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ABSTRACT
Research shows that, in general, many people turn to QA
sites to solicit answers to their problems. We observe in Stack
Overflow a huge number of recurring questions, 1,632,590,
despite mechanisms having been put into place to prevent
these recurring questions. Recurring questions imply devel-
opers are facing similar issues in their source code. However,
limitations exist in the QA sites. Developers need to visit
them frequently and/or should be familiar with all the con-
tent to take advantage of the crowd’s knowledge. Due to
the large and rapid growth of QA data, it is difficult, if not
impossible for developers to catch up.

To address these limitations, we propose mining the QA
site, Stack Overflow, to leverage the huge mass of crowd
knowledge to help developers debug their code. Our approach
reveals 189 warnings and 171 (90.5% ) of them are confirmed
by developers from eight high-quality and well-maintained
projects. Developers appreciate these findings because the
crowd provides solutions and comprehensive explanations
to the issues. We compared the confirmed bugs with three
popular static analysis tools (FindBugs, JLint and PMD).
Of the 171 bugs identified by our approach, only FindBugs
detected six of them whereas JLint and PMD detected none.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids

General Terms
Human Factors, Verification
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1. INTRODUCTION
Research shows that, in general, many people turn to

Question & Answer (QA) sites to solicit answers to their

problems [1] [2] [3]. In this paper, we are interested only in
QA sites that discuss source code problems, hence QA sites
refer only to those sites that are source code related, unless
stated otherwise.

Previous research work has shown that users ask recur-
ring questions in QA sites such as Yahoo! Answers and
Naver [1] [2] [3]. Allamanis et al. [4] reported that there
are recurring questions about code idioms in the developer’s
QA site, Stack Overflow (SO) [5]. We also observed many
recurring questions appearing in SO.

SO is actively used to ask questions [6] for various reasons
such as fast response in receiving answers and having many
experts in the community. Treude et al. [7] reported that
within the first two years of SO’s establishment, there were
already three million questions with answers [7]. We observe
that many questions and answers contain code fragments
where the former display the code in issue and the latter
provide the rectified version. Owing to this, we use SO in
our study.

Discovering questions that frequently recur strongly implies
that many developers are facing similar, if not the same issues
in their source code.

However, there are limitations in the QA sites. Developers
need to visit them frequently and/or should be familiar with
all the content in order to take advantage of the crowd’s
knowledge. Due to the large volume and rapid growth of the
QA data, it is difficult, if not impossible for developers to
catch up.

Regardless of the mechanisms that have already put into
place to deter recurring questions in SO, it is still observed
that there is a huge number (1,632,590 ) of recurring ques-
tions. Therefore, we are motivated to mine QA sites to
leverage the huge mass of crowd knowledge to help develop-
ers detect defective code fragments in their source code. With
our technique, we propose to find defective code fragments
by first detecting code clones before making use of them to
triangulate source code anomalies. The defective code frag-
ments (with the crowd’s explanation) are then coupled with
the crowd’s suggested solution (with the crowd’s explanation
as well) and reported to developers for their concurrence.

Although there are existing similar debugging tools such
as FindBugs, PMD and JLint, they are based on manually
identified rules and patterns, rather than patterns mined
from the crowd. Furthermore, these tools are only detectors
as they lack the solutions to the detected issues.

Our approach has the advantage of leveraging the big data
of crowd knowledge to check for source code issues, and to
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provide solutions and an explanation which are absent from
existing static analysis tools.

Our technique is able to generate a reasonable number
(189 ) of warnings in eight high-quality and well-maintained
projects, and produce a high percentage (90.5% ) of confirmed
bugs. Developers show appreciation of our findings as we
are able to provide them with solutions and an explanation
from the crowd. We also compared our results with existing
static analysis tools (FindBugs, JLint and PMD). Six of our
confirmed bugs are detected by FindBugs whereas JLint and
PMD detected none. Despite being able to detect six of the
same bugs, these three popular static analysis tools missed
165 (96.6% ) bugs.

Overall, this paper makes the following contributions:
• An empirical evaluation of recurring questions

in QA sites: We evaluate the number of recurring
questions in SO which serves as the main motivation
for this research work.

• A novel debugging technique that leverages the
crowds’ knowledge: We propose a novel technique
in leveraging the crowds’ knowledge to detect defective
code fragments in software projects and to provide
the crowds’ suggestions and explanations to aid in
debugging.

• An empirical evaluation of crowd debugging
which includes developers’ feedback and com-
parison with existing static analysis tools: We
evaluate our technique by reporting the warnings for
developers’ concurrence and comparing our results with
existing static analysis tools, FindBugs, PMD and
JLint.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the motivation in our design of the crowd
knowledge based debugging and Section 3 provides our Crowd
Debugging approach using an illustrated factual example.
We describe our evaluation settings in Section 4 and portray
the results in Section 5. Related work is surveyed and shown
in Section 6 while we further analyse the various limitations
and threats in Section 7. We conclude with directions for
future research in Section 8.

2. RECURRING QUESTIONS
Research has been conducted to show that questions are

recurring in a myriad of QA sites [1] [2] [3] such as Yahoo!
Answers and Naver. Wang et al. found 10,255 recurring
questions within a short span of four months (February to
June 2008) in Yahoo! Answers. Jeon et al. also found 1,557
recurring QA pairs in a collection of 68,000 questions in the
“Computer Novice” category in Naver.

In retrospect to Software Engineering, previous research
has studied the common questions asked by developers [8] [9]
at the project and organizational levels, as well as in mailing
lists and discussion forums [10]. Fritz et al. and Sillito et
al. identified 78 developers’ questions that relate to a lack
of support in projects and 44 common developers’ questions
that relate to software evolution tasks. Hen et al. extracted
recurring questions from mailing lists and discussion forums
to provide software development related documents to help
developers in the software implementation process.

In SO, the QA site tailored specially for developers, re-
curring questions are however discouraged, and mechanisms
have been put into place to detect and deter recurring ques-

tions [11]. Similar questions are also shown when a developer
posts a new question.

