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Abstract—This paper introduces a new technique for predicting latent software bugs, called change classification. Change

classification uses a machine learning classifier to determine whether a new software change is more similar to prior buggy changes or

clean changes. In this manner, change classification predicts the existence of bugs in software changes. The classifier is trained using

features (in the machine learning sense) extracted from the revision history of a software project stored in its software configuration

management repository. The trained classifier can classify changes as buggy or clean, with a 78 percent accuracy and a 60 percent

buggy change recall on average. Change classification has several desirable qualities: 1) The prediction granularity is small (a change

to a single file), 2) predictions do not require semantic information about the source code, 3) the technique works for a broad array of

project types and programming languages, and 4) predictions can be made immediately upon the completion of a change.

Contributions of this paper include a description of the change classification approach, techniques for extracting features from the

source code and change histories, a characterization of the performance of change classification across 12 open source projects, and

an evaluation of the predictive power of different groups of features.

Index Terms—Maintenance, software metrics, software fault diagnosis, configuration management, classification, association rules,

data mining, machine learning.
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1 INTRODUCTION

CONSIDER a software developer working on a long-
duration software product. Like most software devel-

opers, she typically makes changes that are clean, not
containing a latent bug. At times, she makes changes that
introduce new features or adapts the software to a changing
operational environment. Sometimes, she makes bug-fix
changes that repair a bug. Occasionally, she makes a bug-
introducing change and injects incorrect statements into the
source code. Since developers typically do not know that
they are writing incorrect software, there is always the
question of whether the change that they just made has
introduced a bug.

A bug in the source code leads to an unintended state

within the executing software and this corrupted state

eventually results in an undesired external behavior. This is

logged in a bug report message in a change tracking system,

often many months after the initial injection of the bug into

the software. By the time that a developer receives the bug

report, she must spend time to reacquaint herself with the

source code and the recent changes made to it. This is time

consuming.
If there were a tool that could accurately predict whether

a change is buggy or clean immediately after a change was

made, it would enable developers to take steps to fix the

introduced bugs immediately. Several bug-finding techni-
ques could be used, including code inspections, unit testing,
and the use of static analysis tools. Since these steps would
be taken right after a code change was made, the developer
would still retain the full mental context of the change. This
holds promise for reducing the time required to find
software bugs and reducing the time that bugs stay resident
in software before removal.

This paper presents a new technique, called change
classification, for predicting bugs in file-level software
changes (a set of line ranges in a single file changed since
the previous revision) by using machine learning classifica-
tion algorithms. A key insight behind this work is viewing
bug prediction in changes as a kind of a classification
problem, that is, assigning each change made into one of the
two classes: clean changes or buggy changes.

The change classification technique involves two steps:
training and classification. The change classification algo-
rithms learn from a training set, that is, a collection of
changes that are known to belong to an existing class, that
is, the changes are labeled with the known class. Features are
extracted from the changes and the classification algorithm
learns which features are the most useful for discriminating
among the various classes. In this context, feature often
means some property of the change, such as the frequency
of words that are present in the source code. This is
different from the typical software engineering notion of
feature as a software functionality.

Unfortunately, for software change classification, we do
not have a known standard corpus like the UCI Repository
of Machine Learning [37] or the Reuters Corpus [23], which
are commonly used for evaluation in the text classification
domain. In this paper, the file change histories of 12 open
source projects are extracted from their software
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configuration management (SCM) systems. The features
from each change, creating the corpus, are used to
evaluate change classification per project. Each project’s
features are used to train a Support Vector Machine
(SVM) [14] classifier for that project. SVMs are a class of
high-performance machine learning classification algo-
rithms that have good behavior for a range of text
classification problems. After training an SVM by using
change data from revisions 1 to n, if there is a new and
unclassified change (that is, revision nþ 1), this change can
be classified as either buggy or clean by using the trained
classifier model. This act of classification has the effect of
predicting which changes have bugs.

This paper makes the following contributions:
New bug prediction technique: change classification. Classify-

ing software changes (instead of entire files, functions, or
methods) provides a new method for predicting the
location of latent software bugs in changes.

Evaluation of the performance of change classification. The
classification accuracy, recall, and precision are evaluated for
each project. An SVM classifies file changes as buggy or clean,
with a 78 percent accuracy on average (ranging by project
from 64 percent to 93 percent, as shown in Fig. 2) and a
60 percent buggy change recall on average (43 percent to
98 percent, as shown in Fig. 2). This is on par with the best
recent work on bug prediction in the research literature [12],
[39], with the added benefit that the granularity of prediction
is smaller: It is localized to the section of text related to a
change instead of a whole file or function/method.

Techniques for feature extraction from the source code and
change histories. In order to extract features from a software
evolution history, new techniques for feature extraction
were developed. These have utility for any researcher
performing classification experiments using evolution data.

Evaluation of the performance of individual features and
groups of features. Since the choice of features can affect the
performance of classifiers, each feature’s discriminative
power for performing change classification is compared.
This is performed by evaluating which set of features yields
the best overall classification accuracy and recall and also by
examining the relative contributions of individual features.

The remainder of this paper begins with a comparison to
related work (Section 2), followed by an overview of the
approach used to create a corpus, perform change classifi-
cation, and evaluate its performance (Section 3). The process
used to create the 12 project corpora is described in detail
(Section 4), followed by a brief overview of the SVM
algorithm and the evaluation measures used in this paper.
Results from applying change classification to the corpus
using all features are presented in Section 6 and Section 7
gives an evaluation of the relative importance of the feature
groups and individual features. Section 8 provides discus-
sion of these results and threats to validity. Section 9
concludes this paper.

2 RELATED WORK

The goal of change classification is to use a machine
learning classifier to predict bugs in changes. As a result,
related work exists in the area of bug prediction, as well as
algorithms for source code clustering and text classification.

2.1 Predicting Buggy and High-Risk Modules

There is a rich literature for bug detection and prediction.
Existing work falls into one of three categories, depending
on the goal of the work. The goal of some work is to identify
a problematic module list by analyzing software quality
metrics or a project’s change history [13], [15], [16], [21],
[39], [40], [41]. This identifies modules that most likely
contain latent bugs, but provides no insight into how many
faults may be in each module. Other efforts address this
problem, predicting the bug density of each module by
using its software change history [11], [36]. Work that
computes a problematic module list or that determines a
fault density is good for determining where one can focus
quality assurance efforts, but does not provide specific
guidance on where exactly in the source code one can find
the latent bugs. In contrast, efforts that detect faults by
analyzing the source code by using static or dynamic
analysis techniques can identify specific kinds of bugs in the
software, though generally with high rates of false positives.
Common techniques include type checking, deadlock
detection, and pattern recognition [8], [26], [48].

