
0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

The Impact of View Histories on Edit
Recommendations

Seonah Lee, Member, IEEE, Sungwon Kang, Member, IEEE,

Sunghun Kim, Member, IEEE, and Matt Staats, Member, IEEE

Abstract—Recommendation systems are intended to increase developer productivity by recommending files to edit. These

systems mine association rules in software revision histories. However, mining coarse-grained rules using only edit histories

produces recommendations with low accuracy, and can only produce recommendations after a developer edits a file. In this

work, we explore the use of finer-grained association rules, based on the insight that view histories help characterize the

contexts of files to edit. To leverage this additional context and fine-grained association rules, we have developed MI, a

recommendation system extending ROSE, an existing edit-based recommendation system. We then conducted a comparative

simulation of ROSE and MI using the interaction histories stored in the Eclipse Bugzilla system. The simulation demonstrates

that MI predicts the files to edit with significantly higher recommendation accuracy than ROSE (about 63% over 35%), and

makes recommendations earlier, often before developers begin editing. Our results clearly demonstrate the value of considering

both views and edits in systems to recommend files to edit, and results in more accurate, earlier, and more flexible

recommendations.

Index Terms— Programming environments/construction tools, interactive environments, software maintenance, data mining,

association rules, programmer interaction histories

—————————— ——————————

1 INTRODUCTION

rogrammers spend a significant amount of time in-
vestigating files to edit. For example, Eclipse bug re-
port #261613 shows that the programmer heavily

investigated unrelated files for three days before editing
just two files. The programmer wrote: "I think I'm getting
closer to the real cause of the situation...." Similarly, in
bug report #241244, programmers had a discussion over
an investigation of “root causes” for two weeks, writing:
“Further investigation still required…,” and “… I’d like to
investigate this direction further.” These examples indi-
cated that if programmers could find files to edit more
easily, the time spent on software evolution tasks would
be significantly reduced.

To assist programmers, researchers have developed
history-based recommendation systems following two
paradigms. The first group has mined software revision
histories. Zimmermann et al. [38] and Ying et al. [36], for
example, proposed recommending files to edit based on
mined software revision histories. These approaches
make file-to-edit recommendations by mining association
rules between files frequently edited together in the past.
The second group has mined programmer interaction
histories. DeLine et al. [7] and Singer et al. [35], among

others, proposed recommending the methods or files to
view, based on mined programmer interaction histories.
These approaches mine association rules between meth-
ods or files that past programmers viewed. These two
paradigms have developed separately, leaving largely
unanswered the question of which history is better to
mine: view history or edit history.

This paper addresses this question. In this work, we
evaluate MI (Mining programmer Interaction histories), a
recommendation approach considering both programmer
edits and views. Our results shows that the records of
files viewed by programmers help recommend files to
edit. Using detailed view and edit histories to recommend
files to edit produces the following benefits:
 Accurate recommendations. Viewed files provide

more context when programmers edit, allowing
more accurate recommendations over approaches
which consider only edits.

 Early recommendations. Using view information
allows recommendations to occur when program-
mers view files. Programmers can thus identify files
to edit early, even before editing a single file.

 Flexible recommendations. When recommendations
can occur based on viewed files, the recommenda-
tions change in response to programmers’ navigation
paths. This allows recommendations to occur even in
scenarios that are not edit-heavy.

To empirically evaluate the benefits of considering
views when recommending files, we evaluated MI
against ROSE, an existing approach for recommending
files to edit based on edit histories only [38]. MI extends
ROSE, allowing us to produce recommendations from

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Seonah Lee and Sungwon Kang are with the Department of Computer
Science, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of
Korea. E-mail: {saleese, sungwon.kang}@kaist.ac.kr.

 Sung Kim is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: hunkim@cse.ust.hk.

 Matt Staats conducted this work at the Interdisciplinary Centre for Securi-
ty, Reliability and Trust, University of Luxembourg, Luxembourg. He is
currently employed by Google, Inc. E-mail: staatsm@gmail.com

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

P

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

view and edit histories.
For our evaluation, we simulated code recommenda-

tions on 5,764 interaction traces stored in Eclipse Bugzilla
[9]. The experimental results demonstrate that MI rec-
ommended files to edit with greater precision and recall
than ROSE, with average precision and recall of 0.71 and
0.41 (respectively), compared to 0.41 and 0.28 for ROSE
[38]. The results also demonstrate that MI makes recom-
mendations in nearly half the time required for ROSE,
with comparable levels of accuracy. We thus find that the
use of view and edit histories—as represented by MI—is
better both in terms of traditional metrics of recommen-
dations accuracy and time to recommendation.

The remainder of this paper is organized as follows:
Section 2 surveys related work. Section 3 proposes mining
programmer interaction histories and the context for-
mation that utilizes viewed files. Section 4 describes simu-
lated evaluation. Section 5 discusses the results. Section 6
specifies threats to validity. Finally, Section 7 concludes
the paper.

2 RELATED WORK

A recommendation system for software engineering is "a
software application that provides information items es-
timated to be valuable for a software engineering task in a
given context" [32]. To recommend files relevant to con-
ducting software evolution tasks, researchers have devel-
oped techniques mining the behavioral histories of pro-
grammers. The work can be classified into three areas:
mining software revision histories, mining programmer
interaction histories, and mining other data types.

Regarding the mining of software revision histories,
researchers have used association rule mining, which
finds rules among the occurrences of items in previous
transactions [1]. To recommend files to edit, Zimmer-
mann et al. and Ying et al. applied this technique to soft-
ware revision histories [36][38]. Their approaches treat
change sets as transactions and find association rules per-
taining to the files frequently edited together in the past.

To mine semantically meaningful information, re-
searchers have refined code edits. The first group intro-
duced additional analysis. Fluri et al. extended the co-
edited relationships of files using the structural relation-
ships between the files [10]. Kim and Notkin proposed
representing high-level changes with logic-based pro-
gram analysis [19]. The second group introduced more
fine-grained edits. Robbes et al. introduced the aspects of
time, sequences and sessions [30]. Robbes et al. recon-
structed task sessions by exploiting fine-grained edit in-
formation [29]. Later, Hattori et al. proposed Replay,
which enabled programmers to observe fine-grained edits
in the order of time [13][14]. Canfora et al. also suggested
combining time information by introducing the Granger
causality test [5]. The third group altered the mining tar-
get. Robillard and Dagenairs retrieved collections of code
relevant to tasks by applying a nearest-neighbor cluster-
ing algorithm to software revision histories [33]. Kawry-
kow and Robillard proposed eliminating non-essential
edits to extract only essential code edits [16]. Jaafar et al.

mined a set of files edited together but not in the same
change sets [15].

Regarding the mining of programmer interaction his-
tories, researchers have also used association rule mining
to recommend files to view. Parnin and Görg mined asso-
ciation rules in programmer interaction histories [26].
Likewise, DeLine et al. proposed TeamTracks [7] and
Singer et al. proposed NavTracks [35], which use associa-
tions between files that past programmers viewed for
predicting the next files to view. These approaches
showed lower recommendation accuracy than the ap-
proaches mining software revision histories. Meanwhile,
Kersten and Murphy proposed Mylyn [17] for recom-
mending files relevant to programmers’ tasks, based on
the frequencies of interactions that a programmer has
with files. A shortcoming of Mylyn is that it is a semi-
automated approach in that it relies on programmers’
manual identification and indication of tasks; users who
lack prior knowledge about tasks and their contents are
unable to determine which collection of code is relevant
to their current task.

The recent work in this area can be divided into two
groups. The first focuses on improving recommendation
accuracy. To evaluate the accuracy of code recommenda-
tions, Robbes et al. proposed replaying programmer in-
teraction histories with a revised cumulative gain [31].
Piorkowski et al. studied several recommendation models.
They collected the interaction traces recorded while un-
dergraduate students performed two tasks on different
code bases within two hours [27]. By repeating pre-
defined tasks, they measured the recommendation accu-
racy of different models. Piorkowski et al. also proposed
the PFIS (Programmer Flow by Information Scent) rec-
ommendation model based on information foraging theo-
ry [28], and compared the PFIS models to TF/IDF based
recommendation models. The second uses the same inter-
action data we use in this paper. Ying and Robillard ana-
lyzed programmer interaction histories and revealed the
relationships between task types and edit patterns [37].
Lee et al. extracted 56 metrics from programmer interac-
tion histories and created a classification model to predict
files that include defects [23]. Lee and Kang compared
their approach with TeamTracks, using the interaction
histories [21][22].

Researchers have diversified the types of recommenda-
tions and mining data. For example, Bacchelli et al. pro-
posed mining e-mails to recommend e-mails related to
given program elements [3]. Sawadsky et al. proposed
mining web pages to recommend the web pages to be
revisited, related to the code [34]. Kim et al. proposed
mining bug reports to recommend files to fix related to a
given bug report [18]. It is noted that Kim et al.’s work is
closely related to our work in that their approach recom-
mends files to fix prior to fixing bugs. However, the ap-
proach still yields low recommendation accuracy, ranging
from 7~11% precision values1, and the target mining data
are different from ours.

1 This means that, when it recommends ten files to fix, one of them is
correct and the other nine are incorrect.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 3

Our work differs from previous work in that ours illus-
trates that mining the records of viewed files, along with
edited files, can significantly improve recommendation
performance. Furthermore, our work differs from Kim et
al. [18] in that our research emphasis is on the viewed
files of programmer interaction histories, while theirs is
on bug reports, which are different data sets. Our evalua-
tion is focused on revealing the benefits of viewed histo-
ries, and our results show much higher recommendation
accuracy than theirs (about 63% over 11%).

3 MINING PROGRAMMER INTERACTION HISTORIES

Programmer interaction histories contain the records of
files viewed by programmers as well as those edited, and,
are thus a more informative source than software revision
histories. We believe this can significantly improve rec-
ommendations for editing, as the records of viewed files
establish a more accurate programmer context to recom-
mend relevant files to edit.

Let us explain this idea with the example in Fig. 1,
which shows a situation in which programmers have per-
formed tasks T0, T1, and T2, and a programmer is now
performing task T3. The lower-case letters in Fig. 1 repre-
sent the files that are viewed or edited by programmers.
While performing T3, this programmer views files d, b,
and c. Given these interaction events, the following ques-
tion arises: what are the files that the programmer is like-
ly to edit for T3?

Previous approaches that mine edit histories (e.g.,
ROSE [38]) cannot make recommendations at this point
because the programmer has not yet edited a file. If the
programmer edits a file, the files {c} for example, ROSE
utilizes {c} as a context to find other files to edit together.
As {c} was edited in T0, T1 and T2, ROSE will recommend
all other files edited in T0, T1, and T2, {e, h, x, z}.

