
58	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

Quality plays an important role in a software
project’s success. The wider definition of software
quality includes attributes such as reusability, main�
tainability, and so on, but in this article, we focus
on the number of defects. As software evolves, it’s
important to monitor how its quality changes so
that we can properly plan quality assurance (QA)
activities.

Meir Lehman and his colleagues studied the
evolution of OS/360 systems and formulated their
findings as the laws of software evolution.2 These
laws hypothesize general forces and constraints
on software evolution���������������������������.�������������������������� Lehman’s second law, “In�
creasing Complexity,” hypothesizes how software
quality changes during evolution. This law states
that as software evolves, growing complexity and
increasing defects will ��������� ����������������� �cause �������������������� �stakeholder satisfac�
tion to decline unless project teams undertake the
necessary work to maintain quality.

We sought to understand how quality evolves
when software is actively maintained and updated.
In particular, we wanted to know more about the
dynamic behavior of quality evolution—how qual�
ity, measured in terms of defects, varies over time in
the presence of changes, and how we can control it.

Recently, research on mining software reposito�
ries has received much attention as it has attempted
to understand software evolution. For example,
Sunghun Kim and his colleagues propose defect-
prediction algorithms by mining previous defects,3
and Stéphane Vaucher and his colleagues trace de�
sign smells by studying the evolution of “God”
classes.4 However, most previous research consid�
ers defects from a snapshot rather than a quality-
evolution viewpoint.

We used the c-chart, a quality control chart
that’s widely adopted in statistical process control
(SPC)5 to study the quality evolution of two well-
known, large-scale open source software systems:
Eclipse (www.eclipse.org) and Gnome (www.
gnome.org). Both are real-world software applica�
tions that have experienced a lengthy evolution. The
project teams have made tremendous maintenance
efforts on these systems, constantly adding features
and fixing defects.

Monitoring Quality Evolution
Using the C-Chart
Control charts can monitor and detect process
changes. In our method, we don’t suggest a strict,

S oftware is constantly evolving owing to new user requirements, product fea�
tures, bug fixes, and technologies. Software evolution is “the dynamic behav�
ior of programming systems as they are maintained and enhanced over their
lifetimes.”1 Project teams should continually monitor and control software to

ensure it follows desirable evolution paths.

Hongyu Zhang, Tsinghua University

Sunghun Kim, Hong Kong University of Science and Technology

Quality assurance
teams can use
c-charts and patterns
to monitor the
evolution of software
quality measured
in terms of the
number of defects.

Monitoring Software
Quality Evolution
for Defects

s o f t war e evo lu t i on

	 July/August 2010 I E E E S O F T W A R E � 59

rigorous use of SPC in statistical terms. Rather, we
use the charts to visually describe and understand
quality evolution. We measure software quality by
the number of defects and use the c-chart to model
changes in defect numbers over time. We regard the
control limits in the c-charts as reference lines. In
this sense, our use of them is similar to the “pseudo-

control charts” that Stephen Kan describes.6 The
sidebar “Control Chart Applications in Software
Engineering” gives some basics on control charts
and discusses their applications.

We use the evolution of the Eclipse and Gnome
system���s as case studies������������������������������. Eclipse is an integrated de�
velopment platform that’s gone through nine years

Statistical process control (SPC) is an effective method of
monitoring a process through the use of control charts. Walter
Shewart pioneered SPC in the 1920s, and W. Edwards Dem-
ing later took it up to improve the quality of industrial produc-
tion. SPC is now an integral part of total quality management.

The SPC method assumes that variations exist in all pro-
cesses. Through control charts, SPC can effectively detect pro-
cess changes that can affect quality. Figure A illustrates a typi-
cal control chart. In general, if a process exceeds the limits, we
assume that it’s out of control and project teams should search
for special causes to deal with it.

