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Abstract—Recommendation systems are intended to increase developer productivity by recommending files to edit. These 

systems mine association rules in software revision histories. However, mining coarse-grained rules using only edit histories 

produces recommendations with low accuracy, and can only produce recommendations after a developer edits a file. In this 

work, we explore the use of finer-grained association rules, based on the insight that view histories help characterize the 

contexts of files to edit. To leverage this additional context and fine-grained association rules, we have developed MI, a 

recommendation system extending ROSE, an existing edit-based recommendation system. We then conducted a comparative 

simulation of ROSE and MI using the interaction histories stored in the Eclipse Bugzilla system. The simulation demonstrates 

that MI predicts the files to edit with significantly higher recommendation accuracy than ROSE (about 63% over 35%), and 

makes recommendations earlier, often before developers begin editing. Our results clearly demonstrate the value of considering 

both views and edits in systems to recommend files to edit, and results in more accurate, earlier, and more flexible 

recommendations. 

Index Terms— Programming environments/construction tools, interactive environments, software maintenance, data mining, 

association rules, programmer interaction histories 

——————————      —————————— 

1 INTRODUCTION

rogrammers spend a significant amount of time in-
vestigating files to edit. For example, Eclipse bug re-
port #261613 shows that the programmer heavily 

investigated unrelated files for three days before editing 
just two files. The programmer wrote: "I think I'm getting 
closer to the real cause of the situation...." Similarly, in 
bug report #241244, programmers had a discussion over 
an investigation of “root causes” for two weeks, writing: 
“Further investigation still required…,” and “… I’d like to 
investigate this direction further.” These examples indi-
cated that if programmers could find files to edit more 
easily, the time spent on software evolution tasks would 
be significantly reduced. 

To assist programmers, researchers have developed 
history-based recommendation systems following two 
paradigms. The first group has mined software revision 
histories. Zimmermann et al. [38] and Ying et al. [36], for 
example, proposed recommending files to edit based on 
mined software revision histories. These approaches 
make file-to-edit recommendations by mining association 
rules between files frequently edited together in the past. 
The second group has mined programmer interaction 
histories. DeLine et al. [7] and Singer et al. [35], among 

others, proposed recommending the methods or files to 
view, based on mined programmer interaction histories. 
These approaches mine association rules between meth-
ods or files that past programmers viewed. These two 
paradigms have developed separately, leaving largely 
unanswered the question of which history is better to 
mine: view history or edit history.  

This paper addresses this question. In this work, we 
evaluate MI (Mining programmer Interaction histories), a 
recommendation approach considering both programmer 
edits and views. Our results shows that the records of 
files viewed by programmers help recommend files to 
edit. Using detailed view and edit histories to recommend 
files to edit produces the following benefits:  
 Accurate recommendations. Viewed files provide 

more context when programmers edit, allowing 
more accurate recommendations over approaches 
which consider only edits.  

 Early recommendations. Using view information 
allows recommendations to occur when program-
mers view files. Programmers can thus identify files 
to edit early, even before editing a single file. 

 Flexible recommendations. When recommendations 
can occur based on viewed files, the recommenda-
tions change in response to programmers’ navigation 
paths. This allows recommendations to occur even in 
scenarios that are not edit-heavy.  

To empirically evaluate the benefits of considering 
views when recommending files, we evaluated MI 
against ROSE, an existing approach for recommending 
files to edit based on edit histories only [38].  MI extends 
ROSE, allowing us to produce recommendations from 
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view and edit histories.  
For our evaluation, we simulated code recommenda-

tions on 5,764 interaction traces stored in Eclipse Bugzilla 
[9]. The experimental results demonstrate that MI rec-
ommended files to edit with greater precision and recall 
than ROSE, with average precision and recall of 0.71 and 
0.41 (respectively), compared to 0.41 and 0.28 for ROSE 
[38]. The results also demonstrate that MI makes recom-
mendations in nearly half the time required for ROSE, 
with comparable levels of accuracy. We thus find that the 
use of view and edit histories—as represented by MI—is 
better both in terms of traditional metrics of recommen-
dations accuracy and time to recommendation. 

The remainder of this paper is organized as follows: 
Section 2 surveys related work. Section 3 proposes mining 
programmer interaction histories and the context for-
mation that utilizes viewed files. Section 4 describes simu-
lated evaluation. Section 5 discusses the results. Section 6 
specifies threats to validity. Finally, Section 7 concludes 
the paper. 

2 RELATED WORK 

A recommendation system for software engineering is "a 
software application that provides information items es-
timated to be valuable for a software engineering task in a 
given context" [32]. To recommend files relevant to con-
ducting software evolution tasks, researchers have devel-
oped techniques mining the behavioral histories of pro-
grammers. The work can be classified into three areas: 
mining software revision histories, mining programmer 
interaction histories, and mining other data types.  

Regarding the mining of software revision histories, 
researchers have used association rule mining, which 
finds rules among the occurrences of items in previous 
transactions [1]. To recommend files to edit, Zimmer-
mann et al. and Ying et al. applied this technique to soft-
ware revision histories [36][38]. Their approaches treat 
change sets as transactions and find association rules per-
taining to the files frequently edited together in the past.  

To mine semantically meaningful information, re-
searchers have refined code edits. The first group intro-
duced additional analysis. Fluri et al. extended the co-
edited relationships of files using the structural relation-
ships between the files [10]. Kim and Notkin proposed 
representing high-level changes with logic-based pro-
gram analysis [19]. The second group introduced more 
fine-grained edits. Robbes et al. introduced the aspects of 
time, sequences and sessions [30]. Robbes et al. recon-
structed task sessions by exploiting fine-grained edit in-
formation [29]. Later, Hattori et al. proposed Replay, 
which enabled programmers to observe fine-grained edits 
in the order of time [13][14]. Canfora et al. also suggested 
combining time information by introducing the Granger 
causality test [5]. The third group altered the mining tar-
get. Robillard and Dagenairs retrieved collections of code 
relevant to tasks by applying a nearest-neighbor cluster-
ing algorithm to software revision histories [33]. Kawry-
kow and Robillard proposed eliminating non-essential 
edits to extract only essential code edits [16]. Jaafar et al. 

mined a set of files edited together but not in the same 
change sets [15]. 

Regarding the mining of programmer interaction his-
tories, researchers have also used association rule mining 
to recommend files to view. Parnin and Görg mined asso-
ciation rules in programmer interaction histories [26]. 
Likewise, DeLine et al. proposed TeamTracks [7] and 
Singer et al. proposed NavTracks [35], which use associa-
tions between files that past programmers viewed for 
predicting the next files to view. These approaches 
showed lower recommendation accuracy than the ap-
proaches mining software revision histories. Meanwhile, 
Kersten and Murphy proposed Mylyn [17] for recom-
mending files relevant to programmers’ tasks, based on 
the frequencies of interactions that a programmer has 
with files. A shortcoming of Mylyn is that it is a semi-
automated approach in that it relies on programmers’ 
manual identification and indication of tasks; users who 
lack prior knowledge about tasks and their contents are 
unable to determine which collection of code is relevant 
to their current task.  

The recent work in this area can be divided into two 
groups. The first focuses on improving recommendation 
accuracy. To evaluate the accuracy of code recommenda-
tions, Robbes et al. proposed replaying programmer in-
teraction histories with a revised cumulative gain [31]. 
Piorkowski et al. studied several recommendation models. 
They collected the interaction traces recorded while un-
dergraduate students performed two tasks on different 
code bases within two hours [27]. By repeating pre-
defined tasks, they measured the recommendation accu-
racy of different models. Piorkowski et al. also proposed 
the PFIS (Programmer Flow by Information Scent) rec-
ommendation model based on information foraging theo-
ry [28], and compared the PFIS models to TF/IDF based 
recommendation models. The second uses the same inter-
action data we use in this paper. Ying and Robillard ana-
lyzed programmer interaction histories and revealed the 
relationships between task types and edit patterns [37]. 
Lee et al. extracted 56 metrics from programmer interac-
tion histories and created a classification model to predict 
files that include defects [23]. Lee and Kang compared 
their approach with TeamTracks, using the interaction 
histories [21][22]. 

Researchers have diversified the types of recommenda-
tions and mining data. For example, Bacchelli et al. pro-
posed mining e-mails to recommend e-mails related to 
given program elements [3]. Sawadsky et al. proposed 
mining web pages to recommend the web pages to be 
revisited, related to the code [34]. Kim et al. proposed 
mining bug reports to recommend files to fix related to a 
given bug report [18]. It is noted that Kim et al.’s work is 
closely related to our work in that their approach recom-
mends files to fix prior to fixing bugs. However, the ap-
proach still yields low recommendation accuracy, ranging 
from 7~11% precision values1, and the target mining data 
are different from ours.  
 

1 This means that, when it recommends ten files to fix, one of them is 
correct and the other nine are incorrect. 
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Our work differs from previous work in that ours illus-
trates that mining the records of viewed files, along with 
edited files, can significantly improve recommendation 
performance. Furthermore, our work differs from Kim et 
al. [18] in that our research emphasis is on the viewed 
files of programmer interaction histories, while theirs is 
on bug reports, which are different data sets. Our evalua-
tion is focused on revealing the benefits of viewed histo-
ries, and our results show much higher recommendation 
accuracy than theirs (about 63% over 11%). 

