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Introduction

T HE vast majority of guidance laws have one objective: to re-
duce to zero the distance between the missile and the target

(see Refs. 1 and 2). This is not always sufficient; in some cases
the direction from which the missile approaches the target is also
important. These include situations where a heavily armored target
is best hit from a specific angle or when it is desired to disable a
plane or vehicle without hitting either a dangerous payload or the
pilot. This problem has been considered in a number of papers (for
example, see Refs. 3–10). There are also connections between guid-
ance problems of this sort and trajectory control of unmanned aerial
vehicles and autonomous robots.

Circular navigation guidance (CNG) is a novel approach to
this problem, first presented in Ref. 3. It is formulated for two-
dimensional planar intercepts and is built on a geometric principle
that allows a relatively simple feedback control law to give probably
perfect intercepts against nonmaneuvering targets.

The principle behind the control law is this: basic geometrical con-
siderations provide us with an line-of-sight angle condition, which,
if maintained, results in the missile following a circular path to the
target and impacting with the desired approach angle. The job of
maintaining this condition, when it is represented in appropriate
variables, is that of regulating a linear system to a particular tra-
jectory. This can then be solved with a feedforward control, which
equals the control on the nominal path, and a proportional controller
to regulate the missile to the nominal path.

The proof of perfect performance in Ref. 3 assumes that full state
information (i.e., target location and velocity) is available, there is
no delay in the autopilot, and the target is not maneuvering. (It has
constant velocity.) In practice, none of these assumptions are strictly
justifiable: it is usually impossible to have complete information
about the state of the intercept, so that a state estimator, based on
some mathematical system model, must be used. Also, in practice,
there is an unavoidable delay between acceleration commands being
given and being realized, that is, the autopilot is never perfect, and
of course maneuvering targets must be taken into account.
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In many target tracking applications where the underlying model
is nonlinear (as it is in this case), an approximate generalization
of the optimal linear Kalman filter to nonlinear dynamical systems,
termed the extended Kalman filter (EKF) is used. However, this does
not take into account uncertainty in the system model used. When
such uncertainty is large enough, the estimated state has been shown
to diverge from the true state values (see Ref. 11). Recent work draw-
ing on robust control theory has provided a new approach to this
problem. The robust extended Kalman filter (REKF—see Ref. 11
and see also Ref. 12 for the linear robust Kalman filter) increases
the robustness of the filter to uncertainties satisfying a certain in-
tegral quadratic constraints. Like the EKF, the REKF is based on
a linearization approach and hence cannot guarantee convergence
of the estimate of a nonlinear system, but simulation studies have
shown it is less susceptible to such problems.

The REKF is based on the framework of integral quadratic con-
straints, a description of uncertainty that has seen increasing at-
tention of late in the robust control literature.11−14 This framework
renders solvable robust control and estimation problems, which,
under other frameworks, are not mathematically tractable.

In this Note we consider the case where only range and line-of-
sight angle measurements are available (each corrupted by random
noise); the autopilot is modeled by a second-order system with an un-
certain parameters, and target maneuvers are modeled using a modi-
fied Singer method15 with uncertain bandwidth. The robust extended
Kalman filter is used to estimate the state, and robust control tech-
niques similar to H∞ methods are used to design the guidance law.

In the following four sections, we introduce CNG, extend it to an
uncertain autopilot model, then design a robust state estimator, and
finally test the complete system with computer simulations.

Circular Navigation Guidance
The circular navigation guidance law has two objectives: 1) min-

imize miss distance and 2) achieve impact from a specific angle,
equal to the target’s velocity vector plus some offset β. So let us
say, referring to Fig. 1, that the missile should approach the target
from a direction direction of the Z vector immediately before im-
pact. That is, the angle σ should be equal to γT + β immediately
before impact.

The philosophy behind CNG is that two points, and a tangent on
one of them, uniquely define a circle in the plane. Thus, a missile
and target position, and a desired approach angle, uniquely define
a circular path the missile can take to the target. An interesting ge-
ometric invariant was found that allows easy design of a feedback
control law to keep a missile on such a path. For a more detailed
discussion of this, see Ref. 3. In this Note we start with the defi-
nition of the control law and subsequently develop its extension to
uncertain output feedback systems.

The control law is based on planar geometry, and so to formulate
it in terms of a Cartesian state it is helpful to introduce some interme-
diate variables with some qualitative meaning. We now present the

Fig. 1 Engagement geometry.
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idealized model in Cartesian form and from this derive the variables
that are most useful in presenting the guidance law.