In contrast, the approach for mining programmer in-
teraction histories that we propose, MI (Mining pro-
grammer Interaction histories), recommends files to edit
using the context provided by both the viewed files and
the edited files. The records of viewed files are used to
identify the interaction history events that are most simi-
lar to T3. As the programmer’s current navigation activi-

ties for T3 are most similar to T0, the files edited in T0, i.e.
{c, e}, are most likely to be edited in T3. When the pro-
grammer views d, b and c, MI uses the viewed files {d, b, c}
to find files to edit. As the files {d, b, c} were also viewed
in T0, MI recommends the files that were edited in T0, {c,
e}. Once a programmer edits {c}, MI adds this interaction
to create the context of viewed files {d, b, c} and edited file
{c}. MI again associates this context with T0 and recom-
mends file {e} to edit.

Thus, we hypothesize the following:

Using a context that includes viewed files can improve the
accuracy of recommending files to edit.

To recommend files to edit by utilizing the records of
viewed files, MI mines interaction histories. As shown in
Fig. 2, MI mines interaction traces, finds association rules
using the current context, and generates recommenda-
tions of files to edit. The essential part of the recommen-
dation system is the context. The context characterizes the
situation of the programmer (e.g., viewed files), and is
used as a query at the time of recommendation [8][32].
We first explain the detailed procedure of MI in Section
3.1 and propose the outline for context formation in MI in
Section 3.2.

3.1 MI

MI extends ROSE [38]. The original ROSE is an approach
which mines software revision histories [38]. We have
revised ROSE to mine programmer interaction histories.
This revised ROSE mines the association rules from edit-
ed files in programmer interaction histories and forms a
context using only edited files. By extending this version
of ROSE to include viewed files, we propose mining asso-
ciation rules in programmer interaction histories to rec-
ommend files to edit (MI). MI mines the association rules

Fig. 1. An example that shows the files programmers view and edit while performing tasks. This example is simplified from the actual interac-
tion traces of bug reports #124039, #176690, #204358, and #290505 in the Eclipse Bugzilla system [9].

Fig. 2. Overview of the proposed recommendation system MI

#124039:

#176690:

#290505:

#204358:

: edit

: view

: precedes

SharingWizard
SharingWizard-

SyncPage

AbstractCommit-

Action

CommitWizard-

CommitPage

CommitWizard-

CommitPage

Bug Report

CompareView-

Paned

TextMerge-

Viewer

ContentMerge-

Viwer

CompareEditor-

Input

TextMerge-

Viewer

TextMerge-

Viewer

CompareEditor-

Input

PatchCompare-

EditorInput

PatchCompare-

EditorInput

CompareEditor-

Input

CVSCompare-

EditorInput

CVSCompare-

EditorInput

CompareEditor-

Input

AbstractCommit

Action

SharingWizard-

SyncPage

CompareEditor-

Input
??

a b

CompareEditor-

Input

CompareEditor-

Input
c c d e e

g h i c c h h

x x c c z z

d b c

T0:

T1:

T3:

T2:

History DB

Recommendations

of Files to Edit

Mining Programmer

Interaction Histories

Interaction

Traces

Context Formation

Programmer

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

from viewed and edited files, forming a hybrid context
consisting of viewed and edited files. Our MI approach
can use several methods to form a context from viewed
and edited files, each explained in Section 3.2. We empir-
ically evaluate the effectiveness of these various methods
in Section 4.

3.1.1 Interaction Traces

An interaction trace is a log consisting of records that de-
scribe a programmer’s actions (i.e. views and edits) and
files on which the actions were taken. An interaction trace
can be expressed as Tk, where k represents a software evo-
lution task that a programmer performed. An interaction
trace Tk is converted into a pair of sets: Tk = (Vk, Ek), where
Vk is the set of viewed files in Tk, Vk = {v1, ..., vn} and Ek is
the set of edited files in Tk, Ek = {e1, ..., em}. The collections
of interaction traces can be expressed as History DB =
{Tk|1 ≤ k ≤ i-1}.

3.1.2 Context

Conceptually, a context is “any information which can
be used to characterize the situation of” a current
user [8]. In a recommendation system, a context becomes
a query, which triggers a recommendation [32].

In MI, a context is formed from a current program-
mer’s actions. When the current programmer is perform-
ing a task i, a context is created from the last files viewed
and edited by the current programmer from each
timepoint in Ti. As the current programmer continues
viewing and editing files, the context changes. The con-
text C can be expressed as (Vc, Ec), where Vc is a set of the
last v files that a current programmer has viewed, Vc =
{v1, ..., vv}, and Ec is a set of the last e files that the pro-
grammer has edited Ec = {e1, ..., ee} at each timepoint. Sec-
tion 3.2 will explain the details of forming a context.

3.1.3 Mining on the Fly

Given a context C, the interaction traces collected in His-
tory DB can be mined on the fly [38]. As context C nar-
rows the scope to mine, this on-the-fly mining approach
is a reasonably lightweight process.

MI mines the association rules2 in the form of (Vc, Ec)
 {e} where e Ec and e Vc. The antecedent (Vc, Ec)
must have occurred together at least in one interaction
trace in History DB. The consequent {e} is one of the other
edited files in the interaction traces that contain the ante-
cedent (Vc, Ec) in History DB. Because the antecedent and
the consequent of an association rule are disjoint, the files
that belong to C = (Vc, Ec) are excluded from the conse-
quent.

MI first sets up the antecedent as context C = (Vc, Ec)
before mining begins. MI then finds association rules by
checking whether each interaction trace Tk contains both
of the viewed files Vc and edited files Ec of context C: Vc
Vk and Ec Ek. Subsequently, MI counts all edited files in

2 An association rule consists of an antecedent X and a consequent Y.
The antecedent X is the condition in which the association rule can be
applied, and the consequent Y is the result that the association rule can
produce. An association rule is defined as X Y, where X and Y belong
to DB and are disjoint [1].

the interaction traces satisfying the condition as the con-
sequent {e}, where e Ec and e Vc. Finally, MI returns
the list of consequents.

3.1.4 Ranking and Recommendation

To rank the association rules found, MI uses the concepts
of support and confidence, as typically used in associa-
tion rule mining [1][12]. Support refers to the number of
co-occurrences of the antecedent and the consequent of an
association rule in History DB. Confidence is the ratio of
the co-occurrences of the antecedent and the consequent
to the occurrences of the antecedent.

To calculate the support, MI counts the number of in-
teraction traces that include both the antecedent (Vc, Ec)
and the consequent {e}. To calculate the confidence, MI
divides the support by the number of interaction traces
including the antecedent (Vc, Ec). MI has minimum sup-
port and minimum confidence thresholds and selects as-
sociation rules that meet these thresholds. MI ranks the
consequences by confidence. According to this ranking,
MI finally recommends the files to edit.

3.2 Context Formation

For recommendation systems, context is defined as “the
information about the user, their environment and their
work that are available at the time of recommendation”
[32]. We believe that a key challenge in recommendation
systems is to determine what user contexts are best suited
to producing recommendations useful to users.

To create a context C in Section 3.1.2, MI uses a sliding
window, referred to here as a v-e-sized sliding window.
The sliding window consists of two queues that hold v
different viewed files and e different edited files. The slid-
ing window disregards reappearing records of the same
action on the same file as held in the sliding window at
each time. Whenever the sliding window is updated with
a new file in either queue, it creates a context that consists
of the last v viewed files and e edited files. Fig. 3 illus-
trates how a context C is formed from an interaction trace
Ti. For example, the 3-0-sized window traces up to three
different viewed files and zero edited files. When the slid-
ing window initially captures three viewed files {a, b, c}, it
creates the context ({a, b, c},). When the programmer
views file {d}, the sliding window obtains a new viewed
file {d} and creates the context ({b, c, d},).

For systems recommending files to edit, several con-

Fig. 3. Forming a context

Ti: a b c b a d e e a a
Programmer

a b c

b c d

c d e

C1: ({a, b, c},)

C2: ({b, c, d},)

C3: ({c, d, e},)

3-0-sized

sliding

window

Vx Ey

X
V EConditional

Operation

Selection

Range

Recommendation Timepoints

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 5

texts are possible, and relate to the choice of information
and how selected information should be combined. This
section discusses how contexts can be formed as follows:
Section 3.2.1 outlines the rules of combining viewed files
and the edited files; Section 3.2.2 proposes four different
methods of forming a context; and Section 3.2.3 explains
how each method can be used for improving recommen-
dation performance.

3.2.1 Rules for Forming a Context

We establish three rules to combine different kinds of
information, e.g., viewed files Vx = {a, b, c} and edited
files Ey = {b, a}, as shown in Fig. 3.

Conditional operation rule. If a context is formed from
different kinds of information (e.g., user actions), a condi-
tional operation is needed to combine them into a context.
For example, if a programmer views files Vx and edits
files Ey, Vx and Ey can be combined with the OR or AND
operation, denoted respectively as:
 AND (Vx, Ey): this context makes a recommendation

when it finds both Vx and Ey in the mined rules.
 OR (Vx, Ey): this context makes a recommendation

when it finds either Vx or Ey in the mined rules.
Selection range rule. When a context is formed, a range

can be given to increase the chance of creating recom-
mendations at timepoints. The range starts from the
timepoint for characterizing a situation and ends at the
timepoint for a recommendation. When the range is set to
x and the number of viewed files in a context C (i.e. Vc) is
set to v, a context can be formed by selecting v files from
the last x files that a current programmer has viewed (i.e.

xCv). For example, if x is set to 5 and v is set to 3, the con-
text finds any combination of three viewed files from a
programmer’s most recent five viewed records in the
mined rules. The relevant rules can be easily found by
using a set operation, |Vx Vk| ≥ v. In Fig. 3, when a
programmer views {e}, this range setting makes a differ-
ence. While the 3-0-sized sliding window makes a rec-
ommendation only with a context {c, d, e}, the sliding
window with the range setting makes a recommendation
with 5C3 (= 10) cases from {a, b, c} to {c, d, e}. Because pro-
grammers usually do not visit and edit files in the same
order, this increases the chance to create a recommenda-
tion at each timepoint. A range is denoted as:
 RANGE (X): when a range has the fixed number X, a

programmer’s interactions are traced up to X records.
 RANGE (): when a range is not set up, only the last

interactions to be used as a context are traced up.
Recommendation timepoint rule. When different

kinds of user actions are monitored, certain kind of ac-
tions can be selected as the triggers for recommendations.
For example, if a programmer views and edits files, rec-
ommendations can be created at view points, edit points,
or view and edit points, denoted respectively as:
 POINT (V): a recommendation is triggered at each

view point
 POINT (E): a recommendation is triggered at each

edit point
 POINT (V, E): a recommendation is triggered at each

view and edit point.

In our approach, these proposed rules are the basis of
forming contexts. The most important rule is the condi-
tional operation, because it directly addresses the items of
a context. Selection range is subsidiary because it allows
the conditional operation to randomly select items from a
range. The recommendation timepoint is important be-
cause it determines the time of recommendation.

