
The Evolution of Data Races

Caitlin Sadowski Jaeheon Yi
University of California at Santa Cruz

{supertri, jaeheon}@cs.ucsc.edu

Sunghun Kim
Hong Kong University of Science and Technology

hunkim@cse.ust.hk

Abstract—Concurrency bugs are notoriously difficult to find
and fix. Several prior empirical studies have identified the
prevalence and challenges of concurrency bugs in open source
projects, and several existing tools can be used to identify
concurrency errors such as data races. However, little is known
about how concurrency bugs evolve over time. In this paper, we
examine the evolution of data races by analyzing samples of the
committed code in two open source projects over a multi-year
period. Specifically, we identify how the data races in these
programs change over time.

I. INTRODUCTION

Concurrency bugs are both prevalent and difficult to
identify and fix [8]. Even when these bugs are fixed, the fixes
may introduce new concurrency bugs [12]. The difficulty of
working with concurrency has made this area the focus of
many research projects and analysis tools. However, little is
known about how concurrency errors and bugs evolve over
time. This paper begins to address this gap by examining
the history of data races in two open source projects. We
find that many races exist in these projects throughout most
of their history, and that variables go in and out of being
racy.

II. APPROACH

In order to investigate the evolution of data races, we
must first identify data races in a particular version of
a program. There are two classes of data race analyses:
static and dynamic. Static detectors take as input the source
code of a program, but often report many false alarms.
In contrast, dynamic detectors analyze a running program.
Precise dynamic analyses produce no false alarms but are
limited by the particular schedule encountered. Because they
are scheduling-dependent, dynamic analyses may be non-
deterministic.

We used a precise dynamic analysis to ensure that all
races identified were actual races. We ran this race detector
on the compiled bytecode from a sampling of the revisions
of two open source Java projects. We ran the detector one
hundred times per revision, and calculated the union of those
one hundred runs as the set of races found at a particular
revision. Then, we visualized these race data to show the
number of race conditions discovered at each revision and
which variables are racing at each revision.

A. Experimental Setup

We used two multithreaded Java programs that are each
about 180,000 lines of code (Table I). jEdit [4] is a general

Name LOC # Samples Revision Range Revision Dates

jEdit 175k 237 6502 – 20033 July 2006 –
September 2011

Columba 190k 214 26 – 437 July 2006 –
December 2009

Table I
THE SAMPLING RANGES FOR JEDIT AND COLUMBA.

purpose GUI editor. We used all compilable revisions from
6502 to 20033 related to bug-fixing, as identified by key-
words in the change log. These 237 revisions capture over
five years’ worth of open source development (Figure 1).

10000 15000 20000

Revision

Figure 1. The 237 revisions sampled for jEdit. Vertical lines represent
sampled revisions.

Columba [2] is a GUI email client. We used all 214
compilable versions from over 400 versions that capture over
three years’ worth of open-source development (Figure 2).

100 200 300 400

Revision

Figure 2. The 214 revisions sampled for Columba. Vertical lines represent
sampled revisions.

We used the RoadRunner dynamic analysis frame-
work [3], which instruments Java bytecode and provides
a simple API to pass the event stream to custom analysis
tools. Analysis tools only need to define methods to handle
events of interest (e.g. synchronization events and variable
accesses). All classes loaded by the benchmarks were in-
strumented, with the exception of the Java standard libraries.
Since Columba and jEdit are reactive programs, we tested
them using a very simple script that just opened then closed

/11/$26.00 c© 2011 IEEE MSR 2012, Zurich, Switzerland180

each GUI program. This simple test was enough to capture
a variety of interesting races; investigating the evolution of
data races on more complicated benchmarks over a larger
variety of programs remains an area for future work.

To detect data races, we used two standard happens-
before race detectors that are included with the RoadRunner
framework. Each object field and array element is tracked
with a distinct shadow object. These detectors are precise,
in that they do not produce false positives; all reported races
represent actual racy variables. Some of these reported races
may be “benign”, or not associated with an actual bug,
although it is debatable whether any race can rightly be
classified as benign [1]. Because we are running a dynamic
race detector, we have the potential for false negatives;
variables may be racy even though this is not reported by
our detector, even after we merged results from one hundred
runs.

