
Writing Acceptable Patches: An Empirical Study of
Open Source Project Patches

Yida Tao∗, DongGyun Han† and Sunghun Kim∗
∗Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{idagoo, hunkim}@cse.ust.hk

†KAIST Institute for IT Convergence
Korea Advanced Institute of Science and Technology

handk@kaist.ac.kr

Abstract—Software developers submit patches to handle tens
or even hundreds of bugs reported daily. However, not all
submitted patches can be directly integrated into the codebase,
since they might not pass patch review that is adopted in most
software projects. As the result of patch review, incoming patches
can be rejected or asked for resubmission after improvement.
Both scenarios interrupt the workflow of patch writers and
reviewers, increase their workload, and potentially delay the
general development process.

In this paper, we aim to help developers write acceptable
patches to avoid patch rejection and resubmission. To this end,
we derive a comprehensive list of patch rejection reasons from a
manual inspection of 300 rejected Eclipse and Mozilla patches, a
large-scale online survey of Eclipse and Mozilla developers, and
the literature. We also investigate which patch-rejection reasons
are more decisive and which are difficult to judge from the
perspective of patch reviewers. Our findings include 1) suboptimal
solution and incomplete fix are the most frequent patch-rejection
reasons 2) whether a patch introduces new bugs is very important
yet very difficult to judge 3) reviewers reject a large patch not
solely because of its size, but mainly because of the underlying
reasons that induce its large size, such as the involvement of
unnecessary changes 4) reviewers consider certain problems to
be much more destructive than patch writers expect, such as
the inconsistency of documentation in a patch and 5) bad timing
of patch submission and a lack of communication with team
members can also result in a negative patch review.

I. INTRODUCTION

Bugs are inevitable in the process of software development.
After a bug is found and reported, developers are assigned
to write its patch, which is then reviewed by patch reviewers
(Figure 1). Given tens or even hundreds of bugs reported daily
for individual projects [1] and limited development resources,
an ideal scenario for a patch is to be accepted immediately
after its first review.

In practice, however, a patch often iterates the “review-
reject-resubmit” process (Figure 1) for quite a long time. For
instance, nearly 40% of the patches for the Mozilla Firefox
project are resubmitted at least once [2]. A patch-resubmission
iteration can take days or even months before the patch is
finally accepted [1][2][3]. There are also a non-negligible
quantity of patches that never make their way to the final
acceptance stage. Rigby and German reported that 56% of
patches were rejected in the Apache HTTP server project [4].

Developer

assigned

Developer

assigned

Patch

submitted

Patch

submitted

Reviewer

assigned

Reviewer

assigned

Patch

reviewed

Patch

reviewed

Bug

reported

Bug

reported

Bug

closed

Bug

closed

Rejected

(review-)

Accepted

(review+)

The patch resubmission iteration

Fig. 1: A typical patch review process. The central loop
indicates that a patch is rejected and resubmitted for review.

Weißgerber et al. reported that about 60% of patches were
rejected in the FLAC and OpenAFS projects [5].

Patch rejection potentially interrupts the workflow of both
patch writers and reviewers, who are forced to repeatedly
revisit patches. Consequently, the general development process
can be delayed or even frozen. To avoid such situations, it is
desirable for developers to have their patches accepted right
after the very first review.

In this paper, we investigate the problem of how to write
acceptable patches, which is decomposed into three research
questions as shown below. We start with learning from “past
failures”, that is, why patches are rejected (RQ1). Figure 2
shows six main reasons for rejecting a patch that has been
submitted to resolve the Eclipse bug #197448. Note that
for a given patch, its rejection reasons may not be equally
deterministic. For example, causing a compilation error in
Figure 2 seems to be the primary reason for rejection. Hence,
in RQ2, we investigate which reasons are more important for
patch reviewers to make decisions. Based on these results, we
finally propose guidelines to help developers write acceptable
patches (RQ3).

• RQ1: Why are patches rejected?
• RQ2: Which reasons are more decisive when patch

reviewers reject a patch?

- Clicking ISV doc > Prog Guide > Compiling Java code gives:

An error occurred while processing the requested document:

org.xml.sax.SAXParserException; lineNumber: 28; columnNumber: 135;

The element type “br” must be terminated by the matching end-tag “</br>”.

Other issues:

- Simply adding links (as you tried) without any further explanation (e.g. that it's in the user

doc) is not good enough (we normally have such links for pointing to sections inside the

same document).

- Compiling is more important than formatting ==> switch the entries.

- The example code is no longer blue and other styles seem lost too. Please make sure that the

formatting, styles and colors are preserved when moving the doc from ISV to User.

- The suppressWarnings page needs work:

- the title is hard to read - please use the standard title font (style)

- the tokens are not visible. Previously it wasn't great either (green color) but now the

tokens are no longer separated from the description at all

- you now write "Java 5.0 offers the option...". So, it's not working in Java 6 and Java 7?

- What's the change in /org.eclipse.jdt.doc.isv/topics_Guide.xml?

Missing

documentation

Missing

documentation

Violating coding

styles

Violating coding

styles

Compilation errors:

the primary reason for

rejecting this patch

Compilation errors:

the primary reason for

rejecting this patch

Suboptimal solutionSuboptimal solution

Unnecessary changesUnnecessary changes

Misleading

documentation

Misleading

documentation

Fig. 2: Review comments of a patch for Eclipse bug #197448. Its reviewer pointed out six problems with this patch, of which
the compilation error is the primary “culprit” for this patch rejection.

• RQ3: What are the guidelines for writing acceptable
patches?