3.2.2 Methods for Forming a Context

A combination of conditional operation rules and rec-
ommendation timepoint rules can create the four possible
methods for forming a context with viewed and edited
files, as shown in Table 1.
 MI-EA-RANGE(X): this forms a context by combining

viewed and edited files with the AND operation, and
creates a recommendation at each edit point. When
edit points trigger recommendations, the range op-
tion for viewed files should be used to increase the
chance of the recommendations.

 MI-EO: this forms a context by combining viewed
and edited files with the OR operation, and creates a
recommendation at each edit point. In this case, the
range rule is not needed, because the OR condition
will create a recommendation with only the edit files,
and the number of edited files is typically limited.

 MI-VA: this forms a context by combining viewed
and edited files with the AND operation, and creates
a recommendation at each view or edit point. Note
that because the method creates a recommendation
when obtaining both viewed and edited files, this
method creates a recommendation after an edit point.

 MI-VO: this forms a context by combining viewed
and edited files with the OR operation, and creates a
recommendation at each view or edit point. Because
the method can create a recommendation when ob-
taining viewed or edited files, this method can create
a recommendation even before an edit point.

3.2.3 Relationships between Methods Forming a
Context and Recommendation Results

The context used directly impacts the effectiveness of rec-
ommendation results. For example, the AND conditional
operation may yields higher recommendation accuracy
than the OR operation, because the AND operation selects
the mined rules more narrowly than the OR operation.
Likewise, the use of edit or view points affects the fre-
quency of recommendations because it determines
whether a recommendation occurs only at view points,
edit points, or both view and edit points.

With this in mind, we discuss which context is likely to
be more effective, in the sense that using it leads to more
accurate, earlier and more flexible edit recommendations.

For accurate recommendations, we use MI-EA-RANGE (X)
or MI-VA, because both use the AND operation and thus
mines rules narrowly. The difference is that MI-EARANGE(X)

TABLE 1
FOUR METHODS OF FORMING A CONTEXT

 AND (Vx, Ey) OR (Vx, Ey)

POINT (E) MI-EA-RANGE (X) MI-EO

POINT (V, E) MI-VA MI-VO

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

creates recommendations only at edit points, whereas MI-
VA creates recommendations at view and edit points.

For early recommendations, we use MI-VO, because it
is the only method that creates recommendations at each
view point before an edit. For flexible recommendations,
we can use both MI-VO and MI-VA, because this allows
us to create recommendations at view and edit points.

We do not explore the use the MI-EO method, because
MI-EO creates recommendations at edit points using the
OR operation. This does not leverage the benefits of con-
sidering view context, and thus is very unlikely to con-
tribute to accurate, early, or flexible recommendations.

Then the remaining problem is that the above methods
likely do not produce both early and accurate recommen-
dations. For example, MI-VO, which is used for early rec-
ommendations, is unlikely to yield particularly high rec-
ommendation accuracy because it uses the OR operation.
In contrast, MI-VA, which is used for accurate recom-
mendations, makes recommendations after the first edit,
because of the AND operation. We thus combine these
two methods and call the combined method as MI-VOA.

MI-VOA uses MI-VO and MI-VA in the following way:

if (both Vx and Ey exist) then
apply MI-VA // make recommendations after an edit

else
apply MI-VO // make recommendations before an edit

end if

4 SIMULATION EVALUATION

We performed an experiment to evaluate the effect of
using viewed files on the recommendation results. Sec-
tion 4.1 explains the experiment design, and Section 4.2
presents the experimental results.

4.1 Experiment Design

We designed a simulated comparative controlled experi-
ment [24]. Section 4.1.1 identifies the research questions,
Section 4.1.2 identifies the variables, Section 4.1.3 identi-
fies the subjects to be used, Section 4.1.4 describes the
detailed procedure, and Section 4.1.5 presents the metrics
for the evaluation.

4.1.1 Research Questions

We are interested in studying the effect of mining the rec-

ords of viewed files, and showing utilizing the increased
amount of information in the records of viewed files im-
proves edit recommendations. We explored four research
questions:

RQ1. Can using viewed files improve the recommen-
dation accuracy?

RQ2 Can using viewed files (MI) create more accurate
recommendations than using only edited files (ROSE)?

RQ3 Can using viewed files (MI) create earlier recom-
mendations than using only edited files (ROSE)?

RQ4 Can using viewed files (MI) create more flexible
recommendations than using only edited files (ROSE)?

To evaluate these questions, we use variations of MI
designed to be “fair” with respect to ROSE. For example,
when comparing accuracy, we use MI-EA, which makes
recommendations only at edit points; otherwise, we
measure accuracy at very different timepoints. The final
question is based upon our final recommendation, MI-
VOA.

4.1.2 Independent and Dependent Variables

In each research question, the independent variable is a
context the approach used, while the dependent variables
are measurements related to the quality of the recom-
mendations results.

For the independent variable, we explore five different
approaches: four variations of MI, and ROSE. These ap-
proaches vary based on the context C, which we outline
in Table 3. Specifically, C is defined based on three com-
ponents:
 The methods for forming a context, especially the

one which includes viewed files or the other
 The number of viewed files v
 The number of edited files e.

We detail how we control the context C in Sections
4.1.4.2 through 4.1.4.5.

Our dependent variables are measurements of recom-
mendation effectiveness, e.g., accuracy of the recommen-
dations, speed at which recommendations are made, etc.
Specifically, we measure:
 Precision. Higher precision indicates more recom-

mendations are correct, i.e. should in fact be edited.
 Recall. Higher recall indicates that more files that

should be edited have been recommended.
 F-measure. F-measure combines precision and recall,

TABLE 2
INTERACTION TRACES OF 72 PROJECTS

Project Description Period
#Interaction

Traces

File Level

#Views/

#Traces

#Edits/

#Traces

View-

edit ratio

Mylyn A task management tool for programmers 2006-05-18~2011-07-07 2,726 14.4 2.8 5.1

Platform Eclipse core frameworks 2007-10-18~2011-05-25 582 24.2 2.7 9.0

PDE Plug-in development environment 2007-11-11~2011-02-25 536 6.4 1.1 5.8

ECF Eclipse communication frameworks 2007-04-06~2011-06-18 308 9.3 0.7 13.3

MDT Modeling development tools 2010-01-26~2011-05-20 245 54.5 0.7 77.9

Others (67) Other projects (i.e. Equinox, GEF) 2008-06-13~2011-06-21 1,367 22.8 1.4 16.3

Total All of the above projects (72) 2006-05-18~2011-07-07 5,764 18.1 2.1 8.6

These interaction traces are from the Eclipse Bugzilla system [9].

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 7

and is used to measure the general accuracy of the
recommendations.

 Feedback. Higher feedback indicates the recommender
system is more efficient with respect to the number of
queries taken.

 Receiver Operating Characteristic. Illustrates how well
the method finds true positives and true negative
recommendations.

 #of interactions before recommendation. To determine
how quickly the system produces recommendations,
we have computed the average number of interac-
tions before a recommendation is made.

 #of recommendations within the first 100 interactions. To
determine how frequently the system produces rec-
ommendations, we have computed the average num-
ber of recommendations within certain number of in-
teractions.

We detail how each measurement was made in Section
4.1.5.

4.1.3 Subjects

We used Mylyn data [17]. Mylyn records interaction trac-
es from the Eclipse IDE and archives them in the Eclipse
Bugzilla system [9]. We extracted 5,764 Mylyn interaction
traces from 72 Eclipse sub-projects. Table 2 presents those
projects including the five major projects: Mylyn, Plat-
form, PDE, ECF, and MDT. The 67 other projects have an
average of 20 interaction traces.

We identified viewed files and edited files from the
Mylyn interaction traces. Mylyn records interaction
events in XML format, each of which consists of several

fields (e.g., <InteractionEvent StartDate="2009-01-24 10:40:
28.321 MST" EndDate="2009-01-24 10:40:28.321 MST"
StructureHandle="…Property.java" Kind= "selection"…
/>). There are types of events, such as selection and edit
[17]. To identify viewed files, we used the records that
have the selection event type. The selection-type events
occur when programmers click on files in the Eclipse IDE.
To identify edited files, we used the records that have the
edit event type. The edit-type events, however, occur not
only when a programmer actually edits files but also
when double-clicking on a file to open it in a code editor.
Therefore, the edit type events do not necessarily indicate
actual edits [22]. Fortunately, when Mylyn records pro-
grammer's double clicking as an edit event, its starting
time and ending time are the same [22]. We thus identi-
fied the files that contain only a record of edit events
whose starting and ending times are the same as viewed
files, and the files that contain a record of edit events
whose starting and ending times are different as edited
files.

The MI recommendations exploit the fact that pro-
grammers usually view many files other than the files to
edit. To check this, we counted the numbers of viewed
files and edited files, as shown in the three rightmost col-
umns of Table 2. The average number of viewed files is
about 18, whereas the number of edited files is about 2.
The average ratio of viewed files to edited files is about
8.6. This ratio indicates that programmers view seven to
nine files while editing one file.

TABLE 3

FRAMEWORK TO COMPARE FORMING CONTEXTS WITH EDITED FILES AND VIEWED FILES

 ROSE (e-edits)
MI (v-views, e-edits)

RQ1: MI-VA RQ2: MI-EA RQ3: MI-VO RQ4: MI-VOA

Context C

C = (, Ec) where Ec

is the set of edited

files {e1, …, ee}

C = (Vc, Ec) where Vc is the set of viewed files {v1, …,vv} and Ec is the set of edited

files {e1, …, ee}

Context

Formation

Method

Conditional

Operation

Rule

NA AND (Vx, Ey) AND (Vx, Ey) OR (Vx, Ey)

if (Vx and Ey exist)

then MI-VA

else MI-VO

end if

Selection

Range Rule
RANGE() RANGE() RANGE(100) RANGE() RANGE()

Timepoint

Rule
POINT(E) POINT(V, E) POINT(E) POINT(V, E) POINT(V, E)

Rationale A baseline
A basic method

with view histories

Recommendations

at edit points

Recommendations

even only with

viewed events.

Better work than

ROSE across all

RQs.

Measures
Precision

Recall

Precision

Recall

ROC

Precision

Recall

F-Measure

#of interactions

before recommenda-

tion

#of recommenda-

tions within the

first 100 interac-

tions

Finding

This ROSE is

comparable to

the original ROSE

MI-VA yields

higher accuracy

than ROSE

MI-EA yields

 higher accuracy

than ROSE

MI-VO yields

earlier Rs

than ROSE

MI-VOA works

better than ROSE

across all RQs

The number of viewed files that C includes is identified as v and the number of edited files is denoted as e. NA is “not applicable”, R is “recommendation,”

and RQ is “Research Question.”