3 MINING PROGRAMMER INTERACTION HISTORIES 

Programmer interaction histories contain the records of 
files viewed by programmers as well as those edited, and, 
are thus a more informative source than software revision 
histories. We believe this can significantly improve rec-
ommendations for editing, as the records of viewed files 
establish a more accurate programmer context to recom-
mend relevant files to edit.  

Let us explain this idea with the example in Fig. 1, 
which shows a situation in which programmers have per-
formed tasks T0, T1, and T2, and a programmer is now 
performing task T3. The lower-case letters in Fig. 1 repre-
sent the files that are viewed or edited by programmers. 
While performing T3, this programmer views files d, b, 
and c. Given these interaction events, the following ques-
tion arises: what are the files that the programmer is like-
ly to edit for T3? 

Previous approaches that mine edit histories (e.g., 
ROSE [38]) cannot make recommendations at this point 
because the programmer has not yet edited a file. If the 
programmer edits a file, the files {c} for example, ROSE 
utilizes {c} as a context to find other files to edit together. 
As {c} was edited in T0, T1 and T2, ROSE will recommend 
all other files edited in T0, T1, and T2, {e, h, x, z}.  

In contrast, the approach for mining programmer in-
teraction histories that we propose, MI (Mining pro-
grammer Interaction histories), recommends files to edit 
using the context provided by both the viewed files and 
the edited files. The records of viewed files are used to 
identify the interaction history events that are most simi-
lar to T3. As the programmer’s current navigation activi-

ties for T3 are most similar to T0, the files edited in T0, i.e. 
{c, e}, are most likely to be edited in T3. When the pro-
grammer views d, b and c, MI uses the viewed files {d, b, c} 
to find files to edit. As the files {d, b, c} were also viewed 
in T0, MI recommends the files that were edited in T0, {c, 
e}. Once a programmer edits {c}, MI adds this interaction 
to create the context of viewed files {d, b, c} and edited file 
{c}. MI again associates this context with T0 and recom-
mends file {e} to edit.  

Thus, we hypothesize the following: 

Using a context that includes viewed files can improve the 
accuracy of recommending files to edit. 

To recommend files to edit by utilizing the records of 
viewed files, MI mines interaction histories. As shown in 
Fig. 2, MI mines interaction traces, finds association rules 
using the current context, and generates recommenda-
tions of files to edit. The essential part of the recommen-
dation system is the context. The context characterizes the 
situation of the programmer (e.g., viewed files), and is 
used as a query at the time of recommendation [8][32]. 
We first explain the detailed procedure of MI in Section 
3.1 and propose the outline for context formation in MI in 
Section 3.2. 

3.1 MI 

MI extends ROSE [38]. The original ROSE is an approach 
which mines software revision histories [38]. We have 
revised ROSE to mine programmer interaction histories. 
This revised ROSE mines the association rules from edit-
ed files in programmer interaction histories and forms a 
context using only edited files. By extending this version 
of ROSE to include viewed files, we propose mining asso-
ciation rules in programmer interaction histories to rec-
ommend files to edit (MI). MI mines the association rules 

 

Fig. 1. An example that shows the files programmers view and edit while performing tasks. This example is simplified from the actual interac-
tion traces of bug reports #124039, #176690, #204358, and #290505 in the Eclipse Bugzilla system [9].  

 

Fig. 2. Overview of the proposed recommendation system MI 
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from viewed and edited files, forming a hybrid context 
consisting of viewed and edited files. Our MI approach 
can use several methods to form a context from viewed 
and edited files, each explained in Section 3.2.  We empir-
ically evaluate the effectiveness of these various methods 
in Section 4. 

3.1.1 Interaction Traces 

An interaction trace is a log consisting of records that de-
scribe a programmer’s actions (i.e. views and edits) and 
files on which the actions were taken. An interaction trace 
can be expressed as Tk, where k represents a software evo-
lution task that a programmer performed. An interaction 
trace Tk is converted into a pair of sets: Tk = (Vk, Ek), where 
Vk is the set of viewed files in Tk, Vk = {v1, ..., vn} and Ek is 
the set of edited files in Tk, Ek = {e1, ..., em}. The collections 
of interaction traces can be expressed as History DB = 
{Tk|1 ≤ k ≤ i-1}. 

3.1.2 Context 

Conceptually, a  context  is  “any  information  which  can  
be used  to  characterize  the  situation  of”  a  current  
user [8].  In a recommendation system, a context becomes 
a query, which triggers a recommendation [32].  

In MI, a context is formed from a current program-
mer’s actions. When the current programmer is perform-
ing a task i, a context is created from the last files viewed 
and edited by the current programmer from each 
timepoint in Ti. As the current programmer continues 
viewing and editing files, the context changes. The con-
text C can be expressed as (Vc, Ec), where Vc is a set of the 
last v files that a current programmer has viewed, Vc = 
{v1, ..., vv}, and Ec is a set of the last e files that the pro-
grammer has edited Ec = {e1, ..., ee} at each timepoint. Sec-
tion 3.2 will explain the details of forming a context. 

3.1.3 Mining on the Fly 

Given a context C, the interaction traces collected in His-
tory DB can be mined on the fly [38]. As context C nar-
rows the scope to mine, this on-the-fly mining approach 
is a reasonably lightweight process.  

MI mines the association rules2 in the form of (Vc, Ec) 
 {e} where e  Ec and e  Vc. The antecedent (Vc, Ec) 
must have occurred together at least in one interaction 
trace in History DB. The consequent {e} is one of the other 
edited files in the interaction traces that contain the ante-
cedent (Vc, Ec) in History DB. Because the antecedent and 
the consequent of an association rule are disjoint, the files 
that belong to C = (Vc, Ec) are excluded from the conse-
quent.  

MI first sets up the antecedent as context C = (Vc, Ec) 
before mining begins. MI then finds association rules by 
checking whether each interaction trace Tk contains both 
of the viewed files Vc and edited files Ec of context C:  Vc  
Vk and Ec  Ek. Subsequently, MI counts all edited files in 
 

2  An association rule consists of an antecedent X and a consequent Y. 
The antecedent X is the condition in which the association rule can be 
applied, and the consequent Y is the result that the association rule can 
produce. An association rule is defined as X  Y, where X and Y belong 
to DB and are disjoint [1]. 

the interaction traces satisfying the condition as the con-
sequent {e}, where e  Ec and e  Vc. Finally, MI returns 
the list of consequents.  

3.1.4 Ranking and Recommendation 

To rank the association rules found, MI uses the concepts 
of support and confidence, as typically used in associa-
tion rule mining [1][12]. Support refers to the number of 
co-occurrences of the antecedent and the consequent of an 
association rule in History DB. Confidence is the ratio of 
the co-occurrences of the antecedent and the consequent 
to the occurrences of the antecedent. 

To calculate the support, MI counts the number of in-
teraction traces that include both the antecedent (Vc, Ec) 
and the consequent {e}. To calculate the confidence, MI 
divides the support by the number of interaction traces 
including the antecedent (Vc, Ec). MI has minimum sup-
port and minimum confidence thresholds and selects as-
sociation rules that meet these thresholds. MI ranks the 
consequences by confidence. According to this ranking, 
MI finally recommends the files to edit. 

3.2 Context Formation 

For recommendation systems, context is defined as “the 
information about the user, their environment and their 
work that are available at the time of recommendation” 
[32]. We believe that a key challenge in recommendation 
systems is to determine what user contexts are best suited 
to producing recommendations useful to users. 

To create a context C in Section 3.1.2, MI uses a sliding 
window, referred to here as a v-e-sized sliding window. 
The sliding window consists of two queues that hold v 
different viewed files and e different edited files. The slid-
ing window disregards reappearing records of the same 
action on the same file as held in the sliding window at 
each time. Whenever the sliding window is updated with 
a new file in either queue, it creates a context that consists 
of the last v viewed files and e edited files. Fig. 3 illus-
trates how a context C is formed from an interaction trace 
Ti. For example, the 3-0-sized window traces up to three 
different viewed files and zero edited files. When the slid-
ing window initially captures three viewed files {a, b, c}, it 
creates the context ({a, b, c}, ). When the programmer 
views file {d}, the sliding window obtains a new viewed 
file {d} and creates the context ({b, c, d}, ). 

For systems recommending files to edit, several con-

  

Fig. 3. Forming a context 
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texts are possible, and relate to the choice of information 
and how selected information should be combined. This 
section discusses how contexts can be formed as follows:  
Section 3.2.1 outlines the rules of combining viewed files 
and the edited files; Section 3.2.2 proposes four different 
methods of forming a context; and Section 3.2.3 explains 
how each method can be used for improving recommen-
dation performance. 

3.2.1 Rules for Forming a Context 

We establish three rules to combine different kinds of 
information, e.g., viewed files Vx = {a, b, c} and edited 
files Ey = {b, a}, as shown in Fig. 3. 