Our study design consists of three parts. First, we ex-
tracted 300 rejected patches from the development history of
Eclipse and Mozilla, and manually inspected their patch review
comments to understand why they were rejected. Second, we
conducted a large-scale online survey involving 246 Eclipse
and Mozilla developers. From this online survey, we mainly
investigate reasons that are the most decisive for rejecting a
patch. We further surveyed the past literature on patch review
to complement the empirical results of our manual inspection
and developer survey.

We collectively identify 30 reasons for patch rejection,
which fall into five major categories: problematic implementa-
tion or solution, difficult to read or maintain, deviating from
the project focus or scope, affecting the development schedule,
and lack of communication or trust. We find that although
implementation and maintainability are the primary concerns
in a patch review, the timing of a patch submission (e.g.,
whether a patch is submitted when the release is approaching)
and the communication between patch writers and reviewers
also affect patch review outcomes.

For a more detailed classification of the reasons for patch
rejection, we observe that patches are most frequently rejected
for being suboptimal or incomplete, both of which are also very
decisive. On the other hand, although introducing new bugs is
highly decisive for patch rejection, developers consider it to
be very difficult to judge. Our manual inspection consistently
reveals less occurrence of patches that are rejected for this
particular reason. We also find that patch size is in fact a minor
factor. Instead, reviewers tend to judge the underlying reasons
that cause a large patch size, for example whether a patch
includes unnecessary changes.

Our study also reveals the disconnection between patch
writers and reviewers in terms of their criteria of patch quality.

For instance, reviewers considered a patch having inconsis-
tent or misleading documentation to be highly unacceptable.
However, patch writers assigned significantly lower decisive
scores to this particular reason. Interestingly, for all the patch-
rejection reasons that received significantly different decisive
scores from patch reviewers and writers, reviewers consistently
assigned higher scores than patch writers. This result suggests
that patch reviewers consider certain issues of a patch more
destructive than patch writers expect.

Overall, our paper makes the following contributions:

• A comprehensive list of reasons for patch rejection:
from our manual patch inspection, online developer
survey and literature survey, we collectively identify
30 detailed patch-rejection reasons that fall into five
major categories.

• An in-depth empirical investigation of patch-
rejection reasons: from our survey of 246 developers,
we investigate how decisive each reason for patch
rejection is and how difficult it is for patch reviewers
to judge. We also explore potential disconnections
between patch writers and reviewers in terms of their
patch evaluation criteria.

• Guidelines for writing acceptable patches: accord-
ing to our investigation on rejected patches, we pro-
pose actionable guidelines to help developers write
acceptable patches.

The remainder of this paper is organized as follows.
Section II introduces our study design. Section III reports our
study results with respect to the first two research questions,
followed by a discussion in Section IV. Section V answers
RQ3 by proposing guidelines for writing acceptable patches.
Section VI discusses the threats to validity of our study, fol-
lowed by a survey of related work in Section VII. Section VIII
concludes the paper.

Patch attachments for Eclipse bug#233156

(Reported on 2008-05-21)

spell checking performance test (4.39 KB, patch)

2009-11-23

no flags

performance test (5.69 KB, patch)

2009-11-30

no flags

performance test + fix (12.95 KB, patch)

2009-12-01

review-

fix (7.63 KB, patch)

2010-01-04

review-

performance test (6.53KB, patch)

2010-01-04

review+

fix (10.08 KB, patch)

2010-01-14

review+

Fig. 3: To fix Eclipse bug #233156, five patches were submitted
before the sixth patch was finally accepted two years after the
bug was reported.

II. STUDY DESIGN

In this section, we introduce our study design, which
consists of three parts: a manual inspection of real OSS patches
(Section II-A), an online survey of developers (Section II-B)
and a literature survey (Section II-C).

A. Manual Patch Inspection

To understand why patches are rejected (RQ1), we man-
ually inspected rejected patches and the associated review
comments from two open source projects, Eclipse and Mozilla.
Both projects use Bugzilla1 to track bug reports, patch submis-
sions and patch reviews.

In Bugzilla, a patch with the review+ flag is typically
considered acceptable by patch reviewers while a patch with
the review- flag fails the review and needs to be revised [2][6].
For our study, we extracted only the explicitly rejected patches
with review- flags and review comments. Since reviewers
typically explain the problems with a rejected patch in their
review comments (Figure 2), we were able to reasonably
deduce why it is rejected. We ignored patches with no flags
since they may have been implicitly rejected or accepted
(Figure 3).

Accordingly, we extracted 238 explicitly rejected patches
from Eclipse and 673 from Mozilla. From these patches,
we randomly selected 300 for manual inspection (Table I).
Two of the authors individually inspected these 300 rejected
patches and particularly their review comments to identify their
rejection reasons. Then, the results were compared and similar
reasons were merged to one succinct term (e.g., “the patch
fails a test” and “test fail” were merged to “test failures”).
After this step, the two evaluators agreed on 4/5 patch-rejection
reasons, reaching a Cohen’s Kappa of 0.75 that is considered
to be “good agreement” [7]. For the remaining 1/5 disagreed
reasons, we invited an external computer science postgraduate
to the discussion and finally reached an agreement. In total,
we manually identified 12 reasons for patch rejection, which
are discussed in Section III-A.

1http://www.bugzilla.org/

TABLE I: The number of explicitly rejected patches within the
studied period. From these patches, we randomly selected 300
for manual inspection.

Project Period Patches w/ Manually
review- flag inspected

Eclipse 2001.10 - 2011.08 238 162
Mozilla 2011.01 - 2011.08 673 138

Total 300

TABLE II: The number of developers who were invited to our
survey and the number of those who completed the survey.
The survey response rate is shown in the parenthesis.

