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Abstract 

 
In this paper, we introduce 13 program slicing metrics 

for C language programs. These metrics use program slice 
information to measure the size, complexity, coupling, 
and cohesion properties of programs. Compared with 
traditional code metrics based on code statements or code 
structure, program slicing metrics involve measures for 
program behaviors. To evaluate the program slicing 
metrics, we compare them with the Understand for C++ 
suite of metrics, a set of widely-used traditional code 
metrics, in a series of bug classification experiments. We 
used the program slicing and the Understand for C++ 
metrics computed for 887 revisions of the Apache HTTP 
project and 76 revisions of the Latex2rtf project to 
classify source code files or functions as either buggy or 
bug-free. We then compared their classification prediction 
accuracy. Program slicing metrics have slightly better 
performance than the Understand for C++ metrics in 
classifying buggy/bug-free source code. Program slicing 
metrics have an overall 82.6% (Apache) and 92% 
(Latex2rtf) accuracy at the file level, better than the 
Understand for C++ metrics with an overall 80.4% 
(Apache) and 88% (Latex2rtf) accuracy. The experiments 
illustrate that the program slicing metrics have at least the 
same bug classification performance as the Understand 
for C++ metrics.  
 
1. Introduction 
 

Over time, an active software system keeps growing in 
size and complexity, and gets increasingly hard to 
understand and maintain. Software engineers use code 
metrics as one mechanism for quantitatively measuring 
software qualities, thereby helping them better understand 
and maintain software systems.  

There are many code metrics that indicate the design 
or source code properties of programs, such as size, 
complexity, coupling, cohesion, etc. To measure these 
properties, most code metrics focus on ‘static’ syntactic 
aspects of program components, such as lines of code 

(LOC), number of declarations, number of functions, 
function fan-in, function fan-out, etc. The cyclomatic 
complexity [1] metric is somewhat more complex, as it 
uses program control flow to determine program 
complexity. To capture more fine-grained program 
properties, we introduce a set of source code metrics for C 
programs using program slicing information. That is, the 
program slicing metrics measure the size, complexity, 
coupling, and cohesion properties of programs based on 
program slices, vertices in slices, and dependence edges 
in slices.  

Program slicing techniques [2, 3] study the behavior of 
source code through the flow dependency and control 
dependency relationships among statements. A program 
slice consists of all the statements that may influence the 
values of a variable at a program point, and a program or 
program slice can be represented by a program 
dependence graph [3, 4]. We compute program slicing 
(PS) metrics for C programs based on intra-procedural 
slices with respect to output variables in every function. 
By using program slicing information, PS metrics capture 
more fine-grained program properties related to program 
behaviors. 

To evaluate PS metrics, we compare them with 
traditional code metrics computed using the Understand 
for C++ tool [5] by performing a bug classification 
experiment. In this experiment, we predict whether a 
source code file or a function is buggy or bug-free, based 
on the information available in the metrics. It is intuitive 
to think that software properties such as size, complexity, 
and coupling are correlated with software bugs, and 
several research efforts provide evidence of this 
correlation [6-8]. In our experiment, we compute the 
average summary values of PS metrics and Understand 
for C++ (UC) metrics for 76 revisions of the Latex2rtf 
project and 887 revisions of the Apache HTTP version 1.3 
project. These project revisions are extracted from their 
SCM repositories using the Kenyon infrastructure [9]. 
The PS metrics and UC metrics are used to predict which 
files or functions will have bugs. To determine the 
predictive accuracy, we collect the actual bugs existing in 
the same revisions of Latex2rtf and Apache, then compare 



 

them against the predicted results. The experiment shows 
that the precision achieved using PS metrics is slightly 
better than that for UC metrics. 

The remainder of this paper is organized as follows. 
Section 2 discusses related work. Section 3 provides a 
detailed description of the metrics comprising the UC and 
PS metric sets. Section 4 describes our bug classification 
experiments using UC metrics and PS metrics 
respectively, and analyzes the results. Section 5 discusses 
tradeoffs when using PS metrics and we conclude in 
Section 6. 
 
