights. 

4.2 Training Warning Category Weights 
Consider three distinct warning categories, c1, c2, and c3. c1 is 
often removed by fix changes, c2 is removed by non-fix changes, 
and c3 is not removed for a long time. We assume c1 is more 
important or relevant to fixes (bugs), and c3 is less likely a real 
bug or developers do not bother to remove the warnings.  

The basic idea of training weights for categories is taking each 
warning instance as a bug predictor. If the prediction is correct 
(the warning is eliminated by a fix-change), we promote the 
weight.  

We exclude removed warnings due to any file deletion. If there is 
a file deletion during a fix, all warnings in the files are removed. 
These all removed warnings are not necessarily the results of the 
fix.  

The HWP algorithm is described in Figure 6. The initial weight 
wc of category c is set to 0. After that, if a warning in a category c 
is removed during a fix change, we promote the weight byα . 

Similarly, if a warning in a category c is removed during a non-
fix change, we increase the weight by β . Since there are only 

promotion steps, the warning category weights are decided by the 
ratio of α  and β  rather than the actual values of α  and β . We 

make α  an independent variable and β  a dependent variable on 

α  (i.e. αβ −= 1  and 10 ≤≤ α ). 

 

// initialize weight wc 

0=cw  

for each warning instance i in category C  
// fix-change promotion step 
if i is removed in a fix change 

then α+= cc ww   

// non-fix change promotion step 
if i is removed in a non-fix change 

then β+= cc ww  

// weight normalization step 

||/ Cww cc =  where |C| is the number of warning instances in 

category C 

Figure 6. The HWP algorithm by mining the software change 

history. 

 



A warning category gets a high weight if warning instances from 
the category are removed many times by fix-changes or non-fix 
changes. In contrast, a warning category gets a low weight if 
warning instances from the category are seldom removed.  

This algorithm is inspired by the Weighted majority voting and 
Winnow online machine learning algorithms [1]. These 
algorithms take features from learning instances. Each feature has 
a weight and the weight is adjusted based on the feature’s 
prediction result. If a feature’s prediction is correct, the feature 
weight is promoted. Otherwise, the feature’s weight is demoted. 
These simple online machine-learning algorithms work well in 
practice. 

The next step of our algorithm is weight normalization. Consider 
the following two warning categories shown in Figure 7. There 
are 9 warning instances (i1) from the c1 category, and there is one 
warning instance (i2) from the c2 warning category. Two warning 
instances from c1 and one warning instance from c2 are removed 
during a fix change shown in Figure 7 

 

Fix

 

Figure 7. Warning instances from two categories are removed 

by a single fix change. 

 

In the prioritization algorithm as described, the quantity of a 
warning category dominates the weight. For example if α =1 

then w1 is 2 and w2 is 1, since two warning instances from c1 are 
removed. In fact, the precision of c2 is higher than that of w1 in 
this example.  

In order to avoid this problem, we normalize weights by the total 
number of warning instances of the category shown in Figure 6. 

4.3 Evaluation Method 
To evaluate our algorithm, we need to train weights for each 
warning category by mining the software change history during a 
training period: revision 1 to revision n/2-1. To measure the 
precision of the weights, we also use the software change history, 
but during a testing period: and revision n/2 to revision n. To be a 
fair comparison, the two periods should not overlap.  

4.4 Selecting α  
As described in Section 4.2, the HWP algorithm uses a 

variable, )1( αβα −= , that affects the category weights. Some 

examples are: 

 

 

� 5.0,5.0 == βα : promotion for all changes equally. 

� 0,1 == βα : promotion only for fix-changes 

� 1.0,9.0 == βα : promotion for all changes. More 

promotion for fix-changes. 
 

We experimentally determined that the best α  for Columba, 

Lucene, and Scarab is 0.8, 0.9, and 1 respectively.  We use α = 

0.9 for the rest of experiments. In Figure 8, the y-axis indicates 
the precision of the top 30 warning instances, as weighted by 
HWP.  
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Figure 8. The top 30 warning instance precision for various 

α values at revision n/2. α = 0.9 is used for the rest of 

experiments. 

4.5 Evaluation Results 
After computing a weight for each warning category, we 
prioritized warning instances according to their category weights.  