Conditional operation rule. If a context is formed from 
different kinds of information (e.g., user actions), a condi-
tional operation is needed to combine them into a context. 
For example, if a programmer views files Vx and edits 
files Ey, Vx and Ey can be combined with the OR or AND 
operation, denoted respectively as: 
 AND (Vx, Ey): this context makes a recommendation 

when it finds both Vx and Ey in the mined rules. 
 OR (Vx, Ey): this context makes a recommendation 

when it finds either Vx or Ey in the mined rules. 
Selection range rule. When a context is formed, a range 

can be given to increase the chance of creating recom-
mendations at timepoints. The range starts from the 
timepoint for characterizing a situation and ends at the 
timepoint for a recommendation. When the range is set to 
x and the number of viewed files in a context C (i.e. Vc) is 
set to v, a context can be formed by selecting v files from 
the last x files that a current programmer has viewed (i.e. 

xCv). For example, if x is set to 5 and v is set to 3, the con-
text finds any combination of three viewed files from a 
programmer’s most recent five viewed records in the 
mined rules. The relevant rules can be easily found by 
using a set operation, |Vx  Vk| ≥ v. In Fig. 3, when a 
programmer views {e}, this range setting makes a differ-
ence. While the 3-0-sized sliding window makes a rec-
ommendation only with a context {c, d, e}, the sliding 
window with the range setting makes a recommendation 
with 5C3 (= 10) cases from {a, b, c} to {c, d, e}. Because pro-
grammers usually do not visit and edit files in the same 
order, this increases the chance to create a recommenda-
tion at each timepoint. A range is denoted as: 
 RANGE (X): when a range has the fixed number X, a 

programmer’s interactions are traced up to X records.  
 RANGE (): when a range is not set up, only the last 

interactions to be used as a context are traced up. 
Recommendation timepoint rule. When different 

kinds of user actions are monitored, certain kind of ac-
tions can be selected as the triggers for recommendations. 
For example, if a programmer views and edits files, rec-
ommendations can be created at view points, edit points, 
or view and edit points, denoted respectively as: 
 POINT (V): a recommendation is triggered at each 

view point 
 POINT (E): a recommendation is triggered at each 

edit point 
 POINT (V, E): a recommendation is triggered at each 

view and edit point. 

In our approach, these proposed rules are the basis of 
forming contexts. The most important rule is the condi-
tional operation, because it directly addresses the items of 
a context. Selection range is subsidiary because it allows 
the conditional operation to randomly select items from a 
range. The recommendation timepoint is important be-
cause it determines the time of recommendation. 

3.2.2 Methods for Forming a Context 

A combination of conditional operation rules and rec-
ommendation timepoint rules can create the four possible 
methods for forming a context with viewed and edited 
files, as shown in Table 1. 
 MI-EA-RANGE(X): this forms a context by combining 

viewed and edited files with the AND operation, and 
creates a recommendation at each edit point. When 
edit points trigger recommendations, the range op-
tion for viewed files should be used to increase the 
chance of the recommendations. 

 MI-EO: this forms a context by combining viewed 
and edited files with the OR operation, and creates a 
recommendation at each edit point. In this case, the 
range rule is not needed, because the OR condition 
will create a recommendation with only the edit files, 
and the number of edited files is typically limited. 

 MI-VA: this forms a context by combining viewed 
and edited files with the AND operation, and creates 
a recommendation at each view or edit point. Note 
that because the method creates a recommendation 
when obtaining both viewed and edited files, this 
method creates a recommendation after an edit point. 

 MI-VO: this forms a context by combining viewed 
and edited files with the OR operation, and creates a 
recommendation at each view or edit point. Because 
the method can create a recommendation when ob-
taining viewed or edited files, this method can create 
a recommendation even before an edit point. 

3.2.3  Relationships between Methods Forming a 
Context and Recommendation Results 

The context used directly impacts the effectiveness of rec-
ommendation results. For example, the AND conditional 
operation may yields higher recommendation accuracy 
than the OR operation, because the AND operation selects 
the mined rules more narrowly than the OR operation. 
Likewise, the use of edit or view points affects the fre-
quency of recommendations because it determines 
whether a recommendation occurs only at view points, 
edit points, or both view and edit points.  

With this in mind, we discuss which context is likely to 
be more effective, in the sense that using it leads to more 
accurate, earlier and more flexible edit recommendations. 

For accurate recommendations, we use MI-EA-RANGE (X) 
or MI-VA, because both use the AND operation and thus 
mines rules narrowly. The difference is that MI-EARANGE(X) 

TABLE 1 
FOUR METHODS OF FORMING A CONTEXT 

 AND (Vx, Ey) OR (Vx, Ey) 

POINT (E) MI-EA-RANGE (X) MI-EO 

POINT (V, E) MI-VA MI-VO 
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creates recommendations only at edit points, whereas MI-
VA creates recommendations at view and edit points. 

For early recommendations, we use MI-VO, because it 
is the only method that creates recommendations at each 
view point before an edit. For flexible recommendations, 
we can use both MI-VO and MI-VA, because this allows 
us to create recommendations at view and edit points.  

We do not explore the use the MI-EO method, because 
MI-EO creates recommendations at edit points using the 
OR operation. This does not leverage the benefits of con-
sidering view context, and thus is very unlikely to con-
tribute to accurate, early, or flexible recommendations. 

Then the remaining problem is that the above methods 
likely do not produce both early and accurate recommen-
dations. For example, MI-VO, which is used for early rec-
ommendations, is unlikely to yield particularly high rec-
ommendation accuracy because it uses the OR operation. 
In contrast, MI-VA, which is used for accurate recom-
mendations, makes recommendations after the first edit, 
because of the AND operation. We thus combine these 
two methods and call the combined method as MI-VOA. 

MI-VOA uses MI-VO and MI-VA in the following way:  

if (both Vx and Ey exist) then  
apply MI-VA // make recommendations after an edit 

else  
apply MI-VO // make recommendations before an edit 

end if 

4 SIMULATION EVALUATION 

We performed an experiment to evaluate the effect of 
using viewed files on the recommendation results. Sec-
tion 4.1 explains the experiment design, and Section 4.2 
presents the experimental results. 

4.1 Experiment Design 

We designed a simulated comparative controlled experi-
ment [24]. Section 4.1.1 identifies the research questions, 
Section 4.1.2 identifies the variables, Section 4.1.3 identi-
fies the subjects to be used, Section 4.1.4 describes the 
detailed procedure, and Section 4.1.5 presents the metrics 
for the evaluation. 

4.1.1 Research Questions 

We are interested in studying the effect of mining the rec-

ords of viewed files, and showing utilizing the increased 
amount of information in the records of viewed files im-
proves edit recommendations. We explored four research 
questions: 

RQ1. Can using viewed files improve the recommen-
dation accuracy? 

RQ2 Can using viewed files (MI) create more accurate 
recommendations than using only edited files (ROSE)? 

RQ3 Can using viewed files (MI) create earlier recom-
mendations than using only edited files (ROSE)? 

RQ4 Can using viewed files (MI) create more flexible 
recommendations than using only edited files (ROSE)? 

To evaluate these questions, we use variations of MI 
designed to be “fair” with respect to ROSE. For example, 
when comparing accuracy, we use MI-EA, which makes 
recommendations only at edit points; otherwise, we 
measure accuracy at very different timepoints. The final 
question is based upon our final recommendation, MI-
VOA.  

4.1.2 Independent and Dependent Variables 

In each research question, the independent variable is a 
context the approach used, while the dependent variables 
are measurements related to the quality of the recom-
mendations results.  

For the independent variable, we explore five different 
approaches: four variations of MI, and ROSE. These ap-
proaches vary based on the context C, which we outline 
in Table 3. Specifically, C is defined based on three com-
ponents: 
 The methods for forming a context, especially the 

one which includes viewed files or the other 
 The number of viewed files v  
 The number of edited files e.  

We detail how we control the context C in Sections 
4.1.4.2 through 4.1.4.5. 

Our dependent variables are measurements of recom-
mendation effectiveness, e.g., accuracy of the recommen-
dations, speed at which recommendations are made, etc. 
Specifically, we measure: 
 Precision. Higher precision indicates more recom-

mendations are correct, i.e. should in fact be edited. 
 Recall. Higher recall indicates that more files that 

should be edited have been recommended. 
 F-measure. F-measure combines precision and recall, 

TABLE 2 
INTERACTION TRACES OF 72 PROJECTS 

Project Description Period 
#Interaction 

Traces 

File Level 

#Views/ 

#Traces 

#Edits/ 

#Traces 

View-

edit ratio 

Mylyn A task management tool for programmers 2006-05-18~2011-07-07 2,726  14.4 2.8 5.1 

Platform Eclipse core frameworks  2007-10-18~2011-05-25 582 24.2 2.7 9.0 

PDE Plug-in development environment 2007-11-11~2011-02-25 536 6.4 1.1 5.8 

ECF Eclipse communication frameworks  2007-04-06~2011-06-18 308 9.3 0.7 13.3 

MDT Modeling development tools 2010-01-26~2011-05-20 245 54.5 0.7 77.9 

Others (67) Other projects (i.e. Equinox, GEF) 2008-06-13~2011-06-21 1,367 22.8 1.4 16.3 

Total All of the above projects (72) 2006-05-18~2011-07-07 5,764 18.1 2.1 8.6 

These interaction traces are from the Eclipse Bugzilla system [9].  
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and is used to measure the general accuracy of the 
recommendations.  

 Feedback. Higher feedback indicates the recommender 
system is more efficient with respect to the number of 
queries taken. 

 Receiver Operating Characteristic.  Illustrates how well 
the method finds true positives and true negative 
recommendations.  

 #of interactions before recommendation. To determine 
how quickly the system produces recommendations, 
we have computed the average number of interac-
tions before a recommendation is made. 

 #of recommendations within the first 100 interactions. To 
determine how frequently the system produces rec-
ommendations, we have computed the average num-
ber of recommendations within certain number of in-
teractions. 

We detail how each measurement was made in Section 
4.1.5. 