2. Related work 
 

Program behavioral properties have been considered 
when computing program metrics in several research 
efforts. Cyclomatic complexity is a well-known software 
metric that indicates the logical complexity of a program 
[1]. To compute cyclomatic complexity, the program 
control flow is examined to measure the number of 
independent paths in the source code. In [2], Weiser first 
suggested the potential use of program slicing techniques 
to measure programs. In [10], Ott and Thuss introduced 
two new metrics for code cohension, MinCoverage and 
MaxCoverage, supplementing the existing cohesion 
metric introduced by Weiser. Bieman and Ott [11] 
introduced a method that measures functional cohesion 
using program slicing information, in which the number 
of tokens that are shared by multiple slices are used to 
represent cohesion. Li [12] explored the use of 
programming in measuring coupling in object-oriented 
programs. Work in [13] empirically investigated the use 
of cohesion metrics to identify degraded modules and 
guide software reconstruction. 

Software metrics are widely used to measure software 
quality or predict bug-prone parts of software. Gyimothy 
et al. identify object-oriented metrics and use them for 
fault prediction [6]. Khoshgoftaar and Allen have 
proposed a model to list modules according to software 
quality factors such as future fault density [7, 8]. The 
inputs to the model are software complexity metrics such 
as LOC, number of unique operators, and cyclomatic 
complexity. A step-wise multi regression is then 
performed to find weights for each factor.  Rather than 
determining a good bug prediction model using existing 
metrics, we develop several new metrics using program 
slicing, and test if the new metrics can predict bugs better 
than conventional metrics (UC metrics [5]), using a 
Bayesian network classifier instead of a regression model. 
 
 

3. UC metrics and PS metrics 
 
3.1. UC metrics 
 

The UC metrics are generated by the Understand for 
C++ tool [5], which computes most traditional code 
metrics for C and C++ programs. The UC metrics set 
contains 46 metrics, which are generally categorized into 
three groups: project-level, file-level, and function-level. 
We only use the file-level and function-level UC metrics 
for C in our experiment. We describe several major 
function-level metrics in the UC set below. Most file-
level UC metrics are sums or averages of the metrics for 
the functions in the file. 

CountLine. The number of lines in the function. 
CountLineCode. The number of lines that contain 

source code. 
CountLineComment. The number of lines that 

contain comments. 
CountStmtExe. The number of executable statements. 
CountInput. The number of inputs used by a function 

(Inputs include parameters and global variables that are 
used in the function.) 

CountOutput. The number of outputs, parameters or 
global variables that are set in a function. 

CountStmtDecl. The number of declaration 
statements in a function. 

Cyclomatic. The cyclomatic complexity of a function. 
MaxNesting. The maximum nesting of control 

statements in a function. 
In addition to the metrics listed above, the UC metrics 

set contains the metrics  CountLineBlank, CountLineDecl, 
Count-LineExe, CountLineInactive, Cyclomatic-Modified, 
CyclomaticStrict,  CyclomaticMax, CyclomaticMax-
Modified, and PercentComment, whose definitions can be 
found in [5]. 
 
3.2. Program Slices and Dependence Graph 
 

Before defining our program slicing based metrics, we 
first provide some background on program slicing and 
dependence graphs. 

In the program slicing perspective, a function may 
contain multiple behavioral aspects, such as all the 
statements that change the value of a global variable, or 
statements that compute the return value of the function. 
We use program slices to capture behavioral aspects of a 
function. A function contains one or more intra-
procedural programs slices, each of which is with respect 
to the output variable of this function. An output variable 
of a function can be the function’s return value or a non-
local variable modified in the function.  

 



 

 
 

Figure 1 shows an example program, which consists of 
util.c and main.c, and four program slices in the function 
m(), which are the slices with respect to the function’s 
return value, and the global variables g, p, and r 
respectively. The four slices in function m() mean that the 
function m() does four ‘things’: it computes the return 
value (1), and modifies the value of global variables g, p, 
and r (2-4). Note that in the slice with respect to p, p is 
modified by dereferencing the pointer variable t; and, in 
the slice with respect to r, r is modified indirectly through 
a function call. 

 

 
Program slices can be represented by program 

dependence graphs. A program dependence graph (PDG) 
is a directed graph, where each vertex in the PDG 
represents a statement or predicate in the program, and 
each edge represents a data dependence or control 
dependence relationship between two vertices.  Figure 2 
shows the PDG for the slice with respect to the function 

return in function m() as presented in Figure 1. In Figure 
2, m_out is a temporary variable that stores the return 
value of function m(). When constructing the PDG for a 
function, there is a formal-out vertex in the PDG if the 
function has a non-void return value, and there is a 
global-formal-out vertex for a global variable or a group 
of global variables that may be modified in the function.  
In our PS metrics implementation, we have to compute 
the PDG for function slices, since the vertices and edges 
are factors used in computing PS metrics. 
 