Patch Patch TotalWriter Reviewer
Eclipse 25 / 233 48 / 246 73 / 479 (15.2%)
Mozilla 106 / 952 67 / 354 173 /1306 (13.2%)

Total 131 /1185 115 / 600 246 /1785 (13.8%)(11.1%) (19.2%)

B. Developer Survey

Based on our manual inspection results, we conducted
an online survey with Eclipse and Mozilla developers. In
this survey, we asked developers to rate how decisive these
12 reasons for patch rejection are on a 5-point Likert scale
(RQ2). To complement our manual inspection, we also asked
developers to supplement additional patch-rejection reasons
that they considered important but were not listed in our
survey. Furthermore, as an attempt to quantify the cost of
patch review, we asked developers to rate the difficulty of
judging each reason for patch rejection on a 5-point Likert
scale (Section IV-B).

We explicitly distinguish patch writers and reviewers from
our survey respondents since these two roles might hold
different opinions on patch quality (Section IV-A). Specifically,
we consider a developer who has written at least one patch as
a writer and who has reviewed at least one patch as a reviewer.
If a developer meets both criteria, we consider him/her as a
reviewer.

Table II shows our survey statistics. We identified 233
patch writers and 246 reviewers from the Eclipse project and
invited them to our online survey via email. Among them, 25
writers (10.73%) and 48 reviewers (19.51%) completed the
survey. For the Mozilla project, we identified 952 writers and
354 reviewers. Among them, 106 writers (11.13%) and 67
reviewers (18.92%) completed the survey.

In total, we received 246 responses, of which 131 were
from patch writers and 115 were from patch reviewers. As
shown in Table II, we have reached a survey response rate
of 13.8% (246/1785), which is comparable to that of similar
studies [8][9].

C. Literature Survey

To complement the empirical results of our manual in-
spection and developer survey, we further surveyed the past
literature related to patch review. We focused on work that has

TABLE III: Patch-rejection reasons identified from our manual inspection. The second column shows the example of patch
review comments, whose project name and bug ID are shown in the last column.

Patch-rejection reason Example of patch review comments Project-BugID
Compilation errors I will not review a patch that causes errors in my workspace. As said before:

make sure you have API tools enabled and a R3.5 baseline set.
Eclipse-78522

Test failures The provided patch causes about 20 tests to fail. Either the change really breaks
something, or it has side-effects that need the tests to be changed, that means
that it changes the expected behavior of the generator.

Eclipse-331875

Introducing new bugs The patch fixes the CCE but introduces a new bug: the returned key string is
wrong in the normal case i.e., it includes the ‘”’at the end.

Eclipse-247012

Inconsistent or mislead-
ing documentation

The note is unclear. “As per ...” sounds like we follow the spec. But since we
don’t, this should be stated explicitly (“Note: This deviates from JLS3 14.3...”).
Furthermore, it’s confusing that you use differing terms “anonymous type” and
“anonymous inner classes” for the same thing.

Eclipse-339337

Suboptimal solution I honestly don’t want all this complexity for this user pref . . . Much easier will
be to add a link from the Email Preferences tab pointing to email-related user
prefs once bug 589138 is implemented

Mozilla-589128

Duplication What I now don’t like is that we have two methods which almost do the
same thing but have different names: #packageChanged() and #getPackageS-
tatus(packName).

Eclipse-393161

Including unnecessary
changes

Removed this unnecessary check from #getNextElseOffset: if(then == null)
return -1;

Eclipse-377141

Incomplete fix I couldn’t test this patch, as it seems to be missing the change to browser.inc
that adds secondaryToolbarButtons.

Mozilla-877335

Violating coding style
guidelines

Per our Bugzilla guideline, we never leave |if (| alone on its own line. Mozilla-637981

Bad naming JavaCompareUtilities.getActiveEditor(IEditorPart) has wrong name as it simply
works with the given part (doesn’t matter if active or not)

Eclipse-260531

Missing documentation In the OverviewRuler class Javadoc I would mention that it uses non-saturated
colors unless setUseSaturatedColorPreference(...) gets called.

Eclipse-341808

Patch size too large Here is a patch smaller than 250 line. Eclipse-344125

been published in the past decade (i.e., 2004–2014) to ensure
the freshness of our survey results. Our literature survey mainly
consists of discovering, expanding, and filtering steps.

We first discovered patch-review related work by searching
Google Scholar 2 with the keywords “patch review” and “patch
acceptance” 3, which rendered an initial set of publications. We
then expanded these publications by searching their references
and citations. We iterated this expanding process until no new
publication emerged. During these two steps, we read only
the title and abstract of a search result to quickly determine
whether it was related to patch review. At this point, we
identified 26 related papers, which were published in 14
different venues including ESEC/FSE (the European Software
Engineering Conference/Symposium on the Foundations of
Software Engineering), ICSE (the International Conference on
Software Engineering), WCRE (the Working Conference on
Reverse Engineering) and MSR (the Working Conference on
Mining Software Repositories).

In the filtering step, we read these 26 papers carefully.
We found that although these studies fall into the field of
patch review, their focuses are quite diverse. For example, a
number of studies focus on understanding and characterizing

2http://scholar.google.com
3We also tried other keywords such as “code review” and “patch reject”,

which, however, rendered mostly irrelevant results.

the general patch review process [10][11][12][13][14]. Other
studies have investigated the reviewers involved, the defects
uncovered, and the tools used in the patch review [15][16][17].
Another line of work predicts patch review outcome or patch
acceptance time using features such as patch size and reviewer
experience [18][19]. A few studies have investigated the cor-
relation between patch acceptance and patch size or patch-
writers’ expertise [5][2][19][20], However, these analyses are
mainly post-mortem and less likely to reflect reviewers’ initial
intention of rejecting patches.