Recurring questions in SO are generally categorized into
three groups: exact word-by-word copying and pasting, partial
use of keywords in original questions and having subtle se-
mantic differences to the original questions that do not belong
to the previous two groups [12]. If there is a recurring ques-
tion in SO, developers can vote to include it with comments
and links to the original question. This will then result in the
question being modified to reflect it as recurring [13]. Recur-
ring questions can also be merged by notifying moderators
to perform a merge operation on the recurring questions [11].

Table 1: Number of Recurring Questions in SO since
its establishment. 1,632,590 questions are recurring
despite mechanisms put into place to prevent them.
SO users can also detect duplicates after posting
their questions to further eliminate them. There-
fore, we believe this 8.2% (1,632,590) is a high num-
ber for recurring questions.

# of # of
Period Questions Recurring

Questions

Aug ’08 - May ’14 19,881,018 1,632,590 (8.2%)

We have observed recurring questions in our use of SO on
several occasions and this led us to investigate the number of
recurring questions in SO. Table 1 shows the total number of
questions in SO from August 2008 till May 2014; the number
of identified recurring questions and its ratio with respect to
the total number of questions.

Despite having mechanisms put into place to prevent re-
curring questions from taking place, and SO users can detect
duplicates after questions are posted to further eliminate
them, we observed many recurring questions in SO from our
dataset. Although the ratio of recurring questions to the
entire question set is around 8%, it is still a huge number
(1,632,590 ).

We therefore hypothesize that programming issues faced
by a developer may also be faced by others, and questions
asked in SO can be leveraged to help other developers in
similar situations. This further motivates us to design crowd
knowledge based debugging by tapping into the existing pool
of knowledge from the QA database. We have used all the
question data from August 2008 till May 2014 and we do not
limit ourselves to only the recurring question data so as to
increase the chances of a higher detection rate.

3. APPROACH
This section describes our approach to leverage the crowd’s

QA knowledge to detect defective code fragments.
Figure 1 shows the overview of our approach. SO question-

answer code-pairs have been populated in a database and
we perform code clone detection between the target source
code and the question code blocks in SO to identify similar
fragments in the target code. The detected pairs of code
clones are the shaded regions in Figure 1. The shaded regions
in the first figure depict two matched clone fragments (M1
and M2 ) from the target source code while the shaded regions
in the center figure show the matched clones (QF1 and QF2 )
from the SO question code blocks.



M1

(a) Target Source code (b) SO Question Block

QF1

(c) SO Answer Block

Clone 
detection1

Element and Title 
matching2

clone pair 1

clone pair 2

Matched (O)

Mismatched (X)
M2

QF2

...

...

...

...

...

...

...

...

...

Non-essential Statement 
Filters

Similarity #1 
Filter

Similarity #2 
Filter

3 Post 
Filtering

Figure 1: Overview of approach. The target source file is compared against the SO question code blocks for
code clones. The code-like terms of the matched clone in the question are further compared with those in
the answer code blocks. A matched code-like term denotes that the clone fragment in the target source file
is potentially defective. Post filters are then applied to reduce the potential false positives.

The code-like terms [14] [15] from the detected clones
in the SO question code blocks are then compared with
the code-like terms in the corresponding answer code blocks.
Code-like terms are sequences of characters that resemble
code elements [14] [15]. This step is needed as we observed
questions and answers containing code fragments usually have
some identical code terms. The questions usually contain
the problematic code while the answers provide the rectified
version. If there is a matched code-like term, it will be
marked as a potential defective code fragment.

We further applied post filtering process to identify and
remove potential false positives and the output will be treated
as a defective code fragment. Together with the SO answer
with explanation and its URL, these will be reported to the
developers.

In Figure 1, M1 is a defective code fragment as there are
matched code-like terms between its matched clone QF1 and
the answer code-blocks. M2, however, is not a defective code
fragment as there is no matched code-like term between QF2
and the answer code-blocks.

Our approach can be seen in five consecutive phases,
namely, Code-Pairs Database Building, Clone Detection, El-
ement and Title Matching, Post Filtering, and Reporting
Defective Code Fragments. The following subsections explain
each phase with a concrete example from JFreeChart.

3.1 Code-Pairs Database Building
Our goal in this phase is to create and populate a database

that contains question-answer code-pairs from SO.
Specifically, we are interested in questions that have the

highest scored answers (at least a 1 up-voted score) and
contain code elements [14] [15] within questions and answers.
If there are multiple answers with the same high score to a
question, we will choose the most recent answer even though
it might not have been explicitly marked as accepted. We
observed that better answers can be posted after a previously
given answer has been marked as accepted. An answer to a
question in SO is voted upwards manually to give a score to
the answer by the community of developers if the solution
presented solves the issue highlighted in the question [16].
The highest scored answers would mean that the answers
have a strong consensus among a larger group of developers.

Code elements are important in our approach as we need
them for detecting faults in the target source code.

Most code elements are formatted in code blocks inside the
question and answer sections of a SO post. The code elements
are either embedded inside the < code > tag for inline code
or the < pre >< code > tags for blocks of code [17]. We
define code blocks here as the entire content inside either of
the previous mentioned encompassing tags.

The detected question-answer pair is denoted as < Q,A >
where Q refers to the code blocks from the SO question body
and A refers to the corresponding answer code blocks.

In this paper, we consider only Java questions. We use the
public SO data from the Stack Exchange Data Dump [18]
website for convenience purposes as all the data we needed are
structured in the XML form Posts.xml for easy extraction. In
particular, we harvest Java tagged questions from Posts.xml.
Posts.xml contains all SO questions and answers since its
establishment from August 2008 to May 2014 (∼2 GB in file
size) [19]. A total of 309,453 code-pairs are mined and used
for detecting defective code fragments. Future addition of
new SO data can be harvested quickly by querying the Stack
Exchange Data Explorer [20] by the questions’ creation time.

However, our approach is not limited to Java. This is
because SO contains questions for different types of pro-
gramming languages. Extracting code fragments of another
programming language can be replicated similarly by mining
SO questions with the tagged keyword of that programming
language (e.g. C++) instead of Java. Furthermore, the clone
detector (CCFinderX ) used in the next phase (Section 3.2)
is able to identify code clones using textually similar tokens
regardless of the type of programming languages.