III. RESULTS

We looked at two aspects of how data races change over
time: the total count and the specific racy variables.

A. Counting Races
Finding 1: The number of racy variables remains
high, and may even increase, over time.

Figures 3 and 4 show the number of races at each revision for
Columba and jEdit, respectively. For jEdit, the number
of races at the end of the sampling period is much higher
than the number of races at the beginning. Columba does not
have such a proportionally dramatic upward trend, although
the number of races at the last sample point is higher than
the number at most previous sampling points. Interestingly,
both projects exhibit flat periods where repository commits
do not affect the number of races. This suggests that fixing
races may not be a priority for developers or they may not be
aware of racy variables. Perhaps developers do not consider
many races to be “bugs” [5].

We further investigated the commit logs at the points in
Columba where the number of races changes. We found that
most revisions which resulted in a decrease in the number
of races seemed like either refactoring changes (e.g. cleanup
of toolbar in revision 106) or bug fixes (e.g. fixed contextual
search nullpointer exception in revision 61). In contrast, the
sharpest increases in the number of races occurred when
adding new features (e.g. hide tag feature in revision 267).
Several revisions marked as bug fixes also resulted in an
increase of races.

B. Racy Variables
Finding 2: Over the course of a project, variables
may go in and out of being racy.

Figures 5 and 6 show which variables are racy at each
sampled revision point for Columba and jEdit, respectively.
These graphs contain a list of all variables which are racy
at any revision on the y-axis. On the x-axis are the revision

100 200 300 400

0
10

20
30

40
50

60
70

Revision

N
um

be
r o

f R
ac

e
C

on
di

tio
ns

Figure 3. The number of races over time for Columba.

10000 15000 20000

0
2

4
6

8
10

12

Revision

N
um

be
r o

f R
ac

e
C

on
di

tio
ns

Figure 4. The number of races over time for jEdit.

samples; note that two consecutive samples may have several
revisions in between. We use samples for the units so that all
gaps for a variable represent periods when we did not detect
the variable racing. Each point on these graphs represents
the fact that the corresponding variable (on the y-axis) was
found to be racy at that particular sample (x-axis). Each
variable is assigned a particular colour to distinguish it
from other variables in the graph. For example, in Figure 6,
DynamicMenuChanged.name is light blue and is racy from
about the 70th sampled revision.

Although many variables become racy and then persist
that way, other variables move in and out of racy status.
For example, the variable propertyManager in jEdit is
briefly racy before the 50th sample point, then is not racy
for a spell, then is racy again. Note that we do not track
variable renaming in our analysis, so some gaps could be
the result of a variable that is renamed and later reverted

181

Revision Sample Number

R
ac

y
V

ar
ia

bl
es

com/jgoodies/looks/FontSets$LogicalFontSet.controlFont
com/jgoodies/looks/plastic/PlasticButtonUI.borderPaintsFocus

com/jgoodies/looks/plastic/PlasticTheme.fontSet
com/sleepycat/je/Database.cursors

com/sleepycat/je/Database.databaseImpl
com/sleepycat/je/Database.envHandle

com/sleepycat/je/Database.handleLocker
com/sleepycat/je/Database.logger
com/sleepycat/je/Database.state

com/sleepycat/je/dbi/DatabaseImpl.referringHandles
com/sleepycat/je/dbi/EnvironmentImpl.envState
com/sleepycat/je/dbi/EnvironmentImpl.evictor

com/sleepycat/je/dbi/MemoryBudget.treeMemoryUsage
com/sleepycat/je/Environment.environmentImpl

com/sleepycat/je/evictor/Evictor.envImpl
com/sleepycat/je/txn/BasicLocker.ownedLock

com/sleepycat/je/txn/Lock.nodeId
com/sleepycat/je/txn/Locker.handleToHandleLockMap

com/sleepycat/je/txn/Locker.lockManager
net/javaprog/ui/wizard/plaf/basic/SingleSideEtchedBorder.side

org/columba/calendar/config/Config.persistence
org/columba/calendar/store/StoreEventDelegator.itemAddedList