4.1.3 Subjects 

We used Mylyn data [17]. Mylyn records interaction trac-
es from the Eclipse IDE and archives them in the Eclipse 
Bugzilla system [9]. We extracted 5,764 Mylyn interaction 
traces from 72 Eclipse sub-projects. Table 2 presents those 
projects including the five major projects: Mylyn, Plat-
form, PDE, ECF, and MDT. The 67 other projects have an 
average of 20 interaction traces. 

We identified viewed files and edited files from the 
Mylyn interaction traces. Mylyn records interaction 
events in XML format, each of which consists of several 

fields (e.g., <InteractionEvent StartDate="2009-01-24 10:40: 
28.321 MST" EndDate="2009-01-24 10:40:28.321 MST" 
StructureHandle="…Property.java" Kind= "selection"… 
/>). There are types of events, such as selection and edit 
[17]. To identify viewed files, we used the records that 
have the selection event type. The selection-type events 
occur when programmers click on files in the Eclipse IDE. 
To identify edited files, we used the records that have the 
edit event type. The edit-type events, however, occur not 
only when a programmer actually edits files but also 
when double-clicking on a file to open it in a code editor. 
Therefore, the edit type events do not necessarily indicate 
actual edits [22]. Fortunately, when Mylyn records pro-
grammer's double clicking as an edit event, its starting 
time and ending time are the same [22]. We thus identi-
fied the files that contain only a record of edit events 
whose starting and ending times are the same as viewed 
files, and the files that contain a record of edit events 
whose starting and ending times are different as edited 
files. 

The MI recommendations exploit the fact that pro-
grammers usually view many files other than the files to 
edit. To check this, we counted the numbers of viewed 
files and edited files, as shown in the three rightmost col-
umns of Table 2. The average number of viewed files is 
about 18, whereas the number of edited files is about 2. 
The average ratio of viewed files to edited files is about 
8.6. This ratio indicates that programmers view seven to 
nine files while editing one file. 

TABLE 3 

FRAMEWORK TO COMPARE FORMING CONTEXTS WITH EDITED FILES AND VIEWED FILES 

 ROSE (e-edits) 
MI (v-views, e-edits) 

RQ1: MI-VA RQ2: MI-EA RQ3: MI-VO RQ4: MI-VOA 

Context C 

C = (, Ec) where Ec 

is the set of edited 

files {e1, …, ee} 

C = (Vc, Ec) where Vc is the set of viewed files {v1, …,vv} and Ec is the set of edited 

files {e1, …, ee} 

Context  

Formation 

Method 

Conditional 

Operation 

Rule 

NA AND (Vx, Ey) AND (Vx, Ey) OR (Vx, Ey) 

if (Vx and Ey exist) 

then MI-VA  

else  MI-VO  

end if 

Selection 

Range Rule 
RANGE() RANGE() RANGE(100) RANGE() RANGE() 

Timepoint 

Rule 
POINT(E) POINT(V, E) POINT(E) POINT(V, E) POINT(V, E) 

Rationale A baseline 
A basic method 

with view histories 

Recommendations 

at edit points 

Recommendations 

even only with 

viewed events.  

Better work than 

ROSE  across all 

RQs. 

Measures 
Precision 

Recall 

Precision 

Recall 

ROC 

Precision 

Recall 

F-Measure 

#of interactions 

before recommenda-

tion 

#of recommenda-

tions within the 

first 100 interac-

tions 

Finding 

This ROSE is  

comparable to  

the original ROSE 

MI-VA yields  

higher accuracy  

than ROSE 

MI-EA yields 

 higher accuracy  

than ROSE 

MI-VO yields  

earlier Rs  

than ROSE 

MI-VOA works 

better than ROSE 

across all RQs 

The number of viewed files that C includes is identified as v and the number of edited files is denoted as e. NA is “not applicable”, R is “recommendation,” 

and RQ is “Research Question.” 
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4.1.4 Evaluation Methodology 

For our evaluation, we chose a simulation-based com-
parative controlled method [24]. This method allows us to 
maintain the same conditions for a fair comparison of MI 
and ROSE. Table 3 presents a comparison framework, 
where MI includes viewed files but ROSE does not. We 
simulated these approaches to recommend the files to 
edit with the Mylyn data described in Section 4.1.3.  

4.1.4.1 Set-up for Simulation 

To simulate recommendations, we need a training set, a 
test set and a simulator. A training set is the interaction 
traces from which association rules are mined. A test set 
is the interaction traces, each of which provides the an-
swer set of the programmer’s actual edited files. To iden-
tify a training set and a test set, we employed an online 
machine-learning approach [20], in which every interac-
tion trace belonging to a subject is first used as a test set 
and next used as a training set. The initial interaction 
trace T1, which has no training set, does not need to be a 
test set. Each interaction trace from T2 to Tn, where n is the 
number of interaction traces belonging to a subject, is 
used as a test set once before becoming a training set. 
When an interaction trace Ti is used as a test set, the inter-
action traces which occurred prior to Ti, from T1 to Ti-1, are 
used as the training set, as in earlier work [38].  

The simulator creates multiple contexts from test set Ti. 
To create a context C, the simulator moves a v-e-sized 
sliding window from the first to the last record of Ti (Re-
fer to Section 3.2). By setting the numbers of v and e files, 
the sliding window can hold v viewed files, e edited files, 
or both. Once the context C is created from test set Ti, the 
simulator mines association rules through a training set 
from T1 to Ti-1 (Refer to Section 3.1.3). Based upon mined 
rules, the simulator recommends files to edit. To select 
and rank mined rules, we used the same options used in 
Zimmermann et al. [38]: the minimum support is 1 and 
the minimum confidence is 0.1. If a recommendation in-
cludes more than 10 files to edit, the simulator only rec-
ommends the 10 top-ranked files. 

We now outline the processes used to evaluate each re-
search question. Note that when evaluating research 
questions 2 through 4, we set the number of viewed files 
to three (v = 3) and the number of edited files to one (e = 
1). Considering that programmers view an average of 7~9 
files to every one file edited, as Table 2 shows, using more 
viewed files than edited files is reasonable. 

4.1.4.2 Experiment for RQ1 

To investigate the effect of viewed files on recommenda-
tion accuracy in general, we explored the impact of the 
context C:   
 C = (, Ec) for control group: this forms a context using 

only edited files. This is ROSE (e-edits), and used as 
the baseline.  

 C = (Vc, ) for comparison group: this forms a context 
consisting of only viewed files. This (v-views) is used 
to identify the characteristics of using viewed files as 
a context.  

 C = (Vc, Ec) for treatment group: This forms a hybrid 
context consisting of viewed and edited files. This is 
used to show the effect of viewed files as additional 

information for a context. This is MI (v-views and e-
edits), combining v-views and e-edits with the AND 
operation (i.e. MI-VA). 

With these alternative methods, we observed the per-
formance changes, as measured by precision and recall, 
when varying v and e values. We set v = e = n, increasing 
n from 1 to 10, i.e. increasing v from 1 to 10 for “v-views”, 
e from 1 to 10 for “e-edits,” and both v and e from 1 to 10 
for “v-views and e-edits.” For each value of n, our simula-
tion ran over all of the 5,674 interaction traces repeatedly. 
Furthermore, we also examined Receiver Operator Char-
acteristic to visualize the impact of varying v and e. 

4.1.4.3 Experiment for RQ2  
To investigate the impact of viewed files on the accuracy 
of recommended files, we again compared ROSE (context 
C = (, Ec)) against MI-EA-RANGE(100) . Recall from Section 
3.1.3 that MI-EA, like ROSE, makes recommendations 
only at edit points [38]. This allows for a fair comparison 
of accuracy, as we compare only simultaneously made 
recommendations.  

As noted previously, we set the window for the num-
ber of viewed files (v) to three in our studies. However, if 
MI-EA used only the three viewed files prior to an edit 
file as a context, few recommendations would occur. For 
example, when the current programmer views {c, d, e} 
and edits {e}, a recommendation will occur only in the 
case previous programmers viewed views {c, d, e} and 
edits {e}. This restricts the occurrences of recommenda-
tions too much at each edit point. To increase the chance 
to create a recommendation at each edit point, we used 
the selection range rule. We used MI-EA-RANGE (100), which 
MI-EA tracks up to one hundred records of viewed files 
prior to an edit point, and forms a context of three viewed 
files from the tracked records with an edited file.   

We evaluate the accuracy of recommended files using 
precision, recall and F-measure. 

4.1.4.4 Experiment for RQ3  
To investigate the impact of viewed files on the timing of 
recommendations, we compared ROSE with MI-VO, 
which can make recommendations on views or edits. This 
allows the possibility of earlier recommendations than 
MI-EA (used in RQ2) and potentially ROSE. 

In evaluating this research question, we used the 
transactions that include both viewed and edited files as a 
test set. We then examined the first recommendation oc-
curring in each transaction. We counted the number of 
interaction events occurring to the first recommendation. 
We averaged the counts for all of the recommendations.  

The resulting averages were then compared for ROSE 
and MI-VO to determine which approach produces earli-
er recommendations. 

4.1.4.5 Experiment for RQ4 

To investigate the impact of viewed files on the flexibility 
of the recommendations, we compared ROSE with MI-
VOA. MI-VOA makes recommendations using both OR 
and AND-based recommendation rules, and thus is in-
tended to combine the benefits of both approaches.  