3.2 Clone Detection
Our goal here is to compare the target source code from

the software projects with Q to detect similar code in the
target.

We experimented several state-of-the-art code detection
techniques such as Graph-based (GrouMiner [21]), Tree-based
(Deckard [22]) and Function-based (SimCad [23]). These tech-
niques depend on existing Java Language compilers such as
the Eclipse Java Compiler [24]. These compilers can handle
some errors but cannot handle partial code fragments very



well [15]. Many code fragments in SO are structured con-
cisely but incomplete, thus making them non-compilable [15].
Despite wrapping with enclosing classes/methods in mitiga-
tion to the code with no class name or method signature, we
were still faced with many compilation errors which were due
to missing types. For example, SimCad is unable to parse
267,174 (86%) of the SO code fragments. Existing state-
of-the-art Partial Program Analysis (PPA) which attempts
to recover missing types also depends on Java Language
Compiler and has shown ineffective in processing code from
SO [15]. In light of these limitations, we turned to token-
based code detection approach which is independent of any
language compiler.

To detect more precise and accurate code clones, we restrict
the code clone detection to only Type I and II clones. Type
III clones have several constraints such as producing many
false positives, not being representative of all subjects, and
require individual subject experiments in determining the
lines of gap for omission [23].

We used CCFinderX [25], a textual token-based code clone
technique to achieve this detection goal. CCFinderX is chosen
for several reasons. Besides being able to detect Type I and
II clones efficiently [25], it also has the ability to detect a
wider range of code fragments in different languages.

As we do not want our detection to be so fine-grained that
it covers every single statement it may detect, we limit the
minimum number of detected tokens to 30 (default is 50) in
CCFinderX. This number is chosen because it symbolises a
concrete short method with a method name, the return type
and a single statement body. We want our clone detector to
identify as many useful clones as possible.

The use of a minimum numbered token means that several
detected code clone pairs can come from the same pair of
source-target code-pair. As long as it meets the constrained
minimum of 30 tokens, CCFinderX will extract the cloneset
that covers the largest consecutive code lines that contain
the tokens.

The detected code-pair is denoted as < QFn, Mm > where
QFn refers to the nth detected code fragment in Q and Mm

refers to the mth matched code fragment from the software
projects.

As an example, CCFinderX detected a code clone pair
between AxisEntity.java in JFreeChart and the SO question
ID: 7132649. Since there is only one detection between
AxisEntity.java from JFreeChart and the SO question ID:
7132649, the detected code-pair is < QF1, M1 > where
QF1 represents the code fragment in (b) SO Question Block
(Figure 1) while M1 represents the code fragment in (a)
Target Source code Figure 1.

Then, < QF1, M1 > is traced back to the corresponding
< Q, A > to form the clone fragment-answer code-pair
< QF1, A > for the next phase processing.

3.3 Element and Title Matching
Our goal in this phase is to identify the potential defective

code fragments from the suite of Mm identified in the earlier
phase (Section 3.2). The collection of Mm in Section 3.2 is
the set of candidate code fragments where they might be
defective.

We discard a detected code-pair if there are no matching
code-like terms between the SO title and QFn, the SO title
and Mm, and Mm and A. We observed many of them are
false positives and thus are not essential to our detection.

The matching will involve stemming the natural words/code-
like terms using Porter’s Stemming Algorithm [26] before
comparing them.

Also, we observed QFn containing too many or too few
lines of code are false positives. In addition, SO does not
advocate pasting large chunk of code. We experimented
and found QFn whose code lines are greater than 15 or less
than or equal to three are false positives. We removed such
warnings.

We also compare the code-like terms [14] [15] for similarity
between the < QFn, A > code-pairs from Section 3.2 to
determine if the corresponding Mm is defective. If at least
one code-like term is found in both QFn and A, then the
corresponding code fragments Mm from the software project
are considered to be potentially defective. It is because we
observed that in many answers, there are references of code
elements from the questions that are having issues. The
crowd then usually highlights the problematic code elements
from the question and gives a rectified solution in the answer
body.

Specifically, we are interested in the following mentioned
types of Java code-like terms as they generally make up
partial or complete code structures that are essential in our
detection. Moreover, many other languages have similar
structure and can be replicated across: classes/objects (in-
cludes inherited, inner and static classes), variables (includes
class and local variables), methods (includes method defini-
tion, single method calls and method chains), parameters,
operands (e.g. in the logical comparison foo == bar, foo and
bar are both named operands) and constructors. For param-
eters, we considered only named parameters to be important
as the code fragments in SO may not explicitly include all
variable definition and the parameters might be the issue
in discussion. Similarly, only named operands are being ex-
tracted. If qualified terms (e.g. foo.variable or foo.method())
are present, they are segregated into classes/objects, methods
or variables.

We used the Java Language Specification [27] as a guide
to help us create an island parser [15]. An island parser is
a parser that extracts only the interesting constructs [15].
In our study, the interesting constructs are the code-like
terms and the island parser is based on island grammar [28]
which is a set of multiple regular expressions where they have
demonstrated to be more effective than lightweight regular
expressions and traditional IR techniques [29] [30] [14] [15].

For the example of AxisEntity.java in JFreeChart and the
SO question ID: 7132649, we extracted all code-like terms
from QF1 (Detected Code Fragment in SO Question Block)
and A (SO Answer Block). The output of using the island
parser on QF1 and A are two sets of code-like terms from
QF1 and A respectively. The set of code-like terms in QF1

are o, Book and other while the set of code-like terms in A
are a, equals, b, Book, ComicBook, hashCode, this, getClass
and o. Subsequently, we matched the code-like terms from
the SO question block to the SO answer block. There are two
matched terms, Book and o, linked from QF1 to A. They are
then traced back to M1 and this sketches out the potential
defective code fragment.

Next, we apply post filters to reduce the false positives
and identify the defective code fragments. We explain the
filtering process in Section 3.4.



3.4 Post Filtering
To eliminate potential false positives, we develop several

filters. Figure 1 on the right shows the filters that we have
applied.

Table 2: The list of non-essential statements warn-
ings from 8 subjects, 21,333 warnings.