org/columba/calendar/store/StoreEventDelegator.itemChangedList
org/columba/calendar/store/StoreEventDelegator.itemRemovedList

org/columba/calendar/store/StoreEventDelegator.mutex
org/columba/calendar/store/StoreEventDelegator.swap
org/columba/core/association/AssociationStore.conn

org/columba/core/base/Mutex.mutex
org/columba/core/config/Config.instance
org/columba/core/config/Config.pluginList
org/columba/core/config/DefaultItem.root

org/columba/core/desktop/ColumbaDesktop.activeDesktop
org/columba/core/gui/base/MultiLineLabel.lineBreaks
org/columba/core/gui/base/MultiLineLabel.lineSpacing
org/columba/core/gui/base/MultiLineLabel.measurer

org/columba/core/gui/base/MultiLineLabel.text
org/columba/core/gui/base/TransparentWindow.buffer
org/columba/core/gui/base/TransparentWindow.screen

org/columba/core/gui/base/TransparentWindow.splashimg
org/columba/core/gui/util/FontProperties.fonts
org/columba/core/xml/XmlElement.attributes

org/columba/core/xml/XmlElement.name
org/columba/core/xml/XmlElement.subElements

org/columba/core/xml/XmlIO.rootElement
org/columba/core/xml/XmlIO.url

org/columba/mail/config/AccountXmlConfig.list
org/columba/mail/folder/AbstractFolder.node

org/columba/mail/folder/AbstractLocalFolder.headerList
org/columba/mail/folder/AbstractMessageFolder.messageFolderInfo

org/columba/mail/folder/AbstractMessageFolder.searchEngine
org/columba/mail/folder/ColumbaMailboxInfo.mailboxInfo

org/columba/mail/folder/headercache/BerkeleyDBHeaderList.db
org/columba/mail/folder/headercache/BerkeleyDBHeaderList.openDatabases

org/columba/mail/folder/search/DefaultSearchEngine.nonDefaultEngine
org/columba/ristretto/message/MailboxInfo.exists
org/columba/ristretto/message/MailboxInfo.recent
org/columba/ristretto/message/MailboxInfo.uidNext
org/columba/ristretto/message/MailboxInfo.unseen

org/frapuccino/swing/ActiveWindowTracker.activeWindow
org/hsqldb/jdbc/jdbcConnection.rootWarning_mutex

org/hsqldb/jdbc/jdbcConnection.sessionProxy
org/hsqldb/lib/HsqlTimer.nowCount

org/hsqldb/Session.database
rd_array@org/columba/calendar/store/StoreEventDelegator.java:104
rd_array@org/columba/calendar/store/StoreEventDelegator.java:131
rd_array@org/columba/calendar/store/StoreEventDelegator.java:145

rd_array@org/columba/core/gui/base/MultiLineLabel.java:178
wr_array@com/sleepycat/je/dbi/MemoryBudget.java:607
org/columba/core/command/CommandProcessor.stopped

com/jgoodies/looks/common/ExtBasicMenuUI.propertyPrefix
org/columba/core/gui/base/AnimatedGIFComponent.image

org/columba/core/gui/base/AnimatedGIFComponent.restImage
org/columba/core/gui/base/AnimatedGIFComponent.stop

org/columba/core/gui/base/TransparentFilter.percent
org/columba/core/plugin/Extension.cachedInstance
org/columba/core/scripting/BeanshellService.logger
org/columba/core/scripting/FileObserverThread.finish
org/columba/core/scripting/FileObserverThread.self

org/columba/core/scripting/ScriptLogger.logger
org/columba/mail/folder/event/FolderEventDelegator.folderAddedList

org/columba/mail/folder/event/FolderEventDelegator.folderPropertyChangedList
org/columba/mail/folder/event/FolderEventDelegator.folderRemovedList
org/columba/mail/folder/event/FolderEventDelegator.messageAddedList

org/columba/mail/folder/event/FolderEventDelegator.messageFlagChangedList
org/columba/mail/folder/event/FolderEventDelegator.messageRemovedList

org/columba/mail/folder/event/FolderEventDelegator.mutex
org/columba/mail/folder/event/FolderEventDelegator.swap