Classification or regression algorithms with features
such as complexity metrics, cumulative change count, and
bug count are widely used to predict risky entities. Similar
to our work, Gyimothy et al. use machine learning
algorithms to predict fault classes in software projects
[12]. They employ decision trees and neural networks using
object-oriented metrics as features to predict fault classes of
the Mozilla project across several releases (1.0-1.6). The
recall and the precision reported in [12] are about 70 percent,
while our change classification accuracy for the Mozilla
project is somewhat higher at 77.3 percent, with lower
precision at 63.4 percent. These results reported by
Gyimothy et al. are strong. However, they predict faults
at the class level of granularity (usually entire files), while
the prediction granularity of change classification is much
finer, file level changes, which, for the projects that we
analyzed, average 20 lines of code (LOCs) per change. This
is significant since developers need to examine an order of
magnitude smaller number of LOCs to find latent bugs with
the change classification approach. Gyimothy et al. use
release-based classes for prediction, where a release is an
accumulation of many versions, while our change classifi-
cation applies to the changes between successive individual
versions. This allows change classification to be used in an
ongoing daily manner instead of just for releases which
occur on months-long time scales.

Kim et al. proposed BugMem to capture fault patterns in
previous fixes and to predict future faults using captured
fix memories [17]. Mizuno and Kikuno use an e-mail spam
filter approach to capture patterns in fault-prone software
modules [31]. These two approaches are similar to change
classification in that they learn fault patterns and predict
future faults based on them. However, they classify static
code (such as the current version of a file), while our
approach classifies file changes. The patterns that they can
learn are limited to the source code only, while change
classification uses features from all possible sources, such as
the source code, metadata, delta, complexity metrics, and
change logs.
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Brun and Ernst [5] use two classification algorithms to
find hidden code errors. Using Ernst’s Daikon dynamic
invariant detector, invariant features are extracted from
code with known errors and with errors removed. They
train SVM and decision tree classifiers by using the
extracted features and then classify invariants in the source
code as either fault invariant or non-fault-invariant. The
fault-invariant information is used to find hidden errors in
the source code. The reported classification accuracy is
10.6 percent on average (9 percent for C and 12.2 percent for
Java), with a classification precision of 21.6 percent on
average (10 percent for C and 33.2 percent for Java), and the
best classification precision (with the top 80 relevant
invariants) of 52 percent on average (45 percent for C and
59 percent for Java). The classified fault invariants guide
developers in finding hidden errors. Brun and Ernst’s
approach is similar to our work in that they try to capture
properties of buggy code and use it to train machine
learning classifiers to make future predictions. However,
they used only invariant information as features, which
leads to lower accuracy and precision. In contrast, change
classification uses a broader set of features, including the
source code, complexity metrics, and change metadata.

Hassan and Holt use a caching algorithm to compute the
set of fault-prone modules, called the top-10 list [13]. They
use four factors to determine this list: software that was
most frequently modified, most recently modified, most
frequently fixed, and most recently fixed. Kim et al.
proposed the bug cache algorithm to predict future faults
based on previous fault localities [18]. Ostrand et al.
identified the top 20 percent of problematic files in a project
[39], [40]. Using future fault predictors and a negative
binomial linear regression model, they predict the fault
density of each file.

Khoshgoftaar and Allen have proposed a model to list
modules according to software quality factors such as
future fault density [15], [16], [21]. The inputs to the model
are software complexity metrics such as LOC, number of
unique operators, and cyclomatic complexity. A stepwise
multiregression is then performed to find weights for each
factor [15], [16]. Mockus and Weiss predict risky modules in
software by using a regression algorithm and change
measures such as the number of systems touched, the
number of modules touched, the number of lines of added
code, and the number of modification requests [33].

Pan et al. use metrics computed over software slice data
in conjunction with machine learning algorithms to find
bug-prone software files or functions [41]. Their approach
tries to find faults in the whole code, while our approach
focuses on file changes.

2.2 Mining Buggy Patterns

One thread of research attempts to find buggy or clean code
patterns in the history of development of a software project.

Williams and Hollingsworth use project histories to
improve existing bug-finding tools [51]. Using a return
value without first checking its validity may be a latent bug.
In practice, this approach leads to many false positives as
typical code has many locations where return values are
used without checking. To remove the false positives,
Williams and Hollingsworth use project histories to

determine which kinds of function return values must be
checked. For example, if the return value of foo was always
verified in the previous project history but was not verified
in the current source code, it is very suspicious. Livshits and
Zimmermann combine software repository mining and
dynamic analysis to discover common use patterns and
code patterns that are likely errors in Java applications [25].
Similarly, PR-Miner mines common call sequences from a
code snapshot and then marks all noncommon call patterns
as potential bugs [24].

These approaches are similar to change classification
since they use project specific patterns to determine latent
software bugs. However, the mining is limited to specific
patterns such as return types or call sequences and hence
limits the type of latent bugs that can be identified.

2.3 Classification, Clustering, Associating, and
Traceability Recovery

Several research projects are similar to bug classification in
that features (terms) are also extracted from the source code
and are then fed into classification or clustering algorithms.
These projects have goals other than predicting bugs,
including classifying software into broad functional cate-
gories [19], clustering related software project documents
[20], [28], and associating the source code with other
artifacts such as design documents [29].

Krovetz et al. use terms in the source code (as features)
and SVM to classify software projects into broad functional
categories such as communications, databases, games, and
math [19]. Their insight is that software projects in the same
category will share terms in their source code, thereby
permitting classification.