Filter Code Pattern # Filtered

Primitive Parsing 373
Object Creation 4,293
Appending Collection Items 324
Trivial Small Code Construct 554
Overridden Methods 242
Single Statement Block 205

3.4.1 Non-essential Statement Filters
Kawrykow et al. [31] studied non-essential code changes

in software archives and reported that these non-essential
code changes can cause inaccurate representation of soft-
ware development effort. Similarly, we observed that there
are many non-essential statements in our detection. Non-
essential statements are code statements that are very com-
mon but usually not very relevant to program correctness.
They exhibit several code patterns and are listed in Table 2.
To eliminate these non-essential statements, we develop the
following filters.

• Primitive Parsing, Object Creation, Appending
Collection Items: For QFn that contains primitive
parsing code (e.g. Integer.parseInt), object creation
code (e.g. AnObject obj = new AnObject()) and ap-
pending of collection item code (e.g. obj.put(“item”)),
we observed that they are very common but not rele-
vant to errors. We experimented and observed that if
the line number ratio between these code patterns and
QFn is greater than 0.4, we removed them. A total of
(373 + 4,293 + 324 = 4,990) warnings were removed
from the 8 subjects.

• Trivial Small Code Construct: Many QFn having
loop (e.g. for/while), condition (e.g. if ) and exception
(e.g. try/catch/finally) constructs are usually structu-
ally and semantically correct. If the QFn has total
line numbers less than or equal to four lines of these
constructs (each construct having four lines of code),
then they are removed. A total of 554 warnings were
removed from the 8 subjects.

• Overridden Methods: Overridden methods
(toString(), run(), compare(), hashCode() and equals())
are also observed to be mostly false positives and we
remove them. For the overriden methods, we discard
them only if their method bodies do not conform to the
correct contract structure [32] as defined by the Java
Specification [27]. For example, according to the Java
Specification, the equals() method must be reflexive,
symmetric, transitive and consistent. In the case of
symmetric, it is stated that x.equals(y) should return
true if and only if y.equals(x) returns true. We noted
that the use of instanceof is asymmetric and is not a
valid symmetric contract. If the equals() body uses
instanceof for comparison, then the equals() method is
seen as non-conformance to the Java Specification and

will not be discarded. A total of 242 warnings were
removed from the 8 subjects.

• Single Statement Block: Within QFn, a single
statement in a block of curly brackets is removed as we
observed that many of them are trivial and are false
positive. A total of 205 warnings were removed from
the 8 subjects.

3.4.2 Similarity Filters
After applying the non-essential statement filters, we per-

form Similarity Filter #1:, and Similarity Filter #2:, sepa-
rately to ensure the residual code from QFn and Mm have
some matching. The distinct output from these two filters
serve as the final warnings generated by our technique.

• Similarity Filter #1: Warnings whose distinct
matching code-like term in QFn and A (Figure 1) hav-
ing a QFn/A ratio of less than 0.8 are removed. We
experimentally found that 0.8 is the best threshold in
our study for this filter. A total of 4,339 warnings were
removed from the 8 subjects.

• Similarity Filter #2: If there are warnings whose
distinct matching code-like term in QFn and A having
a QFn/A ratio of less than 0.37, and distinct matching
code-like term in Mm and A having a Mm/A ratio of
less than 0.25, then they are removed. We experimen-
tally found that 0.37 and 0.25 are the best thresholds
in our study for this filter. A total of 10,814 warnings
were removed from the 8 subjects.

3.5 Reporting Defective Code Fragments
We collect the warnings generated and filtered from Sec-

tion 3.3 and Section 3.4, and report them to developers of
each project. We discuss the false positives, together with
the disagreed bugs by the developers, in Section 5.

We report all found suspicious defective code fragments to
developers for their concurrence in the form of a simplified
bug report that is generated automatically.

The bug report includes the source file name, its defective
code fragments with line numbers, a summarized suggested
solution from SO and the crowd’s explanation on why the
code fragments are defective with a link to the original SO
post.

Defective Code: AxisEntity.java (line 139-145)
Explanation : Using instanceof for comparison is
(on defective asymmetric
code)
Suggestion : Use getClass() for symmetric comparison
URL : stackoverflow.com/questions/7132649

Figure 2: Report structure of a defective code frag-
ment from JFreeChart’s AxisEntity.java

For example, a report sample from JFreeChart is shown in
Figure 2. Besides indicating the source file (AxisEntity.java)
and the defective code fragment M1, we also highlighted to
the developers the defective code fragment and the explana-
tion from the crowd. According to the crowd, M1 represents
an incorrect symmetric contract inside the equals() method
due to the use of instanceof in the object comparison. For the
equals() method to be contractually correct, the comparison
of objects within equals() must be symmetric. The suggested
solution from the crowd is to use getClass() instead. We also



cited the SO post URL 1 in the report for the developers’
reference.

4. EVALUATION SETTINGS
In this section, we describe how to evaluate our approach

for its effectiveness in detecting defective code fragments in
software projects.

4.1 Research Questions
To evaluate our approach, we seek to address the following

research questions in our experiment:
RQ1: (Detectability) How many warnings can be

detected using our technique? We address the effective-
ness of our technique in leveraging the crowd’s bug patterns
to detect warnings in software projects. More specifically, in
this RQ, we are interested in the quantity of the detected
warnings, which serves to imply how thorough and effective
our technique is in unravelling defective code fragments in
software projects.

RQ2: (Confirmed Bugs) How many warnings from
our technique are confirmed as bugs by developers?
By presenting the total number of warnings generated from
the tool, it is imperative to distinguish between false and true
warnings. We investigate if the findings from our technique
make sense to the developers and whether they will accept
the solution proposed by the crowd.

RQ3: (Comparison) How many confirmed bugs
from RQ2 can be detected/missed by other static
analysis tools such as FindBugs, JLint and PMD,
and how many bugs are missed from our technique
as compared to the static analysis tools mentioned?
Existing static analysis tools can detect some types of bugs.
In this RQ, we investigate how many of the confirmed bugs
detected from our technique can also be detected likewise
by the static analysis tools. To make our evaluation more
holistic, we also investigate on the number of useful warnings
missed from the static analysis tools when leveraging our
crowd debugging technique.