There are many kinds of controls, such as the x chart
and r-chart for describing a variable’s sample means and
ranges, and the p-chart and c-chart for describing defects
(nonconformities)���. In the research we report in the main ar-
ticle, we use the c-chart to plot the number of defects in a
process. If Ci denotes the number of defects obtained in the ith
observation, the c-chart plots the data points at the height C1,
C2, …Cn. The c-chart also has a center line (CL) at height C
(the average of Ci) and the following 3 control lines:

UCL C C= + 3 LCL C C= − 3 ,

where UCL is the upper control limit and LCL is the lower con-
trol limit.

If LCL is a negative value, it’s set to 0. Statistical tools such
as Minitab can aid in calculating and drawing quality charts,
including the c-chart. The c-chart assumes the Poisson distri-
bution of defects, but in reality, the defect arrivals might not
exactly follow the Poisson distribution. So, the c-chart control
limits are only approximations.

Although many industrial sectors have adopted control
charts and many sources have reported success on their ap-
plication,1–3 their use in software engineering is still under
debate (see Point/Counterpoint, IEEE Software, May/June
2008). One major issue is that formal SPC requires data to be
independent variables from homogeneous �����������������sources of ������varia-
tion. Unlike data from a manufacturing process, software
engineering data is often affected by many different variation
sources. It doesn’t meet all the statistical assumptions behind
control charts. Also, software �����������������������������engineering �����������������data is often do-
main specific, so acceptable thresholds vary across applica-
tion domains.

Despite these issues, Stephen Kan at IBM Rochester found
control charts useful for software process improvement when

they’re used in a relaxed instead of rigorous
manner.4 Domain experts can set user-defined
control limits for specific domains. They can
see control limits as reference lines for a specif-
ic project while considering the control charts
as “pseudo-control charts.”4 In practice, project
teams can also set the control limits empirically
and evaluate their usefulness. In the main ar-
ticle, we use the default, 3 control limits.

References
	 1.	 D. Card, “Statistical Process Control for Software?”

IEEE Software, vol. 11, no. 3, 1994, pp. 95–97;
doi:10.1109/52.281722.

	 2.	 W. Florac, A. Carleton, and J. Barnard, “Statistical
Process Control: Analyzing a Space Shuttle Onboard
Software Process,” IEEE Software, vol. 17, no. 4, 2000,
pp. 97–106; doi:10.1109/52.854075.

	 3.	 E. Weller, “Practical Applications of Statistical Process
Control,” IEEE Software, vol. 17, no. 3, 2000, pp.
48–55.

	 4.	 S. Kan, Metrics and Models in Software Quality Engi-
neering, Addison-Wesley, 2003.

Control Chart Applications in Software Engineering

1 3 5 7 9 11 13 15 17 19

25

20

15

10

5

0

Sample

Ch
ar

ac
te

ris
tic

 v
al

ue
s

Lower Control limit (LCL)

Center line (CL)

Upper Control limit (UCL)

Figure A. A c-chart. Control charts are graphs with sample data plotted
with CL (center line, indicating where the process is centered), UCL
(upper control limit), and LCL (lower control limit). Typical control
limits are placed at three standard deviations (3) away from the
center line.

60	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

of evolution since its release in November 2001.
Gnome is an open source desktop environment
and development platform that’s gone through 11
years of evolution since its release in March 1999.
Both are large-scale systems that consist of many
components��������������������������������������� and are widely used in evolution stud�
ies. Both use Bugzilla to report and track defects.
In our research, we retrieved the confirmed defects
from the Bugzilla bug database (for Eclipse, see
http://bugs.eclipse.org/bugs; for Gnome, see http://
bugzilla.gnome.org), counted the component-level
defects for each calendar month, and plotted the
data on c-charts (such as Figures 1 and 2) using the
default 3 control limits. To understand the ������evolu�
tion, we also calculated the number of source code
changes (including the added and deleted LOC for
each file), on the basis of the CVS/SVN (Concurrent
Versions System/ Subversion) repositories.