Surprisingly, out of these 26 papers, only 3 explicitly
discuss reasons for patch acceptance or rejection. Rigby and
Storey summarized six technical reasons and six non-technical
reasons (e.g., project politics) why patches are rejected [12].
Nurolahzade et al. presented five types of reviewer feedback:
implementation, functionality and usability, documentation,
coding standards, and performance [21]. Rigby et al. examined
the Github pull request and manually classified reasons why
pull requests are rejected. They found that 27% of the re-
jected pull requests are due to concurrent modifications of the
code in project branches, 16% are due to patch contributors’
misunderstanding of the project direction, 13% are due to
implementation errors and 10% are due to project process and
quality requirements [22].

We combined the patch-rejection reasons extracted from
the literature with our empirical results. In total, we identi-

Suboptimal solution,

24.6%

Incomplete fix, 22.3%

Including

unnecessary

change, 11.9%

Violating coding style

guidelines, 9.7%

Bad naming,

6.3%

Inconsistent, misleading

documentation, 6.1%

Missing documentation,

5.7%

Test failures, 5.5%

Introducing new bugs,

4.1%

Compilation errors, 1.9% Duplication, 1.6%

Patch size too large, 0.3%

Fig. 4: The percentage of patch-rejection reasons identified in
our manual inspection.

fied 30 detailed patch-rejection reasons, which are shown in
Table IV and discussed in Section III-A.

III. RESULTS

A. RQ1: Why are Patches Rejected?

Table III lists the patch-rejection reasons identified from
our manual inspection of Eclipse and Mozilla patches. Specif-
ically, Table III shows examples of review comments corre-
sponding to each reason. Figure 4 shows the percentage of
patch-rejection reasons identified from our manual inspection.
“Suboptimal solution” and “incomplete fix” turn out to be
top reasons for patch rejection. We revisit this finding in
Section IV-B.

As introduced in Section II, our manual inspection results
are further complemented by an online developer survey and
the past literature. We finally identify 30 detailed patch-
rejection reasons that fall into five major categories, as shown
in Table IV.

Problematic implementation or solution: a patch can be
rejected if it causes compilation errors, fails tests, or introduces
new bugs. Also, it can be rejected for not completely fixing
the bug (e.g., it misses corner cases). In addition to the
implementation correctness and completeness, patch reviewers
also consider whether the solution proposed in a patch is the
best. As shown in Figure 4, nearly a quarter of the patch-
rejection reasons are “suboptimal solution”. This indicates that
in many cases, reviewers reject a patch not because it does
not work, but because there exists a simpler or more efficient
way of fixing the bug. In addition, a patch is also likely to
receive negative reviews if developers impose their personal
preferences on the patch solution, which can be too aggressive
for end users.

Difficult to read or maintain: an unreadable patch is likely
to be rejected. For example, it may use unclear identifier names
or violate coding style guidelines. A more general concern is
how a patch affects the project’s maintainability. For example,

1
Not decisive

2
Slightly decisive

3
Medium

4
Decisive

5
Very Decisive

Patch siz
e too large

Missi
ng documentation

Bad naming

Violating coding sty
les

Incomplete fix

Unnecessa
ry changes

Duplication

Suboptim
al so

lution

Inconsist
ent documentation

Intro
ducing new bugs

Test f
ailures

Compilation erro
rs

Fig. 5: How decisive each reason is to reject a patch. These
scores are collected from all the survey respondents.

patch reviewers tend to respond negatively if a patch includes
unnecessary or duplicate changes, or uses deprecated APIs.
A patch without proper documentation or test cases is also
not favored. In addition, a patch that changes internal APIs
or affects many other modules can be rejected for being too
risky.

Deviating from the project focus or scope: in addition to
implementation details, patch reviewers also evaluate the high-
level idea of a patch. If the issue addressed in a patch is
irrelevant or out of the primary focus of the project, the patch
is likely to be rejected.

Affecting the development schedule: while the prior patch-
rejection reasons are closely related to the content of a patch,
the timing of a patch submission can also affect its review
outcome. A patch can be rejected if it is too late for the current
release cycle, or if it freezes the development of other features
thus defers the entire development schedule.

Lack of communication or trust: a lack of communication
between patch writers and reviewers might also yield to
a negative patch review. Our survey respondents explicitly
pointed out that the responsiveness of patch writers is very
important for patch review. Reviewers also tend to have low
confidence in immature patches [19], which are submitted
without prior discussion with other team members. In addition,
reviewers’ trust in patch writers in terms of their expertise or
reputation also affects their patch review decisions, as pointed
out by both our survey respondents and the literature [2][19].

As shown in Table IV, the patch-rejection reasons identified
by our manual inspection, developer survey, and the literature
are mostly consistent. However, these three approaches also
complement each other. For example, Rigby and Storey have
observed that a patch can be rejected if it includes large
changes yet offers limited improvement over the existing
code [12]. This reason for rejecting a patch that has low cost-
benefit has not been observed from our manual inspection
nor the developer survey. On the other hand, our developer
survey reveals several patch-rejection reasons, such as no ac-
companied test cases, changes to internal APIs, and submitter
unresponsiveness, that have not been covered in the literature.

B. RQ2: Which Reasons Are More Decisive When Reviewers
Reject a Patch?

Table IV shows 30 reasons why a patch can be rejected.
However, not all these reasons are equally decisive for rejecting

TABLE IV: Reasons for rejecting a patch. These reasons are jointly derived from the manual inspection of 300 Eclipse and
Mozilla rejected patches, a large-scale survey of Eclipse and Mozilla developers, and the past literature.