To measure the flexibility of recommendations, we re-
quired a metric that blended the timing of the recom-
mendations with the precision and recall of said recom-
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mendations. For this, we checked m-th recommendations 
and averaged their recommendation points and their F-
measure values. We then examined the averaged m-th 
recommendations occurring at the recommendation 
points prior to 100th interaction event. 

4.1.5 Measurement 

To measure the recommendation accuracy, we used sev-
eral commonly used metrics. First, precision and recall are 
widely used to evaluate the effectiveness of information 
retrieval approaches [12]. To compute them, we used the 
recommended files (A) and the files actually edited (E).  
 A: Set of the files recommended to edit which are 

driven by context C in interaction trace Ti. Because 
we only recommend up to the 10 top-ranked files, 
|A| is always less than 10. 

 E: Set of the files that are actually edited in interac-
tion trace Ti except the edited and viewed files of 
context C. |E| varies with Ti, because a different Ti 
will have a different number of edited files.  

The metrics precision P and recall R are calculated for 
a recommendation by using the formulas as below. If 
there is more than one recommendation, the precision 
and recall values for a recommendation are calculated 
first and then averaged across all recommendations, 
which is called the macro evaluation technique [38]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =  
|𝐴 ∩ 𝐸 |

|𝐴|
        𝑅𝑒𝑐𝑎𝑙𝑙 𝑅 =  

|𝐴 ∩ 𝐸 |

|𝐸|
 

As there are trade-offs between precision and recall, it 
is difficult to compare the accuracy using just precision 
and recall values. F-measure is the harmonic mean of pre-
cision and recall, and allows us to measure recommenda-
tion accuracy while capturing this tradeoff. F-measure is 
computed from the averaged values of precision and re-
call as follows:  

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

To visualize the how the accuracy is impacted by vary-
ing v and e, we used the Receiver Operating Characteris-
tic (ROC), and calculated the Area Under Curve (AUC) 
[10]. To compute them, we used the sensitivity and speci-
ficity changes by varying v and e values.  
 Sensitivity: This shows how well a method finds the 

true positives. It is calculated by dividing the num-
ber of true recommendations yielded over each v 
and e setting by the total number of true recommen-
dations for all settings. 

 Specificity: This shows how well a method finds the 
true negatives. It is calculated by dividing the num-
ber of false recommendations yielded under each v 
and e setting by the total number of false recommen-
dations for all settings. 

ROC is a curve plotting 1-Specitivity on x-axis and 
Sensitivity on y-axis. AUC3 is calculated by summing up 
the sensitivity values when specificity values change in 
 

3 As ROC and AUC measures the accuracy of classification models, 
these do not perfectly fit to our recommendation models. However, as 
AUC shows a simple value for representing its accuracy, we tried to 
adjust ROC and AUC in order to measure recommendation accuracy. 

the ROC curve, and by dividing the sum by the number 
of the specificity values changing in the curve [10].  

𝐴𝑈𝐶 =
∑ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦_𝑤ℎ𝑒𝑛_𝐶ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

#𝑃𝑜𝑖𝑛𝑡𝑠_𝑜𝑓_𝐶ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
  

To measure the general efficiency of the recommenda-
tion systems, we used feedback, as used by in Zimmer-
mann et al. [38]. Feedback measures the percentage of 
queries which yield recommendations. Feedback Fb is the 
number of overall recommendations divided by the 
number of queries: 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝐹𝑏 =
#𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

#𝑄𝑢𝑒𝑟𝑖𝑒𝑠
 

To determine if MI creates earlier recommendations 
than ROSE, we check the timepoints of creating the first 
recommendations of MI and ROSE. We counted how 
many interaction events occurring to the first recommen-
dation, and averaged the counts. 

𝑁𝑡ℎ =
∑ #𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 _𝐸𝑣𝑒𝑛𝑡𝑠_𝑡𝑜_𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

#𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠
 

To determine if MI creates more frequent recommen-
dations than ROSE, we first compare the number of rec-
ommendations of MI and ROSE, and then investigate the 
recommendations occurring in early interaction steps up 
to 100 interactions. 

4.2 Results  

This section presents the results of our evaluation. We 
reserve a larger discussion of the implications of our re-
sults for Section 5. 

4.2.1 RQ1: Can using viewed files improve the 
recommendation accuracy? 

To investigate the recommendation performance of min-
ing viewed and edit histories, we observed the perfor-
mance changes using various v and e values by setting v = 
e = n and increasing n from 1 to 10. 

4.2.1.1 Precision and Recall Graph 

Fig. 4 presents the resulting precision and recall graph. 
Curves “n-views,” “n-edits,” and “n-views and n-edits” 
represent the recommendation results of using viewed 
files (v = n), edited files (e = n) and both files (v = n and e = 
n) as a context. The first point of each curve closest to the 
bottom represents the result when n is 1. For example, the 
first point of the “n-views” represents the results of using 
1 viewed files as a context (v = 1), whose averaged preci-
sion is 0.2 and recall is 0.3. The first point of the “n-edits” 
represents the results of (e = 1), the precision is 0.4 and 
recall is 0.3. The first point of the represents the results of 
(v = 1 and e = 1), the precision is 0.5 and recall is 0.4. The 
points of each curve go up as n increases. 

Fig. 4 shows that “n-views and n-edits” achieves con-
sistently higher precision than “n-views” or “n-edits” in 
the y-axis, while “n-views” shows consistently lower pre-
cision than “n-edits.” For example, “1-view and 1-edit” 
yields higher precision than “1-edit” (0.5 vs. 0.4), and “1-
edit” yields higher precision than “1-view” (0.4 vs. 0.2). 
“2-views and 2-edits” yields higher precision than “2-
edits” (0.8 vs. 0.7), and “2-edits” yields higher precision 
than “2-views” (0.7 vs. 0.3). 
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Fig. 4 also shows that “n-views and n-edits” yields 
consistently higher recall than “n-edits,” whereas, when n 
is larger than 5, “n-views” yields higher recall than the 
others. For example, “1-view and 1-edit” yields higher 
recall than “1-edit” (0.4 vs. 0.3) and “1-view” (0.4 vs. 0.3). 
“2-views and 2-edits” yields higher recall than “2-edit” 
(0.6 vs. 0.4) and “2-view” (0.6 vs. 0.4). “3-views and 3-
edits” reaches the peak in the curve (0.6). However, while 
the recall of “n-views” continues to increase as n increases, 
the recall of “n-views and n-edits” and “n-views” is typi-
cally comparable, within 0.1. 

As “n-views and n-edits” yields consistently higher 
precision and recall than “n-edits,” we conclude:   

Using viewed and edited files (“n-views and n-edits”) yields 
consistently higher file-level recommendation accuracy than 
using only edited files (“n-edits”). 

4.2.1.2 Receiver Operating Characteristic Curve & AUC 

Fig. 5 presents the results for RQ1 in ROC. In Fig. 5, the 
three curves are very similar to each other. Thus we can 
see that whenever the number of views, edits, or both is 
increased, the resulting improvement in recommendation 
accuracy is about the same.  

This may seem to contradict Fig. 4, because Fig. 4 
shows a rapid increase for “n-view” in precision. Howev-
er, these results occur only because the ROC results re-
flect largely the increment rate of the effect corresponding 
to a particular change. Fig. 4 shows that the improvement 
of recommendation accuracy becomes lower whenever 
the number of views, edits, or both is increased. We note 
that all of the three ROC curves show this trend. We also 
note that each ROC curve has a different baseline for rec-
ommendation accuracy (0.2 precision for “n-views,” 0.4 
for “n-edits,” and 0.5 for “n-views and n-edits”), which 
might be related to that the curve of “n-views and n-edits” 
is similar to those of “n-views” and “n-edits.” 

The AUC4 value of “n-views” is 0.58, that of “n-edits” 
is 0.58, and that of “n-views and n-edits” is 0.52. Given 
 

4 In a classification model, if the AUC value is less than 0.7, the model 
does not provide adequate discrimination. However, as our AUC metric 
was adjusted to calculate recommendation accuracy, it is not clear that 
the AUC value here has the same interpretation.  

these comparable values, we conclude:  

Using additional viewed files (“n-views”) achieves the same 
improvement of recommendation accuracy as using addition-
al edited files (“n-edits”). 

4.2.2 ROSE Recommendation Results 

In our experiment, ROSE yields 24,768 queries and 14,924 
recommendations. Table 4 shows the results based on 
precision, recall and F-measure. For example, in the Plat-
form project, ROSE recommended files to edit with 0.58 
precision (P), 0.25 recall (R), and 0.35 F-measure (F). On 
average, ROSE yielded 0.41 precision (P), 0.28 recall (R), 

  

Fig. 4. Precision and recall graph Fig. 5. Receiver Operating Characteristic Curve 

 

TABLE 4 
ROSE RESULTS OF MINING INTERACTION HISTORIES 

 ROSE (e = 1) 

Project P R F Fb #Rs #Qs 

Mylyn 0.34 0.27 0.30 0.70 10,753 15,248 

Platform 0.58 0.25 0.35 0.56 1,974 3,543 

PDE 0.36 0.32 0.34 0.32 321 988 

ECF 0.25 0.25 0.30 0.34 119 352 

MDT 0.90 0.37 0.52 0.35 116 336 

Others 0.60 0.30 0.42 0.38 1,641 4,319 

Average 0.41 0.28 0.33 0.60 14,924 24,786 

Precision, Recall, F-measure and Feedback are denoted respectively by P, 

R, F and Fb. The numbers of recommendations and queries are denoted 

respectively by #Rs and #Qs. 

