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ABSTRACT
Quality assurance for common APIs is important since the
the reliability of APIs affects the quality of other systems
using the APIs. Testing is a common practice to ensure the
quality of APIs, but it is a challenging and laborious task
especially for industrial projects. Due to a large number of
APIs with tight time constraints and limited resources, it is
hard to write enough test cases for all APIs.

To address these challenges, we present a novel technique,
Remi that predicts high risk APIs in terms of producing po-
tential bugs. Remi allows developers to write more test cases
for the high risk APIs. We evaluate Remi on a real-world in-
dustrial project, Tizen-wearable, and apply Remi to the API
development process at Samsung Electronics. Our evalua-
tion results show that Remi predicts the bug-prone APIs
with reasonable accuracy (0.681 f-measure on average). The
results also show that applying Remi to the Tizen-wearable

development process increases the number of bugs detected,
and reduces the resources required for executing test cases.

Categories and Subject Descriptors
D.2.9 [Management]: Software Quality Assurance
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1. INTRODUCTION
In modern software industry, it is common to develop and

deploy APIs which implement common functionalities that
can be used as a form of library for third-party systems.
Therefore, it is important to ensure the reliability of these
APIs while developing them in-house because any uncovered
bugs in APIs will quickly become widespread among the
third-party systems.

‡This work was supported by Samsung Electronics Software
R&D Center.

To ensure the reliability of APIs, testing is a common
and important practice during API development processes.
One of the common testing methodologies for APIs under
development is to create a certain number of unit test cases
for each API (e.g., two test cases for each API). However,
this methodology is neither efficient nor effective especially
in industrial projects because there are a large number of
APIs and not every API is equally bug-prone.

If we could identify high risk APIs, developers could test
more on these high risk APIs. For example, API developers
can elaborately allocate resources to detect more bugs more
quickly from the high risk APIs.

In this paper, we present a novel defect prediction tech-
nique called Remi (Risk Evaluation Method for Interface
testing) that is targeted for testing APIs in the develop-
ment process. Remi measures the risk of APIs in terms of
producing potential bugs. Using a machine learning classi-
fier, Random Forest, Remi builds a prediction model that
predicts bug-proneness of APIs, and ranks the APIs with
respect to the predicted buggy probability. The API ranks
returned by Remi can be used during a quality assurance
(QA) process in industry. Practitioners can effectively allo-
cate their limited resources to high ranking APIs first.

We demonstrate our technique Remi with an industrial
API development project for Tizen-wearable, which has been
actively developed by Samsung Electronics (Samsung). Our
empirical evaluation measures the performance of the API-
level defect prediction and the efficiency of the QA process
for API testing at Samsung. The results of our evaluation
show that the prediction accuracy of Remi is reasonable
(0.681 f-measure on average). The results also show that ap-
plying Remi to the software development process increases
the number of bugs detected and reduces the cost required
for executing test cases.

Overall, using our tool, Samsung has improved the effec-
tiveness and the efficiency of the API testing process for
Tizen-wearable.

This paper makes the following contributions:
• A novel approach to API-level defect prediction that is

targeted for API testing.
• An empirical evaluation to assess Remi.
• Successfully applying Remi in an industrial API devel-

opment project for efficient API testing.

2. RELATED WORK
Defect Prediction on Industrial Projects: Software

defect prediction has been applied in industrial projects for
software quality assurance [3, 11, 12]. Ostrand et al. pre-



Figure 1: Overview of our approach.

dicted the density of defects in two large software systems
from AT&T [12]. They found that 20% of files with the
highest predicted defect number actually detected 71% and
92% of defects [12]. Nagappan et al. predicted post-release
defects in a binary file on five Microsoft products by us-
ing complexity metrics [11]. Engström et al. proposed a
regression-test-selection technique that selects test cases as-
sociated with those source code files that have been pre-
dicted to be bug-prone in the past and stored in a cache [3].
Lewis et al. applied two defect prediction approaches, Fix-
Cache and Rahman algorithms, to two Google projects [9]
at the file-level and found that the defect prediction needs
to be improved for the front-line developers. Unlike these
techniques that work at a file-level granularity, Remi is de-
signed for the practical use of defect prediction techniques at
the API-level—our study shows that Remi can be effectively
applied to the API development process in practice.

API Testing on Industrial Projects: There are several
existing techniques that assess the reliability of APIs used
in industry by creating crash-inducing inputs for APIs [6,
7, 14]. Shelton et al. from Microsoft adopted an automatic
testing framework, Ballista [8], and customized it to assess
the robustness of Win32 APIs [14]. They used the excep-
tional values returned by Ballista as inputs for Win32 APIs.
Similarly, Hoffman et al. investigated a way to generate
domain-specific boundary values, and used them as crash-
inducing inputs for Java APIs used in two Java components
developed by Bell labs [6]. Jorgensen et al. developed a
technique for API testing by combining model-based test-
ing and category partitioning, and conducted an empirical
study on a Microsoft Windows application [7]. Unlike these
techniques that create test inputs for APIs, Remi focuses on
efficient resource allocation during the QA process.