Source
Category Detailed reasons Manual Developer Literature

Inspection Survey Survey
Compilation errors 3
Test failures 3 [22]

Problematic Incomplete fix 3 [12]
implementation Introducing new bugs 3 [12]
or solution Wrong direction 3

Suboptimal solution 3 [22]
Solution too aggressive or hostile for end users 3
Performance 3 [21]
Security 3
Violating coding style guidelines 3 [12][21]
Bad naming 3
Patch size too large 3 [5]
Missing documentation 3 [21]
Inconsistent or misleading documentation 3

Difficult to No accompanied test cases 3
read or maintain Integration conflicts with existing code 3 [12]

Including unnecessary changes 3 [12]
Duplication 3 [22]
Misuse of (deprecated) API or library 3 [12]
Changes to internal APIs 3
Not well isolated 3
Low cost-benefit [12]

Deviating from the Irrelevant or obsolete 3 [22]
project focus or scope Not of core interest 3 [12]
Affecting the Freeze the development of other features 3 [12]
development schedule Low urgency 3

Too late in the release cycle 3
Lack of communication Patch writers are not responsive 3
or trust No discussion prior to the patch submission 3

Patch-writers’ expertise and reputation 3 [2]

a patch. This is confirmed by our developer survey results (Fig-
ure 5), from which we make several interesting observations.

“Introducing new bugs” is as decisive as “compilation
errors” and “test failures” to reject a patch: as shown in
Figure 5, a patch is highly likely to be rejected if it causes
compilation errors or fails tests. While this is to some extent
expectable, it is interesting to see that reviewers have almost
the same low tolerance for patches that introduce new bugs. In
such cases, a patch that intends to fix a bug instead worsens
the situation by introducing new problems.

Inconsistent or misleading documentation is highly un-
acceptable and much worse than missing documentation:
surprisingly, a patch that contains inconsistent or misleading
documentation is also highly unacceptable, as this reason re-
ceives the 4th highest decisive score right next to “introducing
new bugs” (Figure 5). Specifically, compared to “missing
documentation”, “inconsistent or misleading documentation”
is significantly more decisive in rejecting a patch, with the p-
value of the Mann-Whitney U test equals to 0.00 < 0.05 [23].
We believe that one plausible explanation is that compared
to missing documentation, inconsistent documentation might
mislead developers thus incur more damage in the long-term
development and maintenance of the project.

Large patch size rarely matters, whereas including unnec-
essary changes in a patch does: although we have observed
a few cases in our manual inspection where patches were
rejected for changing too many lines, developers in general
consider the size of a patch to be a minor factor for patch
rejection. In some sense, this finding contradicts prior studies
that have emphasized the sole correlation between the size
of a patch and its review outcome [5][24]. As one survey
respondent pointed out, rather than the patch size itself, the
underlying reasons that led to the large patch size is the
essential information:

The “patch size” criteria is ambiguous. Why is the
patch large? If it’s necessary, that’s not a problem.
If it’s large because of some other flaw (such as one
of the many others enumerated in this survey), then
it would be.

For instance, a patch can be large because it includes
unnecessary changes, which might be the real “culprit” for
its rejection. According to Figure 5 and the Mann-Whitney
U test, “including unnecessary changes” is significantly more
decisive than “patch size too large”, with a p-value equals to
0.00 < 0.05.

TABLE V: The Mann-Whitney U test results on the decisive
scores received from patch writers and reviewers. A bold p-
value (< 0.05) means that the scores are significantly different
between these two roles.

Patch-rejection reason p-value
Compilation errors 0.068
Test failures 0.000
Incomplete fix 0.003
Introducing new bugs 0.009
Violating coding style guidelines 0.681
Bad naming 0.509
Duplication 0.051
Suboptimal solution 0.011
Including unnecessary changes 0.226
Inconsistent, misleading documentation 0.005
Missing documentation 0.597
Patch size too large 0.135

Figure 5 also shows that “suboptimal solution”, “duplica-
tion” and “incomplete fix” are in general decisive for rejecting
a patch, while “violating coding styles” and “bad naming” are
considered to be less decisive.

In addition to the patch-rejection reasons already included
in the survey, 44 out of the 246 respondents supplemented
additional reasons that they considered important. The topmost
mentioned reason was “no accompanied test cases”, as 9
respondents considered a patch submitted without test cases to
be unacceptable. “Performance” and “patch-writers’ expertise
and reputation” were both mentioned by 5 respondents.

IV. DISCUSSION

A. Different Views from Patch Writers and Patch Reviewers

As described in Section II-B, the respondents of our
online survey have two different roles: patch writers and patch
reviewers. In this subsection, we explore whether these two
roles are unanimous in their patch evaluation criteria.

For each patch-rejection reason included in our survey, we
performed the Mann-Whitney U test on its decisive scores
received from patch writers and reviewers. As shown in
Table V, these two roles have significantly different decisive
scores for five patch-rejection reasons: test failures, incomplete
fix, introducing new bugs, suboptimal solution, and inconsistent
documentation. Figure 6, which shows the average decisive
scores of these five reasons by patch writers and reviewers,
further reveals an interesting trend: patch reviewers consis-
tently consider these reasons more decisive for rejecting a
patch compared to patch writers.

This result indicates a potential discrepancy between patch
writers and reviewers in their patch evaluation standard. For
instance, patch writers may focus on whether the submitted
patch works, while reviewers also concern about how well
the patch works. Therefore, reviewers consider “suboptimal
solution” much more decisive for rejecting a patch. As another
example, patch writers might pay more attention to the source
code than the documentation. However, reviewers turn out to
have quite a low tolerance to documentation that is inconsistent

3.0

3.5

4.0

4.5

5.0

Test f
ailures

Intro
ducing new bugs

Inconsist
ent documentation

Suboptim
al so

lution

Incomplete fix

A
v

er
ag

e
d

ec
is

iv
e

sc
o

re

Roles

PatchReviewer
PatchWriter

Fig. 6: Patch reviewers and writers assigned significantly
different decisive scores to these five patch-rejection reasons.
Interestingly, patch reviewers consistently considered these
reasons more destructive compared to patch writers.

with the changed code. As shown in Table V and Figure 6,
patch reviewers assign significantly higher decisive scores to
“inconsistent or misleading documentation” than patch writers.