4.2 Subjects for Evaluation
We evaluate our technique with the latest version of eight

open-source projects at the time of our experiment shown in
Table 3. We exclude unit test classes as typically, unit test
classes contain trivial source code and we are more interested
in debugging the main functionality of the software. These
subjects have various number of contributors working on the
subjects. They also differ in sizes such as number of source
files and number of code lines. We chose them to give us a
better gauge on the detectability rate in a wide spectrum
of projects. They are also commonly used subjects in the
literature [33] [34].

4.3 Evaluation Methodology
We run our technique on these subjects to generate warn-

ings. This corresponds to the approach for RQ1.
Then, we present the generated warnings in emails to the

developers (most recent committers of the source files that
display the generated warnings) of those subjects to solicit
their feedback. The developers’ individual email addresses
are located publicly in the repositories (e.g. SVN/GitHub). If
there are no responses from the developers or if the developers

1http://stackoverflow.com/questions/7132649

Table 3: The list of subjects with their latest version
and size.

Subject Version # Files K LOC

commons-lang 3.4-snapshot 274 63
JFreeChart 1.0.19 654 96
joda-time 2.4 315 80
JStock 1.0.7r 290 50
JStudyPlanner 1.0 34 3
JStudyPlanner 2.0 56 4
log4j 2.0.1 905 61
lucene 4.9.0 4826 684

do not wish to engage in private emails, our follow up strategy
is to send the same emails to the developer’s group mailing
lists, in hope for feedback from a bigger group of developers.
We include in the email manually the detected warning which
consists of the source file and its defective code fragment,
the proposed patches with explanation to the defective code
fragment based on the crowd’s suggestion, and the related
Stack Overflow post for references. We seek developers’
opinions on the reported warnings. We present the response
and concurrence rates in Section 5. This said approach
corresponds to the approach of RQ2.

For RQ3, we first check for similarity by comparing the
confirmed bugs from our approach with the warnings gener-
ated by the static analysis tools. Then, we sample, inspect
and verify the warnings generated by the static analysis tools.
These are then compared with our approach to check for
missed bugs. More details are illustrated in Section 4.4.

4.4 Static Analysis Tool Comparison
Many existing bug detection tools use static analysis ap-

proaches with predefined bug patterns to check for buggy
code in source files [34] [33].

We selected three tools, PMD [35], FindBugs [36] and
JLint [37], and ran them with all the eight evaluated sub-
jects. These three tools are chosen as they have been widely
used in many bug related research [38] [34] [39]. We used the
default options for FindBugs and JLint. For using PMD, we
need to supply the tool command with rulesets for it to func-
tion accordingly as there is no default rulesets built-in. We
selected five rulesets including “basic”, “design”, “type resolu-
tion”, “optimization” and “controversial” which cover a good
spectrum of debugging patterns for use in our comparison.

We manually inspect the warnings between these three
tools and our technique. We first checked for the number
of same bugs detected in both our technique and the static
analysis tools.

We then perform manual inspection on the warnings of
the top 3 buggy files generated by the tools. Many warnings
produced by existing static analysis tools have been shown
to display a high false positive rate [38]. We are interested
in warnings that are useful. Therefore, we characterized a
warning to be useful if it is non-trivial and identifies either
a bug, poor performing code or code that can be refactored
for easier maintenance.

Due to limited resources and the large number of generated
warnings from the tools, we sampled the top 3 files with
the highest frequency of warnings from the top 3 largest
subjects (lucene, log4j & JFreeChart). We believe that a
source file with more warnings has a higher tendency to be



defective and thus may contain more useful warnings. Two
independent graduate students were chosen to verify and
inspect the usefulness of the warnings from the tools. If there
are differences in the checking, a third independent graduate
student will be roped in to check for the inconsistencies and
differences will be reconcile amongst the three. These three
inspectors have Java programming experiences of at least five
years on average, and have previously worked in the industry
as developers.

We report our comparison in Section 5.3.

5. STUDY RESULTS
This section presents our experimental results by address-

ing the research questions (Section 4.1).

Table 4: The number of warning types and warn-
ings for each subject by our technique. The warning
types reflected in this table are non-distinct across
all the subjects. The distinct warning types for each
subject are presented in Table 5. This table also
presents the number of confirmed bugs by the de-
velopers.

# of # of # of # of # of
Subject warnings warning reported confirmed rejected

types warnings bugs warnings

commons-lang 3 3 0 0 0
JFreeChart 152 2 152 152 0
joda-time 0 0 0 0 0

JStock 2 2 1 1 0
JStudyPlanner 19 2 18 18 0

JStudyPlanner 2 1 1 0 0 0
log4j 2 2 0 0 0

lucene 10 3 10 0 1

Total 189 15 181 171 1

Table 5: The different types of warnings for each
subject by our technique.

Subject Detected Warning Types SO Question ID

commons-lang Optimizing array copying performance 10416259
Best practice in using volatile fields 16101203

Better version of Double Checked Locking 17169145
JFreeChart Bug in overriding equals() in subclass 7132649

Non-conformance to Java Spec. 7132649
JStock Refactoring for Code Maintenance 1447986

Bug in JTable autoscrolling 5956603
JStudyPlanner Preventing NullPointerException 20322770

Java MD5 Compilation Error 4004615
JStudyPlanner 2 Comparing two dates in Hibernate 5916454

log4j Asking if concurrency bug is possible 18154004
Bug in Overriding equals() 22346976

lucene Bug in decrementation in transferTo 7379469
Non-conformance to Java Spec. 7132649
Non-conformance to Java Spec. 19642810

5.1 RQ1: Detectability
We investigate if our technique in leveraging crowd knowl-

edge can detect anomalies.
We ran our experiment in a desktop computer running an

Intel Core i3-2100 3.1 GHz CPU, 4 GB RAM, Windows 7 64
bit OS and a 250 GB 7200 RPM HDD. The experiment on all
the eight subjects took between 4,914 seconds and 21,222 sec-
onds, with an average processing time of 10,667 seconds. Af-
ter running our tool on the eight subjects (Table 3), our tool
returns a total of 189 warnings with various warning types
in each subject. These types are bugs, non-conformance to
Java Specification, code performance optimization, code best

practices, prevention of NullPointerException and code refac-
toring of smelly codes (Table 5). For example, in JFreeChart,
there are 6 warnings that belong to the same bug type. This
bug is about overriding of the equals() method. The child
class uses instanceof for the comparison inside the equals()
method, but this is non-symmetric and will result in the
wrong comparison between the child and the parent object.
In Table 4, we display the subjects with their corresponding
warnings and warning types in the first three columns, where
the first column shows the subjects and the second and third
column display the number of warnings detected and the
number of warning types respectively.

