

Bug Classification Using Program Slicing Metrics

Kai Pan, Sunghun Kim, E. James Whitehead, Jr.
Dept. of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064 USA

{pankai, hunkim, ejw }@cs.ucsc.edu

Abstract

In this paper, we introduce 13 program slicing metrics

for C language programs. These metrics use program slice
information to measure the size, complexity, coupling,
and cohesion properties of programs. Compared with
traditional code metrics based on code statements or code
structure, program slicing metrics involve measures for
program behaviors. To evaluate the program slicing
metrics, we compare them with the Understand for C++
suite of metrics, a set of widely-used traditional code
metrics, in a series of bug classification experiments. We
used the program slicing and the Understand for C++
metrics computed for 887 revisions of the Apache HTTP
project and 76 revisions of the Latex2rtf project to
classify source code files or functions as either buggy or
bug-free. We then compared their classification prediction
accuracy. Program slicing metrics have slightly better
performance than the Understand for C++ metrics in
classifying buggy/bug-free source code. Program slicing
metrics have an overall 82.6% (Apache) and 92%
(Latex2rtf) accuracy at the file level, better than the
Understand for C++ metrics with an overall 80.4%
(Apache) and 88% (Latex2rtf) accuracy. The experiments
illustrate that the program slicing metrics have at least the
same bug classification performance as the Understand
for C++ metrics.

1. Introduction

Over time, an active software system keeps growing in
size and complexity, and gets increasingly hard to
understand and maintain. Software engineers use code
metrics as one mechanism for quantitatively measuring
software qualities, thereby helping them better understand
and maintain software systems.

There are many code metrics that indicate the design
or source code properties of programs, such as size,
complexity, coupling, cohesion, etc. To measure these
properties, most code metrics focus on ‘static’ syntactic
aspects of program components, such as lines of code

(LOC), number of declarations, number of functions,
function fan-in, function fan-out, etc. The cyclomatic
complexity [1] metric is somewhat more complex, as it
uses program control flow to determine program
complexity. To capture more fine-grained program
properties, we introduce a set of source code metrics for C
programs using program slicing information. That is, the
program slicing metrics measure the size, complexity,
coupling, and cohesion properties of programs based on
program slices, vertices in slices, and dependence edges
in slices.

Program slicing techniques [2, 3] study the behavior of
source code through the flow dependency and control
dependency relationships among statements. A program
slice consists of all the statements that may influence the
values of a variable at a program point, and a program or
program slice can be represented by a program
dependence graph [3, 4]. We compute program slicing
(PS) metrics for C programs based on intra-procedural
slices with respect to output variables in every function.
By using program slicing information, PS metrics capture
more fine-grained program properties related to program
behaviors.

To evaluate PS metrics, we compare them with
traditional code metrics computed using the Understand
for C++ tool [5] by performing a bug classification
experiment. In this experiment, we predict whether a
source code file or a function is buggy or bug-free, based
on the information available in the metrics. It is intuitive
to think that software properties such as size, complexity,
and coupling are correlated with software bugs, and
several research efforts provide evidence of this
correlation [6-8]. In our experiment, we compute the
average summary values of PS metrics and Understand
for C++ (UC) metrics for 76 revisions of the Latex2rtf
project and 887 revisions of the Apache HTTP version 1.3
project. These project revisions are extracted from their
SCM repositories using the Kenyon infrastructure [9].
The PS metrics and UC metrics are used to predict which
files or functions will have bugs. To determine the
predictive accuracy, we collect the actual bugs existing in
the same revisions of Latex2rtf and Apache, then compare

them against the predicted results. The experiment shows
that the precision achieved using PS metrics is slightly
better than that for UC metrics.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 provides a
detailed description of the metrics comprising the UC and
PS metric sets. Section 4 describes our bug classification
experiments using UC metrics and PS metrics
respectively, and analyzes the results. Section 5 discusses
tradeoffs when using PS metrics and we conclude in
Section 6.

2. Related work

Program behavioral properties have been considered
when computing program metrics in several research
efforts. Cyclomatic complexity is a well-known software
metric that indicates the logical complexity of a program
[1]. To compute cyclomatic complexity, the program
control flow is examined to measure the number of
independent paths in the source code. In [2], Weiser first
suggested the potential use of program slicing techniques
to measure programs. In [10], Ott and Thuss introduced
two new metrics for code cohension, MinCoverage and
MaxCoverage, supplementing the existing cohesion
metric introduced by Weiser. Bieman and Ott [11]
introduced a method that measures functional cohesion
using program slicing information, in which the number
of tokens that are shared by multiple slices are used to
represent cohesion. Li [12] explored the use of
programming in measuring coupling in object-oriented
programs. Work in [13] empirically investigated the use
of cohesion metrics to identify degraded modules and
guide software reconstruction.