In general, our result analysis reflects that patch writers and
reviewers indeed put different weights on certain patch eval-
uation criteria, such as suboptimal solution and inconsistent
documentation. In particular, patch reviewers consider them to
be much more serious problems than patch writers probably
expect.

B. Cost of Patch Review

Our analysis thus far investigates reasons why patches are
rejected and how decisive they are. Another important fact is
that patch reviewers need to properly justify why they reject
a patch in their review comments, for example, why they
consider a patch to be suboptimal or incomplete.

However, such a justification can be non-trivial [13]. To
understand this non-trivial activity and gain insight into the
potential difficulties of patch review, we investigate for each
patch-rejection reason, how difficult it is for patch reviewers
to justify it. Note that this was included as the second question
in our online survey (Section II-B).

We present our results in Figure 7. For each patch-rejection
reason, the x-axis shows its average decisive score while the
y-axis shows the average difficulty of justifying it. The bubble
size represents the percentage of each reason from our manual
inspection, which is exactly the same as in Figure 4. We make
the following observations with Figure 7.

Although being important, whether a patch introduces new
bugs is very difficult to judge: “introducing new bugs” appears
in the top-right corner of Figure 7. This means that although it
is highly decisive for rejecting patches, it is in fact very difficult
to judge. However, a patch that introduces new bugs decreases

the project quality and reliability [25]. Hence, reviewing such
a patch is indeed a “high cost, high return” investment:
although patch reviewers expend more effort deciding whether
the patch introduces new bugs, rejecting it early prevents
potentially huge damage on the project’s functionality, long-
term maintainability or even reputation.

Judging “compilation errors” and “test failures” of
patches is highly cost-effective, but these two situations rarely
occur: as appeared in the bottom right of Figure 7, “compila-
tion errors” and “test failures” are highly decisive for patch-
rejection yet they are relatively easy to judge. However, as
shown by their small bubble sizes, we did not observe many
occurrences of these two reasons in our manual inspection. One
possible explanation is that developers usually check whether
their patches compile and pass tests before submission, hence
such problems are rarely found by patch reviewers.

Patch review can be particularly beneficial for identifying
suboptimal or incomplete patches: “suboptimal solution” is
the most frequently observed patch-rejection reason from our
manual inspection, as indicated by its largest bubble size.
This result is consistent with the study of Bacchelli and Bird,
who found that one of the primary incentives of modern code
review is to identify alternative solutions [13]. “Incomplete
fix” is also a frequently observed reason for patch rejection.
We may reasonably speculate that patch review effectively
guards against suboptimal or incomplete fix, which could
affect the health and maintainability of a project in the long
run. However, justifying these two reasons are also difficult
(Figure 7), possibly due to the lack of tool support [13].

In general, we have observed a positive correlation between
the importance of patch-rejection reasons and the difficulty
of judging them. Less decisive reasons are usually easier to
judge, such as missing documentation, violating coding styles
and bad naming. Highly decisive reasons, on the other hand,
are relatively difficult to judge, such as introducing new bugs.
We only observe a few exceptions, such as compilation errors
and test failures, which are very decisive but also easy to judge
as they might have already been taken care of by patch writers.

V. WRITING ACCEPTABLE PATCHES (RQ3)

In the prior sections, we discuss several aspects of patch
review, such as the common reasons why reviewers reject
a patch, the level of difficulty of their judgement, and the
potential disconnection between patch reviewers and writers on
evaluating patches. Based on these findings on patch rejection,
we now propose actionable guidelines for writing acceptable
patches.

• Before writing a patch, developers should first make
sure that it indeed addresses an issue within the
project’s scope and relevant to the project’s focus
(Section III-A).

• Instead of solely focusing on whether the patch fixes
the target bug, developers should also be careful of
not introducing new bugs, which will be expensive
in terms of patch review efforts and the long-term
maintainability of the project (Section IV-B).

• Instead of solely focusing on whether the patch
works, developers should also consider whether it
works well and whether there are better alternative

Compilation errors

Test failures

Incomplete fix

Introducing new

bugs

Violating coding

styles

Bad naming

Duplication

Suboptimal solution

Unnecessary change

Inconsistent,

misleading

documentation

Missing

documentation

Patch size too large

1

1.5

2

2.5

3

3.5

4

2.5 3 3.5 4 4.5 5

D
if

fi
cu

lt
y

 (
a

v
g

.)

Decisive (avg.)

Fig. 7: The x-axis shows the average decisive score for each
patch-rejection reason, while the y-axis shows the difficulty
of justifying it. The size of the bubble represents the percent-
age of the corresponding reason identified from our manual
inspection, which is the same as in Figure 4.

solutions. Patch reviewers appear to be more serious
about suboptimal patches than patch writers expect
(Section IV-A).

• Developers should check whether their patches are
“more” or “less”: “more” as in including unnecessary
or irrelevant changes and “less” as in not including
certain use cases and being incomplete (Section III-A).

• Developers should include or update necessary docu-
mentation in their patches. For reviewers, a patch with
inconsistent or misleading documentation is highly
unacceptable (Section III-B).

• Developers should minimize the high-level impact of
a patch on the project schedule and avoid delaying the
development of other features (Section III-A).

• Developers should actively communicate with other
team members before and after submitting their
patches, which increases the chance of the patches
being accepted (Section III-A).