Figure 9 plots precision for the top 100 warning instances when 
all warnings output by the tools (when applied to revision n/2 of 
the given subject program) are sorted by their priority – either 
TWP or HWP. For example, for the Columba subject program, 
the precision is 17% for selecting the 12 highest-priority warning 
instances according to HWP. By contrast, the precision is about 
3% for the 12 highest-priority warning instances according to the 
tools' own built-in prioritization. When multiple warnings have 
the same priority, the figures use the expected value of precision 
if warnings of that priority are chosen at random.  

Programmers are unlikely to look at all warnings output by a tool, 
so the most important part of the graphs is the portion near the 
origin, which indicates how precise the highest-prioritized 
warnings are.  

Figure 9 demonstrates that our prioritization outperforms the 
built-in prioritization, often by a substantial margin. For our 
prioritization, the best precision for a subset of the warnings is 
17% (top 12 warnings for Columba), 25% (top 16 for Lucene), 
and 67% (top 6 for Scarab) for the three subject programs 
respectively. For the top 30 warnings, the TWP precision is 3%, 
12%, and 8% respectively. HWP improves this to 9%, 23%, and 
21% respectively. 
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Figure 9. Precision of the top 100 warning instances sorted by 

HWP and TWP. 

Table 5 and Table 6 compare the top priority warnings by HWP 
and TWP for Scarab at revision n/2. The top warnings from TWP 
and HWP are very different. The occurrences indicate the number 
of warning instances from the corresponding category for Scarab 
at revision n/2. 

5. DISCUSSION 
In this section, we discuss some limitations of the HWP algorithm 
and experiment results.  

5.1 Homogeneous Categories 
We assume that warning instances in a warning category are 
homogeneous with respect to importance and precision. The 
jitters in Figure 9 suggest that some categories are not 
homogenous. Some instances in a category are removed many 
times by fix-changes between revision 1 and revision n/2-1, but 
between revision n/2 and revision n the instances are not removed 
by fix changes. After about 45 warnings for Lucene, the precision 
of HWP is worse than that of the prioritization of the tools. 
Adding warning instances from one or two non-homogeneous 
categories may reduce the precision significantly. 

5.2 Initial Mining Data 
The HWP algorithm uses the change history to train weights of 
warning categories. In order for a category to have a non-zero 
weight at least one instance from the category must be removed. 
If an instance from a new warning category appears, we do not 
have any weight information for the warning. In this paper, we 
used about 1~2 years of the program history to train weights of 
warning categories which yields a reasonable precision 
improvement.  

5.3 Threats to Validity 
We note some threats to the validity of this work. 

The subject programs might not be representative. We 
examined 3 open source systems written in Java, and it is possible 
that we accidentally chose subject programs that have better (or 
worse) than average warning precision. Since we intentionally 
chose programs whose change log text indicates bug-fix changes, 
there is a program selection bias. 

Some developers may use bug-finding tools in their 

development cycle. If individual developers use FindBugs, JLint, 
or PMD, and fix warnings issued by bug-finding tools, then the 
measured precision of the tool will be high. We queried 
developers of each subject program, and developers of Columba 
and Lucene confirmed that they are not using any bug-finding 
tools. It is also possible that our results indicate that programmers 
in different projects are culturally attuned for making, finding, or 
removing certain types of errors. All of our subject programs are 
open-source systems written in Java, with 12, 24, and 29 
developers making commits, respectively. 

 

 

 

 



Table 5.  Categories of all property-1 warnings issues by bug-finding tools for Scarab at revision n/2 (20 categories in all). The 
occurrences indicate the number of warning instances from the corresponding category at revision n/2.  

Tool 
Tools' 

priority 
Category HWP weight 

Precision 

(%) 
Occurrences 

FindBugs 1 correctness: il infinite recursive loop 0.211 0 2 

FindBugs 1 correctness: np null param deref nonvirtual 1.1 0 1 

FindBugs 1 correctness: rcn redundant nullcheck would have been a npe 0.222 100 1 

FindBugs 1 correctness: rv return value ignored 0 0 1 

FindBugs 1 malicious code: ms should be final 0.125 0 2 

FindBugs 1 performance: dm gc 0.3 0 1 

FindBugs 1 style: dls dead local store 0.238 0 1 

FindBugs 1 style: st write to static from instance method 0.475 100 1 

jLint 1 bounds: maybe bad index 0.175 0 2 

jLint 1 bounds: maybe neg len 0.175 0 2 

jLint 1 field redefined: field redefined 0 1 184 

jLint 1 not overridden: hashcode not overridden 0.046 0 8 

jLint 1 not overridden: not overridden 0.001 0 98 

jLint 1 null reference: null param 0.122 14 7 

jLint 1 null reference: null var 0.007 33 36 

jLint 1 race condition: concurrent access 0.013 0 28 

jLint 1 race condition: concurrent call 0.004 1 67 

jLint 1 redundant: same result 0.01 0 3 

jLint 1 shadow local: shadow local 0.006 30 61 

jLint 1 weak cmp: weak cmp 0.016 18 22 

 

Table 6.  Categories of the top 20 warnings by HWP for Scarab at revision n/2 (20 categories in all). 