TABLE 5 
ROSE RESULTS OF MINING REVISION HISTORIES IN [38] 

 ROSE (e = 1) 

Project P R F Fb 

Eclipse 0.29 0.36 0.32 0.80 

GCC 0.35 0.59 0.44 0.76 

GIMP 0.28 0.48 0.35 0.77 

JBOSS 0.19 0.36 0.25 0.74 

JEDIT 0.31 0.41 0.35 0.95 

KOFFICE 0.30 0.45 0.36 0.87 

POSTGRES 0.29 0.37 0.33 0.95 

PYTHON 0.34 0.46 0.39 0.73 

Average 0.29 0.44 0.35 0.82 
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and 0.33 F-measure (F). 
Our version of ROSE uses edited files in programmer 

interaction histories, while the original ROSE uses edited 
files in software revision histories. Our version of ROSE is 
used as a baseline for a fair comparison of techniques in 
our research questions. We then should know how these 
two approaches to implementing ROSE differ. Towards 
this, we extracted the original results of ROSE for coarse 
granularity from the paper [38] and calculated the F-
measure from the original results.  

Table 5 shows the original results. The average F-
measure of ROSE in our experiment (Table 4) is 0.33, 
whereas the average F-measure of ROSE in the original 
experiment (Table 5) is also 0.35. As shown, the results for 
both versions of ROSE yield comparable results. The key 
differences are precision and recall. The precision average 
in Table 4 (0.43) is higher than that in Table 5 (0.29). The 
recall average in Table 4 (0.29) is lower than that in Table 
5 (0.44). As noted in Section 4.3, there is a trade-off be-
tween precision and recall because the average size of the 
interaction traces used in our experiment is much larger 
than that of the change sets in the original experiment [38].  

We use the ROSE recommendation results in Table 4 as 
baseline to evaluate the MI recommendation results 
(RQ2-4) in the following sections. Recall from Section 4.1 
that for RQ2-4, we ran simulations by using three viewed 
files and one edited files (v = 3 and e = 1) as the context 
for MI. 

4.2.3 RQ2: Can using viewed files create more 
accurate recommendations than using only 

edited files?  

In Table 6 we show the results for MI-EA for each set of 
traces, as well as the average across each set. For example, 
in the Platform project, MI-EA recommended files to edit 
with 0.87 precision (P), 0.40 recall (R), and 0.55 F-measure 
(F). Consulting Table 4, we see the precision average val-
ue for MI-EA and ROSE are 0.71 and 0.41, respectively. 
The recall averages for MI-EA and ROSE are 0.49 and 0.28, 
respectively. The F-measure averages for MI-EA and 
ROSE are 0.58 and 0.33, respectively. We thus see that on 
average---both per set of traces and across all traces---MI-
EA nearly always yields higher recommendation accura-
cy than ROSE. 

We illustrate this in Fig. 6. The recommendation accu-
racy of MI-EA is consistently higher than that of ROSE 
across all of the projects except MDT. While the precision 
of MI-EA for MDT is still higher than that of ROSE (1.0 vs. 
0.9), the recall of MI-EA for MDT is lower than that of 
ROSE (0.30 vs. 0.52). This may be related to the view-edit-
ratio of a project. While other projects have view-edit-
ratios ranging from 5.1 to 16.3 (Table 2), MDT exhibits a 
77.9 view-edit-ratio, indicating that programmers viewed 
seventy eight files for each file edited. To better under-
stand why MDT has such a high view-edit-ratio, we in-
vestigated the MDT traces and found that edit events 
which have different starting and ending times occurred 
in only 6 out of the 245 traces of the MDT project. In this 
case, three viewed files, as context information to recom-
mend files to edit, are not very informative, thus reducing 
the likelihood of an effective recommendation.  

 

Fig. 6. Comparison of Recommendation Accuracy of MI and ROSE 

 

Fig. 7. Comparison of the First Recommendations of MI and ROSE 

TABLE 6 
MI-EA RESULTS FOR ACCURATE RECOMMENDATIONS 

 MI-EA (v = 3, e = 1) 

Project P R F Fb #Rs #Qs 

Mylyn 0.67 0.54 0.59 0.25 3,871 15,248 

Platform 0.87 0.40 0.55 0.25 890 3,543 

PDE 0.40 0.66 0.50 0.08 83 988 

ECF 0.27 0.67 0.38 0.05 18 352 

MDT 1.00 0.30 0.46 0.22 75 336 

Others 0.78 0.37 0.50 0.16 696 4,319 

Average 0.71 0.49 0.58 0.23 5,633 24,786 

Precision, Recall, F-measure and Feedback are denoted respectively by P, 

R, F and Fb. The numbers of recommendations and queries are denoted 

respectively by #Rs and #Qs. 

TABLE 7 
 MI-VO AND ROSE RESULTS FOR EARLY RECOMMENDATIONS 

 MI-VO (v = 3,  e = 1)       ROSE (e = 1) 

Project F N-th #FRs F N-th #FRs 

Mylyn 0.18 13th  1,300 0.17 24th 1,300 

Platform 0.23 37th  158 0.19 56th 158 

PDE 0.18 12th 94 0.15 20th  94 

ECF 0.09 52nd 43 0.10 58th  43 

MDT 0.19 25th 6 0.23 60th  6 

Others 0.24 25th  143 0.22 57th  143 

Average 0.19 17th  1,744 0.18 30th  1,744 

F-measure, the average of the first recommendation points, and the number 

of first recommendations are denoted by F, N-th, #FRs, respectively. 
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To check the statistical significance of the results, we 
ran the Mann-Whitney U-test [2] with the 5,633 recom-
mendation results of MI-EA and the 14,924 results of 
ROSE and compared the recommendation accuracy (F-
measure) levels. Mann-Whitney U-test was selected as the 
data may not follow a normal distribution and thus a 
non-parametric statistical method is preferable. The re-
sulting p-value was very close to 0.00, well below the tra-
ditional 0.05 level significance check. Considering the 
assumption of independence of the test, we reran the test 
with 6 F-measure values of MI in Table 6 and ROSE in 
Table 4, and found that the resulting p-value was again < 
0.05. We also checked the practical significance by calcu-
lating the effect size [2] from the test. The effect size is 
0.39, which is generally considered moderately strong. 
This indicates that the difference is not only statistically 
significant, but also practically significant.  

In addition, Table 4 and 6 also present the feedback. 
The feedback average of MI-EA is 0.23, while that of 
ROSE is 0.60. The 0.23 feedback of MI-EA implies that 
about 2 out of 10 queries will create recommendations. 
The feedback of MI-EA is lower than that of ROSE. How-
ever, it was noted that MI can produce more recommen-
dations than ROSE by creating recommendations at 
viewpoints. The low feedback is thus overcome by the 
more frequent queries of MI.  

Given these results, we conclude: 

Using viewed files (MI-EA) along with edited files yields 
significantly higher file-level recommendation accuracy than 
using only edited files (ROSE) for files to edit. 

4.2.4 RQ3: Can using viewed files create earlier 
recommendations than using only edited files?  

In Table 7, we show the time at which the first recom-
mendations for MI-VO and ROSE are made, and the rec-
ommendation accuracies using F-measure. Table 7 pre-
sents the first recommendation point for both tools. For 
example, in the Platform project, MP-VO makes the first 
recommendation at the 37th timepoint on average, 
whereas ROSE makes the same at the 56th timepoint on 
average. Table 7 also presents the averages of all of the 
recommendation points. The average value for MI-VO is 
17th and ROSE is 30th.   

Fig. 7 compares the first recommendation points of MI 
and ROSE as well as their F-measure values shown in 
Table 7. Fig. 7 shows that MI-VO creates the first recom-
mendation earlier than ROSE in all cases. With respect to 
recommendation accuracy, MI-VO shows higher F-
measure values than ROSE for Mylyn, Platform, PDE and 
others, while showing lower F-measure values than ROSE 
for ECF and MDT. Finally, Table 7 presents the averaged 
recommendation performance. The F-measure value of 
MI-VO is slightly higher than that of ROSE (0.19 vs. 0.18).  

MI-VO allows us to provide faster feedback to the user 
while still making recommendations that are as accurate 
as the first recommendations provided by ROSE. 

Given these results, we conclude as follows: 

Using viewed files (MI-VO) along with edited files produces 
earlier recommendations than using only edited files (ROSE) 
for files to edit while still maintaining recommendation accu-
racy. 

4.2.5 RQ4: Can using viewed files create more flexible 
than using only edited files?  

We counted the numbers of recommendations of MI-
VOA, and measured its recommendation accuracy, 
shown as Table 8. We compare the recommendation re-
sults of MI-VOA in Table 8 with those of ROSE in Table 4. 

For example, in the Platform project, MI-VOA creates 
7,853 recommendations, while ROSE creates 1,974 rec-
ommendations. Table 8 also presents the total number of 
recommendations. MI-VOA makes 46,380 recommenda-
tions, compared to ROSE’s 14,924 recommendations. MI-
VOA produces more recommendations than ROSE.  

In addition, Table 8 presents the recommendation per-
formance. MI-VOA shows the highest F-measure (0.63), 
precision (0.77) and recall (0.53), significantly outperform-
ing ROSE (0.33, 0.41, and 0.28). 

Fig. 8 compares the averaged m-th recommendations 
of MI and ROSE. In Fig. 8, each point represents the aver-
age value of F-measure and the average number of the 
interaction events of all of the m-th recommendations. 