VI. THREATS TO VALIDITY

We manually inspected rejected patches from two open
source projects, Eclipse and Mozilla, which use Bugzilla to
track issues, patches, and patch reviews. Although both are
large projects with a mature issue tracking system, our findings
might not generalize to other software projects and those
who use different issue tracking or patch review systems. For
example, the Gerrit code review system provides the Deckard
Autoverifier to automatically verify if a commit builds and
merges successfully [26][27]. Only those verified commits
proceed to be reviewed by human developers. Hence, for
projects that use Gerrit for patch review, we might barely
observe patches that are rejected by reviewers for compilation
errors. To minimize this threat caused by different projects
and patch review mechanisms, we derived the list of patch-
rejection reasons from multiple sources. Specifically, the initial

list of patch-rejection reasons identified from our manual
inspection was confirmed and supplemented by our online
survey respondents and the past literature.

We extracted only the patches with “review-” flags and
review comments for our manual inspection, which may not
be inclusive of all the rejected patches. Alternative approaches
have been proposed to identify rejected patches. For example,
Weißgerber et al. considered patches to be accepted if they
existed in the repository and rejected otherwise [5]. Also, for
projects like Linux, patches without any review comments
are implicitly rejected [4]. However, our primary focus was
to accurately derive reasons for patch rejection. Hence, we
used the explicitly rejected patches that have received review
comments for this purpose.

We manually inspected rejected patches and derived patch-
rejection reasons. However, this manual process could be sub-
jective. To minimize this threat, two of the authors individually
inspected these rejected patches. The inspection results were
then compared and discussed with an external CS postgraduate
student (Section II-A). Also, as mentioned above, our manual
inspection results were further confirmed and complemented
by the online developer survey and the past literature.

Our literature survey on patch review might not be compre-
hensive. We mitigate this threat by adopting the discovering,
expanding, and filtering steps as introduced in Section II-C.
The first two steps allowed us to cover papers reasonably
relevant to patch review and finally reach a convergence,
while the last step allowed us to precisely identify papers that
discussed reasons for patch rejection.

VII. RELATED WORK

In Section II-C, we introduced studies that explicitly dis-
cussed reasons for patch rejection. In this section, we further
report studies that have addressed the general quality issue of
software patches and artifacts. Fry et al. conducted a human
study, in which participants performed tasks to demonstrate
their understanding of the functionality and maintainability
aspects of software patches [28]. Bettenburg et al. empirically
investigated the quality of bug reports from the perspectives
of both developers and end-users [8]. Hooimeijer and Weimer
proposed a descriptive model of bug report quality, which was
used to filter uninformative incoming bug reports or suggest
missing features from bug reports [29].

Code and change review are also closely related to our
study, as we derived patch-rejection reasons directly from
patch review comments. In its early years, code review
or inspection was a formal process to detect software de-
fects [30][31][32][33][34]. Studies have observed a 75:25
ratio of maintainability and functional problems fixed in code
review [16][17]. Our work complements these studies with
more detailed patch-rejection reasons identified from review
comments. Bacchelli and Bird proposed that modern code
review has become lightweight and focused more on small
and incremental code changes [13]. They also found that
in addition to finding defects, modern code review provides
additional benefits such as knowledge transfer and team trans-
parency [13]. Rigby and Bird studied contemporary peer
review by investigating peer review processes in Android,
Chromium, Bing, Microsoft Office, MS SQL, and internal

projects of AMD [14]. They found that the characteristics
of their review process ultimately converge regardless of the
differences between these projects.

The human aspects of code review have also been actively
studied. Votta argued the number of code review participants in
off-line meetings should be minimized to reduce development
costs [35]. Asundi and Jayant found that the availability of
documentation and coding styles influences non-core mem-
bers’ participation in the patch review process [11]. Baysal et
al. suggested that patches written by casual developers should
receive extra attention to ensure the quality [2]. They also
observed that personal dimensions such as review load and ac-
tivity have a significant impact on code review outcomes [20].
Rigby and Storey investigated the mechanisms developers use
to effectively manage large quantities of code changes and
reviews [12]. As a complement to their findings, we also
observe that the unresponsiveness of patch writers and a lack
of communication can lead to a negative patch review.

Advanced tools have also been proposed to assist code
review process. Web-based online code review systems such
as Gerrit [26] have been widely adopted. Google introduces a
web-based code review system Mondrian [36]. Miller et al. de-
veloped a crowd-sourcing-based code review tool, Caesar [37].
This tool slices the entire source code into several code chunks
and assigns these chunks to a diverse crowd of reviewers such
as alumni and students. Balachandran proposed the Review
Bot tool that integrates static analysis output to automatically
generate review comments [38].

VIII. CONCLUSIONS

In this paper, we empirically investigated reasons why
software patches are rejected. Our data sources included
300 rejected Eclipse and Mozilla patches and their review
comments, quantitative and qualitative feedback from 246
developers, and a survey of patch-review related studies over
the past decade. We derived a comprehensive list of reasons for
patch rejection and discovered the discrepancy between patch
writers and reviewers in terms of their patch evaluation criteria.
We expect our results to be beneficial for both patch writers
and reviewers: patch writers can be better aware of reviewers’
top “wanted list” and thus better scrutinize their patches to
avoid such mistakes; patch reviewers in turn can benefit from
the increased quality of patches and reduced review efforts.

Our results also open potential research opportunities. For
instance, tool support might be proposed to help reviewers
decide whether a patch introduces new bugs, which is currently
very difficult to judge. We also plan to exploit our empirical
results to build recommendation systems that predict patch re-
view outcomes and suggest potential improvements to patches
with human-readable explanations.

ACKNOWLEDGMENT

This work is supported by the Research Grants Council
(General Research Fund 613911) of Hong Kong.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open
bug repository,” in Proceedings of the 2005 OOPSLA Workshop
on Eclipse Technology eXchange, ser. eclipse ’05. New York,
NY, USA: ACM, 2005, pp. 35–39. [Online]. Available: http:
//doi.acm.org/10.1145/1117696.1117704

[2] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The secret life
of patches: A firefox case study,” in Working Conference on Reverse
Engineering, ser. WCRE ’12, 2012, pp. 447 –455.