Research that categorizes or associates source code with
other documents (traceability recovery) is similar to ours in
that it gathers terms from source code and then uses
learning or statistical approaches to find associated docu-
ments [2], [42]. For example, Maletic et al. [28], [29]
extracted all features available in the source code via Latent
Semantic Analysis (LSA) and then used this data to cluster
software and to create relationships between the source
code and other related software project documents. In a
similar vein, Kuhn et al. use partial terms from the source
code to cluster the code to detect abnormal module
structures [20]. Antoniol et al. use stochastic modeling
and Bayesian classification for traceability recovery [2].
Their work differs from ours in that they only use features
from the source code, while our change classification learns
from project history data, including change deltas, change
log text, and authors. Traceability recovery focuses on
finding associations among the source code and other
documents, while change classification tries to identify each
change as buggy or clean.

Similar in spirit to change classification is work that
classifies bug reports or software maintenance requests [3],
[10]. In this research, keywords in bug reports or change
requests are extracted and used as features to train a
machine learning classifier. The goal of the classification is
to place a bug report into a specific category or to find the
developer best suited to fix a bug. This work, along with
change classification, highlights the potential of using
machine learning techniques in software engineering. If
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an existing concern such as assigning bugs to developers
can be recast as a classification problem, then it is possible
to leverage the large collection of data stored in bug
tracking and SCM systems.

2.4 Text Classification

Text classification is a well-studied area with a long research
history. Using text terms as features, researchers have
proposed many algorithms to classify text documents [46]
such as classifying news articles into their corresponding
genres. Among existing work on text classification, spam
filtering [16] is the most similar to ours. Spam filtering is a
binary classification problem for identifying e-mail as spam
or ham (not spam). This paper adapts existing text classifica-
tion algorithms into the domain of source code change
classification. Our research focuses on generating and
selecting features related to buggy source code changes.

2.5 Summary

Change classification differs from previous bug prediction
work since it:

Classifies changes. Previous bug prediction work
focuses on finding prediction or regression models to
identify fault-prone or buggy modules, files, and functions
[11], [36], [38]. Change classification predicts whether there
is a bug in any of the lines that were changed in one file in
one SCM commit transaction. This can be contrasted with
making bug predictions at the module, file, or method level.
Bug predictions are immediate since change classification
can predict buggy changes as soon as a change is made.

Uses bug-introducing changes. Most bug prediction
research uses bug-fix data when making predictions or
validating their prediction model. Change classification
uses bug-introducing changes, which contains the exact
commit/line changes that injected a bug who introduced it
and the time that it occurred. Bug-fix changes indicate only
roughly where the bug occurred. Bug-introducing changes
allow us to label changes as buggy or clean, with
information about the source code at the moment that a
bug was introduced.

Uses features from the source code. When selecting
predictors, bug prediction research usually does not take
advantage of the information directly provided by the
source code and thereby miss a valuable source of features.
Change classification uses every term in the source code,
that is, every variable, method call, operator, constant,
comment text, and more, as features to train our change
classification models.

Is independent of the programming language. Our
change classification approach is programming language
independent since we use a bag-of-words method [45] for
generating features from the source code. The projects that
we analyzed span many popular current programming
languages, including C/C++, Java, Perl, Python, Java Script,
PHP, and XML.

3 OVERVIEW OF THE CHANGE CLASSIFICATION

APPROACH

The primary steps involved in performing change classifi-
cation on a single project are outlined as follows:

Creating a corpus:

1. File level changes are extracted from the revision
history of a project, as stored in its SCM repository
(described further in Section 4.1).

2. The bug fix changes for each file are identified by
examining keywords in SCM change log messages,
part of the data extracted from the SCM repository in
Step 1 (Section 4.2).

3. The bug-introducing and clean changes at the file
level are identified by tracing backward in the
revision history from bug fix changes, using SCM
annotation information (Section 4.2).

4. Features are extracted from all changes, both buggy
and clean. Features include all terms in the complete
source code, the lines modified in each change
(delta), and change metadata such as author and
change time. Complexity metrics, if available, are
computed at this step. Details on these feature
extraction techniques are presented in Section 4.3.

At the end of Step 4, a project-specific corpus has

been created, a set of labeled changes with a set of
features associated with each change [52].

Classification:

5. Using the corpus, a classification model is trained.
Although many classification techniques could be
employed, this paper focuses on the use of SVM, as
outlined in Section 5.1.

6. Once a classifier has been trained, it is ready to use.
New changes can now be fed to the classifier, which
determines whether a new change is more similar to
a buggy change or a clean change.

Machine learning classifiers have varying performance,

depending on the characteristics of the data set used to train

the classifier and the information available in the text being

classified. This paper examines the behavior of change

classification by assessing its predictive performance on

12 open source software systems. Since the inclusion and

omission of different feature sets can affect the predictive

performance, an examination of the performance of

different feature groups is also performed. The overall

approach for these two evaluations is provided as follows:

Evaluation of change classification:

1. The classification performance is evaluated using the
10-fold cross-validation method [35] and the com-
putation of the standard classification evaluation
measures, including accuracy, recall, precision, and
F-value. Definitions of these measures are provided
in Sections 5.2 and 5.3 and the actual measured
values are presented in Section 6.1.

2. A dummy classifier that randomly guesses whether
a change is buggy or clean is used as the baseline.
Recall-precision curves are presented in Section 6.2,
along with the analysis of the performance of change
classification relative to the dummy classifier.
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Evaluation of the feature group performance:

1. We measure the classification performance of dif-
ferent sets of feature combinations (the evaluation of
change classification, that is, Step 1) to compare their
performance (Sections 7.1).

2. Using the chi-square measure, which is commonly
used for feature selection [54], each feature is ranked
to determine how correlated it is to the buggy and
clean classes. This provides insight into which
features are the most informative for change
classification (Section 7.2).

4 CREATING THE CORPUS

4.1 Change History Extraction

Kenyon [4] is a system that automates the extraction of

source code change histories from SCM systems such as

CVS and Subversion. Kenyon automatically checks out a

user-defined range of revisions stored in a project’s SCM

repository, reconstructing logical transactions from indivi-

dual file commits for the CVS system [55]. Revisions include

files and their change information. From checked-out

revisions, Kenyon extracts change information such as the

change log, author, change date, source code, change delta,
and change metadata. This information is then fed into the
feature extraction process to convert a file change into a
vector of features.