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

4.1.4 Evaluation Methodology

For our evaluation, we chose a simulation-based com-
parative controlled method [24]. This method allows us to
maintain the same conditions for a fair comparison of MI
and ROSE. Table 3 presents a comparison framework,
where MI includes viewed files but ROSE does not. We
simulated these approaches to recommend the files to
edit with the Mylyn data described in Section 4.1.3.

4.1.4.1 Set-up for Simulation

To simulate recommendations, we need a training set, a
test set and a simulator. A training set is the interaction
traces from which association rules are mined. A test set
is the interaction traces, each of which provides the an-
swer set of the programmer’s actual edited files. To iden-
tify a training set and a test set, we employed an online
machine-learning approach [20], in which every interac-
tion trace belonging to a subject is first used as a test set
and next used as a training set. The initial interaction
trace T1, which has no training set, does not need to be a
test set. Each interaction trace from T2 to Tn, where n is the
number of interaction traces belonging to a subject, is
used as a test set once before becoming a training set.
When an interaction trace Ti is used as a test set, the inter-
action traces which occurred prior to Ti, from T1 to Ti-1, are
used as the training set, as in earlier work [38].

The simulator creates multiple contexts from test set Ti.
To create a context C, the simulator moves a v-e-sized
sliding window from the first to the last record of Ti (Re-
fer to Section 3.2). By setting the numbers of v and e files,
the sliding window can hold v viewed files, e edited files,
or both. Once the context C is created from test set Ti, the
simulator mines association rules through a training set
from T1 to Ti-1 (Refer to Section 3.1.3). Based upon mined
rules, the simulator recommends files to edit. To select
and rank mined rules, we used the same options used in
Zimmermann et al. [38]: the minimum support is 1 and
the minimum confidence is 0.1. If a recommendation in-
cludes more than 10 files to edit, the simulator only rec-
ommends the 10 top-ranked files.

We now outline the processes used to evaluate each re-
search question. Note that when evaluating research
questions 2 through 4, we set the number of viewed files
to three (v = 3) and the number of edited files to one (e =
1). Considering that programmers view an average of 7~9
files to every one file edited, as Table 2 shows, using more
viewed files than edited files is reasonable.

4.1.4.2 Experiment for RQ1

To investigate the effect of viewed files on recommenda-
tion accuracy in general, we explored the impact of the
context C:
 C = (, Ec) for control group: this forms a context using

only edited files. This is ROSE (e-edits), and used as
the baseline.

 C = (Vc,) for comparison group: this forms a context
consisting of only viewed files. This (v-views) is used
to identify the characteristics of using viewed files as
a context.

 C = (Vc, Ec) for treatment group: This forms a hybrid
context consisting of viewed and edited files. This is
used to show the effect of viewed files as additional

information for a context. This is MI (v-views and e-
edits), combining v-views and e-edits with the AND
operation (i.e. MI-VA).

With these alternative methods, we observed the per-
formance changes, as measured by precision and recall,
when varying v and e values. We set v = e = n, increasing
n from 1 to 10, i.e. increasing v from 1 to 10 for “v-views”,
e from 1 to 10 for “e-edits,” and both v and e from 1 to 10
for “v-views and e-edits.” For each value of n, our simula-
tion ran over all of the 5,674 interaction traces repeatedly.
Furthermore, we also examined Receiver Operator Char-
acteristic to visualize the impact of varying v and e.

4.1.4.3 Experiment for RQ2
To investigate the impact of viewed files on the accuracy
of recommended files, we again compared ROSE (context
C = (, Ec)) against MI-EA-RANGE(100) . Recall from Section
3.1.3 that MI-EA, like ROSE, makes recommendations
only at edit points [38]. This allows for a fair comparison
of accuracy, as we compare only simultaneously made
recommendations.

As noted previously, we set the window for the num-
ber of viewed files (v) to three in our studies. However, if
MI-EA used only the three viewed files prior to an edit
file as a context, few recommendations would occur. For
example, when the current programmer views {c, d, e}
and edits {e}, a recommendation will occur only in the
case previous programmers viewed views {c, d, e} and
edits {e}. This restricts the occurrences of recommenda-
tions too much at each edit point. To increase the chance
to create a recommendation at each edit point, we used
the selection range rule. We used MI-EA-RANGE (100), which
MI-EA tracks up to one hundred records of viewed files
prior to an edit point, and forms a context of three viewed
files from the tracked records with an edited file.

We evaluate the accuracy of recommended files using
precision, recall and F-measure.

4.1.4.4 Experiment for RQ3
To investigate the impact of viewed files on the timing of
recommendations, we compared ROSE with MI-VO,
which can make recommendations on views or edits. This
allows the possibility of earlier recommendations than
MI-EA (used in RQ2) and potentially ROSE.

In evaluating this research question, we used the
transactions that include both viewed and edited files as a
test set. We then examined the first recommendation oc-
curring in each transaction. We counted the number of
interaction events occurring to the first recommendation.
We averaged the counts for all of the recommendations.

The resulting averages were then compared for ROSE
and MI-VO to determine which approach produces earli-
er recommendations.

4.1.4.5 Experiment for RQ4

To investigate the impact of viewed files on the flexibility
of the recommendations, we compared ROSE with MI-
VOA. MI-VOA makes recommendations using both OR
and AND-based recommendation rules, and thus is in-
tended to combine the benefits of both approaches.

To measure the flexibility of recommendations, we re-
quired a metric that blended the timing of the recom-
mendations with the precision and recall of said recom-

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 9

mendations. For this, we checked m-th recommendations
and averaged their recommendation points and their F-
measure values. We then examined the averaged m-th
recommendations occurring at the recommendation
points prior to 100th interaction event.

4.1.5 Measurement

To measure the recommendation accuracy, we used sev-
eral commonly used metrics. First, precision and recall are
widely used to evaluate the effectiveness of information
retrieval approaches [12]. To compute them, we used the
recommended files (A) and the files actually edited (E).
 A: Set of the files recommended to edit which are

driven by context C in interaction trace Ti. Because
we only recommend up to the 10 top-ranked files,
|A| is always less than 10.

 E: Set of the files that are actually edited in interac-
tion trace Ti except the edited and viewed files of
context C. |E| varies with Ti, because a different Ti
will have a different number of edited files.

The metrics precision P and recall R are calculated for
a recommendation by using the formulas as below. If
there is more than one recommendation, the precision
and recall values for a recommendation are calculated
first and then averaged across all recommendations,
which is called the macro evaluation technique [38]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃 =
|𝐴 ∩ 𝐸 |

|𝐴|
 𝑅𝑒𝑐𝑎𝑙𝑙 𝑅 =

|𝐴 ∩ 𝐸 |

|𝐸|

As there are trade-offs between precision and recall, it
is difficult to compare the accuracy using just precision
and recall values. F-measure is the harmonic mean of pre-
cision and recall, and allows us to measure recommenda-
tion accuracy while capturing this tradeoff. F-measure is
computed from the averaged values of precision and re-
call as follows:

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅

To visualize the how the accuracy is impacted by vary-
ing v and e, we used the Receiver Operating Characteris-
tic (ROC), and calculated the Area Under Curve (AUC)
[10]. To compute them, we used the sensitivity and speci-
ficity changes by varying v and e values.
 Sensitivity: This shows how well a method finds the

true positives. It is calculated by dividing the num-
ber of true recommendations yielded over each v
and e setting by the total number of true recommen-
dations for all settings.

 Specificity: This shows how well a method finds the
true negatives. It is calculated by dividing the num-
ber of false recommendations yielded under each v
and e setting by the total number of false recommen-
dations for all settings.

ROC is a curve plotting 1-Specitivity on x-axis and
Sensitivity on y-axis. AUC3 is calculated by summing up
the sensitivity values when specificity values change in

3 As ROC and AUC measures the accuracy of classification models,
these do not perfectly fit to our recommendation models. However, as
AUC shows a simple value for representing its accuracy, we tried to
adjust ROC and AUC in order to measure recommendation accuracy.

the ROC curve, and by dividing the sum by the number
of the specificity values changing in the curve [10].

𝐴𝑈𝐶 =
∑ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦_𝑤ℎ𝑒𝑛_𝐶ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

#𝑃𝑜𝑖𝑛𝑡𝑠_𝑜𝑓_𝐶ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

To measure the general efficiency of the recommenda-
tion systems, we used feedback, as used by in Zimmer-
mann et al. [38]. Feedback measures the percentage of
queries which yield recommendations. Feedback Fb is the
number of overall recommendations divided by the
number of queries:

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝐹𝑏 =
#𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

#𝑄𝑢𝑒𝑟𝑖𝑒𝑠

To determine if MI creates earlier recommendations
than ROSE, we check the timepoints of creating the first
recommendations of MI and ROSE. We counted how
many interaction events occurring to the first recommen-
dation, and averaged the counts.

𝑁𝑡ℎ =
∑ #𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 _𝐸𝑣𝑒𝑛𝑡𝑠_𝑡𝑜_𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

#𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

To determine if MI creates more frequent recommen-
dations than ROSE, we first compare the number of rec-
ommendations of MI and ROSE, and then investigate the
recommendations occurring in early interaction steps up
to 100 interactions.

4.2 Results

This section presents the results of our evaluation. We
reserve a larger discussion of the implications of our re-
sults for Section 5.

4.2.1 RQ1: Can using viewed files improve the
recommendation accuracy?

To investigate the recommendation performance of min-
ing viewed and edit histories, we observed the perfor-
mance changes using various v and e values by setting v =
e = n and increasing n from 1 to 10.

4.2.1.1 Precision and Recall Graph

Fig. 4 presents the resulting precision and recall graph.
Curves “n-views,” “n-edits,” and “n-views and n-edits”
represent the recommendation results of using viewed
files (v = n), edited files (e = n) and both files (v = n and e =
n) as a context. The first point of each curve closest to the
bottom represents the result when n is 1. For example, the
first point of the “n-views” represents the results of using
1 viewed files as a context (v = 1), whose averaged preci-
sion is 0.2 and recall is 0.3. The first point of the “n-edits”
represents the results of (e = 1), the precision is 0.4 and
recall is 0.3. The first point of the represents the results of
(v = 1 and e = 1), the precision is 0.5 and recall is 0.4. The
points of each curve go up as n increases.

Fig. 4 shows that “n-views and n-edits” achieves con-
sistently higher precision than “n-views” or “n-edits” in
the y-axis, while “n-views” shows consistently lower pre-
cision than “n-edits.” For example, “1-view and 1-edit”
yields higher precision than “1-edit” (0.5 vs. 0.4), and “1-
edit” yields higher precision than “1-view” (0.4 vs. 0.2).
“2-views and 2-edits” yields higher precision than “2-
edits” (0.8 vs. 0.7), and “2-edits” yields higher precision
than “2-views” (0.7 vs. 0.3).