Figs. 8 (a) to (d) show the recommendation results of 
project Mylyn, Platform, PDE and ECF, respectively. For 
example, in the Platform project, MI-VOA makes the first 
recommendation at the 24th timepoint with 0.35 F-
measure, and the second recommendation at the 36th 
timepoint with 0.37 F-measure on average. On the contra-
ry, ROSE makes the first recommendation at the 56th 
timepoint with 0.20 F-measure on average. The F-measure 
average of MI-VOA starts from 0.35, whereas that of 
ROSE starts from 0.2.  

In overall, Fig. 8 shows that MI-VOA creates the m-th 
recommendation earlier than ROSE, with a higher overall 
recommendation accuracy. Furthermore, the gap between 
the m-th recommendation accuracies becomes larger as n 
increases across projects. 

Fig. 8 also shows that MI-VOA creates more m-th rec-
ommendations than ROSE within the first 100 interaction 
events. MI-VOA produced 15 recommendations for the 
Mylyn projects, 10 for Platform, 8 for PDE, and 3 for ECF. 
ROSE produced 5 for Mylyn, 1 for Platform, 3 for PDE,  

TABLE 8 
THE RESULTS FOR FLEXIBLE RECOMMENDATIONS 

 MI-VOA (v = 3, e = 1) 

Project P R F Fb #Rs #Qs 

Mylyn 0.70 0.58 0.63 0.21 24630 117212 

Platform 0.85 0.48 0.61 0.24 7853 32225 

PDE 0.88 0.94 0.91 0.21 1489 6930 

ECF 0.56 0.79 0.66 0.06 199 3305 

MDT 1.00 0.37 0.54 0.29 651 2218 

Others 0.85 0.43 0.57 0.36 11558 32211 

Average 0.77 0.53 0.63 0.24 46380 280975 

Precision, Recall, F-measure and Feedback are denoted respectively by P, 

R, F and Fb; The number of recommendations and the number of queries 

are denoted respectively by #Rs and #Qs. 
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and 1 for ECF (3~15 vs. 1~3 recommendations). 
Given these results, we conclude: 

Using viewed files (MI-VOA) along with edited files produc-
es more recommendations with higher accuracy than using 
only edited files (ROSE) for files to edit. 

5 DISCUSSION 

Our experimental results demonstrated that MI yields 
higher recommendation accuracy than ROSE (0.63 vs. 0.35 
F-measure). Our results also demonstrate that MI creates 
recommendations much earlier than ROSE, and also more 
frequently than ROSE. In this section, we explore issues 
raised by our study and issues for consideration in later 
work. 

5.1 Reducing Recommendation Noise  

To better understand how MI (v = 3, e = 1) yields sig-
nificantly higher recommendation accuracy than ROSE (e 
= 1), we analyzed the recommendation results from the 
early recommendations produced in Section 4.2.4, as 
these are important in guiding programmer navigation. 
Furthermore, these early recommendations are one of the 
chief distinctions between MI and ROSE. We next select-
ed examples that present a good contrast of the types of 
recommendations produced by MI and ROSE.  

In the end, we selected seven recommendation results 
of MI and ROSE. Table 9 shows the selected recommen-
dations. For example, for the bug report #256543 in the 
first row, MI created recommendations at the 3rd interac-
tion with 1.0 precision and 1.0 recall, while ROSE at the 
117th interaction with 0.4 precision and 1.0 recall. We 
examined the first recommendation result in interaction 
trace #123638 of bug report #256543 in Table 9.  

For our selection, MI does not recommend unneces-
sary files to edit, while ROSE does. In interaction trace 
#123638, MI recommended the four files that are actually 
edited in the interaction trace {ISimplePropertyListen-
er.java, StyledTextObservableValueDefaultSelection-
Test.java, BindingTestSuite.java, TextObservableVal-
ueDefaultSelec-tionTest.java}. ROSE recommended these 
four files, as well as six other files that were unrelated to 
the interaction trace, yielding ten files in total and 0.4 pre-
cision.  

To understand why, we then examined the contexts 
that MI and ROSE used. To generate the recommendation 
above, MI used a context that consists of three viewed 
files {Snipet008ComputedValue.java, WidgetValueProp-
erty.java, SWTVetoableValueDecorator.java} and one ed-
ited file {SWTObservables.java}, while ROSE used a con-
text that included only one edited file {SWTObserva-
bles.java}. This is considerable increase in the information 
available, resulting in more precise association rules.  

This pattern---where MI has access to additional in-
formation over ROSE---is consistent throughout, and is 
what results in the consistent improvements in accuracy. 
This matches the initial intuition underlying this work, 
and demonstrates that the observed improvements are 
not simply due to another overlooked factor. 

 

(a) Recommendations of the Mylyn Project 

 

(b) Recommendations of the Platform Project 

 

(c) Recommendations of the PDE Project 

 

(d) Recommendations of the ECF Project 

 
Fig. 8. Comparison of the Nth Recommendations of MI and ROSE 
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5.2 Users’ Qualitative Evaluation 

In Section 4.2, we demonstrated that MI produces rec-
ommendations more quickly and with higher recommen-
dation accuracy than ROSE in most cases, and in Section 
5.1, we found that MI produces less noisy recommenda-
tions than ROSE. While these results are encouraging and 
our evaluation has been conducted as typical for recom-
mendation systems, the best approach for recommending 
files to edit is that best appeals to actual people in the end. 
To understand people’s choices, we constructed a ques-
tionnaire survey comparing recommendations produced 
by MI and ROSE.  

Using the seven recommendation results in Table 9, we 
created seven comparison questions. The questions ask 
the subject to choose between two recommendation re-
sults of ROSE and MI. To understand why the partici-
pants made their choices, our survey investigated their 
rationales with an essay question, “Would you give your 
reasons why you selected recommendation A or B?” 

For this evaluation, we recruited fifteen participants, 
seven graduate students and eight industry developers. 
The graduate students are identified with the initial ‘P0’ 
followed by a number (i.e. P01~P07), and the industry 
developers are identified with the initial ‘P1’ followed by 
a number (i.e. P11~P18). 

As we anticipated, the participants chose MI 86 times 
and ROSE 19 times. To understand why they made their 
choices, we examined the participants’ rationales. Four 
participants indicated they preferred recommendations 
for files actually edited in practice (P1, P02, P06, and P14), 
while two stated recommending edited files is crucial to 
recommendation effectiveness (P03 and P12). Participant 
P12 stated, “This recommendation system should give 
programmers a hint. More important than giving accurate 
hints is to limit the points to focus on. Thus, fewer sug-
gestions with a high hit rate are important.” Similarly, 
five participants stated they favored recommendations 
including the files edited in practice, assuming that when 
working on an unsolved bug report, that they must visit 
files recently edited (P04, P05, P07, P15 and P16). For ex-
ample, participant P16 stated, “I just want to start at some 
point which seems directly related to the issue.” From 
these participants’ answers, we infer that recommending 
small sets of files which include files that should actually 

be edited is strongly preferred by users. 
In contrast, some participants wanted to see more rec-

ommendation items (P13 and P17). Participant P13 stated, 
“When the software system is tested well, it seems good 
that the tool makes a decision what to show.  However, 
regarding unknown bugs, it is good to show as much in-
formation as possible and let programmers to make a de-
cision.” P17 stated, “It is better to consider all source 
codes that can have an impact.” It is noted that P17 chose 
the ROSE recommendations three times, more than all but 
one other participant (P11). This may be because ROSE 
typically recommended more files than MI; the fact that 
the recommendations do not include the files edited in 
practice was viewed as a non-issue by P17. The partici-
pant, who chose the ROSE recommendations four times 
(P11) stated (somewhat enigmatically), “A software de-
veloper's decision differs from a tool's decision due to 
personal preference. My decision depended on the situa-
tion.”  

In general, however, we conclude that the aspects most 
valued by users are recommendations which include di-
rectly the files that need to be edited, and which limit the 
number of files recommended. We noted that several par-
ticipants stated that reducing the number of irrelevant 
files recommended is a key consideration for them in us-
ing a recommendation system.  

5.3 File-level Recommendation versus Method-
level Recommendation 

In this paper, we presented the recommendation results 
at the file level, not the method level. However, we have 
conducted the simulation in Section 4 at the method level, 
and found that recommendations at both levels produce 
nearly the same results.  

Fig. 9 shows the recommendation results at the meth-
od level. Curves “n-views,” “n-edits,” and “n-views and 
n-edits” represent the recommendation results of using 
viewed methods (v = n), edited methods (e = n) and both 
methods (v = n and e = n) as a context. When n is 1, the “1-
view” yields 0.2 precision and 0.2 recall, the “1-edit” 
yields 0.6 precision and 0.2 recall, and “1-view and 1-edit” 
yields 0.8 precision and 0.3 recall. The points of each 
curve go up as n increases. Fig. 9 shows that “n-views and 
n-edits” achieves consistently higher precision and recall 
than “n-edits.”   