Software metrics are widely used to measure software
quality or predict bug-prone parts of software. Gyimothy
et al. identify object-oriented metrics and use them for
fault prediction [6]. Khoshgoftaar and Allen have
proposed a model to list modules according to software
quality factors such as future fault density [7, 8]. The
inputs to the model are software complexity metrics such
as LOC, number of unique operators, and cyclomatic
complexity. A step-wise multi regression is then
performed to find weights for each factor. Rather than
determining a good bug prediction model using existing
metrics, we develop several new metrics using program
slicing, and test if the new metrics can predict bugs better
than conventional metrics (UC metrics [5]), using a
Bayesian network classifier instead of a regression model.

3. UC metrics and PS metrics

3.1. UC metrics

The UC metrics are generated by the Understand for
C++ tool [5], which computes most traditional code
metrics for C and C++ programs. The UC metrics set
contains 46 metrics, which are generally categorized into
three groups: project-level, file-level, and function-level.
We only use the file-level and function-level UC metrics
for C in our experiment. We describe several major
function-level metrics in the UC set below. Most file-
level UC metrics are sums or averages of the metrics for
the functions in the file.

CountLine. The number of lines in the function.
CountLineCode. The number of lines that contain

source code.
CountLineComment. The number of lines that

contain comments.
CountStmtExe. The number of executable statements.
CountInput. The number of inputs used by a function

(Inputs include parameters and global variables that are
used in the function.)

CountOutput. The number of outputs, parameters or
global variables that are set in a function.

CountStmtDecl. The number of declaration
statements in a function.

Cyclomatic. The cyclomatic complexity of a function.
MaxNesting. The maximum nesting of control

statements in a function.
In addition to the metrics listed above, the UC metrics

set contains the metrics CountLineBlank, CountLineDecl,
Count-LineExe, CountLineInactive, Cyclomatic-Modified,
CyclomaticStrict, CyclomaticMax, CyclomaticMax-
Modified, and PercentComment, whose definitions can be
found in [5].

3.2. Program Slices and Dependence Graph

Before defining our program slicing based metrics, we
first provide some background on program slicing and
dependence graphs.

In the program slicing perspective, a function may
contain multiple behavioral aspects, such as all the
statements that change the value of a global variable, or
statements that compute the return value of the function.
We use program slices to capture behavioral aspects of a
function. A function contains one or more intra-
procedural programs slices, each of which is with respect
to the output variable of this function. An output variable
of a function can be the function’s return value or a non-
local variable modified in the function.

Figure 1 shows an example program, which consists of
util.c and main.c, and four program slices in the function
m(), which are the slices with respect to the function’s
return value, and the global variables g, p, and r
respectively. The four slices in function m() mean that the
function m() does four ‘things’: it computes the return
value (1), and modifies the value of global variables g, p,
and r (2-4). Note that in the slice with respect to p, p is
modified by dereferencing the pointer variable t; and, in
the slice with respect to r, r is modified indirectly through
a function call.

Program slices can be represented by program

dependence graphs. A program dependence graph (PDG)
is a directed graph, where each vertex in the PDG
represents a statement or predicate in the program, and
each edge represents a data dependence or control
dependence relationship between two vertices. Figure 2
shows the PDG for the slice with respect to the function

return in function m() as presented in Figure 1. In Figure
2, m_out is a temporary variable that stores the return
value of function m(). When constructing the PDG for a
function, there is a formal-out vertex in the PDG if the
function has a non-void return value, and there is a
global-formal-out vertex for a global variable or a group
of global variables that may be modified in the function.
In our PS metrics implementation, we have to compute
the PDG for function slices, since the vertices and edges
are factors used in computing PS metrics.

3.3. PS metrics

Like UC metrics, PS metrics indicate the size,
complexity, coupling and cohesion of C programs. Unlike
UC metrics, PS metrics are based on program slice
information, which is of finer-granularity than the
measures in UC metrics. Program slices have the
additional advantage of capturing program behavior, and
hence metrics based on slices are more directly related to
these behaviors. We explain each of the PS metric items
as follows.

sliceCount. The number of slices a function contains.
SliceCount is similar to CountOutput in the UC metrics,
but sliceCount considers the global variables modified
through the dereferencing of pointer variables. To achieve
this, pointer analysis is used in the implementation. In the
example of Figure 2, the sliceCount for function m() is 4.

verticesCount. The number of vertices in a function’s
program dependence graph. This metric is similar to
CountLineCode in the UC metrics, but verticesCount is
more fine-grained. For example, it treats the statement ‘a
= b()’ as two statements: one function call and one
assignment. It additionally counts implicit vertices, such
as global-formal-out vertices.