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Fig. 4 also shows that “n-views and n-edits” yields
consistently higher recall than “n-edits,” whereas, when n
is larger than 5, “n-views” yields higher recall than the
others. For example, “1-view and 1-edit” yields higher
recall than “1-edit” (0.4 vs. 0.3) and “1-view” (0.4 vs. 0.3).
“2-views and 2-edits” yields higher recall than “2-edit”
(0.6 vs. 0.4) and “2-view” (0.6 vs. 0.4). “3-views and 3-
edits” reaches the peak in the curve (0.6). However, while
the recall of “n-views” continues to increase as n increases,
the recall of “n-views and n-edits” and “n-views” is typi-
cally comparable, within 0.1.

As “n-views and n-edits” yields consistently higher
precision and recall than “n-edits,” we conclude:

Using viewed and edited files (“n-views and n-edits”) yields
consistently higher file-level recommendation accuracy than
using only edited files (“n-edits”).

4.2.1.2 Receiver Operating Characteristic Curve & AUC

Fig. 5 presents the results for RQ1 in ROC. In Fig. 5, the
three curves are very similar to each other. Thus we can
see that whenever the number of views, edits, or both is
increased, the resulting improvement in recommendation
accuracy is about the same.

This may seem to contradict Fig. 4, because Fig. 4
shows a rapid increase for “n-view” in precision. Howev-
er, these results occur only because the ROC results re-
flect largely the increment rate of the effect corresponding
to a particular change. Fig. 4 shows that the improvement
of recommendation accuracy becomes lower whenever
the number of views, edits, or both is increased. We note
that all of the three ROC curves show this trend. We also
note that each ROC curve has a different baseline for rec-
ommendation accuracy (0.2 precision for “n-views,” 0.4
for “n-edits,” and 0.5 for “n-views and n-edits”), which
might be related to that the curve of “n-views and n-edits”
is similar to those of “n-views” and “n-edits.”

The AUC4 value of “n-views” is 0.58, that of “n-edits”
is 0.58, and that of “n-views and n-edits” is 0.52. Given

4 In a classification model, if the AUC value is less than 0.7, the model
does not provide adequate discrimination. However, as our AUC metric
was adjusted to calculate recommendation accuracy, it is not clear that
the AUC value here has the same interpretation.

these comparable values, we conclude:

Using additional viewed files (“n-views”) achieves the same
improvement of recommendation accuracy as using addition-
al edited files (“n-edits”).

4.2.2 ROSE Recommendation Results

In our experiment, ROSE yields 24,768 queries and 14,924
recommendations. Table 4 shows the results based on
precision, recall and F-measure. For example, in the Plat-
form project, ROSE recommended files to edit with 0.58
precision (P), 0.25 recall (R), and 0.35 F-measure (F). On
average, ROSE yielded 0.41 precision (P), 0.28 recall (R),

Fig. 4. Precision and recall graph Fig. 5. Receiver Operating Characteristic Curve

TABLE 4
ROSE RESULTS OF MINING INTERACTION HISTORIES

 ROSE (e = 1)

Project P R F Fb #Rs #Qs

Mylyn 0.34 0.27 0.30 0.70 10,753 15,248

Platform 0.58 0.25 0.35 0.56 1,974 3,543

PDE 0.36 0.32 0.34 0.32 321 988

ECF 0.25 0.25 0.30 0.34 119 352

MDT 0.90 0.37 0.52 0.35 116 336

Others 0.60 0.30 0.42 0.38 1,641 4,319

Average 0.41 0.28 0.33 0.60 14,924 24,786

Precision, Recall, F-measure and Feedback are denoted respectively by P,

R, F and Fb. The numbers of recommendations and queries are denoted

respectively by #Rs and #Qs.

TABLE 5
ROSE RESULTS OF MINING REVISION HISTORIES IN [38]

 ROSE (e = 1)

Project P R F Fb

Eclipse 0.29 0.36 0.32 0.80

GCC 0.35 0.59 0.44 0.76

GIMP 0.28 0.48 0.35 0.77

JBOSS 0.19 0.36 0.25 0.74

JEDIT 0.31 0.41 0.35 0.95

KOFFICE 0.30 0.45 0.36 0.87

POSTGRES 0.29 0.37 0.33 0.95

PYTHON 0.34 0.46 0.39 0.73

Average 0.29 0.44 0.35 0.82

1

2

3

4

5

1

2

3

4
5

1

2

3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

n-views

n-edits

n-edits &
n-views

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
n

si
ti

vi
ty

1- Specitivity

n-views

n-edits

n-edits &
n-views

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 11

and 0.33 F-measure (F).
Our version of ROSE uses edited files in programmer

interaction histories, while the original ROSE uses edited
files in software revision histories. Our version of ROSE is
used as a baseline for a fair comparison of techniques in
our research questions. We then should know how these
two approaches to implementing ROSE differ. Towards
this, we extracted the original results of ROSE for coarse
granularity from the paper [38] and calculated the F-
measure from the original results.

Table 5 shows the original results. The average F-
measure of ROSE in our experiment (Table 4) is 0.33,
whereas the average F-measure of ROSE in the original
experiment (Table 5) is also 0.35. As shown, the results for
both versions of ROSE yield comparable results. The key
differences are precision and recall. The precision average
in Table 4 (0.43) is higher than that in Table 5 (0.29). The
recall average in Table 4 (0.29) is lower than that in Table
5 (0.44). As noted in Section 4.3, there is a trade-off be-
tween precision and recall because the average size of the
interaction traces used in our experiment is much larger
than that of the change sets in the original experiment [38].

We use the ROSE recommendation results in Table 4 as
baseline to evaluate the MI recommendation results
(RQ2-4) in the following sections. Recall from Section 4.1
that for RQ2-4, we ran simulations by using three viewed
files and one edited files (v = 3 and e = 1) as the context
for MI.

4.2.3 RQ2: Can using viewed files create more
accurate recommendations than using only

edited files?

In Table 6 we show the results for MI-EA for each set of
traces, as well as the average across each set. For example,
in the Platform project, MI-EA recommended files to edit
with 0.87 precision (P), 0.40 recall (R), and 0.55 F-measure
(F). Consulting Table 4, we see the precision average val-
ue for MI-EA and ROSE are 0.71 and 0.41, respectively.
The recall averages for MI-EA and ROSE are 0.49 and 0.28,
respectively. The F-measure averages for MI-EA and
ROSE are 0.58 and 0.33, respectively. We thus see that on
average---both per set of traces and across all traces---MI-
EA nearly always yields higher recommendation accura-
cy than ROSE.

We illustrate this in Fig. 6. The recommendation accu-
racy of MI-EA is consistently higher than that of ROSE
across all of the projects except MDT. While the precision
of MI-EA for MDT is still higher than that of ROSE (1.0 vs.
0.9), the recall of MI-EA for MDT is lower than that of
ROSE (0.30 vs. 0.52). This may be related to the view-edit-
ratio of a project. While other projects have view-edit-
ratios ranging from 5.1 to 16.3 (Table 2), MDT exhibits a
77.9 view-edit-ratio, indicating that programmers viewed
seventy eight files for each file edited. To better under-
stand why MDT has such a high view-edit-ratio, we in-
vestigated the MDT traces and found that edit events
which have different starting and ending times occurred
in only 6 out of the 245 traces of the MDT project. In this
case, three viewed files, as context information to recom-
mend files to edit, are not very informative, thus reducing
the likelihood of an effective recommendation.

Fig. 6. Comparison of Recommendation Accuracy of MI and ROSE

Fig. 7. Comparison of the First Recommendations of MI and ROSE

TABLE 6
MI-EA RESULTS FOR ACCURATE RECOMMENDATIONS

 MI-EA (v = 3, e = 1)

Project P R F Fb #Rs #Qs

Mylyn 0.67 0.54 0.59 0.25 3,871 15,248

Platform 0.87 0.40 0.55 0.25 890 3,543

PDE 0.40 0.66 0.50 0.08 83 988

ECF 0.27 0.67 0.38 0.05 18 352

MDT 1.00 0.30 0.46 0.22 75 336

Others 0.78 0.37 0.50 0.16 696 4,319

Average 0.71 0.49 0.58 0.23 5,633 24,786

Precision, Recall, F-measure and Feedback are denoted respectively by P,

R, F and Fb. The numbers of recommendations and queries are denoted

respectively by #Rs and #Qs.

TABLE 7
 MI-VO AND ROSE RESULTS FOR EARLY RECOMMENDATIONS

 MI-VO (v = 3, e = 1) ROSE (e = 1)

Project F N-th #FRs F N-th #FRs

Mylyn 0.18 13th 1,300 0.17 24th 1,300

Platform 0.23 37th 158 0.19 56th 158

PDE 0.18 12th 94 0.15 20th 94

ECF 0.09 52nd 43 0.10 58th 43

MDT 0.19 25th 6 0.23 60th 6

Others 0.24 25th 143 0.22 57th 143

Average 0.19 17th 1,744 0.18 30th 1,744

F-measure, the average of the first recommendation points, and the number

of first recommendations are denoted by F, N-th, #FRs, respectively.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Mylyn Platform PDE ECF MDT Others

F-
m

ea
su

re

Projects

ROSE

MI-EA

PDE

Platform

Mylyn

ECF

MDT

Others

Mylyn

Platform

PDE

ECF

MDT
Others

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70

F-
m

e
as

u
re

Nth interaction event

MI-VO

ROSE

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

To check the statistical significance of the results, we
ran the Mann-Whitney U-test [2] with the 5,633 recom-
mendation results of MI-EA and the 14,924 results of
ROSE and compared the recommendation accuracy (F-
measure) levels. Mann-Whitney U-test was selected as the
data may not follow a normal distribution and thus a
non-parametric statistical method is preferable. The re-
sulting p-value was very close to 0.00, well below the tra-
ditional 0.05 level significance check. Considering the
assumption of independence of the test, we reran the test
with 6 F-measure values of MI in Table 6 and ROSE in
Table 4, and found that the resulting p-value was again <
0.05. We also checked the practical significance by calcu-
lating the effect size [2] from the test. The effect size is
0.39, which is generally considered moderately strong.
This indicates that the difference is not only statistically
significant, but also practically significant.

In addition, Table 4 and 6 also present the feedback.
The feedback average of MI-EA is 0.23, while that of
ROSE is 0.60. The 0.23 feedback of MI-EA implies that
about 2 out of 10 queries will create recommendations.
The feedback of MI-EA is lower than that of ROSE. How-
ever, it was noted that MI can produce more recommen-
dations than ROSE by creating recommendations at
viewpoints. The low feedback is thus overcome by the
more frequent queries of MI.

Given these results, we conclude:

Using viewed files (MI-EA) along with edited files yields
significantly higher file-level recommendation accuracy than
using only edited files (ROSE) for files to edit.