The defect plots in c-charts show that for
constantly maintained and updated systems, the
evolution is complicated rather than monotonic.
This finding is consistent with what Tom Mens
and his colleagues recently found.7 Furthermore,
we observed both relatively stable and unstable
processes from the c-charts. In a stable process,
the defect arrivals are relatively consistent and their
average is low despite release pressures and the large
number of changes. An unstable process has large
variations or clear trends.

Eclipse Search
Figure 1 shows the c-chart for the Eclipse Search
component. It plots the number of confirmed de�
fects reported from June 2002 to October 2007
(including both prerelease and postrelease defects).
The defect numbers vary from month to month,
with an average of 12.21 per month. The upper
control limit (UCL) is 22.70, and the lower control

limit (LCL) is 1.73. Figure 1 also marks the major
releases of Eclipse in the evolution process.

From July 2002 to January 2004, the defect
arrivals were relatively stable and their average
(9.63) was lower than the total average (12.21).
The Eclipse release logs show that this covered the
Eclipse 2.1 development period. The CVS archives
reported a total of 29,172 lines of source code
changes (1,535 changes per month) during this
period. Apparently, such a large number of changes
didn’t prevent developers from controlling software
quality.

From February to June 2004, the defect num�
bers were all above the upper limit. The CVS logs
show 11,034 lines of changes (2,207 changes per
month) during this period. The release logs show a
major release of Eclipse 3.0 in June 2004, and “the
Eclipse runtime was modified to run on top of an
implementation of the OSGi framework specifica�
tion, … New plug-ins can be installed into a run�
ning Eclipse without restarting.” We believe that
the architectural shift and the large number of
changes increased the number of defects.

From July 2004 to June 2005, quality evolu�
tion was apparently under control. This time frame
overlaps the development of Eclipse 3.1 (released
in June 2005). During this period, 9,094 lines of
changes (758 changes per month) were made to
the software. The reported defects over time had
relatively smaller variations, and their average value
(11.92) was lower than the total average.

From July 2005 to June 2006, quality evolution
wa���s relatively stable except for a sudden rise ������in���� de�
fects in February 2006. We noticed about 2,720
lines of changes in that month alone and 2,021
changes in the previous month. The large-scale
changes could have caused the sudden rise. From
July 2006 to June 2007, quality evolution was ap�
parently under control again.

Gnome GnuCash
Figure 2 shows the c-chart for the Gnome Gnu�
Cash component���������������������������� �, �������������������������� �noting ������������������� �major releases����� �. Gnu�
Cash is a personal and small-business financial-
accounting application. Figure 2 plots the number
of confirmed defects reported from June 2002 to
September 200������������������������������������9�����������������������������������. It indicates ��������������������that ���������������GnuCash �������has ���ex�
perienced dramatic quality changes.

From June 2002 to February 2003, the number
of defects tended to increase. It exceeded the upper
limit from October 2002 to February 2003. To
identify the causes of these large variations, we
examined the release logs from this period and
found notes such as, “We have lots of bug-fixes and
new features in this release and would like as much

Jun
’02

Jan
’03

Aug
’03

Mar
’04

Oct
’04

May
’05

Dec
’05

Jul
’06

Feb
’07

Sep
’07

60

50

40

30

20

10

0

Time

De
fe

ct
s

3.3

3.2

3.1

3.0

2.12.0

LCL = 1.73

CL = 12.21

UCL = 22.70

Figure 1. C-chart for
the Eclipse Search
component from June
2002 to October 2007.
The defect numbers
vary from month to
month, with an average
of 12.21 per month.

	 July/August 2010 I E E E S O F T W A R E � 61

testing and bug reporting as possible.” Many lines
of source code changes also occurred—29,973
(3,330 changes per month). Apparently, developers
were facing many important new features, which
caused the increase in defects. In February 2003,
Gnome released a stable version of GnuCash
(v1.8), and the number of bug reports tended to
decrease until December 2005.