edgesCount. The number of dependence edges in a
function’s program dependence graph. In contrast to the
verticesCount metric, which weights each statement
evenly, edgesCount is based on the control or flow
dependence relationships of each statement with other
statements. For example, the while statement in Figure 1
has three outgoing control dependence edges to the three
statements it encloses, so it contributes 3 to the
edgesCount metric, while the statement ‘g=g+k;’ only
contributes 1 flow dependence edge, which is from the
vertex representing this statement to the global-formal-out
vertex for g. This metric represents a combination of a
function’s size and logical complexity.

edgesToVerticesRatio. For a given function’s
program dependence graph, the ratio of the number of
dependence edges to the number of vertices. This metric
indicates how much the statements in a function depend
on each other by control or data flow. A high
edgesToVerticesRatio indicates more logically complex
code.

main.c

void cr() {
 r = 9; }

int m(int *t) {
 int k =0;
 int i = 1;
 while(i<5) {
 k=k+i;
 g=g+k;
 i=i+1; }
 *t=(*t) * (*t);
 cr();
 return k; }

 int k =0;
 int i = 1;
 while(i<5) {
 k=k+i;
 i=i+1; }
 return k

Slice in m() with
respect to the

function return

 int k =0;
 int i = 1;
 while(i<5) {
 k=k+i;
 g=g+k;
 i=i+1; }

util.c

Slice in m() with
respect to global

variable g

 *t =(*t) * (*t);

Slice in m() with
respect to global

variable p

 cr();

Slice in m() with
respect to global

variable r

int p,g,r;
void main() {
 int s;

g = 1; p = 2;
s = m(&p);
s = s + p+ r; }

Figure 1. An example program and the slices in the
function m()

Entry

k=0 i=1 while i<5

k=k+i i=i+1
m_out=k

Figure 2. PDG for the slice with respect to the
function return of function m().

flow dependence Control Dependence

 int k =0;
 int i = 1;
 while(i<5) {
 k=k+i;
 i=i+1; }
 return k

formal-out

sliceVerticesSum. The sum of the vertices contained
in each slice in a function. This metric is a combination of
slice count and slice size.

maxSliceVertices. The number of vertices of the slice
that have the maximum vertices in all the slices of a
function. A count of the vertices in the one slice that
contains the most vertices of all slices in the function.

globalInput. The number of function parameters and
non-local variables used in a function. This metric is
similar to the UC metric CountInput, but globalInput
additionally considers the non-local variables introduced
by pointers.

globalOutput. The number of non-local variables
modified in a function. This metric is similar to the UC
metric CountOutput, but globalOutput also considers the
non-local variables introduced by pointers.

directFanIn. The sum of function slices in the other
module files that use the output variables directly
modified in this function. In the example of Figure 1, the
directFanIn metric for m() of util.c is 3, since the return
value of m(), and the global variables p and g, are used in
function main() of main.c. The global variable r is not
counted for the directinFanIn of m(), since r is not
directly modified in m(), but indirectly modified in cr().
This metric is a combination of function fan-in and
function outputs and is a measure of the coupling of the
function.

indirectFanIn. The sum of slices in other module files
that use the output variables indirectly modified in this
function.

directFanOut. The sum of function slices in the other
module files whose output variables are directly modified
in them and used in this function. In the example of
Figure 1, the directFanOut metric for main() of main.c is
3, since the return value of m(), and the global variables p
and g are used in main().

indirectFanOut. The sum of function slices in the
other module files whose output variables are indirectly
modified in them and used in this function.

lackOfCohesion. This metric indicates the cohesion of
function slices. Like the method in [11], we determine
lackOfCohesion by the overlap ratio of function slices, i.e.
how much the slices in a function share the same vertices.
But, since it is expensive to compute the ratio of shared
vertices among a number of function slices, we calculate
an approximate ratio of slice overlap by computing the
ratio of the program lines each slice covers to the total
number of lines in the function. Consider function m() in
Figure 1. The number of lines in the function body of m()
is 9, while the four slices in m() have 6, 6, 1, and 1 lines
respectively. Hence, the slice overlap ratio for function
m() is (6/9+6/9+1/9+1/9)/4, or 39%. The lackOfCohesion
value is the reciprocal of the slice overlap ratio. So, for
function m(), its lackOfCohesion value is 2.56. We can
see from Figure 1 that the slice with respect to the
function return has high cohesion with the slice with

respect to g, while they both have low cohesion with the
slice with respect to p or r.

The PS metrics listed above are computed at the
function level of granularity. We have also developed a
set of metrics at the file level corresponding to those at
function level. The file level metrics are the sum of the
function-level metrics for all the functions a file contains,
except for lackOfCohesion and maxSliceVertices, which
are the average of the function-level metrics for all the
functions in the file, and edgesToVerticesRatio, which is
the ratio of sum of edges in a file to the sum of vertices in
the file. Note that, in practical computation of the
program slices for functions, some normalization will be
performed for complex statements. So, the actual PS
metrics will take into account additional vertices and
edges generated by normalization.