4.2.4 RQ3: Can using viewed files create earlier
recommendations than using only edited files?

In Table 7, we show the time at which the first recom-
mendations for MI-VO and ROSE are made, and the rec-
ommendation accuracies using F-measure. Table 7 pre-
sents the first recommendation point for both tools. For
example, in the Platform project, MP-VO makes the first
recommendation at the 37th timepoint on average,
whereas ROSE makes the same at the 56th timepoint on
average. Table 7 also presents the averages of all of the
recommendation points. The average value for MI-VO is
17th and ROSE is 30th.

Fig. 7 compares the first recommendation points of MI
and ROSE as well as their F-measure values shown in
Table 7. Fig. 7 shows that MI-VO creates the first recom-
mendation earlier than ROSE in all cases. With respect to
recommendation accuracy, MI-VO shows higher F-
measure values than ROSE for Mylyn, Platform, PDE and
others, while showing lower F-measure values than ROSE
for ECF and MDT. Finally, Table 7 presents the averaged
recommendation performance. The F-measure value of
MI-VO is slightly higher than that of ROSE (0.19 vs. 0.18).

MI-VO allows us to provide faster feedback to the user
while still making recommendations that are as accurate
as the first recommendations provided by ROSE.

Given these results, we conclude as follows:

Using viewed files (MI-VO) along with edited files produces
earlier recommendations than using only edited files (ROSE)
for files to edit while still maintaining recommendation accu-
racy.

4.2.5 RQ4: Can using viewed files create more flexible
than using only edited files?

We counted the numbers of recommendations of MI-
VOA, and measured its recommendation accuracy,
shown as Table 8. We compare the recommendation re-
sults of MI-VOA in Table 8 with those of ROSE in Table 4.

For example, in the Platform project, MI-VOA creates
7,853 recommendations, while ROSE creates 1,974 rec-
ommendations. Table 8 also presents the total number of
recommendations. MI-VOA makes 46,380 recommenda-
tions, compared to ROSE’s 14,924 recommendations. MI-
VOA produces more recommendations than ROSE.

In addition, Table 8 presents the recommendation per-
formance. MI-VOA shows the highest F-measure (0.63),
precision (0.77) and recall (0.53), significantly outperform-
ing ROSE (0.33, 0.41, and 0.28).

Fig. 8 compares the averaged m-th recommendations
of MI and ROSE. In Fig. 8, each point represents the aver-
age value of F-measure and the average number of the
interaction events of all of the m-th recommendations.

Figs. 8 (a) to (d) show the recommendation results of
project Mylyn, Platform, PDE and ECF, respectively. For
example, in the Platform project, MI-VOA makes the first
recommendation at the 24th timepoint with 0.35 F-
measure, and the second recommendation at the 36th
timepoint with 0.37 F-measure on average. On the contra-
ry, ROSE makes the first recommendation at the 56th
timepoint with 0.20 F-measure on average. The F-measure
average of MI-VOA starts from 0.35, whereas that of
ROSE starts from 0.2.

In overall, Fig. 8 shows that MI-VOA creates the m-th
recommendation earlier than ROSE, with a higher overall
recommendation accuracy. Furthermore, the gap between
the m-th recommendation accuracies becomes larger as n
increases across projects.

Fig. 8 also shows that MI-VOA creates more m-th rec-
ommendations than ROSE within the first 100 interaction
events. MI-VOA produced 15 recommendations for the
Mylyn projects, 10 for Platform, 8 for PDE, and 3 for ECF.
ROSE produced 5 for Mylyn, 1 for Platform, 3 for PDE,

TABLE 8
THE RESULTS FOR FLEXIBLE RECOMMENDATIONS

 MI-VOA (v = 3, e = 1)

Project P R F Fb #Rs #Qs

Mylyn 0.70 0.58 0.63 0.21 24630 117212

Platform 0.85 0.48 0.61 0.24 7853 32225

PDE 0.88 0.94 0.91 0.21 1489 6930

ECF 0.56 0.79 0.66 0.06 199 3305

MDT 1.00 0.37 0.54 0.29 651 2218

Others 0.85 0.43 0.57 0.36 11558 32211

Average 0.77 0.53 0.63 0.24 46380 280975

Precision, Recall, F-measure and Feedback are denoted respectively by P,

R, F and Fb; The number of recommendations and the number of queries

are denoted respectively by #Rs and #Qs.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 13

and 1 for ECF (3~15 vs. 1~3 recommendations).
Given these results, we conclude:

Using viewed files (MI-VOA) along with edited files produc-
es more recommendations with higher accuracy than using
only edited files (ROSE) for files to edit.

5 DISCUSSION

Our experimental results demonstrated that MI yields
higher recommendation accuracy than ROSE (0.63 vs. 0.35
F-measure). Our results also demonstrate that MI creates
recommendations much earlier than ROSE, and also more
frequently than ROSE. In this section, we explore issues
raised by our study and issues for consideration in later
work.

5.1 Reducing Recommendation Noise

To better understand how MI (v = 3, e = 1) yields sig-
nificantly higher recommendation accuracy than ROSE (e
= 1), we analyzed the recommendation results from the
early recommendations produced in Section 4.2.4, as
these are important in guiding programmer navigation.
Furthermore, these early recommendations are one of the
chief distinctions between MI and ROSE. We next select-
ed examples that present a good contrast of the types of
recommendations produced by MI and ROSE.

In the end, we selected seven recommendation results
of MI and ROSE. Table 9 shows the selected recommen-
dations. For example, for the bug report #256543 in the
first row, MI created recommendations at the 3rd interac-
tion with 1.0 precision and 1.0 recall, while ROSE at the
117th interaction with 0.4 precision and 1.0 recall. We
examined the first recommendation result in interaction
trace #123638 of bug report #256543 in Table 9.

For our selection, MI does not recommend unneces-
sary files to edit, while ROSE does. In interaction trace
#123638, MI recommended the four files that are actually
edited in the interaction trace {ISimplePropertyListen-
er.java, StyledTextObservableValueDefaultSelection-
Test.java, BindingTestSuite.java, TextObservableVal-
ueDefaultSelec-tionTest.java}. ROSE recommended these
four files, as well as six other files that were unrelated to
the interaction trace, yielding ten files in total and 0.4 pre-
cision.

To understand why, we then examined the contexts
that MI and ROSE used. To generate the recommendation
above, MI used a context that consists of three viewed
files {Snipet008ComputedValue.java, WidgetValueProp-
erty.java, SWTVetoableValueDecorator.java} and one ed-
ited file {SWTObservables.java}, while ROSE used a con-
text that included only one edited file {SWTObserva-
bles.java}. This is considerable increase in the information
available, resulting in more precise association rules.

This pattern---where MI has access to additional in-
formation over ROSE---is consistent throughout, and is
what results in the consistent improvements in accuracy.
This matches the initial intuition underlying this work,
and demonstrates that the observed improvements are
not simply due to another overlooked factor.

(a) Recommendations of the Mylyn Project

(b) Recommendations of the Platform Project

(c) Recommendations of the PDE Project

(d) Recommendations of the ECF Project

Fig. 8. Comparison of the Nth Recommendations of MI and ROSE

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

F-
m

e
as

u
re

Nth Interaction Event

MI-VOA

ROSE

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

F-
m

e
as

u
re

Nth Interaction Event

MI-VOA

ROSE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

F-
m

e
as

u
re

Nth Interaction Event

MI-VOA

ROSE

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

F-
m

e
as

u
re

Nth Interaction Event

MI-VOA

ROSE

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

5.2 Users’ Qualitative Evaluation

In Section 4.2, we demonstrated that MI produces rec-
ommendations more quickly and with higher recommen-
dation accuracy than ROSE in most cases, and in Section
5.1, we found that MI produces less noisy recommenda-
tions than ROSE. While these results are encouraging and
our evaluation has been conducted as typical for recom-
mendation systems, the best approach for recommending
files to edit is that best appeals to actual people in the end.
To understand people’s choices, we constructed a ques-
tionnaire survey comparing recommendations produced
by MI and ROSE.

Using the seven recommendation results in Table 9, we
created seven comparison questions. The questions ask
the subject to choose between two recommendation re-
sults of ROSE and MI. To understand why the partici-
pants made their choices, our survey investigated their
rationales with an essay question, “Would you give your
reasons why you selected recommendation A or B?”

For this evaluation, we recruited fifteen participants,
seven graduate students and eight industry developers.
The graduate students are identified with the initial ‘P0’
followed by a number (i.e. P01~P07), and the industry
developers are identified with the initial ‘P1’ followed by
a number (i.e. P11~P18).

As we anticipated, the participants chose MI 86 times
and ROSE 19 times. To understand why they made their
choices, we examined the participants’ rationales. Four
participants indicated they preferred recommendations
for files actually edited in practice (P1, P02, P06, and P14),
while two stated recommending edited files is crucial to
recommendation effectiveness (P03 and P12). Participant
P12 stated, “This recommendation system should give
programmers a hint. More important than giving accurate
hints is to limit the points to focus on. Thus, fewer sug-
gestions with a high hit rate are important.” Similarly,
five participants stated they favored recommendations
including the files edited in practice, assuming that when
working on an unsolved bug report, that they must visit
files recently edited (P04, P05, P07, P15 and P16). For ex-
ample, participant P16 stated, “I just want to start at some
point which seems directly related to the issue.” From
these participants’ answers, we infer that recommending
small sets of files which include files that should actually

be edited is strongly preferred by users.
In contrast, some participants wanted to see more rec-

ommendation items (P13 and P17). Participant P13 stated,
“When the software system is tested well, it seems good
that the tool makes a decision what to show. However,
regarding unknown bugs, it is good to show as much in-
formation as possible and let programmers to make a de-
cision.” P17 stated, “It is better to consider all source
codes that can have an impact.” It is noted that P17 chose
the ROSE recommendations three times, more than all but
one other participant (P11). This may be because ROSE
typically recommended more files than MI; the fact that
the recommendations do not include the files edited in
practice was viewed as a non-issue by P17. The partici-
pant, who chose the ROSE recommendations four times
(P11) stated (somewhat enigmatically), “A software de-
veloper's decision differs from a tool's decision due to
personal preference. My decision depended on the situa-
tion.”

In general, however, we conclude that the aspects most
valued by users are recommendations which include di-
rectly the files that need to be edited, and which limit the
number of files recommended. We noted that several par-
ticipants stated that reducing the number of irrelevant
files recommended is a key consideration for them in us-
ing a recommendation system.

5.3 File-level Recommendation versus Method-
level Recommendation

In this paper, we presented the recommendation results
at the file level, not the method level. However, we have
conducted the simulation in Section 4 at the method level,
and found that recommendations at both levels produce
nearly the same results.