3. OUR APPROACH
Figure 1 depicts the overview of our approach. Remi has

four inputs, the source code of the APIs, a software reposi-
tory containing revision history, the function call graph for
the source code of the APIs, and bug history associated with
the APIs. Remi outputs a list of ranked APIs along with
the buggy probability.

Remi consists of five processing phases: collecting metrics,
aggregating metrics at the API-level, labeling APIs, building
a prediction model, and ranking the APIs.

First, Remi collects two types of metrics at the function-
level, the source code metrics and the development process
metrics, to prepare for a data set used for the phase of ag-
gregating metrics at the API-level. Because an API consists
of a set of functions, Remi first collects the metrics for each
function reachable from the API. Table 1 presents the met-
rics used in Remi. For source code metrics, Remi collects
28 metrics regarding McCabe’s Cyclomatic complexity, vol-
ume (e.g., lines of code), and object-oriented features (e.g.,

Table 1: Metrics in Remi. For a detailed description
of each metric, refer to the metrics for C/C++ in
https://scitools.com/feature/metrics and [10].

Type Metrics

Code
Metrics

AltCountLineBlank, AltCountLineCode, AltCount-
LineComment, CountInput,CountLine, Count-
LineBlank, CountLineCode, CountLineCodeDecl,
CountLineCodeExe, CountLineComment, Count-
LineInactive, CountLinePreprocessor, CountOut-
put, CountPath, CountSemicolon, CountStmt,
CountStmtDecl, CountStmtEmpty, CountStmtExe,
Cyclomatic, CyclomaticModified, CyclomaticStrict,
Essential, Knots, MaxEssentialKnots, MaxNesting,
MinEssentialKnots, RatioCommentToCode

Process
Metrics

numCommits, totalLocDeleted, avgLocDeleted,
maxLocDeleted, totalLocAdded, avgLocAdded,
maxLocAdded, totalLocChurn, avgLocChurn,
maxLocChurn, totalDistinctAuthors, numFixes

coupling between object classes) [15]. Also, Remi collects
12 development process metrics from the source code repos-
itory such as the number of commits, the various measures
of lines of deleted/added/changed code, and the number of
previous fixes [10, 13].

Second, to predict defects at the API-level, Remi aggre-
gates the metrics collected at the function-level to the API-
level with respect to the calling context of an API. To ac-
quire metrics at the API-level, Remi utilizes the function
call graph for the source code of APIs, and summates the
metric values associated with the functions within the call-
ing context of an API. We choose to aggregate metrics in
this way because in order to perform the prediction for the
API instances, the metrics at the API-level need to take into
account those metrics associated with the functions reach-
able from the API. Remi summates the metric values of the
functions invoked in a various given call depth. For exam-
ple, if the call depth given is 1, Remi summates the metrics
up to the immediate children of each API in the call graph.

Third, as the last step to prepare for the data set used to
build the prediction model, Remi labels each API as buggy
or clean. To do this, Remi uses bug fix history, which is
a typical labeling method for defect prediction studies [10].
Specifically, we label APIs based on the existence of past
bugs identified in previous release candidates (RC). There
are two types of bug data that we use to identify bugs in
previous RCs. First, we use the information from commit
messages containing the fix-related keywords (e.g., fix or re-
solve) in the source code repository [10]. If there are any fix
commits that make changes in functions within the calling
context of an API, Remi labels the API as buggy. Second,
we use history of the bugs identified by executing the test
suite in the past. If at least one test failure associated with
an API is recorded in the same period of collecting metrics,
Remi labels such API as buggy, otherwise, as clean. Using
these two types of past bug data, if an API is labeled as
buggy by either fix commits or test results, we regard the
API as buggy.

Fourth, when the metrics at the API-level and labeled
APIs are ready, Remi builds a prediction model using Ran-
dom Forest [2]. Since defect prediction performance may
vary based on various machine learners and project datasets,
it is difficult to decide the best learner [4]. For APIs of
Tizen-wearable, Random Forest leads to the best prediction
performance in our repeated experiments1. For this reason,

1In our experiments, we used the Weka framework with the



Table 2: Results for RQ1. Representative prediction
results of Tizen-wearable RC2.
Packages

Depth 0 Depth All
Precision Recall F-measure Precision Recall F-measure

Package 1 1.000 0.968 0.984 1.000 0.935 0.967
Package 2 0.667 0.154 0.250 0.600 0.462 0.522

Average 0.834 0.561 0.617 0.800 0.699 0.745

we use Random Forest for Remi in our empirical study.
Finally, Remi ranks APIs with respect to the buggy proba-

bility of the prediction outcomes. Remi considers that APIs
predicted at a higher buggy probability are likely to be more
risky. This rank information is used by the QA team to de-
cide which APIs need more testing effort.