One challenge in change classification is ensuring that
the memory used by the SVM classifier does not grow
too large. In this experiment, only a subset of each
project’s revisions were selected, typically 500 revisions.
To try ensuring that projects were compared at more or
less the same level of maturity, file change features were
extracted from revisions 500-1,000 (or revisions 500-750
for big projects). Additionally, there was some initial
concern that the change patterns in the first part of a
project (revisions 1-500) may not be stable (Hassan and
Holt [13] noted similar concerns), but later analysis showed
this was not the case (in general, project maturity level has
no substantive impact on prediction results). Table 1
provides an overview of the projects examined in this
research, the range of revisions extracted, and the real-
world duration of each range.

One of the advantages of classifying file changes was
discussed earlier: It provides predictions at a fine level of
granularity (a single change to a single file). For the 12 projects
examined in this paper, Table 2 shows average values for the
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number of LOCs in a file change, in each file, in a function/
method change, and in each function/method. On average,
the number of LOCs per file change is 20, while the
average LOC per file is 300. For example, if a tool predicts
bugs at the file level, it is necessary to inspect 300 LOCs,
on average, to locate the line(s) containing the bug. Since
our approach classifies file changes, the prediction is at
the file change level and, hence, only 20 lines, on average,
need to be inspected.

4.2 Identifying Bug-Introducing Changes

The first step toward identifying bug-introducing changes
is to find bug-fix changes. Bug-fix changes are identified by
mining change log messages. Two approaches are used for
this step: searching for keywords such as “Fixed” or “Bug”
[32] and searching for references to bug reports like
“#42233” [6], [7], [47]. If a keyword or bug report reference
is found, the changes in the associated commit comprise a
bug fix. Table 3 lists keywords or phrases used to identify
bug-fix commits. Manual verification of identified bug-fix
changes is recommended to ensure that the selected
keywords or phrases are correctly identifying bug-fix
changes. For example, if a commit log stated, “This is not
a bug fix,” its commit should not be identified as a fix. For
the systems studied in this paper, one of the authors
manually verified that the identified fix commits were
indeed fixes.

One potential issue of identifying bug fixes using the bug
tracking system identifiers is the common use of bug
tracking systems to record both bug reports and new
feature additions. This causes new feature changes to be
identified as bug-fix changes. Among the systems studied
in this paper, Bugzilla and Scarab both use bug tracking
systems to record new feature additions and, as a result, the
percentage of buggy changes found in these systems is
higher than for other projects (Bugzilla has 73.7 percent and
Scarab has 50.5 percent). For these two systems, what this
paper terms a “buggy” change should be interpreted as a
“buggy or new feature” change. Similarly, for these two
systems, predictions of buggy changes should be inter-
preted as predictions of “buggy or new feature” changes.

Once a commit has been determined to contain a fix, it is
possible to work backward in the revision history to
determine the initial bug-introducing change. The bug-
introducing change identification algorithm proposed by
�Sliwerski, Zimmermann, and Zeller (the SZZ algorithm) is

used in this paper [47]. After identifying bug fixes, SZZ uses
a diff tool to determine what changed in the bug fixes. The
diff tool returns a list of regions that differ in the two files.
Each region is called a “hunk.” It observes each hunk in the
bug fix and assumes that the deleted or modified source
code in each hunk is the location of a bug.

Finally, SZZ tracks down the origins of the deleted or
modified source code in the hunks using the built-in
annotate functionality of SCM systems. The annotate
function computes, for each line in the source code, the
most recent revision in which the line was changed and the
developer who made the change. The discovered origins are
identified as bug-introducing changes.

Fig. 1 shows an example of the history of development of
a single function over three revisions:

. Revision 1 shows the initial creation of function bar
and the injection of a bug into the software, that is,
the line “if (report == null) {” which should be “!=”
instead. The leftmost column of each revision shows
the output of the SCM annotate command, identify-
ing the most recent revision for each line and the
developer who made the revision. Since this is the
first revision, all lines were first modified at
revision 1 by the initial developer “kim.” The second
column of numbers in revision 1 lists line numbers
within that revision.

. In the second revision, two changes were made. The
function bar was renamed to foo and println has
argument “report.str” instead of “report.” As a result,
the annotate output shows lines 1 and 4 as having
been most recently modified in revision 2 by “ejw.”

. Revision 3 shows a change, the actual bug fix,
changing line 3 from “==” to “!=.”

The SZZ algorithm then identifies the bug-introducing
change associated with the bug fix in revision 3. It starts by
computing the delta between revisions 3 and 2, yielding
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� bug ID reference is a seven-digit number.

Fig. 1. Example bug-fix and source code changes. A null-value checking

bug is injected in revision 1 and fixed in revision 3.



line 3. SZZ then uses the SCM annotate data to determine
the initial origin of line 3 at revision 2. This is revision 1, the
bug-introducing change.

One assumption of the presentation so far is that a bug is
repaired in a single bug-fix change. What happens when a
bug is repaired across multiple commits? There are two
cases. In the first case, a bug repair is split across multiple
commits, with each commit modifying a separate section of
the code (code sections are disjoint). Each separate change is
tracked back to its initial bug-introducing change, which is
then used to train the SVM classifier. In the second case, a bug
fix occurs incrementally over multiple commits, with some
later fixes modifying earlier ones (the fix code partially
overlaps). The first patch in an overlapping code section
would be traced back to the original bug-introducing change.
Later modifications would not be traced back to the original
bug-introducing change. Instead, they would be traced back
to an intermediate modification, which is identified as bug
introducing. This is appropriate since the intermediate
modification did not correctly fix the bug and, hence, is
simultaneously a bug fix and buggy. In this case, the classifier
is being trained with the attributes of the buggy intermediate
commit, a valid bug-introducing change.

4.3 Feature Extraction

To classify software changes using machine learning
algorithms, a classification model must be trained using
features of buggy and clean changes. In this section, we
discuss techniques for extracting features from a software
project change history.

A file change involves two source code revisions (an old
revision and a new revision) and a change delta that records
the added code (added delta) and the deleted code (deleted
delta) between the two revisions. A file change has associated
metadata, including the change log, author, and commit date.
By mining change histories, we can derive features such as
cochange counts to indicate how many files are changed
together in a commit, the number of authors of a file, and the
previous change count of a file. Every term in the source code,
change delta, and change log texts is used as features. We
detail our feature extraction method as follows.