Fig. 9 shows the recommendation results at the meth-
od level. Curves “n-views,” “n-edits,” and “n-views and
n-edits” represent the recommendation results of using
viewed methods (v = n), edited methods (e = n) and both
methods (v = n and e = n) as a context. When n is 1, the “1-
view” yields 0.2 precision and 0.2 recall, the “1-edit”
yields 0.6 precision and 0.2 recall, and “1-view and 1-edit”
yields 0.8 precision and 0.3 recall. The points of each
curve go up as n increases. Fig. 9 shows that “n-views and
n-edits” achieves consistently higher precision and recall
than “n-edits.”

TABLE 9
THE RECOMMENDATION RESULTS OF MPI AND ROSE TO BE USED FOR THE QUESTIONNAIRE SURVEY

Project #Bug Report #Interaction Trace
MI ROSE

P R N-th P R N-th

Platform

256543 123638 1.0 1.0 3 0.4 1.0 117

259411 132096 1.0 1.0 4 0.5 0.71 156

291215 149633 1.0 0.42 4 0.1 0.04 23

PDE 239494 121439 1.0 0.91 5 0.2 0.2 95

Mylyn

280973 139683 1.0 1.0 3 0 0 59

283093 148595 1.0 1.0 9 0.1 0.17 49

258717 122750 0.4 0.8 4 0.2 0.29 228

The bug report number and the interaction trace number are identified by the Eclipse Bugzilla system [9]. Precision, Recall and the average of the first recom-

mendation points are denoted by P, R, and N-th, respectively.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 15

The method-level recommendation results were con-
sistent with the file-level results: using additional viewed
methods (MI) yields consistently higher recommendation
accuracy compared to the use of only edited methods
(ROSE). However, there was a slight difference between
method-level recommendations and file-level recommen-
dations. The precision at the method level is higher than
the precision at the file level, while the recall at the meth-
od level is lower than the recall at the file level. This is
because of the trade-off mentioned in Section 4.1.5 that
arises when the number of viewed and edited methods is
larger than the number of viewed and edited files.

For the purpose of the presentation, we felt file-level
recommendations were considerably more simple and
easier. Given the similarity of the simulation results, we
therefore chose to show only the recommendation results
at the file level.

5.4 View Contexts versus Edit Contexts

When we investigated the file-level recommendations for
the Platform project, we found that edit contexts occa-
sionally produce earlier recommendations than view con-
texts. For example, in the interaction trace #94360 of bug
report #224588, the edit context (e = 1) made the first rec-
ommendation at the first edit event after one view event.
The edit context (e = 1) yielded 0.6 precision by recom-
mending two correct files {PatchMessages.java, Preview-
PatchPage2.java} with three incorrect files. The view con-
text (v = 3) made this recommendation at the 24th view
event, after 8 edit events and yielded only 0.33 precision
(one correct file {PatchMessages.java} and two incorrect
files).

We found this result surprising—the intent of MI is to
produce, at a minimum, earlier recommendations (along
with more accurate recommendations). Upon examina-
tion, we found that the view context works better when
programmers view first, while an edit context works bet-
ter when programmers edit first. Typically speaking, pro-
grammers look, then edit. However for some tasks—
simple bug fixing tasks, for example—programmers can
often begin editing immediately, while for enhancements

programmers must first understand code by viewing it
[36].

Thus we see view context and edit context are com-
plementary. Our proposed method leverages this by flex-
ibly forming a context that reflects the complementary
nature of view context and edit context, as with MI-VOA.

5.5 Feedback and Recommendation Accuracy

In Section 4.2.2, we noted the feedback of MI is lower
than that of ROSE (0.23 vs. 0.60). As a lower feedback can
in some cases result in a higher accuracy, we wished to
determine if this was the case here. Towards this, we re-
ran the simulation using a higher minimum support (the
minimum number of co-occurrences of the antecedent
and the consequent of an association rule) for ROSE
(moving from one to three).

In doing so, we lowered the feedback of ROSE, allow-
ing for a comparison against MI in which the feedback
was comparable. This is shown in Table 10: by moving to
a minimum support of 3, rather than 1, the feedback for
ROSE is lowered from 0.56 to 0.24, mirroring the 0.24
achieved by MI-VOA. As expected, this positively im-
pacts the precision for ROSE, moving from 0.60 to 0.64,
but the precision is still considerably less than the 0.85
precision achieved by MI-VOA. (Recall is also reduced for
ROSE, dropping from 0.26 to 0.22. This is also substantial-
ly less than the 0.48 achieved by MI-VOA.)

We interpret this as showing that MI yields higher rec-
ommendation accuracy than ROSE even when feedback
values are similar, and that the positive results relative to
ROSE seen in Section 4.2 are not due to lower feedback.

5.6 Acceptable level of Recommendation Accuracy

By referring to Fig. 4, we can suggest how many viewed
and edited files are necessary to achieve an acceptable (or
even higher) level of recommendation accuracy. For this
discussion, we assume that a level of recommendation
accuracy is acceptable when more than half of recom-
mendations are correct. In other words, the precision is
higher than 0.5. Fig. 4 shows that when n is smaller than 5,
a view and edit combined context (v = n and e = n) pro-
duce higher precision and recall than a view only context
(v = n) or an edit only context (e = n), with the peak recall
occurring at view and edit contexts of (v = 3 and e = 3).
When n is larger than 5, the view context (v = 5) produces
higher precision and recall than the edit context (e = 1)

Fig. 9. Precision and recall graph at the method level

TABLE 10
THE RECOMMENDATION RESULTS OF THE PLATFORM PROJECT

OBTAINED BY CHANGING THE MINIMUM SUPPORT

ROSE (e = 1)
MI-VOA

(v=3, e=1) mSup

= 1

mSup

= 3

P 0.60 0.64 0.85

R 0.26 0.22 0.48

F 0.36 0.33 0.61

Fb 0.56 0.24 0.24

#Recommendations 1,974 843 7853

#Queries 3,543 3,543 32,225

1

2

3

4

5

1

2

3

1

2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

n-views

n-edits

n-edits &
n-views

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and the view and edit context (v = 1 and e = 1). Therefore
we suggest using a context that includes less than or
equal to 3 edited files with more than 5 viewed files as
acceptable levels of file-level recommendation accuracy.
However, this is a rough conclusion based on the results
of the cases where the numbers of viewed files and edited
files are equal (v = e = n). To give conclusive numbers,
more thorough investigations are needed.

Throughout this paper, we showed that our approach
MI better predicts where a developer will edit than ROSE,
yet did not evaluate if it predicts where the developer will
need to edit. We leave this as future work, expecting that
new approaches and evaluations will focus on the loca-
tions that ought to be edited.

6 THREATS TO VALIDITY

Internal validity. We conducted a simulated compara-
tive controlled experiment, where the only change was
the inclusion of viewed files, with other conditions identi-
cal. As MI was an extension of ROSE, the difference in
techniques was managed by using a software flag, with
most of the implementation between the techniques iden-
tical. We thus believe the results of Section 4.2 are indeed
due to the inclusion of viewed files. For the human study,
each subject was given the same choices, and the order of
recommendation (ROSE vs. MI) was random and anony-
mized to prevent this from biasing the results.

Construct validity. We used precision, recall, F-
measure, ROC and AUC to measure the recommendation
accuracy, and used a questionnaire survey to evaluate by
humans. The measurements used are typical measure-
ments used in recommendation system research, and the
use of several measurements and evaluations—all indi-
cating the same conclusion—mitigate construct validity
threats.

Conclusion validity. We used the Mann-Whitney U-
test to determine the statistical significance of the differ-
ence between the recommendation results of MI and
those of ROSE. When the number of observations is very
high (as was the case here), the Mann-Whitney U-test
may conclude that the two results are significantly differ-
ent, when in fact the practical difference is very small. To
compensate for this, we also calculated the effect size to
measure the practical significance. The effect size indi-
cates that the recommendation accuracy, as improved by
MI, has practical significance.

External validity. We used the interaction traces of 72
Eclipse sub-projects, which may not be representative of
all software projects. Also, our experimental results are
consistent with the projects which have the view-edit ra-
tio from 5.1 to 16.3, while inconsistent with the MDT pro-
ject which has a 77.9 view-edit ratio. Therefore, our re-
sults may be generalized to the class of open projects that
use the Eclipse Bugzilla system and have a view-edit ratio
in the range of 5.1~16.3.

7 CONCLUSION

In this work, we have examined how the use of view in-

formation, gathered from programmer interaction histo-
ries, can help provide a more detailed context of pro-
grammer activity leading to more accurate, earlier and
more flexible edit recommendations. To evaluate this, we
replicated the previous approach ROSE and proposed a
new approach MI, which extends ROSE by additionally
considering the records of viewed files. We then conduct-
ed a simulated comparative controlled experiment by
mining the records of files that programmers had both
viewed and edited (MI), and mining the records of files
that programmers had only edited (ROSE). In this exper-
iment, we found that MI recommends files to edit with
58~63% accuracy while ROSE does 33~35% accuracy. MI
also creates recommendations earlier than ROSE (17th vs.
30th interaction event) and more flexibly (3~15 vs. 1~3
recommendations within the first 100 interaction events).

Overall, our work makes the following contributions:
 We developed a new powerful context formation

approach and demonstrated its efficacy in mining
programmer interaction histories (MI).

 We developed a comparative framework that helps
understand which factors have much influence on
the recommendation performance.

 We demonstrated that the rules mined by our ap-
proach (MI) outperform the rules mined from edit
histories (ROSE) [38] in recommending files to edit.

 We identified that the significant improvement of the
recommendation performance is enabled by the con-
text further elaborated by the records of files viewed.

Our research can be utilized in several ways. First, our

results provide basic evidence that leveraging the de-

tailed records of what programmers viewed will improve

mining approaches for recommending various other arti-

facts (e.g., documents [6], test sets [4], and e-mails [3]).

Second, our proposed context formation can be a basis for

developers to flexibly adapt the context information in a

recommendation system to yield better recommendation

results whenever the user situation changes. In short, we

have demonstrated that as the context information con-

sidered increases to better reflects user behavior, the sys-

tem’s behavior will better reflect the user’s needs.

ACKNOWLEDGMENT

This work was supported under the framework of inter-
national cooperation program managed by National Re-
search Foundation of Korea (NRF-2013K2A1A2055116),
and was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (NRF-2013R1A6A3A
01060158). This research was also supported by the MSIP
(Ministry of Science, ICT & Future Planning), Korea, un-
der the ITRC (Information Technology Research Center)
support program (NIPA-2014-H0301-14-1020) supervised
by the NIPA (National IT Industry Promotion Agency).

REFERENCES

[1] R. Agrawal, T. Imielinski and A. N. Swami, ”Mining associa-

tion rules between sets of items in large databases,” Proc. ACM

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 17

SIGMOD International Conf. on Management of Data, Washington,

D.C., May 26-28, 1993, ACM Press, pp. 207–216.