4. EVALUATION
To evaluate Remi, we investigate two research questions:

• RQ1: How accurately can Remi predict buggy APIs?
• RQ2: How useful is Remi for API testing in the actual

API development process?
To set up our experiments, we applied Remi to Tizen-

wearable, which is implemented in C/C++ at Samsung.
Among the 56 functional packages containing approximately
3000 APIs found in Tizen-wearable, we applied Remi to 36
packages containing approximately 1100 APIs in which at
least one bug exists or no build error occurs while releasing
a release candidate (RC). We conducted the defect predic-
tion in three consecutive RCs from RC2 to RC4 in which
Remi builds a prediction model from the data collected in
RC (n−1) and predicts bugs for the data collected in RC (n).
For example, Remi builds a prediction model using data col-
lected in RC2 and predicts bug-prone APIs for RC3. Based
on the prediction results, the QA team performs API test-
ing by allocating its resources to those bug-prone APIs. We
repeat this process for RC4.

4.1 RQ1: Prediction Accuracy
We measure precision, recall, and f-measure for each Tizen-

wearable package. Table 2 presents the prediction results
from Package 1 and 2 in Tizen-wearable RC2 and their aver-
age results. Since the RCs in the experiments were the out-
come of intensive QA activities, most packages in RCs were
already reliable. Thus, most packages except for Package 1
and 2 have no buggy APIs based on our labeling methods.

We build the prediction model using the data collected
from RC1 and predict the defects in RC2 using the model.
Precision represents how many of the APIs predicted as
buggy are correct. Recall measures how many buggy APIs
are predicted from all actual buggy APIs. Since precision
and recall have a trade-off, we compute f-measure which is
a harmonic mean value of precision and recall. Table 2 also
presents the prediction results by different depths of the call
graph used during the metric aggregation (Section 3). We
report the prediction results of Depth 0 and All for each
package. Depth All means we summate metrics using all
descendant functions of an API in the call graph.

In Package 1, Remi achieves the high f-measure in both of
Depths 0 and All (0.984 and 0.967, respectively). Although
the f-measure in Package 2 is not as high as that in Package
1, we observed that 46% of the buggy APIs were ranked in
the top 14% of APIs by Remi. This result indicates that

default options for Random Forest, Logistics, Simple Logis-
tics, LMT, J48, Naive Bayes, Bayes Network, and SMO [5].

Table 3: Results of RQ2 for the test development
phase. (M) indicates resources consumed for modifying ex-

isting tests. (N) indicates resources for developing new tests.

Resources Bug-Detect Ability
Test Bugs

Version Man-Day API Cases Detected

RC2
w/o Remi 7 (M) 70 70 2
w/ Remi 19.7 (N) 158 158 2

RC3
w/o Remi 4.7 (M) 47 47 0
w/ Remi 3.25 (N) 26 26 2

our ranking is effective in prioritizing the riskier APIs so
that the Samsung QA team can allocate its resources for
these riskier APIs first.

Table 2 shows the different prediction results in Depth 0
and Depth All. The packages may have more complexity
in terms of the source code and process metrics when com-
paring the metric values in Depth All to those in Depth 0.
Since higher metric values are likely to entail more APIs be-
ing predicted as bug-prone, the prediction results in Depth
All have a better f-measure (0.522) of Package 2 in Depth
All than that in Depth 0. Aggregating metrics at the API-
level with a deeper call graph depth may be helpful and lead
to a better prediction performance. To investigate the im-
pact of different call graph depths, we applied Depth 0, 1, 3,
5, and All for all packages in Tizen-wearable. However, we
observed that the deeper depth did not always lead to the
better results as seen in Depth All of Package 1. One possi-
ble reason is that defects of APIs reside in functions invoked
in different depths of the function call graph. We plan to
identify the reasonable depth before building a prediction
model as future work.

4.2 RQ2: Effects on API Testing
We evaluate the effects of Remi on API testing when Remi

is applied during the API development process. In particu-
lar, we measure the bug detectability of the test suite and
the allocated resources in two phases of API testing: test
case development and test case execution.