org/flexdock/docking/defaults/DefaultDockingPort.dockedComponent
org/flexdock/docking/defaults/DefaultDockingPort.rootPort

org/flexdock/util/RootWindow.clientProperties
org/flexdock/util/RootWindow.root

rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:140
rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:162
rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:198
rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:243
rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:258
rd_array@org/columba/mail/folder/event/FolderEventDelegator.java:292

net/javaprog/ui/wizard/AbstractStep.component
net/javaprog/ui/wizard/plaf/basic/BasicWizardContentPaneUI.currentStep

net/javaprog/ui/wizard/plaf/basic/BasicWizardContentPaneUI.wizardNavigator
org/columba/core/gui/frame/DefaultContainer.defaultCloseOperation

org/columba/core/gui/frame/DefaultContainer.mediator
org/columba/core/gui/frame/DefaultContainer.viewItem

org/columba/mail/gui/tree/selection/TreeSelectionHandler.selectedFolders
org/flexdock/docking/defaults/AbstractDockable.persistentId

org/columba/core/gui/frame/DefaultFrameController.id
org/columba/core/gui/frame/DockFrameController.dockingPort
org/columba/core/gui/frame/FrameManager.activeFrameCtrls

org/columba/mail/folder/AbstractLocalFolder.dataStorage
org/columba/mail/folder/mbox/MboxDataStorage.messageFile
org/columba/mail/folder/mbox/MboxDataStorage.messages

org/flexdock/docking/DockingManager.layoutManager
org/columba/ristretto/io/CloseChannelTimerTask.model

org/columba/ristretto/io/FileSource.model
org/columba/ristretto/io/FileSourceModel.channel

org/columba/ristretto/io/FileSourceModel.file
org/columba/ristretto/io/FileSourceModel.references

org/columba/core/xml/XmlElement.data
org/columba/core/xml/XmlIO.maxOneLineData

org/columba/core/xml/XmlIO.writeIndent
org/columba/calendar/base/CalendarItem.store

org/columba/calendar/config/CalendarList.hashtable
org/columba/calendar/config/CalendarList.instance

org/columba/calendar/store/LocalCalendarStore.dataStorage
org/columba/calendar/store/LocalXMLFileStore.directory

50 100 150 200

Figure 5. Columba: racy variables over revisions. The y axis lists all variables which were found to be racing on any revision for Columba. The x axis
lists each revision. The graph contains a point for each revision in which a variable is racing.

Revision Sample Number

R
ac

y
V

ar
ia

bl
es

org/gjt/sp/jedit/gui/SplashScreen.fm

org/gjt/sp/jedit/gui/SplashScreen.image

org/gjt/sp/jedit/gui/SplashScreen.win

org/gjt/sp/jedit/JARClassLoader.classHash

org/gjt/sp/jedit/JARClassLoader.INDEX

org/gjt/sp/jedit/JARClassLoader.live

org/gjt/sp/util/SyntaxUtilities.propertyManager

org/gjt/sp/jedit/gui/SplashScreen.labelFont

org/gjt/sp/jedit/gui/SplashScreen.versionColor1

org/gjt/sp/jedit/gui/SplashScreen.versionColor2

org/gjt/sp/jedit/bsh/Interpreter.debug

org/gjt/sp/jedit/bsh/NameSpace.classCache

org/gjt/sp/jedit/bsh/NameSpace.names

org/gjt/sp/jedit/EBMessage.source

org/gjt/sp/jedit/EditBus$SendMessage.message

org/gjt/sp/jedit/msg/DynamicMenuChanged.name

org/gjt/sp/jedit/View.dockingFrameworkProvider

50 100 150 200

Figure 6. jEdit: racy variables over revisions. The y axis lists all variables which were found to be racing on any revision for jEdit. The x axis lists
each revision. The graph contains a point for each revision in which a variable is racing.

182

to the original name. Although it is also possible that our
detector is reporting a false negative when we encounter an
on-again off-again pattern, this pattern (represented by gaps
in the horizontal lines in these figures) happens many times
(e.g. in Columba).