From January 2006 to March 2007, the
number of defects rose again. In most months,
the numbers were close or above the upper limits.
From the release logs������������������������ �,����������������������� � we ������������������� �saw ����������������that GnuCash ���ex�
perienced an architectural change during this
period. The developers stopped using the gtk1-
based architecture at the end of 2005 and planned
to shift to the new Gnome 2.0/gtk2 platform. The
v2.0 release notes stated: “This milestone release
of the free, open source accounting program in�
cludes generational advances over the last version.
GnuCash 2.0.0 is based on the state-of-the-art
gtk2 GUI technology. Developers worked hard
to integrate the Gnome Human Interface Guide�
lines (HIG) for a consistent behavior and look-
and-feel for the whole Desktop.” However, this
architectural transition wasn’t smooth. So, the
project had nine unstable releases (from v1.9.0 to
v1.9.8) and 22,623 lines of changes (3,232 changes
per month) six months before the major release of
v2.0 in July 2006. After the release, the number of
defects in v2.0 continued to grow. There were five
bug-fixing releases (v2.0.1 to v2.0.5) between July
2006 and March 2007.

From April to July 2007, the software’s quality
didn’t appear to improve. According to the release
logs, one reason could be the request for porting to
Microsoft Windows. This porting was completed
in July 2007 in version 2.2. Before that, there were
six unstable releases (v2.1.0 to v2.1.5). We also
noticed that developers held the first GnuCash
BugDay on 21 April to discuss issues such as
performing triage, finding, filing, and resolving
bugs. Obviously, the developers had observed the
increasing quality problems and had taken QA
actions to address them. Following the release
of v2.2 in July 2007, the software entered a long
maintenance period. It experienced nine bug-fixing
releases (v2.2.1 to v2.2.9) with 14,793 lines of
changes from August 2007 to February 2009. The
software’s quality gradually improved.

Quality Evolution Patterns
After examining more than 60 c-charts modeling
defects for various Eclipse and Gnome compo�
nents, we identified six common quality evolution
patterns.

Downward Trend
This pattern represents a decreasing trend of de�
fect numbers in c-charts. Figure 3a shows the c-
chart for the Eclipse JDT.Debug component from
December 2001 to December 2007. Although
there are some �������������������������������� �variations, there’s a clear down�
ward trend. You can observe a similar pattern
for the Gnome Evolution component (see Figure
3b), which exhibits a clear downward trend from
August 2001. This pattern suggests that software
quality tends to improve as it evolves. Despite many
revisions, the project teams succeeded in handling
the changes while improving software quality.

Upward Trend
This pattern represents ��������������������������an������������������������ increasing ������������trend������� of de�
fect numbers in c-charts. Figure 3c shows the c-
chart for the Eclipse Equinox.Framework compo�
nent from January 2004 to May 2007. Although
variations exist, a clear upward trend is visible.
You can observe a similar pattern with the Gnome
GIMP (Gnu Image Manipulation Program)
component (see Figure 3d), whose c-chart also
exhibits an upward trend from December 1999 to
March 2004. This pattern suggests that software
quality is generally deteriorating as more defects
are created with changes to the software. In such
cases��� �, ��� �the project team should immediately insti�
tute strict QA procedures (such as systematic test�
ing and code review) to control software quality.
The project team should also consider allocating
more QA resources to the component.

Impulse
This pattern represents a short, dramatic increase
of defects in c-charts. Each impulse occurs beyond
the upper limit and contains one to three data
points. Figure 4a shows the c-chart of the Eclipse

180

160

140

120

100

80

60

40

20

0
Jun
’02

Mar
’03

Dec
’03

Sep
’04

Jun
’05

Mar
’06

Dec
’06

Sep
’07

Jun
’08

Mar
’09

Time
De

fe
ct

s

2.1

2.2

2.3
2.0

1.9

1.8

LCL = 29.4

CL = 50.7

UCL = 72.1

Figure 2. C-chart for
the Gnome GnuCash
component from June
2002 to September
2009. It indicates
that GnuCash has
experienced dramatic
quality changes.