3.3. PS metrics 
 

Like UC metrics, PS metrics indicate the size, 
complexity, coupling and cohesion of C programs. Unlike 
UC metrics, PS metrics are based on program slice 
information, which is of finer-granularity than the 
measures in UC metrics. Program slices have the 
additional advantage of capturing program behavior, and 
hence metrics based on slices are more directly related to 
these behaviors. We explain each of the PS metric items 
as follows. 

sliceCount. The number of slices a function contains. 
SliceCount is similar to CountOutput in the UC metrics, 
but sliceCount considers the global variables modified 
through the dereferencing of pointer variables. To achieve 
this, pointer analysis is used in the implementation. In the 
example of Figure 2, the sliceCount for function m() is 4. 

verticesCount. The number of vertices in a function’s 
program dependence graph. This metric is similar to 
CountLineCode in the UC metrics, but verticesCount is 
more fine-grained. For example, it treats the statement ‘a 
= b()’ as two statements: one function call and one 
assignment. It additionally counts implicit vertices, such 
as global-formal-out vertices. 

edgesCount. The number of dependence edges in a 
function’s program dependence graph. In contrast to the 
verticesCount metric, which weights each statement 
evenly, edgesCount is based on the control or flow 
dependence relationships of each statement with other 
statements. For example, the while statement in Figure 1 
has three outgoing control dependence edges to the three 
statements it encloses, so it contributes 3 to the 
edgesCount metric, while the statement ‘g=g+k;’ only 
contributes 1 flow dependence edge, which is from the 
vertex representing this statement to the global-formal-out 
vertex for g. This metric represents a combination of a 
function’s size and logical complexity. 

edgesToVerticesRatio. For a given function’s 
program dependence graph, the ratio of the number of 
dependence edges to the number of vertices. This metric 
indicates how much the statements in a function depend 
on each other by control or data flow. A high 
edgesToVerticesRatio indicates more logically complex 
code. 

main.c 

void cr() { 
    r = 9; } 
 

int m(int *t) { 
  int k =0; 
  int i = 1; 
  while(i<5) { 
     k=k+i; 
     g=g+k; 
     i=i+1; } 
  *t=(*t) * (*t);  
  cr(); 
  return k; }  

  int k =0; 
  int i = 1; 
  while(i<5) { 
     k=k+i; 
     i=i+1; } 
  return k 

Slice in m() with 
respect to the 

function return  

  int k =0; 
  int i = 1; 
  while(i<5) { 
     k=k+i; 
     g=g+k; 
     i=i+1; } 

util.c 

Slice in m() with 
respect to global 

variable g 

  *t =(*t) * (*t); 

Slice in m() with 
respect to global 

variable p  

  cr(); 

Slice in m() with 
respect to global 

variable r  

int p,g,r; 
void main() { 
    int s; 

g = 1; p = 2; 
s = m(&p); 
s = s + p+ r; } 

Figure 1. An example program and the slices in the 
function m() 

Entry 

k=0 i=1 while i<5

k=k+i i=i+1
m_out=k 

Figure 2. PDG for the slice with respect to the 
function return of function m(). 

flow dependence Control Dependence 

  int k =0; 
  int i = 1; 
  while(i<5) { 
     k=k+i; 
     i=i+1; } 
  return k 
 

formal-out 



 

sliceVerticesSum. The sum of the vertices contained 
in each slice in a function. This metric is a combination of 
slice count and slice size. 

maxSliceVertices. The number of vertices of the slice 
that have the maximum vertices in all the slices of a 
function. A count of the vertices in the one slice that 
contains the most vertices of all slices in the function. 

globalInput. The number of function parameters and 
non-local variables used in a function. This metric is 
similar to the UC metric CountInput, but globalInput 
additionally considers the non-local variables introduced 
by pointers. 

globalOutput. The number of non-local variables 
modified in a function. This metric is similar to the UC 
metric CountOutput, but globalOutput also considers the 
non-local variables introduced by pointers. 

directFanIn. The sum of function slices in the other 
module files that use the output variables directly 
modified in this function. In the example of Figure 1, the 
directFanIn metric for m() of util.c is 3, since the return 
value of m(), and the global variables p and g, are used in 
function main() of main.c. The global variable r is not 
counted for the directinFanIn of m(), since r is not 
directly modified in m(), but indirectly modified in cr(). 
This metric is a combination of function fan-in and 
function outputs and is a measure of the coupling of the 
function.  

indirectFanIn. The sum of slices in other module files 
that use the output variables indirectly modified in this 
function.  