4. Experiment

It makes intuitive sense that code properties like size,
complexity, and coupling are correlated with bug-
proneness, and several research efforts have demonstrated
this correlation. Ideally we would like to demonstrate that
the PS metrics are also correlated with bug-proneness,
and perform better than the traditional metrics in the UC
set. In order to evaluate the PS metrics, we compared the
PS metrics and UC metrics by applying both of them to
the task of bug classification, in which we use machine
learning techniques to predict whether a source code file
or function will contain bugs (or not) based on the
correlation of code metrics with facts gathered from
actual buggy/bug-free code.

We performed an experimental bug classification on
887 revisions of the Apache HTTP server project and 76
revisions of the Latex2rtf document converter project
using PS metrics and UC metrics respectively. The basic
data for the two projects is described in Table 1. Both file-
level and function-level PS metrics and UC metrics are
used in the experiment. We additionally compared the
accuracy of the PS and UC metrics to evaluate the PS
metrics.

4.1. Overview of Experimental Process

We use the Latex2rtf project as an example while
explaining the steps used to perform bug classification at
the file and function level. The same process is used for
the Apache HTTP project.

Step 1: Fact Extraction and Metrics Computation. We
compute the PS and UC metrics at both the file and
function level for all files in every revision. After all
revisions have been processed, we compute the average
summary value set of the PS metrics and UC metrics for
the source code files and functions in the Latex2rtf
project. The metrics value set consists 5 values for each

metric, which are the average metric value of the
revisions examined, the maximum metric value in the
revisions, the standard deviation of metric values, the
cumulative value difference of the metric value along the
revisions, and the change tendency (-1, 0, 1) of metric
values in the revisions examined.

Step 2: Bug Labeling. The change logs of the 76
revisions of the Latex2rtf project are mined to determine
bug-introducing changes [14] (changes to the source code
that introduce an error in the code). We mark the files and
functions that have ever contained bug-introducing
changes as buggy ones, and mark the others as bug-free.

Step 3: Bug classification. We use the 10-fold cross-
validation method [15] to perform bug classification
prediction using the PS metrics value set from step 1. We
compare the classification prediction with the real bug
classification from step 2 to obtain the predictive accuracy
of the PS metrics. We follow the same steps using the UC
metrics to obtain their predictive accuracy.

Step 4: Accuracy Comparison. We evaluate the PS
metrics by comparing the classification accuracy from PS
metrics with the classification accuracy from the UC
metrics at the file level and the function level
respectively.

We explain each of these steps in further detail in the
following subsections.

4.2. Fact Extraction and Metric Computation

To compute the PS and UC metrics for the Latex2rtf
project, we retrieved 76 revisions of the Latex2rtf project
source code from its CVS repository [16] using Kenyon
[9]. Kenyon automates the process of extracting revisions
from a software configuration management system
repository, computing user-specified metrics on each
extracted revision and then storing them in a database.

For each retrieved revision we use the Understand for
C++ tool to compute the UC metrics at the function and
file level. After all revisions are processed, we obtain the
UC metrics value set for each file and function.

We compute the PS metrics as follows. For each
revision retrieved, we use CoderSurfer [17] to perform
static analysis on each file. CodeSurfer is a program
analysis tool produced by GrammaTech, Inc., capable of
parsing and analyzing C programs, generating program
dependence graphs, and performing program slicing for C
programs. We computed the function-level PS metrics for
each function based on its procedure dependence graph
generated by CoderSurfer. The file-level PS metrics are

obtained after all functions in a file are analyzed. Once all
76 revisions of the Latex2rtf project are processed, the PS
metrics value set for each function and file are computed.
An an example, Table 2 shows the average metric value
of PS metrics for a sample function and file in the
Latex2rtf project at a single revision.

We used the same approach to compute the PS and UC
metrics at the file and function level respectively for 887
revisions of the Apache HTTP version 1.3 project. The
revisions of the Apache HTTP project were retrieved
from the Subversion repository for the Apache HTTP
project. Compared with the Latex2rtf project, we examine
many more revisions of the Apache HTTP project. This is
due to the Apache HTTP project having many more
revisions in its repository, and some Latex2rtf revisions
not being compilable. After the PS and UC metrics were
generated for the 877 Apache project revisions, we
obtained the PS and UC metrics value set for each file and
function.