4.3.1 Feature Extraction from Change Metadata

We gather eight features from change metadata: author,
commit hour (0, 1, 2, . . . , 23), commit day (Sunday,
Monday, . . . , Saturday), cumulative change count, cumula-
tive bug count, length of change log, changed LOC (added
delta LOC + deleted delta LOC), and new revision source
code LOC. In other research, cumulative bug and change
counts are commonly used as bug predictors [11], [33], [38],
[40], [47], [48], [56].

4.3.2 Complexity Metrics as Features

Software complexity metrics are commonly used to
measure software quality and predict defects in software
modules [12], [15], [30]. Modules with higher complexity
measures tend to correlate with greater fault incidence. We
compute a range of traditional complexity metrics of the
source code by using the Understand C/C++ and Java tools
[44]. As a result, we extract 61 complexity metrics (every
complexity metric that these tools compute) for each file,
including LOC, lines of comments, cyclomatic complexity,
and max nesting. Since we have two source code files

involved in each change (old and new revision files), we
compute and use as features the difference in value, a
complexity metric delta for each complexity metric between
these two revisions.

4.3.3 Feature Extraction from Change Log Messages,

Source Code, and File Names

Change log messages are similar to e-mail or news articles
in that they are human readable texts. Each word in a
change log message carries meaning. Feature engineering
from texts is a well-studied area, with the BOW, LSA, and
vector models being widely used approaches for text
classification [43], [45]. Among them, the BOW approach,
which converts a stream of characters (the text) into a BOW
(index terms), is simple and performs fairly well in practice
[45], [46]. We use BOW to generate features from change log
messages.

We extract all words, except for special characters, and
convert all words to lowercase. The existence (binary) of a
word in a document is used as a feature. Although
stemming (removing stems) and stopping (removing very
frequent words) are commonly used by researchers in the
text classification community to reduce the number of
features, we did not perform these steps to simplify our
experiments. Additionally, the use of stemming on variable,
method, or function names is generally inappropriate since
this changes the name.

We use all terms in the source code as features, including
operators, numbers, keywords, and comments. To generate
features from the source code, we use a modified version of
BOW, called BOW+, that extracts operators, in addition to
all terms extracted by BOW, since we believe that operators
such as “!=,” “++,” and “&&” are important terms in the
source code. We perform BOW+ extraction on the added
delta, the deleted delta, and the new revision source code.
This means that every variable, method name, function
name, keyword, comment word, and operator, that is,
everything in the source code separated by whitespace or a
semicolon, is used as a feature.

We also convert the directory and filename into features
since they encode both module information and some
behavioral semantics of the source code. For example, the
file (from the Columba project) “ReceiveOptionPanel.java” in
the directory “src/mail/core/org/columba/mail/gui/config/ac-
count/” reveals that the file receives some options using a
panel interface and the directory name shows that the source
code is related to “account,” “configure,” and “graphical user
interface.” Some researchers perform bug predictions at the
module granularity by assuming that bug occurrences in files
in the same module are correlated [11], [13], [48].

We use the BOW approach by removing all special
characters, such as slashes, and then extracting words in the
directory and filenames. Directory and filenames often use
Camelcase, concatenating words and then identifying word
breaks with capitals [50]. For example, “ReceiveOptionPanel.
java” combines “receive,” “option,” and “panel.” To extract
such words correctly, we use a case change in a directory or
a filename as a word separator. We call this method
BOW++. Table 4 summarizes features generated and used
in this paper.
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4.3.4 Feature Extraction Summary

Using the feature engineering technique described pre-
viously, features are generated from all file changes in the
analyzed range of revisions. Each file change is represented as
an instance, a set of features. Using the bug-introducing
change identification algorithm, we label each instance as
clean or buggy. Table 1 summarizes the corpus information.
Consider the Apache 1.3 HTTP server project. For this project,
the corpus includes changes in revisions 500-1,000, a total of
700 changes, of which 579 are clean and 121 are buggy. From
the 700 changes, 11,445 features were extracted.

5 SUPPORT VECTOR MACHINES AND EVALUATION

TECHNIQUES

Among many classification algorithms, Support Vector
Machine (SVM) [14] is used to implement and evaluate
the change classification approach for bug prediction
because it is a high-performance algorithm that is com-
monly used across a wide range of text classification
applications. Several good quality implementations of
SVM are readily available. The Weka Toolkit [52] imple-
mentation is used in this study. In the following, we
provide an overview description of SVM and then describe
the measures used in our evaluation of SVM for change
classification. There is substantial literature on SVM. The
interested reader is encouraged to pursue [14] or [49] for an
in-depth description.

5.1 Overview of Support Vector Machines

SVMs were originally designed for binary classification,
where the class label can take only two different values. An
SVM is a discriminative model that directly models the
decision boundary between classes. An SVM tries to find
the maximum margin hyperplane, a linear decision
boundary with the maximum margin between it and the
training examples in class 1 and the training examples in
class 2 [49]. This hyperplane gives the greatest separation
between the two classes.

5.2 Ten-Fold Cross Validation

Among the labeled instances in a corpus, it is necessary to
decide which subset is used as a training set or a test set
since this affects classification accuracy. The 10-fold cross-
validation technique [35], [52] is used to handle this
problem in our experiment.

5.3 Measuring Accuracy, Precision, Recall, and
F-Value

There are four possible outcomes while using a classifier on a
single change: classifying a buggy change as buggy (b! b),
classifying a buggy change as clean (b ! c), classifying a
clean change as clean (c ! c), and classifying a clean
change as buggy (c ! b). With a known good set of data
(the test set fold that was pulled aside and not used for
training), it is then possible to compute the total number of
buggy changes correctly classified as buggy (nb!b), buggy
changes incorrectly classified as clean (nb!c), clean changes
correctly classified as clean (nc!c), and clean changes
incorrectly classified as buggy (nc!b).

Note that the known good data set is derived by tracing
bug fix changes back to bug-introducing changes. The set of
bug-introducing (buggy) changes represents those bugs in
the code that had sufficiently observable impacts to warrant
their repair. The set of bug-introducing changes is pre-
sumably smaller than the set of all changes that introduce a
bug into the code. The comprehensive set of all bugs
injected into the code during its development lifetime is
unknown for the projects examined in this paper. It would
require substantial time and effort by a large team of
experienced software engineers to develop a comprehen-
sive approximation of the total set of real bugs.