directFanOut. The sum of function slices in the other 
module files whose output variables are directly modified 
in them and used in this function. In the example of 
Figure 1, the directFanOut metric for main() of main.c is 
3, since the return value of m(), and the global variables p 
and g are used in main(). 

indirectFanOut. The sum of function slices in the 
other module files whose output variables are indirectly 
modified in them and used in this function. 

lackOfCohesion. This metric indicates the cohesion of 
function slices. Like the method in [11], we determine 
lackOfCohesion by the overlap ratio of function slices, i.e. 
how much the slices in a function share the same vertices. 
But, since it is expensive to compute the ratio of shared 
vertices among a number of function slices, we calculate 
an approximate ratio of slice overlap by computing the 
ratio of the program lines each slice covers to the total 
number of lines in the function. Consider function m() in 
Figure 1. The number of lines in the function body of m() 
is 9, while the four slices in m() have 6, 6, 1, and 1 lines 
respectively. Hence, the slice overlap ratio for function 
m() is (6/9+6/9+1/9+1/9)/4, or 39%. The lackOfCohesion 
value is the reciprocal of the slice overlap ratio. So, for 
function m(), its lackOfCohesion value is 2.56. We can 
see from Figure 1 that the slice with respect to the 
function return has high cohesion with the slice with 

respect to g, while they both have low cohesion with the 
slice with respect to p or r.  

The PS metrics listed above are computed at the 
function level of granularity. We have also developed a 
set of metrics at the file level corresponding to those at 
function level. The file level metrics are the sum of the 
function-level metrics for all the functions a file contains, 
except for lackOfCohesion and maxSliceVertices, which 
are the average of the function-level metrics for all the 
functions in the file, and edgesToVerticesRatio, which is 
the ratio of sum of edges in a file to the sum of vertices in 
the file. Note that, in practical computation of the 
program slices for functions, some normalization will be 
performed for complex statements. So, the actual PS 
metrics will take into account additional vertices and 
edges generated by normalization.  
 
4. Experiment 
 

It makes intuitive sense that code properties like size, 
complexity, and coupling are correlated with bug-
proneness, and several research efforts have demonstrated 
this correlation. Ideally we would like to demonstrate that 
the PS metrics are also correlated with bug-proneness, 
and perform better than the traditional metrics in the UC 
set. In order to evaluate the PS metrics, we compared the 
PS metrics and UC metrics by applying both of them to 
the task of bug classification, in which we use machine 
learning techniques to predict whether a source code file 
or function will contain bugs (or not) based on the 
correlation of code metrics with facts gathered from 
actual buggy/bug-free code. 

We performed an experimental bug classification on 
887 revisions of the Apache HTTP server project and 76 
revisions of the Latex2rtf document converter project 
using PS metrics and UC metrics respectively. The basic 
data for the two projects is described in Table 1. Both file-
level and function-level PS metrics and UC metrics are 
used in the experiment. We additionally compared the 
accuracy of the PS and UC metrics to evaluate the PS 
metrics. 
 
4.1. Overview of Experimental Process 
 

We use the Latex2rtf project as an example while 
explaining the steps used to perform bug classification at 
the file and function level. The same process is used for 
the Apache HTTP project. 

Step 1: Fact Extraction and Metrics Computation. We 
compute the PS and UC metrics at both the file and 
function level for all files in every revision. After all 
revisions have been processed, we compute the average 
summary value set of the PS metrics and UC metrics for 
the source code files and functions in the Latex2rtf 
project. The metrics value set consists 5 values for each 



 

metric, which are the average metric value of the 
revisions examined, the maximum metric value in the 
revisions, the standard deviation of metric values, the 
cumulative value difference of the metric value along the 
revisions, and the change tendency (-1, 0, 1) of metric 
values in the revisions examined.  

Step 2: Bug Labeling. The change logs of the 76 
revisions of the Latex2rtf project are mined to determine 
bug-introducing changes [14] (changes to the source code 
that introduce an error in the code). We mark the files and 
functions that have ever contained bug-introducing 
changes as buggy ones, and mark the others as bug-free. 

Step 3: Bug classification. We use the 10-fold cross-
validation method [15] to perform bug classification 
prediction using the PS metrics value set from step 1. We 
compare the classification prediction with the real bug 
classification from step 2 to obtain the predictive accuracy 
of the PS metrics. We follow the same steps using the UC 
metrics to obtain their predictive accuracy. 

Step 4: Accuracy Comparison. We evaluate the PS 
metrics by comparing the classification accuracy from PS 
metrics with the classification accuracy from the UC 
metrics at the file level and the function level 
respectively. 