Tool 
Tools' 

priority 
Category HWP weight 

Precision 

(%) 
Occurrences 

PMD 3 java.lang.string rules: stringtostring 2.8 0 1 

FindBugs 1 correctness: np null param deref nonvirtual 1.1 0 1 

FindBugs 2 style: st write to static from instance method 0.475 100 1 

FindBugs 2 style: rec catch exception 0.475 100 1 

FindBugs 2 malicious code: ms pkgprotect 0.475 100 1 

FindBugs 1 style: st write to static from instance method 0.475 100 1 

FindBugs 1 performance: dm gc 0.3 0 1 

FindBugs 2 performance: dm string tostring 0.288 25 4 

FindBugs 1 style: dls dead local store 0.238 0 1 

FindBugs 2 performance: sbsc use stringbuffer concatenation 0.222 0 1 

FindBugs 2 correctness: rcn redundant nullcheck would have been a npe 0.222 0 1 

FindBugs 1 correctness: rcn redundant nullcheck would have been a npe 0.222 100 1 

FindBugs 1 correctness: il infinite recursive loop 0.211 0 2 

jLint 1 bounds: maybe neg len 0.175 0 2 

jLint 1 bounds: maybe bad index 0.175 0 2 

FindBugs 2 mt correctness: is2 inconsistent sync 0.175 0 2 

FindBugs 2 correctness: sa field self assignment 0.175 0 2 

FindBugs 1 malicious code: ms should be final 0.125 0 2 

jLint 1 null reference: null param 0.122 14 7 

FindBugs 2 performance: dm string ctor 0.112 67 3 

 
 

Bug fix data is incomplete. Even though we selected programs 
that have change logs with good quality (see Section 3.), 
developers might forget to mark some changes as a bug fix in the 
history or use different keywords to indicate fix changes. Partial 
bug-fix data may decrease warning precision. It is also possible 
that developers check in both a fix and many other changes in a 
commit, or incorrectly mark a non-fix change as a fix. This could 
lead us to mark too many lines as bug-related, leading to 
unrealistically high precision.  

Some revisions are not compilable. Some bug-finding tools such 
as JLint and FindBugs take jar or class files to generate warnings. 

This requires compilation of each revision. Unfortunately, some 
revisions are not compilable. To get warning changes along with 
source code change, two consecutive revisions should be 
compilable. It is possible to combine revisions, but then we have 
to merge change logs and separate changes in each revision to 
identify fix-changes. To make our experiments simple, we ignore 
revisions that are not compilable and this may affect the warning 
precision.  

Latent bugs: Maybe some important bugs never got noticed or 
fixed between revision n/2 and revision n, even though a tool 
would have indicated them. This would make the precision and 



recall results for such a tool too low. We suspect that most 
important bugs will be noticed and fixed over a 1~ 4-year period. 

Prioritization and bug severity: The tools’ priority may be 
based not on the likelihood that the warning is accurate, but on the 
potential severity of the fault. For example, maybe priority 1 
warnings have a high false positive rate, but the true positives are 
so critical that the tool writers placed them in priority 1. Such a 
policy would probably be counterproductive, since it is widely 
reported that false positive rates for the first-presented warnings 
are critical to user acceptance of a bug-finding tool. If this is true, 
then HWP which ranks each bug fix equality is orthogonal to 
TWP. 

Warning location vs. fix location: Different warning and fix 
locations may inflate the warning false positive rate. Additionally, 
Adding new code may fix an existing warning. For example, if a 
warning is about unused import statements in Java, it could be 
fixed by adding code that uses the imports.  