Accuracy, recall, precision, and F-value measures are
widely used to evaluate classification results [46], [53].
These measures are used to evaluate our file change
classifiers as follows [1], [34], [53]:

Accuracy ¼ nb!b þ nc!c
nb!b þ nb!c þ nc!c þ nc!b

;

that is, the number of correctly classified changes over the
total number of changes. This is a good overall measure of
the predictive performance of change classification. Since
there are typically more clean changes than buggy changes,
this measure could potentially yield a high value if clean
changes are being predicted better than buggy changes.
Precision and recall measures provide insight into this:

Buggy change precision P ðbÞ ¼ nb!b
nb!b þ nc!b

:

This represents the number of correct classifications of
the type ðnb!bÞ over the total number of classifications that
resulted in a bug outcome. Put another way, if the change
classifier predicts that a change is buggy, what fraction of
these changes really contains a bug?
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Buggy change recall RðbÞ ¼ nb!b
nb!b þ nb!c

:

This represents the number of correct classifications of

the type ðnb!bÞ over the total number of changes that were

actually bugs. That is, of all the changes that are buggy,

what fraction does the change classifier predict?

Buggy change F1-value ¼ 2 � P ðbÞ �RðbÞ
P ðbÞ þRðbÞ :

This is a composite measure of buggy change precision

and recall.
Similarly, clean change recall, precision, and F-value can

be computed:

Clean change precision P ðcÞ ¼ nc!c
nc!c þ nb!c

:

If the change classifier predicts that a change is clean,

what fraction of these changes really is clean?

Clean change recall RðcÞ ¼ nc!c
nc!c þ nc!b

:

Of all the changes that are clean, what fraction does the

change classifier predict?

Clean change F1-value ¼ 2 � P ðcÞ �RðcÞ
P ðcÞ þRðcÞ :

This is a composite measure of clean change precision

and recall.

6 EVALUATION OF CHANGE CLASSIFICATION

This section evaluates change classification in two ways.

The first section presents the typical machine learning

classifier assessment metrics of accuracy, recall, precision,

and F-values. These results were computed using the

complete set of features extracted for each project. The

second section explores whether change classification per-

forms better than just randomly guessing.

6.1 Accuracy, Precision, and Recall

Fig. 2 shows the accuracy, buggy change recall, and buggy

change precision of the 12 projects using all features listed

in Table 1.
Detailed recall, precision, and F1 values are reported in

Table 5. The buggy change recall ranges from 43 percent to

86 percent and the buggy change precision ranges from

44 percent to 85 percent. The change classification approach

can predict bugs with 64 percent to 92 percent accuracy at

the file change level of granularity. With a file-level change

having 20 LOCs on average, this is the most specific

prediction granularity in the literature.
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Fig. 2. Change classification accuracy, buggy change recall, and buggy change precision of 12 projects using SVM and all features.

TABLE 5
Change Classification Accuracy, Recall, Precision, and F1 Values of the 12 Open Source Projects

SVM classification algorithm with all features is used.



6.2 Comparing Support Vector Machines with a
Dummy Predictor

There are trade-offs between precision and recall and it is
often possible to improve recall by reducing precision and
vice versa. Most machine learning classifiers use a threshold
value to classify instances. For example, SVM uses the
distance between each instance and the hyperplane to
measure the weights of each instance. If an instance’s
weight is greater than the threshold value, the instance
belongs to class 1; otherwise, it belongs to class 2. By
lowering or raising the threshold, it is possible to change
recall and precision. Usually, by lowering recall, precision
can be increased. For example, the buggy change recall can
easily go up to 100 percent by predicting all changes as
buggy, but the precision will be very low.

A recall-precision curve shows the trade-off between
recall and precision. Fig. 3 gives the SVM classifier recall-
precision curves of three selected projects: Bugzilla, Mozilla,
and Scarab (in solid lines). The curve for the Bugzilla project
shows that the precision grows up to about 95 percent (with
a 20 percent recall). For Mozilla and Scarab, the precision
can reach 85 percent to 90 percent by lowering the recall to
20 percent.

How is SVM recall-precision better than other ap-
proaches such as randomly guessing changes (a dummy
classifier) as buggy or clean? Since there are only two
classes, the dummy classifier may work well. For example,
73.7 percent of Bugzilla changes are buggy. By predicting all
changes as buggy, the buggy recall would be 100 percent
and the precision would be 73.7 percent. Is this better than
the results when using SVM? The recall-precision curves of
the dummy (dotted lines) and SVM (solid lines) classifiers
of the three selected projects are compared in Fig. 3. The
precision for the Bugzilla dummy classifier is stuck at
73.7 percent, while SVM precision grows up to 95 percent
(with a 20 percent recall). Similarly, for other projects, SVM
can improve the buggy change precision by 20 percent to
35 percent.

6.3 Correlation between Percentage of Bug-
Introducing Changes and Classification
Accuracy

One observation that can be made based on Table 1 is that the
percentage of changes that are buggy varies substantially
among projects, ranging from 10.1 percent of changes for
Eclipse to 73.7 percent for Bugzilla. One explanation for this
variance is the varying use of change log messages among
projects. Bugzilla and Scarab, being change tracking tool
projects, have a higher overall use of change tracking. It is
likely that, for those projects, the class of buggy changes
also encompasses other kinds of modifications. For these
projects, change classification can be viewed as successfully
predicting the kinds of changes that result in change
tracking tool entries.

One question that arises is whether the percentage of
buggy changes for a project affects the change classification
performance, such as accuracy, recall, and precision. A
Pearson correlation was computed between the percentage
of buggy changes and the measures of accuracy, recall, and
precision for the 12 projects analyzed in this paper. Table 6
lists the correlation values. A correlation value of 1 indicates
tight correlation, while 0 indicates no correlation. The values
show a weak negative correlation for accuracy and weak but
not significant correlations for buggy recall and precision.

7 EVALUATION OF FEATURES AND FEATURE

GROUPS

7.1 Change Classification Using Selected Feature
Groups

This section evaluates the accuracy of different feature
group combinations for performing change classification.
First, a classification model is trained using features from
one feature group and then its accuracy and recall are
measured. Following this, a classification model is trained
using all feature groups except for one feature group, with
accuracy and recall measured for this case as well. In

190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 2, MARCH/APRIL 2008

Fig. 3. Buggy change recall-precision curves of the three selected projects, Bugzilla, Mozilla, and Scarab, using SVM. Dummy classifier recall-

precision curves are shown as dotted lines, while the solid lines represent SVM classifier recall-precision curves.



addition, an evaluation is made focusing on the combina-
tion of features extracted solely from the source code
(added delta, new revision source code, and deleted delta).