4.3. Bug labeling

Since we will evaluate the accuracy of bug prediction
using PS or UC metrics, we need to determine whether a
file or a function examined in the experiment actually
contains bugs. We label as buggy those project files or
functions that actually have at least one bug during the
revisions examined. To perform bug labeling, we assume
that a file or function has a bug if it has one or more bug-
introducing changes in its examined change history.
Before we identify bug-introducing changes, we identify
bug-fix changes based on the log messages that are
supplied with a change. There are two approaches for this
step: looking for keywords like "Fixed" or "Bug" in the
change log, a technique introduced by Mockus and Votta
[18], or looking for references to bug reports like
“#42233” as introduced by Fischer et al. [19] and by
Cubranic and Murphy [20]. We use the ‘looking for
keywords’ method. If a change log contains ‘bug’, ‘fix’,
or ‘patch’, we assume the change is a bug-fix change. To
identify bug-introducing changes, we annotate each line
of the preceding revision with the most recent revision
that changed this line. In this manner we can trace lines
backwards through the revision history. We used this
method to perform bug labeling for 76 revisions of
Latex2rtf project and 887 revisions of the Apache project,
identifying 20 buggy files and 132 buggy functions in
Latex2rtf, and 16 buggy files and 67 buggy functions in
Apache, as shown in Table 1.

Table 1. Analyzed projects.
Project Period # of revisions # of files # of actually

buggy files
of

functions
of actually buggy

functions
Apache HTTP 04/1998 ~ 09/1998 887 46 16 813 67

Latex2rtf 10/2002 ~ 11/2005 76 25 20 524 132

Table 2. Average metric value of PS metrics for a Latex2rtf function and a Latex2rtf file at one revision. (C1:
SliceCount, C2: verticesCount, C3: edgesCount, C4: edgesToVerticesRatio, C5: sliceVerticesSum, C6: maxSliceVertices, C7:

globalInput, C8: globalOutput, C9: directFanIn, C10: indirectFanIn, C11: directFanOut, C12: indirectFanOut, C13:
lackOfCohesion)

function
or file
name

Revision C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

setPackag() 4/17/2005 6 552 1447 2.62 1120 278 43 2 2 8 2 5 1.94
cfg.c 10/1/2004 40 4794 12742 2.66 1608 402 588 17 189 327 39 205 2.3

4.4. Bug classification

In the experiment, we use PS and UC metrics to
perform buggy file or function classification prediction.
There are eight bug classification experiments, listed
below, exploring all combinations of metric kinds (PS or
UC), metric granularity levels (file or function), and
project (Latex2rtf or Apache):

Bug file classification prediction using PS metrics at
file level for the Latex2rtf project.

Bug function classification prediction using PS metrics
at function level for the Latex2rtf project.

Bug file classification prediction using UC metrics at
file level for the Latex2rtf project.

Bug function classification prediction using UC
metrics at function level for the Latex2rtf project.

Bug file classification prediction using PS metrics at
file level for the Apache project.

Bug function classification prediction using PS metrics
at function level for the Apache project.

Bug file classification prediction using UC metrics at
file level for the Apache project.

Bug function classification prediction using UC
metrics at function level for the Apache project.

We use the PS metrics at the file level for the Latex2rtf
project as an example for explaining the process we used
to perform bug classification prediction. The other bug
classification experiments follow the same process.

We use the 10-fold cross-validation method [15] to
make the buggy/bug-free classification prediction based
on the PS metrics for all 25 Latex2rtf files. In the 10-fold
cross-validation method, we randomly divide the 25
Latex2rtf files into 10 folds as shown in Figure 3. We
select the first fold as the test set, and the others as the
training set. We use a machine learning algorithm to
predict the buggy files in the test set. To perform
prediction, the machine learning algorithm uses the
training set to determine the correlation of the PS metrics
for these files with the bug facts obtained in the previous
step. Then, it uses the correlation between metrics and
bugs to predict which files in the test set will contain
bugs. After the bug classification prediction, we compare
the prediction results for the test set with the real bug
facts obtained from the bug labeling step to determine the
prediction accuracy for the files in the test set.

For example, suppose there is a file cfg.c in the test set.
Based on its PS metrics, and the correction between the
PS metrics and bug labeling for the files in the training
set, we predict it to be a buggy file. Then, we compare the
bug prediction for cfg.c with its real bug label as
computed in the Bug Labeling step. If they are the same,
we call this a correct prediction for cfg.c; otherwise, the
prediction is incorrect.

The method iterates by selecting the 2nd, 3rd …10th

fold as a test set, and others as training set. After 10
iterations, we obtain the bug classification prediction
result of PS metrics for each of the 46 files. The accuracy
of the prediction is determined by the formulas in Figure
4.

In the 10-fold cross-validation procedure, the machine

learning algorithm applied is a Bayesian network
classifier [21], which uses graph models to represent
interactions between features and classes. Based on the

Number of files that are predicted to be
buggy and are actually buggy

Number of files that are predicted to be
bug-free and are actually bug-free

Prediction precision
for buggy files = Number of files predicted to be buggy

Number of files that are predicted to be
buggy and are actually buggy

Prediction precision
for bug-free files = Number of files predicted to be bug-free

Prediction recall
for buggy files = Number of files actually buggy

Prediction recall
for bug-free files = Number of files actually bug-free

Number of files that are predicted to be
bug-free and are actually bug-free

Overall prediction
accuracy = Number of files

Number of files that are correctly
predicted to be buggy or bug-free

Figure 4. Prediction precision and recall.