TABLE 9 
THE RECOMMENDATION RESULTS OF MPI AND ROSE TO BE USED FOR THE QUESTIONNAIRE SURVEY 

Project #Bug Report  #Interaction Trace 
MI ROSE 

P R N-th P R N-th 

Platform 

256543 123638 1.0 1.0 3 0.4 1.0 117 

259411 132096 1.0 1.0 4 0.5 0.71 156 

291215 149633 1.0 0.42 4 0.1 0.04 23 

PDE 239494 121439 1.0 0.91 5 0.2 0.2 95 

Mylyn 

280973 139683 1.0 1.0 3 0 0 59 

283093 148595 1.0 1.0 9 0.1 0.17 49 

258717 122750 0.4 0.8 4 0.2 0.29 228 

The bug report number and the interaction trace number are identified by the Eclipse Bugzilla system [9]. Precision, Recall and the average of the first recom-

mendation points are denoted by P, R, and N-th, respectively. 
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The method-level recommendation results were con-
sistent with the file-level results: using additional viewed 
methods (MI) yields consistently higher recommendation 
accuracy compared to the use of only edited methods 
(ROSE). However, there was a slight difference between 
method-level recommendations and file-level recommen-
dations. The precision at the method level is higher than 
the precision at the file level, while the recall at the meth-
od level is lower than the recall at the file level. This is 
because of the trade-off mentioned in Section 4.1.5 that 
arises when the number of viewed and edited methods is 
larger than the number of viewed and edited files.  

For the purpose of the presentation, we felt file-level 
recommendations were considerably more simple and 
easier.  Given the similarity of the simulation results, we 
therefore chose to show only the recommendation results 
at the file level.  

5.4 View Contexts versus Edit Contexts 

When we investigated the file-level recommendations for 
the Platform project, we found that edit contexts occa-
sionally produce earlier recommendations than view con-
texts. For example, in the interaction trace #94360 of bug 
report #224588, the edit context (e = 1) made the first rec-
ommendation at the first edit event after one view event. 
The edit context (e = 1) yielded 0.6 precision by recom-
mending two correct files {PatchMessages.java, Preview-
PatchPage2.java} with three incorrect files. The view con-
text (v = 3) made this recommendation at the 24th view 
event, after 8 edit events and yielded only 0.33 precision 
(one correct file {PatchMessages.java} and two incorrect 
files).  

We found this result surprising—the intent of MI is to 
produce, at a minimum, earlier recommendations (along 
with more accurate recommendations). Upon examina-
tion, we found that the view context works better when 
programmers view first, while an edit context works bet-
ter when programmers edit first. Typically speaking, pro-
grammers look, then edit. However for some tasks—
simple bug fixing tasks, for example—programmers can 
often begin editing immediately, while for enhancements 

programmers must first understand code by viewing it 
[36]. 

Thus we see view context and edit context are com-
plementary. Our proposed method leverages this by flex-
ibly forming a context that reflects the complementary 
nature of view context and edit context, as with MI-VOA. 

5.5 Feedback and Recommendation Accuracy 

In Section 4.2.2, we noted the feedback of MI is lower 
than that of ROSE (0.23 vs. 0.60). As a lower feedback can 
in some cases result in a higher accuracy, we wished to 
determine if this was the case here. Towards this, we re-
ran the simulation using a higher minimum support (the 
minimum number of co-occurrences of the antecedent 
and the consequent of an association rule) for ROSE 
(moving from one to three).  

In doing so, we lowered the feedback of ROSE, allow-
ing for a comparison against MI in which the feedback 
was comparable. This is shown in Table 10: by moving to 
a minimum support of 3, rather than 1, the feedback for 
ROSE is lowered from 0.56 to 0.24, mirroring the 0.24 
achieved by MI-VOA. As expected, this positively im-
pacts the precision for ROSE, moving from 0.60 to 0.64, 
but the precision is still considerably less than the 0.85 
precision achieved by MI-VOA. (Recall is also reduced for 
ROSE, dropping from 0.26 to 0.22. This is also substantial-
ly less than the 0.48 achieved by MI-VOA.) 

We interpret this as showing that MI yields higher rec-
ommendation accuracy than ROSE even when feedback 
values are similar, and that the positive results relative to 
ROSE seen in Section 4.2 are not due to lower feedback. 

5.6 Acceptable level of Recommendation Accuracy 

By referring to Fig. 4, we can suggest how many viewed 
and edited files are necessary to achieve an acceptable (or 
even higher) level of recommendation accuracy. For this 
discussion, we assume that a level of recommendation 
accuracy is acceptable when more than half of recom-
mendations are correct. In other words, the precision is 
higher than 0.5. Fig. 4 shows that when n is smaller than 5, 
a view and edit combined context (v = n and e = n) pro-
duce higher precision and recall than a view only context 
(v = n) or an edit only context (e = n), with the peak recall 
occurring at view and edit contexts of (v = 3 and e = 3). 
When n is larger than 5, the view context (v = 5) produces 
higher precision and recall than the edit context (e = 1) 

 

Fig. 9. Precision and recall graph at the method level 

TABLE 10 
THE RECOMMENDATION RESULTS OF THE PLATFORM PROJECT 

OBTAINED BY CHANGING THE MINIMUM SUPPORT 

 

ROSE (e = 1) 
MI-VOA 

(v=3, e=1) mSup  

= 1 

mSup  

= 3 

P 0.60 0.64 0.85 

R 0.26 0.22 0.48 

F 0.36 0.33 0.61 

Fb 0.56 0.24 0.24 

#Recommendations 1,974 843 7853 

#Queries 3,543 3,543 32,225 
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and the view and edit context (v = 1 and e = 1). Therefore 
we suggest using a context that includes less than or 
equal to 3 edited files with more than 5 viewed files as 
acceptable levels of file-level recommendation accuracy. 
However, this is a rough conclusion based on the results 
of the cases where the numbers of viewed files and edited 
files are equal (v = e = n). To give conclusive numbers, 
more thorough investigations are needed. 

Throughout this paper, we showed that our approach 
MI better predicts where a developer will edit than ROSE, 
yet did not evaluate if it predicts where the developer will 
need to edit. We leave this as future work, expecting that 
new approaches and evaluations will focus on the loca-
tions that ought to be edited. 

6 THREATS TO VALIDITY 

Internal validity.  We conducted a simulated compara-
tive controlled experiment, where the only change was 
the inclusion of viewed files, with other conditions identi-
cal. As MI was an extension of ROSE, the difference in 
techniques was managed by using a software flag, with 
most of the implementation between the techniques iden-
tical. We thus believe the results of Section 4.2 are indeed 
due to the inclusion of viewed files. For the human study, 
each subject was given the same choices, and the order of 
recommendation (ROSE vs. MI) was random and anony-
mized to prevent this from biasing the results. 

Construct validity. We used precision, recall, F-
measure, ROC and AUC to measure the recommendation 
accuracy, and used a questionnaire survey to evaluate by 
humans. The measurements used are typical measure-
ments used in recommendation system research, and the 
use of several measurements and evaluations—all indi-
cating the same conclusion—mitigate construct validity 
threats.  

Conclusion validity. We used the Mann-Whitney U-
test to determine the statistical significance of the differ-
ence between the recommendation results of MI and 
those of ROSE. When the number of observations is very 
high (as was the case here), the Mann-Whitney U-test 
may conclude that the two results are significantly differ-
ent, when in fact the practical difference is very small. To 
compensate for this, we also calculated the effect size to 
measure the practical significance. The effect size indi-
cates that the recommendation accuracy, as improved by 
MI, has practical significance.  

External validity. We used the interaction traces of 72 
Eclipse sub-projects, which may not be representative of 
all software projects. Also, our experimental results are 
consistent with the projects which have the view-edit ra-
tio from 5.1 to 16.3, while inconsistent with the MDT pro-
ject which has a 77.9 view-edit ratio. Therefore, our re-
sults may be generalized to the class of open projects that 
use the Eclipse Bugzilla system and have a view-edit ratio 
in the range of 5.1~16.3. 

7 CONCLUSION 

In this work, we have examined how the use of view in-

formation, gathered from programmer interaction histo-
ries, can help provide a more detailed context of pro-
grammer activity leading to more accurate, earlier and 
more flexible edit recommendations. To evaluate this, we 
replicated the previous approach ROSE and proposed a 
new approach MI, which extends ROSE by additionally 
considering the records of viewed files. We then conduct-
ed a simulated comparative controlled experiment by 
mining the records of files that programmers had both 
viewed and edited (MI), and mining the records of files 
that programmers had only edited (ROSE). In this exper-
iment, we found that MI recommends files to edit with 
58~63% accuracy while ROSE does 33~35% accuracy. MI 
also creates recommendations earlier than ROSE (17th vs. 
30th interaction event) and more flexibly (3~15 vs. 1~3 
recommendations within the first 100 interaction events).  

Overall, our work makes the following contributions: 
 We developed a new powerful context formation 

approach and demonstrated its efficacy in mining 
programmer interaction histories (MI). 

 We developed a comparative framework that helps 
understand which factors have much influence on 
the recommendation performance. 

 We demonstrated that the rules mined by our ap-
proach (MI) outperform the rules mined from edit 
histories (ROSE) [38] in recommending files to edit. 

 We identified that the significant improvement of the 
recommendation performance is enabled by the con-
text further elaborated by the records of files viewed. 

Our research can be utilized in several ways. First, our 

results provide basic evidence that leveraging the de-

tailed records of what programmers viewed will improve 

mining approaches for recommending various other arti-

facts (e.g., documents [6], test sets [4], and e-mails [3]). 

Second, our proposed context formation can be a basis for 

developers to flexibly adapt the context information in a 

recommendation system to yield better recommendation 

results whenever the user situation changes. In short, we 

have demonstrated that as the context information con-

sidered increases to better reflects user behavior, the sys-

tem’s behavior will better reflect the user’s needs. 
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