IV. RELATED WORK

To the best of our knowledge, no prior work has
looked at the evolution or history of warnings produced by
concurrency-related dynamic analysis tools. DynaMine [7]
was the first tool which combined dynamic analysis and
repository mining. However, DynaMine is focused on iden-
tifying correct usage patterns and leveraging them to predict
future errors.

A couple papers have examined the evolution of warnings
produced by static analysis tools. One of them analyzed
the decay likelihood for various types of vulnerabilities [9].
The other paper investigated whether particular warnings
given by static analysis tools were associated with bug-fixing
commits [6]. In this paper, the warning history, gleaned
by running the static analysis tool at each revision, was
leveraged to improve warning prioritization.

One prior paper examined the evolution of concurrency
in open source software projects [11]. This paper found that
most projects involve concurrency, the use of concurrency is
rising, and programmers do not always use the higher-level
data structures they have available to them. However, this pa-
per was focused on the use of concurrency constructs (such
as synchronized blocks), not the presence of concurrency-
related errors.

V. CONCLUSION AND FUTURE WORK

Overall, we find that there may be many racy variables
across the history of a project, and that some variables go
in and out of being racy. These results emphasize the fact
that working with concurrency is difficult, and that data
races may frequently plague programs. Developers need to
work carefully to ensure that subsequent changes do not re-
introduce a fixed concurrency bug. It would be interesting
to further study how often concurrency bugs are introduced
that are the same or similar to prior bugs.

The dynamic analysis we ran has no false positives, and
so gives a lower bound to the number of races that exist
at a particular revision. It would be interesting to combine
the experimental data collected with the results of a static
race detector that gives no false negatives, thus providing an
upper bound to the number of races that exist at a particular
revision. Also, some of the races identified may be benign.
It would be interesting to explicitly relate the results of this
study to races that are implicated in real bugs.

In a prior study [10] we found that little is known
about how other structures related to concurrent program
correctness, such as atomic blocks, evolve over time. We
would like to investigate the evolution of other concurrency

errors and constructs. As a first step, we wish to identify
which portions of a program are deterministic or atomic
across many revisions. By better understanding what code
changes break or expand these code sections, we may be
able to identify buggy or tricky code changes.

We would also like to run our analyses on more revisions
for more programs, and expand the results accordingly.
Previous studies [6] have leveraged the fault history when
predicting new bugs. Perhaps future concurrency bug detec-
tion algorithms could incorporate data from changelists that
introduce or eliminate concurrency bugs.

REFERENCES

[1] S. Adve. Data races are evil with no exceptions: Technical
perspective. Communications of the ACM, 53:84–84, Nov.
2010.

[2] Columba. http://columba.svn.sourceforge.net.

[3] C. Flanagan and S. N. Freund. The RoadRunner dynamic
analysis framework for concurrent programs. In Program
Analysis for Software Tools and Engineering (PASTE), 2010.

[4] jEdit. http://jedit.svn.sourceforge.net.

[5] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data
race bugs: Telling the difference with portend. In Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[6] S. Kim and M. Ernst. Which warnings should I fix first? In
International Symposium on Foundations of Software Engi-
neering (FSE), 2007.

[7] B. Livshits and T. Zimmermann. DynaMine: Finding common
error patterns by mining software revision histories. ACM
SIGSOFT Software Engineering Notes, 30(5):296–305, 2005.

[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: A comprehensive study on real world concurrency
bug characteristics. SIGPLAN Notices, 43(3):329–339, 2008.

[9] M. D. Penta, L. Cerulo, and L. Aversano. The life and death
of statically detected vulnerabilities: An empirical study.
Information and Software Technology, 51(10):1469 – 1484,
2009.

[10] C. Sadowski and S. Kurniawan. Heuristic evaluation of pro-
gramming language features. In Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU),
2011.

[11] W. Torres, G. Pinto, B. Fernandes, J. P. Oliveira, F. Ximenes,
and F. Castor. Are Java programmers transitioning to multi-
core? A large scale study of Java FLOSS. In Transitioning
to MultiCore Workshop (TMC), 2011.

[12] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairava-
sundaram. How do fixes become bugs? In International
Symposium on Foundations of Software Engineering (FSE),
2011.

183