6. RELATED WORK 
Kremenek and Engler [17] prioritize checks (warning categories) 
using the frequency of check results. Software checkers output 
success (indicating a successful check of an invariant) or failure 
(the invariant did not hold). If the ratio of successes to failures is 
high, the failures are assumed to be real bugs. If we apply this 
idea to warning categories, a warning category that has fewer 
warning instances is important. Our HWP algorithm is different 
from their approach in that we use previous warning fix 
experience (the ratio of true positives) to identify important 
warnings. 

Boogerd and Moonen [4] use execution likelihood analysis to 
prioritize warning instances. For each warning location, they 
compute the execution likelihood of the location. If the location is 
very likely to be executed, the warning gets a high priority. If the 
location is less likely to be executed, the warning gets a low 
priority. This technique may help developers to focus on warnings 
at the location which has high execution likelihood. However, a 
location which has low execution likelihood or warnings at the 
location could be important. In fact, severe bugs in lines with low 
chance of execution are more difficult to detect. 

Williams and Hollingsworth use software change histories to 
improve existing bug-finding tools [24]. When a function returns 
a value, using the value without checking it may be a potential 
bug. The problem is that there are too many false positives if a 
bug-finding tool warns all source code that uses unchecked return 
values. To remove the false positives, Williams and 
Hollingsworth use the software histories and find what kinds of 
function return values must be checked. For example, if the return 
value of ‘foo’ was always checked in the software history, but not 
checked in current source code, it is very suspicious. This 
approach is similar to ours, since they leverage the software 
history to remove false positives. However, they only focus on the 
small sets bug patterns such as return value checking, while our 
approach is generic to all warnings. 

Spacco et al. [23] observed FindBugs warning categories across 
software versions. They measure lifetimes of warning categories, 
warning number rates, and the degree of decay using warning 
numbers. Kim et al. [13] observed warning lifetimes by observing 
warnings in each revision and suggested using the lifetime for 
reprioritizing warnings. As noted in Section 1, those approaches 

just reported the observed results, while we use the observation 
results to prioritize warning categories and evaluate the prioritized 
warnings. 

7. CONCLUSIONS AND FUTURE WORK 
We compared warnings and bug fixes in the software change 
history of three subject programs, Columba, Lucene, and Scarab. 
Only 6%, 9%, and 9% of the warnings issued by bug-finding tools 
are removed by a fix-change within about 1~4 years of the 
software change history. Over 90% of warnings remain in the 
program or are removed during non-fix changes. Only 3%, 12%, 
and 8% of tools’ high priority warnings (priority 1) are eliminated 
by fix-changes. This fact indicates that the prioritization of bug-
finding tools is not effective. 

We proposed an automated history-based warning prioritization 
(HWP) algorithm that mines previous fix and warning removal 
experience that is stored in the software change history. If a 
warning instance from a warning category is eliminated by a fix-
change, we assume that this warning category is important. For 
Columba, Lucene, and Scarab, selecting the top HWP warnings 
improves precision up to 17%, 25%, and 67% respectively – a 
significant precision improvement. 

This research makes the following contributions: 

• Measuring false positive warnings: By mining fix-changes 
in the software change history, we measured the precision 
(true and false positive rates) of warnings issued by bug-
finding tools. 

• Line-based bug evaluation: In the bug prediction literature, 
mostly module, file, and function level entities are used to 
train a prediction model and evaluate the model. By mining 
the fix-changes in the software history, we mark each line as 
bug-related or clean. We use the marked lines as an oracle 
set for evaluating bug prediction. 

• Generic warning prioritization algorithm: The proposed 
automated warning prioritization algorithm is generic and is 
applicable to any warnings.  

• Finer-grained prioritization: We observe that the 
prioritization of tools is coarse grained and a prioritization 
group (such as FindBugs 2 and PMD 3 in Table 4) includes 
many warning categories. There is no way to prioritize 
warning categories in the same priority group. Our 
prioritization provides finer-grained priorities so that it is 
possible to select an arbitrary number of important warnings. 

• Leveraging the software change history for warning 

prioritization: Our approach uses the software change 
history for warning prioritization. We show that the software 
change history is useful for warning prioritization. 

Our prioritization algorithm increases the precision of warnings 
significantly. Even so, we still see room for improvement. 
Combing tools’ priorities with HWP priorities may lead to better 
precision. We analyzed three subject programs and thee bug-
finding tools; more programs and tools should be analyzed.  

Overall, we expect that future approaches will use the software 
change history for warning prioritization – and as a source for 
continued correction and adaptation of warning priorities. 
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