We explain each of these steps in further detail in the 
following subsections. 
 
4.2. Fact Extraction and Metric Computation 
 

To compute the PS and UC metrics for the Latex2rtf 
project, we retrieved 76 revisions of the Latex2rtf project 
source code from its CVS repository [16] using Kenyon 
[9]. Kenyon automates the process of extracting revisions 
from a software configuration management system 
repository, computing user-specified metrics on each 
extracted revision and then storing them in a database.  

For each retrieved revision we use the Understand for 
C++ tool to compute the UC metrics at the function and 
file level. After all revisions are processed, we obtain the 
UC metrics value set for each file and function. 

We compute the PS metrics as follows. For each 
revision retrieved, we use CoderSurfer [17] to perform 
static analysis on each file. CodeSurfer is a program 
analysis tool produced by GrammaTech, Inc., capable of 
parsing and analyzing C programs, generating program 
dependence graphs, and performing program slicing for C 
programs. We computed the function-level PS metrics for 
each function based on its procedure dependence graph 
generated by CoderSurfer. The file-level PS metrics are 

obtained after all functions in a file are analyzed. Once all 
76 revisions of the Latex2rtf project are processed, the PS 
metrics value set for each function and file are computed. 
An an example, Table 2 shows the average metric value 
of PS metrics for a sample function and file in the 
Latex2rtf project at a single revision. 

We used the same approach to compute the PS and UC 
metrics at the file and function level respectively for 887 
revisions of the Apache HTTP version 1.3 project. The 
revisions of the Apache HTTP project were retrieved 
from the Subversion repository for the Apache HTTP 
project. Compared with the Latex2rtf project, we examine 
many more revisions of the Apache HTTP project. This is 
due to the Apache HTTP project having many more 
revisions in its repository, and some Latex2rtf revisions 
not being compilable. After the PS and UC metrics were 
generated for the 877 Apache project revisions, we 
obtained the PS and UC metrics value set for each file and 
function. 
 
4.3. Bug labeling 
 

Since we will evaluate the accuracy of bug prediction 
using PS or UC metrics, we need to determine whether a 
file or a function examined in the experiment actually 
contains bugs. We label as buggy those project files or 
functions that actually have at least one bug during the 
revisions examined. To perform bug labeling, we assume 
that a file or function has a bug if it has one or more bug-
introducing changes in its examined change history. 
Before we identify bug-introducing changes, we identify 
bug-fix changes based on the log messages that are 
supplied with a change. There are two approaches for this 
step: looking for keywords like "Fixed" or "Bug" in the 
change log, a technique introduced by Mockus and Votta 
[18], or looking for references to bug reports like 
“#42233” as introduced by Fischer et al. [19] and by 
Cubranic and Murphy [20]. We use the ‘looking for 
keywords’ method. If a change log contains ‘bug’, ‘fix’, 
or ‘patch’, we assume the change is a bug-fix change. To 
identify bug-introducing changes, we annotate each line 
of the preceding revision with the most recent revision 
that changed this line. In this manner we can trace lines 
backwards through the revision history. We used this 
method to perform bug labeling for 76 revisions of 
Latex2rtf project and 887 revisions of the Apache project, 
identifying 20 buggy files and 132 buggy functions in 
Latex2rtf, and 16 buggy files and 67 buggy functions in 
Apache, as shown in Table 1. 

Table 1. Analyzed projects. 
Project Period # of revisions # of files # of actually 

buggy files 
# of 

functions 
# of actually buggy 

functions 
Apache HTTP 04/1998 ~ 09/1998 887 46 16 813 67 

Latex2rtf 10/2002 ~ 11/2005 76 25 20 524 132 

 



 

Table 2. Average metric value of PS metrics for a Latex2rtf function and a Latex2rtf file at one revision. (C1: 
SliceCount, C2: verticesCount, C3: edgesCount, C4: edgesToVerticesRatio, C5: sliceVerticesSum, C6: maxSliceVertices, C7: 

globalInput, C8: globalOutput, C9: directFanIn, C10: indirectFanIn, C11: directFanOut, C12: indirectFanOut, C13: 
lackOfCohesion) 

function 
or file 
name 

Revision C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

setPackag() 4/17/2005 6 552 1447 2.62 1120 278 43 2 2 8 2 5 1.94 
cfg.c 10/1/2004 40 4794 12742 2.66 1608 402 588 17 189 327 39 205 2.3 

 
 
4.4. Bug classification 
 

In the experiment, we use PS and UC metrics to 
perform buggy file or function classification prediction. 
There are eight bug classification experiments, listed 
below, exploring all combinations of metric kinds (PS or 
UC), metric granularity levels (file or function), and 
project (Latex2rtf or Apache): 

Bug file classification prediction using PS metrics at 
file level for the Latex2rtf project. 