A total of 152 warnings were detected in JFreeChart, fol-
lowed by the runner-up subject JStudyPlanner which starred
19 warnings and the second runner-up subject lucene of 10
warnings. Commons-lang exhibited 3 warnings and a couple
of subjects, JStock and log4j exhibited 2 warnings. Our
technique also detected 1 warning in JStudyPlanner 2 but
did not detect any warnings in joda-time. We believe that
189 is a reasonable number as it is not too many to exhaust
the developers’ time in checking the warnings.

Clearly, this shows that our technique is able to detect
warnings on different variety of subjects and the number of
warnings varied depending on the existing anomalies presid-
ing in the subjects and the precedented crowd pattern.

Upon answering this RQ, it naturally serves as a connector
to lure us into the next RQ, which is to check if developers
agree and confirm to the detections.�
�

�
�

Our technique is able to detect a reasonable
number (189) of warnings on software projects

by leveraging the crowd knowledge.

5.2 RQ2: Confirmed Bugs
This RQ serves to indicate if developers agree with the

warnings produced by our tool.
As presented in Section 4.3, we reported all warnings on

the subjects generated by our technique (after removing
the obvious 8 false positives which will be discussed in the
later paragraphs) to the developers. The warnings are com-
plemented with the SO posts which contain the suggested
solutions and explanation on the issues.

Table 4 shows the number of produced warnings reported to
the developers and the number of warnings agreed/disagreed
by the developers.

Amongst the 181 reported warnings, developers responded
to 171 of them and 9 are pending. The number of distinct
confirmed warning type is 4 out of 14. Even though de-
velopers did not respond to some of the reported warnings,
there is still a promising 90.5% agreement in all the reported
warnings. For JFreeChart, the developer mentioned that he
would make all the changes in JFreeChart - Future State
Edition, the next major revision of JFreeChart. Similarly,
for JStudyPlanner 1, the developer mentioned that he would
write additional code to handle the NullPointerException.
For JStock, although the developer agrees with the warning,
he requested to submit a Git pull-request for the changes. We
also noted that for JStock, the user who asked the question
in SO is the same JStock developer and that he has marked
the answer as accepted in SO.

The high number of agreement in the warnings by the
developers implies that most of our detected warnings are



true positives. Developers recognize the code issues and
accept the proposed solution. It ultimately serves the goal of
debugging: Detect (warnings/anomalies in a software project)
and accept (the proposed solution).

In addition, our tool also provides comprehensive explana-
tion using the SO posts to the developers. This will further
enhance their understanding on the detected warnings. Our
crowd debugging indirectly transfers tacit knowledge from
the crowd to the developers.

We showcase some of the email responses by developers
who concurred with the warnings in Figure 3 and Figure 4.

Thanks for the feedback. I agree with your suggestion
and will fix these cases...

- David Gilbert (Project Leader)

Figure 3: JFreeChart Project Leader acknowledging
the reported warnings on the bug within the over-
ridden equals() method as well as non-conformance
to the symmetric contract rule specified in the Java
Specification.

Figure 3 shows the developer acknowledging the detected
warning and the suggested solution presented by the crowd.
Our technique detected that in JFreeChart, the overridden
equals() methods made use of instanceof to compare two ob-
jects and this is non-conformance to the symmetric contract
rule specified in the Java Specification.

Thank you very much for your message. This is very
valuable to me... Once again your research is very
helpful. I’ll do all the checks in service objects
to handle NullPointerExceptions.

- Oleg Lukin (Project Owner)

Figure 4: JStudyPlanner Project Owner acknowl-
edging the reported warnings on possible NullPoint-
erException.

In Figure 4, our technique detected that there are several
database access methods that might cause NullPointerExcep-
tion as highlighted by the crowd. It is suggested to have null
checks on the objects before calling any of their methods.
The developer acknowledged and appreciated these findings.

Discussion on false warnings We discuss the 8 false
positives generated by our technique and the disagreement
in warnings by the developers. We also discuss the 9 pending
reported warnings that have not been responded by the
developers.

Querying SO for Better Code or Code Explanation
In common-lang, we detected 3 different warnings. Users are
asking in SO on how to optimize a certain code 2, what is
the best practice in writing a certain code 3 and whether
there is a better version of the provided code 4. In log4j, we
detected 2 warnings. The first warning is about asking for
explanation for a code that did not perform as intended 5

whereas the second warning is about asking if a concurrency

2http://stackoverflow.com/questions/10416259
3http://stackoverflow.com/questions/16101203
4http://stackoverflow.com/questions/16101203
5http://stackoverflow.com/questions/22346976

bug may be present in a certain code 6. We noted that these
detected defective code fragments in the Target subjects are
either the solutions provided by the crowd, or that it is not
directly relevant to the target context. Thus, we did not
report them to the developers.

String Literals as Method Arguments In JStudyPlan-
ner and JStudyPlanner 2, our technique detected 1 warning
each in both subjects. The detected warning in JStudyPlan-
ner is on Java MD5 compilation error 7 and in JStudyPlanner
2 is on comparing two dates in Hibernate 8. Although the
code is similar between the Target and SO, in JStudyPlanner,
the detected code fragment is on SHA-256 instead of MD5,
and in JStudyPlanner 2, the detected code fragment is about
querying a database table in Hibernate instead of comparing
two dates in Hibernate. We noted that these two warnings ex-
hibit the same characteristic of using string literals as method
arguments. For example, in JStudyPlanner, the developer’s
code is MessageDigest.getInstance(“SHA-256”); instead of
MessageDigest.getInstance(“MD5”); in SO. These are false
positives and we did not report them to the developers.