62	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

DOC component from October 2001 to Octo�
ber 2007. Sudden increases of defect numbers oc�
curred in June 2002, June 2004, June 2005, and
May 2006, followed by drastic decreases. You can
observe a similar pattern for the Gnome LDTP
(Linux Desktop Testing Project) component on
the c-chart in March 2006 (see Figure 4b). Each
impulse in t��������������������������������������� �his pattern ��������������������������� �usually indicates a ��������signifi�
cant update in product features or a sudden change
in organizational structures. However, the project
teams managed to accommodate the changes and
successfully put the software quality back on track.

Hills
This pattern represents a long����������������� �-���������������� �lastin���������� �g high ����num�
ber of defects in c-charts. Each hill occurs beyond
the upper limit and contains more than three data
points. Figure 4c shows the c-chart of the Eclipse
Equinox.Incubator component from October 2001
to October 2007. The c-chart shows an unusually
high number of defects between September 2003
and June 2004. You can observe a similar pattern
in the c-chart of the Eclipse Resource component
(see Figure 4d), which also contains a 10-month
highly defective period (from September 2003 to
June 2004). ����������������������������������� �This pattern suggests that the soft�
ware experienced serious issues for a long time.

Although the project team eventually got it back
under control, the long period of poor quality could
have adversely affected the software’s reputation.
In such cases, the project team should identify the
problem’s sources and prevent them from recurring.

Small Variations
This pattern represents small variations of defect
numbers in c-charts. In this pattern, the numbers
of defects are relatively consistent. They’re within
the control limits, hugging the average value with
small variations (within the 3s range). Figure 5a
shows examples of this pattern in the c-charts.
For the Eclipse Platform.WebDav component, the
numbers of defects had small variations (from 0
to 3) since June 2002. You can observe a similar
pattern for the Gnome Menu component (see
Figure 5b), which exhibited long-term stable
quality evolution from September 2005 to August
2009. This pattern suggests that the software
quality is apparently under control.

Roller Coaster
This pattern represents large variations of defect
numbers in c-charts. In this pattern, many data
points are close to or outside the control limits
with large variations (close or above the 6s range)

Dec
’01

Jul
’02

Feb
’03

Sep
’03

Apr
’04

Nov
’04

Jun
’05

Jan
’06

Aug
’06

Oct
’07

Mar
’07

350

300

250

200

150

100

50

0

Time

De
fe

ct
s

Downward

LCL = 57.2
CL = 84.8
UCL = 112.5

Jan
’04

May
’04

Sep
’04

Jan
’05

May
’05

Sep
’05

Jan
’06

May
’06

Sep
’06

May
’07

Jan
’07

80

70

60

50

40

30

20

10

0

Time

De
fe

ct
s

Upward

May
’00

Apr
’01

Mar
’02

Feb
’03

Jan
’04

Dec
’04

Nov
’05

Oct
’06

Sep
’07

Jul
’09

Aug
’08

900

800

700

600

500

400

300

200

100

0

Time

De
fe

ct
s

Downward

LCL = 100.4
CL = 135.3
UCL = 170.2

LCL = 6.89
CL = 20.46

UCL = 34.0

Dec
’99

Dec
’00

Dec
’01

Dec
’02

Dec
’03

Dec
’04

Dec
’05

Dec
’06

Dec
’07

Dec
’08

Time

250

200

150

100

50

0

De
fe

ct
s

Upward

LCL = 52.3

CL = 78.9

UCL = 105.5

(a) (b)

(c) (d)

Figure 3. C-charts for
(a–b) the downward-
and (c–d) upward-
trend patterns. These
patterns show clear
downward/upward
trend for the number of
defects as the software
evolves.