[3] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 298–308.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070530

[4] P. C. Rigby and D. M. German, “A preliminary examination of code
review processes in open source projects,” University of Victoria, Tech.
Rep. DCS-305-IR, January 2006.

[5] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 international working conference on Mining
software repositories, ser. MSR ’08, 2008, pp. 67–76.

[6] B. R. Wiki, https://wiki.mozilla.org/Bugzilla:Review.

[7] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agree-
ment: the kappa statistic,” Fam Med, vol. 37, no. 5, pp. 360–363, 2005.

[8] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16, 2008, pp. 308–318.

[9] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
a study of developer work habits,” in Proceedings of the 28th interna-
tional conference on Software engineering, ser. ICSE ’06, 2006, pp.
492–501.

[10] P. C. Rigby, D. M. German, and M. A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th international conference on Software engineering, ser. ICSE
’08, 2008, pp. 541–550.

[11] J. Asundi and R. Jayant, “Patch review processes in open source
software development communities: A comparative case study,” in
System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on, Jan 2007, pp. 166c–166c.

[12] P. C. Rigby and M. A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, ser. ICSE ’11, 2011,
pp. 541–550.

[13] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering, ser. ICSE ’13, 2013.

[14] P. C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” in Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013, pp.
202–212.

[15] R. Kula, A. Cruz, N. Yoshida, K. Hamasaki, K. Fujiwara, X. Yang,
and H. Iida, “Using profiling metrics to categorise peer review types
in the android project,” in Software Reliability Engineering Workshops
(ISSREW), 2012 IEEE 23rd International Symposium on, Nov 2012,
pp. 146–151.

[16] M. Mantyla and C. Lassenius, “What types of defects are really
discovered in code reviews?” Software Engineering, IEEE Transactions
on, vol. 35, no. 3, pp. 430–448, May 2009.

[17] A. Z. Moritz Beller, Alberto Bacchelli and E. Jrgens, “Modern code
reviews in open-source projects: Which problems do they find fix?”
in Mining Software Repositories (MSR), 2014 11th IEEE Working
Conference on, june 2014, pp. 74 –77.

[18] G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving code review
by predicting reviewers and acceptance of patches,” 2009.

[19] Y. Jiang, B. Adams, and D. German, “Will my patch make it? and how
fast? case study on the linux kernel,” in Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on, May 2013, pp. 101–
110.

[20] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The influence
of non-technical factors on code review,” in Reverse Engineering
(WCRE), 2013 20th Working Conference on, Oct 2013, pp. 122–131.

[21] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal, “The
role of patch review in software evolution: an analysis of the mozilla
firefox,” in Proceedings of the joint international and annual ERCIM
workshops on Principles of software evolution and software evolution
workshops, ser. IWPSE-Evol ’09, 2009, pp. 9–18.

[22] G. G. M. M. Peter C Rigby, Alberto Bacchelli, “A mixed methods
approach to mining code review data: Examples and a replication study
of multi-commit reviews,” 2014.

[23] H. B. Mann, “On a test of whether one of two random variables
is stochastically larger than the other,” The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, Mar. 1947.

[24] P. Phannachitta, P. Jirapiwong, A. Ihara, M. Ohira, and K.-i. Matsumoto,
“An analysis of gradual patch application: A better explanation of patch
acceptance,” in Software Measurement, 2011 Joint Conference of the
21st Int’l Workshop on and 6th Int’l Conference on Software Process
and Product Measurement (IWSM-MENSURA), Nov 2011, pp. 106–115.

[25] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really
been fixed?” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10.
New York, NY, USA: ACM, 2010, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806812

[26] Gerrit, http://code.google.com/p/gerrit/.
[27] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review

data from android,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 45–48. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487095

[28] Z. P. Fry, B. Landau, and W. Weimer, “A human study of
patch maintainability,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ser. ISSTA 2012. New
York, NY, USA: ACM, 2012, pp. 177–187. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336775

[29] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, ser. ASE ’07. New York,
NY, USA: ACM, 2007, pp. 34–43. [Online]. Available: http:
//doi.acm.org/10.1145/1321631.1321639

[30] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182 –211, 1976.

[31] C. Sauer, D. Jeffery, L. Land, and P. Yetton, “The effectiveness
of software development technical reviews: a behaviorally motivated
program of research,” IEEE Trans. Softw. Eng., vol. 26, no. 1, pp. 1
–14, 2000.

[32] H. Siy and L. Votta, “Does the modern code inspection have value?” in
Proceedings. IEEE International Conference on Software Maintenance,
ser. ICSM ‘01, 2001, pp. 281 –289.

[33] T. Gilb, D. Graham, and S. Finzi, Software inspection. Addison-Wesley,
1993, vol. 253.

[34] A. Ackerman, L. Buchwald, and F. Lewski, “Software inspections: an
effective verification process,” IEEE Software, vol. 6, no. 3, pp. 31 –36,
1989.

[35] L. G. Votta, Jr., “Does every inspection need a meeting?” in Proceedings
of the 1st ACM SIGSOFT symposium on Foundations of software
engineering, ser. SIGSOFT ’93, 1993, pp. 107–114.

[36] Niall Kennedy. (2006, Dec) Google Mondrian: web-based code
review and storage, http://www.niallkennedy.com/blog/2006/11/
google-mondrian.html.

[37] Karen A. Frenkel. (Jan, 2013) ‘Caesar’ Conquers Code Re-
view With Crowdsourcing, http://cacm.acm.org/news/159596-caesar-
conquers-code-review-with-crowdsourcing/fulltext.

[38] V. Balachandran, “Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA:
IEEE Press, 2013, pp. 931–940. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2486788.2486915