[2] A. Arcuri and L. Briand, “A practical guide for using statistical

tests to assess randomized algorithms in software engineering,”

Proc. 33rd International Conf. on Software Engineering (ICSE '11),

ACM, New York, NY, USA, pp. 1-10.

[3] A. Bacchelli, M. Lanza and B. Humpa, “RTFM (Read the Factu-

al Mails) -augmenting program comprehension with remail,”

Proc. 15th IEEE European Conf. on Software Maintenance and Reen-

gineering (CSMR ‘11), IEEE CS Press, pp. 15–24.

[4] A. Begel, Y. P. Khoo and T. Zimmermann, “Codebook: Discov-

ering and exploiting relationships in software repositories,”

Proc. 32nd ACM/IEEE International Conf. on Software Engineering,

Vol. 1, 2010, pp. 125–134.

[5] G. Canfora, M. Ceccarelli, L. Cerulo and M. Di Penta, “Using

multivariate time series and association rules to detect logical

change coupling: An empirical study,” Proc. IEEE International

Conf. on Software Maintenance (ICSM), 2010, no. i, pp. 1–10.

[6] D. Cubranic and G. C. Murphy, "Hipikat: recommending perti-

nent software development artifacts," Proc. 25th International

Conf. on Software Engineering (ICSE '03), IEEE Computer Society,

Washington, DC, USA, 2003, pp. 408-418.

[7] R. DeLine, M. Czerwinski and G. Robertson, “Easing program

comprehension by sharing navigation data,” Proc. IEEE Sympo-

sium on Visual Languages and Human Centric Computing, 2005, pp.

241-248.

[8] A. K. Dey, “Understanding and using context,” Personal Ubiqui-

tous Computer, 5(1), Jan. 2001, pp. 4-7.

[9] Eclipse Bugzilla, https://bugs.eclipse.org/bugs/.

[10] T. Fawcett. 2006. An introduction to ROC analysis. Pattern

Recogn. Lett. 27, 8 (June 2006), pp. 861-874.

[11] B. Fluri, M. Wuersch, M. Pinzger and H. Gall, “Change distil-

ling: tree differencing for fine-grained source code change ex-

traction,” IEEE Transactions on Software Engineering, vol. 33, no.

11, 2007, pp. 725-743.

[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques,

Morgan Kaufmann, 2000.

[13] L. Hattori, M. Lungu and M. Lanza, “Replaying past changes in

multi-developer projects,” Proc. Joint ERCIM Workshop on Soft-

ware Evolution and International Workshop on Principles of Software

Evolution (IWPSE-EVOL '10), ACM, NY, USA, 2010, pp. 13-22.

[14] L. Hattori, M. D. Ambros, M. Lanza and M. Lungu, “Software

evolution comprehension: replay to the rescue,” Proc. 19th In-

ternational Conf. on Program Comprehension (ICPC '11), IEEE

Computer Society, Washington, DC, USA, 2011, pp. 161-170.

[15] F. Jaafar, Y.-C. Gueheneuc, S. Hamel and G. Antoniol, “An

exploratory study of macro co-changes,” Proc. 18th Working

Conf. on Reverse Engineering (WCRE '11), IEEE Computer Socie-

ty, Washington, DC, USA, 2011, pp.325-334.

[16] D. Kawrykow and M. P. Robillard, “Non-essential changes in

version histories,” Proc. 33rd International Conf. on Software En-

gineering (ICSE '11), ACM, New York, NY, USA, 2011, pp. 351-

360.

[17] M. Kersten, and G. C. Murphy, “Using task context to improve

programmer productivity,” Proc. 14th ACM SIGSOFT interna-

tional symposium on Foundations of software engineering (SIGSOFT

'06/FSE-14), ACM, New York, NY, USA, pp. 1-11.

[18] D. Kim, Y. Tao, S. Kim and A. Zeller, "Where Should We Fix

This Bug? A Two-Phase Recommendation Model," IEEE Trans-

actions on Software Engineering, vol.39, no.11, Nov. 2013, pp.

1597-1610.

[19] M. Kim and D. Notkin, “Discovering and representing system-

atic code changes,” Proc. 31st International Conf. on Software En-

gineering (ICSE '09), IEEE Computer Society, Washington, DC,

USA, 2009, pp. 309-319.

[20] N. Littlestone, “Learning quickly when irrelevant attributes

abound: a new linear-threshold algorithm,” Machine Learning,

Kluwer Academic Pub. 1988, pp. 285-318.

[21] S. Lee, S. Kang and M. Staats, "NavClus: A graphical recom-

mender for assisting code exploration," Proc. 35th International

Conference on Software Engineering (ICSE), May 2013, pp. 1315-

1318.

[22] S. Lee and S. Kang, “Clustering navigation sequences to create

contexts for guiding code navigation,” J. Syst. Softw. 86, 8, Au-

gust 2013, pp. 2154-2165.

[23] T. Lee, J. Nam, D. Han, S. Kim and H. P. In, “Micro interaction

metrics for defect prediction,” Proc. European Software Engineer-

ing Conf. and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC/FSE 2011). Szeged, Hungary, Sep-

tember 5-9, 2011.

[24] J. McGrath, Methodology matters: doing research in the behav-

ioral and social sciences, Oct. 1994, pp. 162-189.

[25] C. Parnin, C. Görg and S. Rugaber, “Enriching revision history

with interactions,” Proc. international workshop on Mining Soft-

ware Repositories (MSR '06), ACM, NY, USA, 2006, pp. 155-158.

[26] C. Parnin and C. Görg, “Building usage contexts during pro-

gram comprehension,” Proc. 14th IEEE International Conf. on

Program Comprehension (ICPC '06), IEEE Computer Society,

Washington, DC, USA, 2006, pp. 13-22.

[27] D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B.

E. John, M. Burnett and R. Bellamy, “Modeling programmer

navigation: A head-to-head empirical evaluation of predictive

models,” Proc. IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), IEEE, 2011, pp. 109–116.

[28] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B.

John, R. Bellamy and C. Swart, “Reactive information foraging:

an empirical investigation of theory-based recommender sys-

tems for programmers,” Proc. ACM annual conference on Human

Factors in Computing Systems. ACM, 2012, pp. 1471–1480.

[29] R. Robbes and M. Lanza, “Characterizing and understanding

development Sessions,” Proc. 15th IEEE International Conf. on

Program Comprehension (ICPC '07), IEEE Computer Society,

Washington, DC, USA, 2007, pp. 155-166.

[30] R. Robbes, D. Pollet and M. Lanza, “Logical coupling based on

fine-grained change information,” Proc. of 15th IEEE Working

Conf. on Reverse Engineering (WCRE ‘08), IEEE CS Press, 2008,

pp. 42-46.

[31] R. Robbes, D. Pollet and M. Lanza, “Replaying IDE interactions

to evaluate and improve change prediction approaches,” Proc.

Working Conf. on Mining Software Repositories, 2010, pp. 161-170.

[32] M. Robillard, R. Walker, and T. Zimmermann, “Recommenda-

tion systems for software engineering,” IEEE Software, 2010, pp.

80-86.

[33] M. P. Robillard and B. Dagenais, “Recommending change clus-

ters to support software investigation: an empirical study,”

Journal of Software Maintenance and Evolution: Research and Prac-

tice, 2010, pp. 143-164.

[34] N. Sawadsky, G. C. Murphy and R. Jiresal, “Reverb: Recom-

mending code-related web pages,” Proc. of the 35th ACM/IEEE

Int’l Conf. on Software Engineering, 2013.

0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2362138, IEEE Transactions on Software Engineering

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[35] J. Singer, R. Elves and M. A. Storey, “NavTracks: supporting

navigation in software maintenance,” Proc. 21st IEEE Interna-

tional Conf. on Software Maintenance (ICSM '05), IEEE Computer

Society, Washington, DC, USA, pp. 325-334.

[36] A. T. T. Ying, G. C. Murphy, R. Ng and M. C. Chu-Carroll,

“Predicting source code changes by mining change history,”

IEEE Transactions on Software Engineering, 30, 2004, pp. 574–586.

[37] A. T. T. Ying and M. P. Robillard, The influence of the task on

programmer behavior. Proc. 19th IEEE International Conf. on

Program Comprehension (ICPC '11), June 2011.

[38] T. Zimmermann, P. Weissgerber, S. Diehl and A. Zeller, “Min-

ing version histories to guide code changes,” IEEE Transactions

on Software Engineering, 31(6), 2005, pp. 429–445.

Seonah Lee received her BS and MS
in Computer Science and Engineering
from Ewha Womans University (1993
to 1999). She worked as a software
engineer in Samsung Electronics
(1999 to 2006). She also received
MSE in School of Computer Science
from Carnegie Mellon University
(2004 to 2005). She was a PhD stu-
dent at School of Computer Science,
University of British Columbia (2006 to
2009) but left. She received her PhD
in School of Computer Science,
KAIST (2010 to 2013). She is current-

ly a postdoctoral researcher at KAIST. Her research interest includes
software evolution, program comprehension, code recommendation,
data mining, software visualization, and software architecture.

Sungwon Kang received his BA from
Seoul National University, Korea, in
1982 and received his MS and PhD in
computer science from the University
of Iowa, USA, in 1989 and 1992, re-
spectively. From 1993, he was a prin-
cipal researcher of Korea Telecom R
& D Group until October 2001 when
he joined KAIST and is currently an
associate professor of the university.
Since 2003, he has been an adjunct
faculty member of Carnegie-Mellon
University, USA, for the Master of
Software Engineering Program. He is

the editor of Korean Journal of Software Engineering Society. His
current research areas include software architecture, software prod-
uct line, software modeling and analysis, and software testing.

Sunghun Kim received the PhD de-
gree from the Department of Computer
Science, University of California, San-
ta Cruz, in 2006. He is an assistant
professor of computer science at the
Hong Kong University of Science and
Technology. He was a postdoctoral
associate at the Massachusetts Insti-
tute of Technology and a member of
the Program Analysis Group. He was
the chief technical officer (CTO) and
led a 25-person team for six years at
the Nara Vision Co. Ltd., a leading
Internet software company in Korea.
His core research area is software

engineering, focusing on software evolution, program analysis, and
empirical studies. He is a member of the IEEE.

Matt Staats received his PhD from
the Department of Computer Science
and Engineering, University of Min-
nesota Twin-Cities, in 2011. He was a
postdoctoral researcher at KAIST
from 2011 to 2013, and a research
fellow at the University of Luxem-
bourg from 2013 to 2014. Matt Staats
conducted this work at the Interdisci-
plinary Centre for Security, Reliability
and Trust, University of Luxembourg,
Luxembourg. He is currently em-
ployed by Google, Inc.