Bug function classification prediction using PS metrics 
at function level for the Latex2rtf project. 

Bug file classification prediction using UC metrics at 
file level for the Latex2rtf project. 

Bug function classification prediction using UC 
metrics at function level for the Latex2rtf project. 

Bug file classification prediction using PS metrics at 
file level for the Apache project. 

Bug function classification prediction using PS metrics 
at function level for the Apache project. 

Bug file classification prediction using UC metrics at 
file level for the Apache project. 

Bug function classification prediction using UC 
metrics at function level for the Apache project. 

We use the PS metrics at the file level for the Latex2rtf 
project as an example for explaining the process we used 
to perform bug classification prediction. The other bug 
classification experiments follow the same process. 

We use the 10-fold cross-validation method [15] to 
make the buggy/bug-free classification prediction based 
on the PS metrics for all 25 Latex2rtf files. In the 10-fold 
cross-validation method, we randomly divide the 25 
Latex2rtf files into 10 folds as shown in Figure 3. We 
select the first fold as the test set, and the others as the 
training set. We use a machine learning algorithm to 
predict the buggy files in the test set. To perform 
prediction, the machine learning algorithm uses the 
training set to determine the correlation of the PS metrics 
for these files with the bug facts obtained in the previous 
step. Then, it uses the correlation between metrics and 
bugs to predict which files in the test set will contain 
bugs. After the bug classification prediction, we compare 
the prediction results for the test set with the real bug 
facts obtained from the bug labeling step to determine the 
prediction accuracy for the files in the test set.  

For example, suppose there is a file cfg.c in the test set. 
Based on its PS metrics, and the correction between the 
PS metrics and bug labeling for the files in the training 
set, we predict it to be a buggy file. Then, we compare the 
bug prediction for cfg.c with its real bug label as 
computed in the Bug Labeling step. If they are the same, 
we call this a correct prediction for cfg.c; otherwise, the 
prediction is incorrect. 

 

 
The method iterates by selecting the 2nd, 3rd …10th 

fold as a test set, and others as training set. After 10 
iterations, we obtain the bug classification prediction 
result of PS metrics for each of the 46 files. The accuracy 
of the prediction is determined by the formulas in Figure 
4.  

 

 
 
In the 10-fold cross-validation procedure, the machine 

learning algorithm applied is a Bayesian network 
classifier [21], which uses graph models to represent 
interactions between features and classes. Based on the 

Number of files that are predicted to be 
buggy and are actually buggy 

Number of files that are predicted to be 
bug-free and are actually bug-free 

Prediction precision 
for buggy files = Number of files predicted to be buggy 

Number of files that are predicted to be 
buggy and are actually buggy 

Prediction precision 
for bug-free files = Number of files predicted to be bug-free

Prediction recall 
for buggy files = Number of files actually buggy 

Prediction recall 
for bug-free files = Number of files actually bug-free 

Number of files that are predicted to be 
bug-free and are actually bug-free 

Overall prediction 
accuracy = Number of files 

Number of files that are correctly 
predicted to be buggy or bug-free 

Figure 4. Prediction precision and recall. 

1 …… 
Test
Set

2 3 10

Training Set 

Figure 3. 10-fold cross-validation. 



 

model, the classifier computes probabilities for each class, 
and determines the class with the maximum probability. 
In our experiment, we used the Bayesian network 
classifier implementation in the Weka data mining 
software [15]. 

For the PS metrics at the function level, we used the 
same procedure to perform bug classification prediction 
for every function in the Latex2rtf project. That is, we 
divided the 524 functions in the Latex2rtf project into 10 
folds. We took each fold as a test set and the other 9 folds 
as training sets to predict the bug or bug-free property of 
each function in the test set using the PS metrics at the 
function level. After 10 iterations, we obtained the bug 
classification prediction for each of the 524 functions. 
The accuracy of the prediction is computed using 
formulas similar to those in Figure 4, where ‘number of 
files’ is replaced by ‘number of functions’. 

We repeated the bug classification experiment using 
the same process for the other combinations, i.e. PS 
metrics for the Apache project, UC metrics for the 
Apache project, and UC metrics for the Latex2rft project.  