	 July/August 2010 I E E E S O F T W A R E � 63

between them. Figure 5c shows the c-chart of the
Eclipse PDE.UI component from October 2001 to
October 2007. The defect numbers exhibit large
variations—in May 2002, the number of defects
reached 209, which was far beyond the upper
control limit. Two months later, the number of de�
fects dropped to 25, which was below the lower
control limit. The same behavior also occurs for
February 2003, May 2004, and May 2005. A
similar pattern occurs in the c-chart of the Gnome
gdm (Gnome Display Manager) component (see
Figure 5d), which reveals an unstable process with
large variations (data frequently jumping between
the upper limit to the lower limit), especially from
February��������������������������������������� 2001 to August 2003. �����������������This pattern sug�
gests that�� the �����������������������������������quality���������������������������� is unstable. ��������������Better manage�
ment and planning must be adopted to ensure
high and consistent quality.

Software change is inevitable. It’s
challenging to incorporate changes over a
long period of software evolution. It’s even

more challenging to keep software quality under
control during evolution. We believe that c-charts
and patterns can help QA teams better monitor
quality evolution over a long period of time.

The quality evolution patterns are also useful
for prioritizing QA efforts in practice. Many ap�
proaches prioritize QA efforts by observing cur�
rent defect numbers or predicting defect-prone
modules.3 The quality evolution patterns in c-
charts are useful to understand the overall quality
history and thus to prioritize QA efforts efficiently.
For example, the QA team could prioritize efforts
for modules exhibiting roller coaster (see Figure 5c)
or upward trend (see Figure 3c) patterns.

Control charts and patterns should be care�
fully interpreted in different contexts (such as dif�
ferent stages of releases, degrees of changes, user
activities, and types of open source projects). For
example, if only a few people are using the soft�
ware, then the small variation won’t always indi�
cate good quality. We can’t examine the control
charts in isolation.

Our work has threats to its validity too. We
used only two open source systems to illustrate
our method. Our analysis could be threatened if
the quality of the open source defect data is low
(for example, inaccurate recording). However, the
two projects have well-managed bug reports and
are frequently used in other research experiments.
We plan to conduct studies on a larger variety of
software systems, especially on “closed-source”

Time

Jul
’05

Oct
’05

Mar
’06

Jun
’06

Oct
’06

Feb
’07

Aug
’08

Dec
’08

Mar
’09

Jun
’09

25

20

15

10

5

0

De
fe

ct
s

Impulse

LCL = 0

CL = 6.1

UCL = 13.51

(a)

(d)(c)

(b)

Oct
’01

May
’02

Dec
’02

Jul
’03

Feb
’04

Sep
’04

Apr
’05

Nov
’05

Jun
’06

Aug
’07

Jan
’07

70

60

50

40

30

20

10

0

Time

De
fe

ct
s

Impulse

LCL = 0

CL = 8.32

UCL = 16.98

Oct
’01

Oct
’02

May
’03

Nov
’03

May
’04

Mar
’05

Dec
’05

Jun
’06

Dec
’06

Jun
’07

80

70

60

50

40

30

20

10

0

Time

De
fe

ct
s

Hills

LCL = 10.1
CL = 25.2
UCL = 40.3

Apr
’03

Oct
’03

Apr
’04

Oct
’04

Apr
’05

Oct
’05

Apr
’06

Oct
’06

Oct
’07

Apr
’07

Time

180

160

140

120

100

80

60

40

20

0

De
fe

ct
s

Hills

LCL = 25.9

CL = 46.4

UCL = 66.8

Figure 4. C-charts for
(a–b) the impulse and
(c–d) hills patterns. The
impulse pattern shows a
short, dramatic increase
of defects and the hills
patterns shows a period
with long-lasting high
number of defects.

64	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

industrial systems. We’ll explore other types of
control charts and evaluate whether we could use
defect density in the charts. We also plan to survey
project teams ������������������������������������to evaluate the control charts’ use�
fulness in practice.