1 ……
Test
Set

2 3 10

Training Set

Figure 3. 10-fold cross-validation.

model, the classifier computes probabilities for each class,
and determines the class with the maximum probability.
In our experiment, we used the Bayesian network
classifier implementation in the Weka data mining
software [15].

For the PS metrics at the function level, we used the
same procedure to perform bug classification prediction
for every function in the Latex2rtf project. That is, we
divided the 524 functions in the Latex2rtf project into 10
folds. We took each fold as a test set and the other 9 folds
as training sets to predict the bug or bug-free property of
each function in the test set using the PS metrics at the
function level. After 10 iterations, we obtained the bug
classification prediction for each of the 524 functions.
The accuracy of the prediction is computed using
formulas similar to those in Figure 4, where ‘number of
files’ is replaced by ‘number of functions’.

We repeated the bug classification experiment using
the same process for the other combinations, i.e. PS
metrics for the Apache project, UC metrics for the
Apache project, and UC metrics for the Latex2rft project.

4.5. Experimental Results

Figures 5 and 6 show the results of bug classification

prediction using PS and UC metrics for the HTTP project.
Figures 7 and 8 show the results for the Latex2rtf project.
Tables 3 and 4 show the number of correct classifications
made using PS metrics and UC metrics, which are used to
compute the overall accuracy in Figures 5 through 8. For
example, using PS metrics we correctly classified 38 out
of 46 files, so its overall accuracy is 82.6% (38/46).

Table 3. Correct classifications of PS and UC at the

file level

 # of
Files

of correct
classifications

by PS
Accuracy

of PS
(overall)

of correct
classifications

by UC
Accuracy

of UC
(overall)

Apache 46 38 82.6% 37 80.4%
Latex2rtf 25 23 92% 22 88%

Table 4. Correct classifications of PS and UC at the

function level

 # of
Functions

of correct
classifications

by PS
Overall

accuracy
of PS

of correct
classifications

by UC
Overall

accuracy
of UC

Apache 823 643 78.1% 614 74.6%
Latex2rtf 524 373 71.2% 369 70.4%

Generally, the PS metrics have slightly better

performance than the UC metrics: in the Apache
experiment, the overall precision of PS metrics at the file
level is 2.2% higher (82.6% vs. 80.4%) than the UC
metrics at the file level, while the PS metrics at the

function level are 3.5% higher (78.1% vs. 74.6%) than the
UC metrics. In the Latex2rtf experiment, the overall
precision of PS metrics at the file level is 4% higher (92%
vs. 88%) than the UC metrics, while the PS metrics at the
function level have almost the same performance (71.2%
vs. 70.4%) as the UC metrics.

In Figures 5 and 7, the PS metrics outperform UC
metrics on almost all comparison items: the precision and
recall for buggy or bug-free files. In Figures 6 and 8, the
PS metrics have a lower recall rate on buggy functions
and a lower precision when predicting bug-free functions,
but PS has better overall predictive accuracy than the UC
metrics.

Bug Classification for Apache HTTP at File Level

70.60%

75.00%

86.20%

83.30%

80.40%

75.00%

75.00%

86.70%

86.70%

82.60%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Precision (buggy)

Recall (buggy)

Precision (bug-free)

Recall (bug-free)

Overall

PS

UC

Figure 5. Comparison of PS metrics and UC metrics at

file level for the Apache project.

Bug Classification for Apache HTTP at Function Level

19.60%

69.70%

96.60%

75.00%

74.60%

16.90%

43.90%

94.40%

81.10%

78.10%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Precision (buggy)

Recall (buggy)

Precision (bug-free)

Recall (bug-free)

Overall

PS

UC

Figure 6. Comparison of PS metrics and UC metrics at

function level for the Apache project.

Bug Classification for Latex2rtf at File Level

100.00%

85.00%

62.50%

100.00%

88.00%

100.00%

90.00%

71.40%

100.00%

92.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Precision (buggy)

Recall (buggy)

Precision (bug-free)

Recall (bug-free)

Overall

PS

UC

Figure 7. Comparison of PS metrics and UC metrics at

file level for the Latex2rtf project.

Bug Classification for Latex2rtf at Function Level

44.90%

76.50%

89.60%

68.40%

70.40%

44.80%

62.10%

85.30%

74.20%

71.20%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

Precision (buggy)

Recall (buggy)

Precision (bug-free)

Recall (bug-free)

Overall

PS

UC

Figure 8. Comparison of PS metrics and UC metrics at

function level for the Latex2rtf project.

We used the ChiSquare evaluator in the Weka data

mining software [15] to measure the usefulness rank of
each PS metric in classification. We list the top 6 PS
metrics that are the most useful in the classification in
Table 5. Generally, the most useful metrics vary in
different projects and granularities, but the metrics
verticesCount and edgeCount are useful metrics in most
of the combinations.