 
4.5. Experimental Results 

 
Figures 5 and 6 show the results of bug classification 

prediction using PS and UC metrics for the HTTP project. 
Figures 7 and 8 show the results for the Latex2rtf project. 
Tables 3 and 4 show the number of correct classifications 
made using PS metrics and UC metrics, which are used to 
compute the overall accuracy in Figures 5 through 8. For 
example, using PS metrics we correctly classified 38 out 
of 46 files, so its overall accuracy is 82.6% (38/46). 

 
Table 3. Correct classifications of PS and UC at the 

file level 

 # of 
Files 

# of correct 
classifications 

by PS 
Accuracy 

of PS 
(overall) 

# of correct 
classifications 

by UC 
Accuracy 

of UC 
(overall) 

Apache 46 38 82.6% 37 80.4% 
Latex2rtf 25 23 92% 22 88% 

 

 
Table 4. Correct classifications of PS and UC at the 

function level 

 # of 
Functions 

# of correct 
classifications 

by PS 
Overall 

accuracy 
of PS 

# of correct 
classifications 

by UC 
Overall 

accuracy 
of UC  

Apache 823 643 78.1% 614 74.6% 
Latex2rtf 524 373 71.2% 369 70.4% 

 

 
Generally, the PS metrics have slightly better 

performance than the UC metrics: in the Apache 
experiment, the overall precision of PS metrics at the file 
level is 2.2% higher (82.6% vs. 80.4%) than the UC 
metrics at the file level, while the PS metrics at the 

function level are 3.5% higher (78.1% vs. 74.6%) than the 
UC metrics. In the Latex2rtf experiment, the overall 
precision of PS metrics at the file level is 4% higher (92% 
vs. 88%) than the UC metrics, while the PS metrics at the 
function level have almost the same performance (71.2% 
vs. 70.4%) as the UC metrics. 

In Figures 5 and 7, the PS metrics outperform UC 
metrics on almost all comparison items: the precision and 
recall for buggy or bug-free files. In Figures 6 and 8, the 
PS metrics have a lower recall rate on buggy functions 
and a lower precision when predicting bug-free functions, 
but PS has better overall predictive accuracy than the UC 
metrics.  
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Figure 5. Comparison of PS metrics and UC metrics at 

file level for the Apache project. 
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Figure 6. Comparison of PS metrics and UC metrics at 

function level for the Apache project. 
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Figure 7. Comparison of PS metrics and UC metrics at 

file level for the Latex2rtf project. 
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Figure 8. Comparison of PS metrics and UC metrics at 

function level for the Latex2rtf project. 

 
We used the ChiSquare evaluator in the Weka data 

mining software [15] to measure the usefulness rank of 
each PS metric in classification. We list the top 6 PS 
metrics that are the most useful in the classification in 
Table 5. Generally, the most useful metrics vary in 
different projects and granularities, but the metrics 
verticesCount and edgeCount are useful metrics in most 
of the combinations.  

We note that file level classification has different 
usefulness of PS metrics than the function level. For file 
level classification, edgesCount and directFanOut are 
very important metrics in the two projects as shown in 
Table 5, while they are not in the function level 
classification. We need to perform further analysis to see 
if these differences among significant metrics at the file 
and function level hold true across multiple projects. This 
is future work. 
 
 

Table 5. Top 6 of the most useful PS metrics in 
classification. (a: average, d: accumulative value 

difference, s: standard deviation) 
 File Level Function Level 
HTTP d-verticesCount 

a-verticesCount 
d-edgesCount 
a-edgesCount 
d-directFanOut 
a-globalOutput 

a-lackOfCohesion 
d-lackOfCohesion 
a-verticesCount 
a-maxSliceVertices 
d-verticesCount 
a-sliceVerticesSum 

Latex2rtf d-edgesCount 
a-edgesCount 
d-directFanOut 
a-directFanOut 
d-indirectFanOut 
a-indirectFanOut 

d-edgesToVerticesRatio 
d-sliceCount 
a-sliceCount 
s-lackOfCohesion 
s-verticesCount 
s-edgesCount 

 
5. Discussion 
 
5.1. Pros and Cons of PS Metrics 
 

Unlike straightforward code metrics based on line 
counts and statement counts, the PS metrics consider 
more insightful code properties based on program 
behaviors, as captured by program slices and obtained 
from program analysis and points-to analysis. The PS 
metrics give different weights to each statement based on 
their significance in the control dependence and flow 
dependence in the program. For example, a while 
predicate that encloses multiple statements will contribute 
more than one control dependence edges in PS metrics, 
while it only contributes one source code line in UC 
metrics. For function coupling, the finer-grained 
couplings between function slices, e.g. the couplings 
between program slices in caller functions and in callee 
functions are considered, instead of the coupling between 
whole functions. As a result, the PS metrics summarize 
properties of the code more precisely. Additionally, the 
points-to analysis helps the PS metrics recover program 
complexity and coupling hidden by pointer variables. It 
makes sense that a function containing many uses or 
modifications of pointer variables should be viewed as 
more complex and error-prone than a function without 
such use. 