Acknowledgments
We thank the ������� ��������� ���� �������� �������guest ���������� ���� �������� �������editors and anonymous review�
ers for their detailed comments that helped improve
our article. This research is supported by ����������the ������Minis�
try of Education Key Laboratory of High Confidence
Software Technologies at Peking University and the
State Key Laboratory for Novel Software Technology
at Nanjing University. We thank Jaechang Nam for
collecting change data for this research.

References
	 1.	 M. Lehman and L. Belady, Program Evolution:

Processes of Software Changes, Academic Press, 1985.
	 2.	 M. Lehman and J.F. Ramil, “Software Evolution,”

Software Evolution and Feedback������������������: Theory and Prac�
tice, N. Madhavji et al., eds. John Wiley & Sons, 2006,
pp. 7–40.

	 3.	 S. Kim et al., “Predicting Bugs from Cached History,”
Proc. 29th Int’l Conf. Software Eng. (ICSE 07), IEEE
CS Press, 2007, pp. 489–498.

	 4	 S. Vaucher et al., “Tracking Design Smells: Lessons
from a Study of God Classes,” Proc. 16th Working
Conf. Reverse Eng. (WCRE 09), IEEE CS Press, 2009,
pp. 145–154.

	 5.	 E. Grant and R. Leavenworth, Statistical Quality Con�
trol, McGraw-Hill, 1998.

	 6.	 S. Kan, Metrics and Models in Software Quality Engi�
neering, Addison-Wesley, 2003.

	 7.	 T���. ���Mens���, ���J.F��. ��������������������������������������Ramil,�������������������������������� and S. Degrandsart�������������, “The Evolu�
tion of Eclipse,” Proc. 23rd Int’l Conf. Software Main�
tenance (ICSM 08), IEEE CS Press, 2008, pp. 386–395.

About the Authors
Hongyu Zhang is an associate professor at Tsinghua University’s School of Software.
His research interests include software metrics, software quality, and software reuse. Zhang
has a PhD in computer science from the National University of Singapore. He’s a member of
IEEE. Contact him at hongyu@tsinghua.edu.cn.

Sunghun Kim is an assistant professor of computer science at the Hong Kong Univer-
sity of Science and Technology. His research interests include software evolution, program
analysis, and empirical studies. Kim has a PhD in computer science from the University of
California, Santa Cruz. Contact him at hunkim@cse.ust.hk.

40

35

30

25

20

15

10

5

De
fe

ct
s

Nov
’04

May
’05

Nov
’05

Jun
’06

Dec
’06

Jun
’07

Dec
’07

Jun
’08

Jul
’09

Dec
’08

Time

180

160

140

120

100

80

60

40

20

0

De
fe

ct
s

250

200

150

100

50

0

De
fe

ct
s

(b)

Oct
’01

Apr
’02

Oct
’02

Apr
’03

Dec
’03

Jun
’04

Dec
’04

Jun
’05

Dec
’05

Dec
’06

Jun
’06

20

15

10

5

0

Time

De
fe

ct
s

Small
variations

(a)

Small
variations

Oct
’01

May
’02

Dec
’02

Jul
’03

Feb
’04

Sep
’04

Apr
’05

Nov
’05

Jun
’06

Aug
’07

Jan
’07

Time(c)

Feb
’01

Sep
’01

Apr
’02

Nov
’02

Jun
’03

Jan
’04

Aug
’04

Mar
’05

May
’06

Oct
’05

Time(d)

LCL = 63.3

CL = 92.1

UCL = 120.9

LCL = 0
CL = 1.36

UCL = 4.86

LCL = 0

CL = 3.66

UCL = 9.40

LCL = 5.08

CL = 17.70

UCL = 30.32

Figure 5. C-charts for (a–b) the small-variations and (c–d) roller coaster patterns. The small variations pattern
indicates a relatively consistent quality evolution while the roller coaster indicates an unstable quality evolution with
large variations.