We note that file level classification has different
usefulness of PS metrics than the function level. For file
level classification, edgesCount and directFanOut are
very important metrics in the two projects as shown in
Table 5, while they are not in the function level
classification. We need to perform further analysis to see
if these differences among significant metrics at the file
and function level hold true across multiple projects. This
is future work.

Table 5. Top 6 of the most useful PS metrics in
classification. (a: average, d: accumulative value

difference, s: standard deviation)
 File Level Function Level
HTTP d-verticesCount

a-verticesCount
d-edgesCount
a-edgesCount
d-directFanOut
a-globalOutput

a-lackOfCohesion
d-lackOfCohesion
a-verticesCount
a-maxSliceVertices
d-verticesCount
a-sliceVerticesSum

Latex2rtf d-edgesCount
a-edgesCount
d-directFanOut
a-directFanOut
d-indirectFanOut
a-indirectFanOut

d-edgesToVerticesRatio
d-sliceCount
a-sliceCount
s-lackOfCohesion
s-verticesCount
s-edgesCount

5. Discussion

5.1. Pros and Cons of PS Metrics

Unlike straightforward code metrics based on line
counts and statement counts, the PS metrics consider
more insightful code properties based on program
behaviors, as captured by program slices and obtained
from program analysis and points-to analysis. The PS
metrics give different weights to each statement based on
their significance in the control dependence and flow
dependence in the program. For example, a while
predicate that encloses multiple statements will contribute
more than one control dependence edges in PS metrics,
while it only contributes one source code line in UC
metrics. For function coupling, the finer-grained
couplings between function slices, e.g. the couplings
between program slices in caller functions and in callee
functions are considered, instead of the coupling between
whole functions. As a result, the PS metrics summarize
properties of the code more precisely. Additionally, the
points-to analysis helps the PS metrics recover program
complexity and coupling hidden by pointer variables. It
makes sense that a function containing many uses or
modifications of pointer variables should be viewed as
more complex and error-prone than a function without
such use.

The major disadvantage of PS metrics is obvious: it is
expensive to compute the program slicing information for
a project. For example, it took about 20 minutes for
CodeSurfer to analyze one revision of the Apache project,
which has about 70K lines of source code, on a Pentium 4,
1.7G HZ Linux system with 768 MB memory using the
default options of CoderSurfer. This is the reason that we
only analyzed a short period of the Apache project in our
experiments. Another disadvantage of PS metrics is the
program needs to be compiled to compute them, and so

we are unable to compute PS metrics for revisions
containing syntax errors.

To address the shortcomings of PS metrics, one
possibility is to use a lightweight program analysis
implementation to generate the PS metrics. A lightweight
program analysis would hopefully achieve a good balance
between precision and efficiency, allowing the
computation of PS metrics for larger projects. Exploring
this possibility remains future work.

5.2. Precision and Recall Rates

We observe in Figure 6 that both PS and UC metrics at
the function level have low precision in predicting buggy
functions for the Apache project, at 16.9% (PS) and
19.6% (UC) precision respectively. One explanation is
that the percentage of buggy functions is low for this
project: only 8.2% (67 out of 813) of functions are buggy
in the Apache project. As a result, it is difficult to make
bug classification predictions due to the rarity of the
buggy functions. Even so, the classification prediction
precisions from PS and UC metrics are still much higher
than that from a random-guess classification. That is, if
we randomly classify a function as buggy or bug-free, the
classification precision for buggy functions in the HTTP
project is about 8.2% (67 out of 813) compared with
16.9% (PS) and 19.6% (UC). In contrast, both PS and UC
metrics achieved 100% precision on buggy files and
100% recall on bug-free files for the Latex2rtf project, as
shown in Figure 7. This is partially due to the fact that
there are only 5 bug-free files in the project, so it is easy
to achieve high recall; most files (80%) are buggy, so it is
easy to achieve high precision.

5.3. Threats to validity

In our experiment, we only examined a specific
revision period for each project. The examined revision
periods of the projects or the projects themselves in our
experiment may not be representative. Additionally, due
to the time and computational expense of computing
program slice information over multiple project revisions,
our data set only includes two projects. In general, the
larger the dataset, the more accurate the evaluation.

In addition, the revision set in experiment is not
complete for both HTTP project and Latex2rtf project,
since some revisions are not compilable.

6. Conclusions and future work

In this paper, we described program slicing metrics, a
set of code metrics for C programs using program slicing
techniques. Program slicing metrics measure the size,
complexity, coupling, and cohesion properties of

programs based on program slices, vertices in slices, and
dependence edges in slices.