The major disadvantage of PS metrics is obvious: it is 
expensive to compute the program slicing information for 
a project. For example, it took about 20 minutes for 
CodeSurfer to analyze one revision of the Apache project, 
which has about 70K lines of source code, on a Pentium 4, 
1.7G HZ Linux system with 768 MB memory using the 
default options of CoderSurfer. This is the reason that we 
only analyzed a short period of the Apache project in our 
experiments. Another disadvantage of PS metrics is the 
program needs to be compiled to compute them, and so 



 

we are unable to compute PS metrics for revisions 
containing syntax errors.  

To address the shortcomings of PS metrics, one 
possibility is to use a lightweight program analysis 
implementation to generate the PS metrics. A lightweight 
program analysis would hopefully achieve a good balance 
between precision and efficiency, allowing the 
computation of PS metrics for larger projects. Exploring 
this possibility remains future work. 
 
5.2. Precision and Recall Rates 
 

We observe in Figure 6 that both PS and UC metrics at 
the function level have low precision in predicting buggy 
functions for the Apache project, at 16.9% (PS) and 
19.6% (UC) precision respectively. One explanation is 
that the percentage of buggy functions is low for this 
project: only 8.2% (67 out of 813) of functions are buggy 
in the Apache project. As a result, it is difficult to make 
bug classification predictions due to the rarity of the 
buggy functions. Even so, the classification prediction 
precisions from PS and UC metrics are still much higher 
than that from a random-guess classification. That is, if 
we randomly classify a function as buggy or bug-free, the 
classification precision for buggy functions in the HTTP 
project is about 8.2% (67 out of 813) compared with 
16.9% (PS) and 19.6% (UC). In contrast, both PS and UC 
metrics achieved 100% precision on buggy files and 
100% recall on bug-free files for the Latex2rtf project, as 
shown in Figure 7. This is partially due to the fact that 
there are only 5 bug-free files in the project, so it is easy 
to achieve high recall; most files (80%) are buggy, so it is 
easy to achieve high precision. 

 
5.3. Threats to validity 
 

In our experiment, we only examined a specific 
revision period for each project. The examined revision 
periods of the projects or the projects themselves in our 
experiment may not be representative. Additionally, due 
to the time and computational expense of computing 
program slice information over multiple project revisions, 
our data set only includes two projects. In general, the 
larger the dataset, the more accurate the evaluation.  

In addition, the revision set in experiment is not 
complete for both HTTP project and Latex2rtf project, 
since some revisions are not compilable. 
 
6. Conclusions and future work 
 

In this paper, we described program slicing metrics, a 
set of code metrics for C programs using program slicing 
techniques. Program slicing metrics measure the size, 
complexity, coupling, and cohesion properties of 

programs based on program slices, vertices in slices, and 
dependence edges in slices.  

To evaluate the program slicing metrics, we use them 
and Understand for C++ metrics respectively to classify 
buggy/bug-free source code files or functions for 887 
revisions of the Apache HTTP project and 76 revisions of 
the Latex2rtf project, and compare their results. The 
outcomes show that the PS metrics have a slightly better 
performance than UC metrics in classifying buggy/bug-
free source code: PS metrics have an overall 82.6% and 
92% accuracy at file level for the Apache HTTP project 
and the Latex2rtf project respectively, and UC metrics 
have an overall 80.4% precision and 88% precision at the 
file level for the Apache HTTP project and the Latex2rtf 
project respectively. The results show that the PS metrics 
have at least the same power as UC metrics in performing 
bug classification. 

A major problem of PS metrics is that it is expensive 
to generate the program slicing information for a large 
project. To address this problem in our future work, we 
will choose and apply light-weight program analysis in 
computing PS metrics. For example, we can choose a less 
expensive pointer analysis method when performing 
program analysis for a project.  

We also need to make more experiments on other 
projects to further validate PS metrics. Especially when a 
light-weight program analysis is used, the experiment can 
be performed on a longer version history of larger 
projects. 
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