Extracted features are organized into groups based on
their source. For example, features extracted just from the
change log messages are part of the Change Log (L) feature
group. Table 7 provides a summary of feature groups and
the number of features in each group. Software complexity
metrics were computed only for C/C++ and Java source
code since tools were not available for computing these
metrics for Java Script, Perl, PHP, and Python.

Fig. 4 shows the change classification accuracy for the
Mozilla and Eclipse projects using various feature group
combinations. The abbreviations for each feature group are
shown in Table 7. An abbreviation means that only the
feature group is used for classification. For example, “D”
means that only features from the Deleted Delta group were
used. The “� ” mark indicates that the corresponding
feature group is excluded. For example, “� D” means that

all features were used except for D (Deleted delta). The
feature group “AND” is the combination of all source code
feature groups (A, N, and D). The accuracy trend of the two
projects is different, but they share some properties. For
example, the accuracy using only one feature group is lower
than using multiple feature groups.

The average accuracy of 12 open source projects using
various feature combinations is shown in Fig. 5. Using a
feature combination of only the source code (A, N, and D
combined) leads to a relatively high accuracy, while using
only one feature group from the source code, such as A, N,
or D individually, does not lead to high accuracy. Using
only “L” (change log features) leads to the worst accuracy.

After analyzing the combinations of feature groups, the
feature combination that yields the best accuracy and the
best recall for each project are identified, as shown in
Table 8. The results indicate that there is no feature
combination that works best across projects and that,
frequently, the feature group providing the best accuracy
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Correlation between the Percentage of Buggy Changes and Percentage of Change Classification Performance

TABLE 7
Feature Groups

The number of features in each feature group is shown for all analyzed projects.

Fig. 4. Feature group combination accuracy for Eclipse and Mozilla using SVM. Complexity metrics (C) are not available for Mozilla, so �C and C are

omitted.



is not the same as the feature group providing the best
buggy recall. A practical implication of this data is that each
project has the opportunity to engage in a project-specific
feature selection process that can optimize for either
accuracy or recall but often not both simultaneously.

7.2 Important Individual Features

Although the feature group importance provides some
insight into the relative importance of groups of features, it
does not say anything about individual features. Which
features are the most important within a given project?

Using the chi-square measure, all features are ranked
individually. Additionally, the distribution of each feature
in buggy and clean changes is computed to decide whether
the corresponding feature contributes more to buggy or
clean change classification. The top five ranked individual
features in each feature group are determined and pre-
sented in Table 9. Each box lists the top five ranked features
within a feature group for a given project. Each individual
feature is listed, along with its overall numerical rank
among the total set of features available for that project. The
þ and � before the rank indicate whether the feature is
contributing to the buggy þ or clean � change class.

For example, in the Bugzilla project in the Added Delta
feature group, the keyword “if” is listed as the top feature
within the group and is the fifth most important individual
feature overall. Compared to traditional bug prediction
research that tends to use software metrics to determine
bugs in the software, the most important individual
features presented above seem to have limited utility for
constructing causal models of what causes a bug. A general

cross-project causal model of bug injection just cannot
explain why “if” is a strong feature for Bugzilla while “self”
is a strong feature for Plone. One explanation is that these
are statistically correlated features computed for each
project and, hence, there should be no expectation of a
deeper model. The individual important features are deeply
project-specific, indicating that no cross-project classifica-
tion model can be developed. One should not expect to train
a classifier by using these feature types on one project, then
apply it to another project, and obtain reasonable accuracy,
precision, or recall.

One interesting question is whether the committing
developer is predictive for bugginess. Based on this data,
the short answer is “no,” that is, not for change classifica-
tion. In Table 9, only one project, Plone, lists author as a top
five feature within the metadata feature group and it is
ranked low, at 676. An intriguing potential extension of
change classification would be to train one change classifier
for each developer on a project and then perform devel-
oper-specific bug prediction. Developers are expected to
have developer-specific patterns in their bug-introducing
changes and this might improve the performance of change
classification. This remains future work.

8 DISCUSSION

This section discusses possible applications of change
classification and provides additional interpretation of the
results. This section ends with some discussion on the
limitations of our experiments.
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Fig. 5. Average feature group combination accuracy across the 12 analyzed projects using SVM.

TABLE 8
Feature Group Combination Yielding the Best Classification Accuracy and Buggy Change Recall Using SVM

The feature group listed in parentheses yields the best accuracy/buggy change recall.



8.1 Potential Applications of Change Classification

Right now, the buggy change classifier operates in a

laboratory environment. However, it could potentially be

put into use in various ways:

. A commit checker. The classifier identifies buggy
changes during commits of changes to an SCM
system and notifies developers of the results. The
bug prediction in the commit checker is immediate,
which makes it easy for developers to inspect the
change just made.

. Potential bug indicator during source code editing.
We have shown that features from the source code
(A, N, D) have discriminative power (see Fig. 5).
That is, just using features from source code, it is
possible to perform accurate bug classification. This
implies that a bug classifier can be embedded in a
source code editor. During the source code editing
process, the classifier could monitor source code
changes. As soon as the cumulative set of changes
made during an editing session leads the classifier to
make a bug prediction, the editor can notify the
developer. A proof of concept implementation of
this idea using the Eclipse IDE is reported in [27].

. Impact on the software development process.
Results from the change classifier could be inte-
grated into the software development process. After
committing a change, a developer receives feedback
from the classifier. If the classifier indicates that it
was a buggy change, this could trigger an automatic
code inspection on the change by multiple engineers.

After the inspection, the developer commits a
modified change and receives more feedback. If this
approach is effective in finding bugs right away, it
could significantly reduce the number of latent bugs
in a software system.

8.2 Issues of Change Classification

Several issues arise when extracting features from an
existing project. First, an examination of change log
messages is required to determine how we can best
determine the bug fix changes. The best set of keywords
depends on how each project has used their SCM log
messages in the past. For projects that consistently use a
change tracking system, data may need to be extracted from
this system as well.