To evaluate the program slicing metrics, we use them
and Understand for C++ metrics respectively to classify
buggy/bug-free source code files or functions for 887
revisions of the Apache HTTP project and 76 revisions of
the Latex2rtf project, and compare their results. The
outcomes show that the PS metrics have a slightly better
performance than UC metrics in classifying buggy/bug-
free source code: PS metrics have an overall 82.6% and
92% accuracy at file level for the Apache HTTP project
and the Latex2rtf project respectively, and UC metrics
have an overall 80.4% precision and 88% precision at the
file level for the Apache HTTP project and the Latex2rtf
project respectively. The results show that the PS metrics
have at least the same power as UC metrics in performing
bug classification.

A major problem of PS metrics is that it is expensive
to generate the program slicing information for a large
project. To address this problem in our future work, we
will choose and apply light-weight program analysis in
computing PS metrics. For example, we can choose a less
expensive pointer analysis method when performing
program analysis for a project.

We also need to make more experiments on other
projects to further validate PS metrics. Especially when a
light-weight program analysis is used, the experiment can
be performed on a longer version history of larger
projects.

7. References

[1] T. J. McCabe and A. H. Watson, "Software Complexity,"

Crosstalk, vol. 7, no. 12, pp. 5-9, 1994.
[2] M. Weiser, "Program Slicing," IEEE Transactions on

Software Engineering, vol. 10, no. 4, pp. 352-357, 1984.
[3] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural

Slicing Using Dependence Graphs," ACM Transactions on
Programming Languages and Systems, vol. 12, no. 1, pp. 26-
60, 1990.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The Program
Dependence Graph and its Use in Optimization," ACM
Transactions on Programming Languages and Systems, vol.
9, no. 3, pp. 319-349, 1987.

[5] S. Toolworks, "Maintenance, Understanding, Metrics and
Documentation Tools for Ada, C, C++, Java, and
FORTRAN," 2006, http://www.scitools.com/.

[6] T. Gyimothy, R. Ferenc, and I. Siket, "Empirical Validation
of Object-Oriented Metrics on Open Source Software for
Fault Prediction," Transactions on Software Engineering,
vol. 31, no., pp. 897-910, 2005.

[7] T. M. Khoshgoftaar and E. B. Allen, "Predicting the Order of
Fault-prone Modules in Legacy Software," In Proceedings of
the Ninth International Symposium on Software Reliability
Engineering, Paderborn, Germany, 1998, pp. 344-353.

[8] T. M. Khoshgoftaar and E. B. Allen, "Ordering Fault-Prone
Software Modules," Software Quality Journal, vol. 11, no. 1,
pp. 19-37, 2003.

[9] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,
"Facilitating Software Evolution with Kenyon," In
Proceedings of the 2005 European Software Engineering
Conference and 2005 Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, 2005, pp. 177-186.

[10] L. Ott and J. Thuss, "Slice Based Metrics for Estimating
Cohesion," In Proceedings of the First International
Software Metrics Symposium, 1993, pp. 71-81.

[11] J. M. Bieman and L. M. Ott, "Measuring Functional
Cohesion," IEEE Transactions on Software Engineering, vol.
20, no. 8, pp. 644-657, 1994.

[12] B. Li, "A Hierarchical Slice-Based Framework for Object-
Oriented Coupling Measurement", TUCS Technical Report
No.415, Turku Center for Computer Science, Abo Akademi
University, 2001.

[13] T. M. Meyers and D. Binkley, "Slice-Based Cohesion
Metrics and Software Intervention," In Proceedings of the
11th Working Conference on Reverse Engineering
(WCRE'04), Delft, The Netherlands, 2004, pp. 256-265.

[14] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?," In Proceedings of Int'l Workshop
on Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, 2005, pp. 24-28.

[15] I. H. Witten and E. Frank, Data Mining: Practical machine
learning tools and techniques (Second Edition), Morgan
Kaufmann, 2005.

[16] Latex2rtf, "LaTeX to RTF converter Project Home Page,"
2006, http://sourceforge.net/projects/latex2rtf/.

[17] GrammaTech, "GrammaTech CodeSurfer Home Page,"
2006,
http://www.grammatech.com/products/codesurfer/index.htm
l.

[18] A. Mockus and L. G. Votta, "Identifying Reasons for
Software Changes using Historic Databases," In Proceedings
of International Conference on Software Maintenance
(ICSM 2000), San Jose, California, 2000, pp. 120-130.

[19] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release
History Database from Version Control and Bug Tracking
Systems," In Proceedings of 2003 Int'l Conference on
Software Maintenance (ICSM'03), 2003, pp. 23-32.

[20] D. Cubranic and G. C. Murphy, "Hipikat: Recommending
Pertinent Software Development Artifacts," In Proceedings
of the 25th International Conference on Software
Engineering, Portland, Oregon, 2003, pp. 408 - 418.

[21] E. Alpaydin, Introduction to Machine Learning, MIT Press,
2004.