Omission of Bug Related Statements in Target In
JStock, we detected a warning where a SO user has com-
plained about an autoscrolling bug in JTable 9. The code
fragments in both the Target and SO are very similar with
the exception that in SO, there is an additional statement of
resizing the JScrollPane. This extra statement is the cause
of the bug but it was absent in the Target code. We noted
that this is a false positive and we did not report them to
the developers.

File Transfer In Lucene, we reported to the developers
that the use of transferTo should decrement the max count
in every iteration based on the suggestion given by the crowd.
transferTo is used in Lucene to transfer files from one location
to another. The current implementation in Lucene forsakes
the decrement of the max count in the iterations. Developers
do not totally agree with our warning and argued that the SO
post 10 is mentioning about file transfer of size larger than
64MB whereas in Lucene it is limited to 32MB. Surprisingly,
we observed that after the developer responded to us, the said
transferTo method was removed and replaced with another
similar function from commons-io. This observation has an
implication that crowd debugging does provide alternative
insights and impact on the source code.

Non-conformance to Java Specification In Lucene,
we detected and reported 9 warnings that are related to the
overriding of the equals() method 11 12. The detected code
fragments do not conform to the symmetric contract rule as
stated in the Java Specification. The crowd suggested the use
of getClass() instead of instanceof in comparing two objects
and this will satisfy the symmetric contract rule in the Java
Specification. We believe that these are true warnings and
will ensure that the code fulfil all the contract rules stated
in the Java Specification.

Although our technique detected some false positives, we
noted that several of them are related to code explanation

6http://stackoverflow.com/questions/18154004
7http://stackoverflow.com/questions/4004615
8http://stackoverflow.com/questions/5916454
9http://stackoverflow.com/questions/5956603

10http://stackoverflow.com/questions/7379469
11http://stackoverflow.com/questions/7132649
12http://stackoverflow.com/questions/19642810



and developers may still benefit from the solution given by
the crowd. Developers may gain additional insights into the
code that they are writing or pay more attention to the code
since others have previously casted doubts on them. This
is especially true if the explanation is on complicated or
hard-to-understand code. In addition, Bessey et al. [40] have
argued that to be a useful tool, its false positives should be
less than 30%. Our study shows that 9.5% of our reported
warnings are false positives, which indicates our tool is useful
in practice.

Overall, the large percentage of concurrence (90.5%) by
the developers and low false positive rate (9.5%) indicate our
crowd debugging tool is promising in practice.�
�

�
�

Developers confirmed (90.5%) of the bugs
detected by our technique.

5.3 RQ3: Comparison
This RQ serves as a comparison between the warnings

produced by existing static analysis tools and our tool. It
checks for similarities between the confirmed bugs from our
tool and the warnings generated from the static analysis
tools. It also serves to detect the number of missed bugs by
our tool when compared with the static analysis tools.

Table 6: The number of confirmed bugs detected by
our technique and static analysis tools PMD, Find-
Bugs and JLint. The 165 confirmed bugs detected
by our tool are undetectable by PMD, FindBugs and
JLint.

# of
Subject confirmed FindBugs JLint PMD

bugs

commons-lang 0 0 0 0
JFreeChart 152 6 0 0
joda-time 0 0 0 0

JStock 1 0 0 0
JStudyPlanner 18 0 0 0

JStudyPlanner 2 0 0 0 0
log4j 0 0 0 0

lucene 0 0 0 0

Total 171 6 0 0

We ran three static analysis tools, PMD, JLint and Find-
Bugs on all the subjects and compared the warnings produced
by them as described in Section 4.4.

In Table 6, we show the individual subject and the number
of confirmed bugs detected by our technique. A comparison
of detecting the confirmed bugs is shown with FindBugs,
JLint, and PMD.

Amongst all confirmed bugs (171) by developers, PMD
and JLint identified zero bugs while FindBugs only identified
six.

These six issues are related to non-symmetric contracts
in the JFreeChart’s overridden equals() methods, which are
incorrect to use instanceof when overriding the equals() meth-
ods in the child classes. It will result in a wrong comparison
between the parent and the child entity.

The remaining 96.5% (165/171) of the confirmed bugs by
developers are non-detectable by these three popular static
analysis tools, PMD, FindBugs and JLint.

In addition, we check for missed bugs from the static anal-
ysis tools. After manually inspecting the warnings generated
by the static analysis tools, out of the 2,722 generated warn-
ings from the sampled files, 3 (0.1%) are useful in lucene’s
SolrCore.java file. These 3 warnings indicate that a particular
object can be null but lacks the null checking on the object be-
fore accessing its methods in the code. We believe that these
are useful warnings in preventing a NullPointerException.

Although we missed 3 useful warnings, we have shown that
by leveraging crowd knowledge, our tool is more efficient in
detecting bugs that have been missed by these static analysis
tools. This also implies that many of the crowd knowledge
patterns are unique and are not easily replicated using the
static analysis approach.#

"
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96.5% (165/171) of the bugs identified by our
tool are undetectable by three popular static

analysis tools, PMD, FindBugs and JLint. Our
tool missed 0.1% (3/2,722) warnings from the

static analysis tools.