An SVM classifier generally works well by using all
feature groups available for a project. A given project can
consider performing a feature group sensitivity analysis of
the type described in Section 7. This permits the use of the
most accurate feature groups for the current project, usually
resulting in a small gain in performance.

In an ongoing project, the SVM classifier will need to be
periodically retrained to accommodate data from new project
changes. If a project is small enough, training an SVM could
be performed nightly, at the end of the workday. On larger
projects, the SVM could be retrained weekly.

8.3 Minimum Change Numbers for Classifier
Training

The results presented in this paper use changes in 500 (or
250 revisions) to train and evaluate an SVM classifier. This
raises the question of how many revisions or changes are
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Numbers in parentheses indicate the overall rank (computed using a chi-square measure) of a feature’s importance among all features. A “þ” sign
indicates that the feature contributes to buggy changes and a “�” sign indicates that the feature contributes to clean changes. The4 mark beside a
complexity metric indicates that it is a delta metric.



required to train an SVM classifier to yield a reasonable
classification performance. To answer this question, subsets
of changes are used to train and evaluate an SVM classifier
with all features. To begin with, only the first 10 changes are
used to train and evaluate a classifier. Next, the first
20 changes are used. In the same way, the number of
changes is increased by 10 and then used to train and
evaluate an SVM classifier.

Fig. 6 shows the accuracies of selected projects by using
various numbers of changes. Two conclusions can be drawn
from this. First, after approximately 100 changes, the
predictive accuracy is generally close to steady-state values.
There is still some churn in accuracy from changes 100 to
200, but the accuracy does not have dramatic swings (for
example, no �20 percent deviations) after this point.
Accuracies settle down to steady-state values after
200 changes for most projects. It thus appears that change
classification using an SVM classifier is usable as a bug
prediction technique once a project has logged 100 changes,
though with some variability in the predictive accuracy for
the next 100 changes until accuracy values reach steady
state. Due to this, if change classification is to be used on a
new software project, it is probably best adopted toward the
middle or the end of the initial coding phase once sufficient
changes have been logged and initial testing efforts have
begun revealing project bugs. Any project that has already
had at least one release would typically be able to adopt
change classification at any time.

8.4 Threats to Validity

There are six major threats to the validity of this study:

1. The systems examined might not be representative.
Twelve systems are examined, more than any other
work reported in the literature. In spite of this, it is
still possible that we accidentally chose systems that
have better (or worse) than average bug classifica-
tion accuracy. Since we intentionally only chose

systems that had some degree of linkage between
change tracking systems and the text in the change
log (so we could determine fix inducing changes),
we have a project selection bias. This is most evident
in the data from Bugzilla and Scarab, where the fact
that they are change tracking systems led to a higher
than normal ratio of buggy to clean changes.

2. The systems are all open source. The systems
examined in this paper all use an open source
development methodology and, hence, might not be
representative of all development contexts. It is
possible that the stronger deadline pressure, different
personnel turnover patterns, and different develop-
ment processes used in commercial development
could lead to different buggy change patterns.

3. The bug-fix data is incomplete. Even though we
selected projects that have change logs with good
quality, we still are only able to extract a subset of
the total number of bugs (typically only 40 percent to
60 percent of those reported in the bug tracking
system). Since the quality of change logs varies
across projects, it is possible that the output of the
classification algorithm will include false positives
and false negatives. It is currently unclear what
impact lower quality change logs has on the
classification results.

4. The bug-introducing data is incomplete. The SZZ
algorithm used to identify bug-introducing changes
has limitations: It cannot find bug-introducing
changes for bug fixes that only involve the deletion
of source code. It also cannot identify bug-introdu-
cing changes caused by a change made to a file
different from the one being analyzed. It is also
possible to miss bug-introducing changes when a file
changes its name since the algorithm does not track
such name changes.

5. It requires initial change data to train a classifica-
tion model. As discussed in Section 8.3, the change
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Fig. 6. Number of changes used to train and evaluate an SVM classifier and the corresponding accuracy, for projects: Apache, Bugzilla, GForge,

Mozilla, and SVN.



classification technique requires about 100 changes
to train a project-specific classification model before
the predictive accuracy achieves a “usable” level of
accuracy.

6. Bug tracking systems for tracking new functional-
ities were used. In two of the systems examined,
that is, Bugzilla and Scarab, the projects used bug
tracking systems to also track new functionality
additions to the project. For these projects, the
meaning of a bug tracking identifier in the change
log message is that either a bug was fixed or a new
functionality is added. This substantially increases
the number of changes flagged as bug fixes. For
these systems, the interpretation of a positive
classification output is a change that is either buggy
or a new functionality. When using this algorithm,
care needs to be taken to understand the meaning of
changes identified as bugs and, wherever possible,
to ensure that only truly buggy changes are flagged
as being buggy.

9 CONCLUSION AND OPEN ISSUES

If a developer knows that a change that she just made
contains a bug, she can use this information to take steps to
identify and fix the potential bug in the change before it
leads to a bug report. This paper has introduced a new bug
prediction technique that works at the granularity of an
individual file level change and has accuracy comparable to
the best existing bug prediction techniques in the literature
(78 percent on average). Features gathered only from the
source code have strong discriminative power, suggesting
the possibility of embedding the classification algorithm
into integrated development environments for bug predic-
tion during editing sessions. Developers can benefit from a
focused and prompt prediction of buggy changes, receiving
this prediction either while they are editing the source code
or right after a change submission.

This work is the first to classify file changes as buggy or
clean by using the combination of change information
features and source code terms. Additionally, this work
provides an evaluation of the relative contributions of
various feature groups for change classification.

Although these experimental results are encouraging,
there are still several open issues in this work, including the
following:

. exploring online machine learning algorithms to
learn and update a classification model as the project
progresses,

. generating more features from change information
and exploring various ways to extract features such
as LSA [22],

. deep analysis of the individual features to identify
common bug-prone code patterns or causality of
bugs, and

. applying or modifying existing machine learning
algorithms to achieve better prediction accuracy,
precision, and recall [9].

Overall, we expect that future approaches will see
software history not only as a series of revisions and
changes but also as a series of successes and failures, as well

as a source for continuous awareness and improvement.
Change classification is the first step in this direction.
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