Table 3 presents the results for the test case development
phase before and after applying Remi. The first two columns
list subject versions applied with and without Remi. Before
applying Remi, the QA team at Samsung modifies a subset
of existing test cases that is affected by API specification
changes or that contains invalid test inputs. After apply-
ing Remi, Samsung arranged an additional QA team whose
members develop new test cases for risky APIs predicted by
Remi. For this experiment, we define risky APIs to those
APIs predicted with a 50% or higher buggy probability be-
cause the QA team at Samsung confirmed that 50% is the
most suitable cut-off for effectively putting QA effort in their
RC release cycles. Note that we conduct the experiment for
RC3 at the same development starting point where all de-
tected bugs by the modified and created test cases in RC2
have been fixed. Therefore, RC3 is developed on one sin-
gle version rather than two different versions for with and
without Remi. Column 3 presents the allocated testing re-
sources in man-days. A man-day in Samsung is defined as
eight hours of work per person. Columns 4 and 5 show the
number of APIs and the number of the corresponding test
cases, respectively. The last column represents the number
of detected bugs by the test cases.

The result in Table 3 indicates that Remi improves the
effectiveness of the API testing as newly developed test cases



Table 4: Results of RQ2 for the test execution phase.
Resources Bug-Detect Ability

Test Detected Detection
Version Man-Hour Run Bugs Rate

RC2
w/o Remi 2.18 873 6.5 0.74%
w/ Remi 2.18 873 18 2.06%

RC3
w/o Remi 2.11 845 8.1 0.96%
w/ Remi 2.11 845 9 1.07%

for the risky APIs to detect additional bugs. Although more
resources are consumed by the group using Remi due to
the large percentage of buggy APIs during the early version
(RC2), Remi reduces the use of a considerable amount of
resources in RC3 (19.7 and 3.25 man-days in RC2 and RC3,
respectively). This resource reduction is possible because
the number of APIs predicted as buggy by Remi is much
less than that in RC2. This implies that the reliability of
Tizen-wearable improved after the intensive testing during
RC2 by developing new test cases for those highly ranked
APIs in terms of risk.

Table 4 presents the results for the test suite execution
phase. Column 3 shows the consumed resources in man-
hours, which are defined as 400 test executions per hour
because testers at Samsung are advised to execute 100 test
cases in 15 minutes. The last three columns present the
number of test cases executed (Test Run), the number of
detected bugs after Test Run, and the bug detection rate to
Test Run, respectively. To illustrate the efficiency of Remi,
we execute the test cases that are associated with the top
30% of total APIs ranked by Remi. For the fair comparison,
we randomly select the same number of test cases (30%)
for Test Run without Remi. Because of the randomness of
selecting test cases, we repeat this 1,000 times [1].

As shown in Table 4, the bug detectability of the test suite
executed using Remi outperforms the one without Remi in
terms of the number of detected bugs with statistical sig-
nificance (Wilcoxon signed-rank test, p<0.05 for both RC2
and RC3). In particular, the bug-detection rate with Remi is
higher than the one without Remi in RC2 (0.74% vs 2.06%).
This result demonstrates that Remi is effective in ranking
bug-prone APIs by placing more bug-prone APIs at higher
rankings. However, the bug-detection rate with Remi in
RC3 is not as high as that in RC2. This is because the pre-
diction performance for RC3 is not as accurate as that in
RC2 due to the incorrect labeling caused by the build er-
rors of the source code. This incorrect labeling also affects
the low prediction accuracy for Package 2 in Table 2. How-
ever, despite this exceptional case, the number of detected
bugs with Remi is still higher than without Remi with sta-
tistical significance. Therefore, adopting Remi can improve
the efficiency of the test execution by increasing the bug
detectability of the test suite with the reduced amount of
resources.

5. LESSONS LEARNED & CONCLUSION
During the case study of Remi at Samsung, we received

three distinct comments from five QA members who per-
formed testing activities using Remi. From theses com-
ments, we learned the following lessons. First, the list of
risky APIs provided before conducting QA activities is help-
ful for testers to allocate their testing effort efficiently, espe-
cially with tight time constraints. Second, in the process of
applying Remi, overheads arise during the tool configuration
and executions (approximately 1 to 1.5 hours). Finally, it is

difficult to collect the bug information to label buggy/clean
APIs without noise. The performance of Remi’s prediction
model is affected by the quality of API labels. To make
Remi more reliable, the method for labeling APIs needs to
be improved.

Overall our case study demonstrates that Remi is effective
in improving the efficiency of QA activities, but there is still
room for improvement such as simpler configuration process
and better labeling quality.

In conclusion, after predicting the top risky APIs by Remi,
practitioners could efficiently manage resources needed dur-
ing the QA process. After applying Remi to Tizen-wearable

RCs at Samsung, the QA members identified additional bugs
by developing test cases for risky APIs. Additionally, given
the same amount of resources when executing test cases, the
QA members could detect more bugs using Remi. As a re-
sult, the QA process of Tizen-wearable was improved. The
QA team in Samsung plans to improve Remi more and to
apply it to other software projects. Remi also can be applied
to open source API development projects and this remains
as our future work.
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