6. RELATED WORK
Source Code Pattern Matching Techniques Much

research has been conducted on code clone techniques and
they can be broadly categorized into string based [41] [42],
token based [43] [44] [45], tree based [46] [47] [22] [48] and
semantic based [49] [50]. However, in several practical applica-
tion, code clone alone is usually insufficient or inappropriate
to apply. Thereafter, other research work has been incor-
porating code clone techniques as a sub-task or designing
different techniques for source code pattern matching. Liu
et al. [51] used call graphs and dependency graphs to detect
performance buggy code in Android. Lin et al. [52] identified
similarities and differences of multiple code clones by first
tokenizing all the clone instances and computing the longest
common subsequence. This will speed up comparing code
clones in a pair-wise manner iteratively. Liang et al. [33]
represented code as finite state machines to track similar
bugs. Meng et al. [53] used dependency graphs to extract
the best path for the source and target code in systematic
matching. In another separate work, Meng et al. [54] used
CCFinder [43] to get a high level detection before transform-
ing the source code into AST to get the longest common
subtree. Kim et al. [55] inspected human-written patches to
uncover source code patterns for use in automatic patching.
Sanchez et al. [56] proposed an idea of a search engine to
reformat previous query results by eliminating redundant
code or modifying existing code, and then transforming them
into another input to the search engine for a better code
matching result. Ponzanelli et al. [57] [58] tokenized code and
natural texts, and used Lucene as a search engine to produce
matches. Jiang et al. [59] used Deckard [22] to detect code
clones in AST form and used control dependency graphs to
eliminate inconsistencies for extracting clone related bugs.
Ashok et al. [60] designed a search engine that tokenized code
with other debugging information and used TF-IDF to search
through Microsoft repositories to produce a ranked result
based on previous debugging information. Our code pattern
matching technique uses CCFinderX, similar to Meng et
al. [54] as the initial processing but differs in the latter stages
where we tokenize the code in QA to detect for relevancy.



Informal Documentation Bacchelli [29] [61] used mail-
ing list to leverage its content for developer’s software imple-
mentation. Dagenais et al. [14] discovered linkage between
API and informal documentation such as mailing list and dis-
cussion forums. With respect to SO, multiple work have been
conducted on it. Rigby et al. [15] identified important code
elements in SO as an entire entity. Ponzanelli et al. [57] [58]
used SO for designing search engine capabilities to prompt
developers who are in their current stage of coding for similar
code discussion to ease implementation. Linares-Vasquez et
al. [62] investigated the quantity and types of questions asked
when API changes in Stack Overflow, thus allowed insights
into some of the popular new API in discussion. Saha et
al. [63] investigated the reasons behind unanswered questions
in SO and concluded that the majority of them were due
to low interest in the community. Bajaj et al. [64] mined
the SO to uncover the different types of questions asked by
web developers. They analysed the questions and noticed
web development related questions were increasing over time.
They discussed that educators can use the results to enhance
the developer’s understanding and researchers can focus on
the more discussed web development areas. Similar to several
previous work, we incorporate SO in our research but differ
in usage which in our case is unique and is used for crowd
debugging.

Leveraging Software Repositories and Artifacts in
Debugging Liang et al. [33] used generic bug patterns to
identify project-specific bugs and used them to detect other
similar bugs that exhibited the same pattern. Jiang et al. [59]
detected clone related bugs by using control dependency
graph to compare the consistencies between the clones. In-
consistences in the control flow were treated as clone related
bugs. Kim et al. [55] inspected a large volume of human-
written patches for debugging to uncover bug patterns for
automatic patching. Ashok et al. [60] searched through
Microsoft repositories for previous similar debugging infor-
mation to aid developers in fixing their code. Hartmann
et al. [65] proposed detecting bugs based on code revisions
of buggy code and fix code. Their evaluation was based
on examples (buggy and fix code-pairs) from a debugging
textbook. Mujumdar et al. [66] proposed using changes in
unit test cases to identify and fix bugs. The original unit
test case represented a suspected bug and the latter unit
test case represented the fixed bug. Several of the work
mentioned [65] [66] require manual intervention to input de-
bugging explanation while others have limited debugging
explanation. Gu et al. [67] used bug execution traces from
failed JUnit tests to populate a bug database for detecting
bugs in the target projects. They also instrumented the
target’s code using ASM Java bytecode for the detection.
Zimmermann et al. [68] studied the correlation between code
complexity metrics of projects and bug history from post
release projects (Microsoft Windows and Eclipse) to pre-
dict defects for debugging. Our work here differs in the
use of the repository for debugging. We leverage the crowd
knowledge where the crowd’s solutions and explanations are
presented to developers. Also, our technique does not require
instrumentation to the target’s code.

7. LIMITATIONS AND THREATS TO VA-
LIDITY

We identify the following limitations and threats to validity
of our experiment.

Type Insensitive In our approach, we do not consider the
variable type due to partial code limitation in SO. However,
as it is infeasible to experiment on the entire suite of existing
software projects, it might be possible that the detected code
fragments have type mismatch and are missed by developers
in other software projects.

Code Terms outside Code Blocks We consider only
code terms that are embedded inside code blocks and SO title
as we observed that many posts have such characteristics.
Identifying code terms inside code blocks creates a higher
likelihood of extracting bona fide code terms. However, it
is possible that developers may present some code terms in
natural texts in a SO question and SO answer which we may
have missed identifying them.

Post Filtering Although we did not encounter any missed
defective code fragments in our observation during the exper-
iment, it is not representative and defective code fragments
may exist within these filtered warnings in other subjects.
Furthermore, we may miss some real defective code fragments
in checking the filtered warnings due to human errors.

Evaluation of warnings from Static Analysis tools
Our manual evaluation on the sampled warnings generated
from Static Analysis tools might be biased. We mitigate this
threat by having two independent human evaluators to evalu-
ate the warnings, and rope in an additional human evaluator
if there are differences. Where differences in opinions arises,
discussion will take place amongst the three independent
human evaluators to reach a consensus.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel crowd debugging tech-

nique that leverages the crowds’ knowledge to detect defective
code fragments in developers’ source code and provide the
crowds’ suggested solutions with explanations for developers.
We used the code blocks from SO to perform crowd debug-
ging in eight high quality and well-maintained projects. Our
experiments show that our crowd debugging technique is
promising and of practical use. It is able to detect a reason-
able 189 warnings and of those, 171 (90.5% ) were confirmed
by developers. We further compared our results with exist-
ing static analysis tools such as FindBugs, JLint and PMD.
FindBugs can detect six same bugs whereas JLint and PMD
can detect none. 165 (96.5% ) of the confirmed developers’
bugs are missed by these tools. Our crowd debugging tech-
nique has clear benefits. It is able to detect bugs that are
invisible to existing tools and provide suggested solutions
with comprehensive explanation from the crowd.

In future, we plan to investigate on developing automatic
patching algorithms for the defective code fragments based
on the crowd knowledge, transforming the crowd patterns as
static analysis patterns, and categorizing the crowd patterns
such as belonging to API Misuse or Language Misuse.
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