Firstly, we state some notation: Throughout the paper Ia refers to
the a-dimensional identity matrix, and 0a,b refers to an a × b matrix
of zeros.

We introduce three two-dimensional real vectors in Cartesian co-
ordinates that together fully describe the state of the system: relative
position xR(t) := target position–missile position, missile velocity
vM (t), and target velocity vT (t).

Now let a state vector x(t) represent these combined:

x(t) :=




x1(t)

...

x6(t)



 :=




xR(t)
vM (t)
vT (t)



 ∈ R6

System dynamics are defined in terms of a nonlinear state-space
model,

ẋ(t) = Ax(t) + B1(x)aM (t) + B2(x)aT (t) (1)

where aM (t) is the missile acceleration, which must be perpendic-
ular to the missile’s current velocity vector (i.e., the missile can
perform turning motions). In Ref. 3 it was assumed we could assign
this acceleration directly. Similarly, aT (t) is a one-dimensional ac-
celeration issued perpendicular to the target’s velocity, if the target
is maneuvering. It might be thought of as the disturbance input.

Using a simple model of Newtonian physics, and the acceleration
restrictions just described, we obtain the following definition of the
matrices in Eq. (1):

A :=
[

02,2 −I2 I2

04,2 04,2 04,2

]

B1(x) :=





02,1

−x4(t)/cM

x3(t)/cM

02,1



 , B2(x) :=




04,1

−x6(t)/cT

x5(t)/cT





where

cM :=
√

x3(t)2 + x4(t)2

CT :=
√

x5(t)2 + x6(t)2

are the missile and target speed, respectively.
Furthermore, we define the following variables, visualized in

Fig. 1:

r(t) :=
√

x1(t)2 + x2(t)2

σ (t) := tan−1[x2(t)/x1(t)]

γM (t) := tan−1[x4(t)/x3(t)]

γT (t) := tan−1[x6(t)/x5(t)]

λ(t) := σ (t) − γM (t)

λT (t) := π + σ (t) − γT (t)

ε(t) := γT (t) + β − σ (t)

λoff := −sin−1[(cT /cM ) sin λT (t)]

Note that, by tan−1(y/x) we refer to the four-quadrant arctangent,
which takes x and y as arguments and maps into the full circle
(−π, π]. In MATLAB®, for example, this is calculated with the
ATAN2 command.

Qualitatively, r(t) is the range between missile and target, cM is
the speed of the missile, and cT the speed of the target. Note that

cM and cT are not time dependent: we are assuming that missile and
target speeds are constant. The angle σ (t) is that of the line of sight
(LOS) between missile and target, γM (t) is the missiles heading
angle, and γT (t) is the target’s heading angle. All of the preceding
angles are with respect to a horizontal (x1 direction) reference, where
a positive angle is one of anticlockwise rotation.

We have also defined some relative angles of interest: λ(t) is the
angle between the line-of-sight vector and the missile’s velocity
vector, λT (t) is the equivalent value for the target, and ε(t) is the
angle between the desired impact velocity vector and the line-of-
sight vector (see Fig. 1). The reasoning for λoff is explained in Ref. 3.

Let kp be some unitless gain term, then the control signal from3

uc(t) is calculated as follows:

u f (t) := cM

r(t)
{cM sin[λ(t)] + cT sin[λT (t)]}

×
{

2 + (cT /cM ) cos[λT (t)]√
1 − (cT /cM )2 sin2[λT (t)]

}
(2)

u p(t) := kp[λ(t) − ε(t) − λoff(t)] (3)

uc(t) := u f (t) + u p(t) (4)

where u f is the feedforward term and u p is the linear regulation
term. Only relative angles and vector magnitudes are used in this
definition, and so the guidance law is independent of coordinate
basis.

In Ref. 3, the control signal u f was mathematically proven to
give a perfect intercept when the model is nominal, as just defined,
and full state information is available, and the following conditions
hold: 1) the target is nonmaneuvering (i.e., has constant velocity);
2) γM (0) can be specified by the guidance law; 3) cM ≥ √

(2cT );
and |ε(0)| ≤ π/2. The first two conditions can almost be removed:
impact errors resulting from these can, in theory, be made arbitrarily
small by including u p(t) and increasing the gain kp . Numerical sim-
ulations have confirmed that CNG works well against maneuvering
targets provided that the gain is high enough.

In this Note, we relax the assumptions of nominal physical model
and perfect measurements. To do so,we extend CNG using some
recent advances in the theory of robust control and filtering theory.

Robust Control Design
In contrast to our early work,3 we no longer assume that the

acceleration of the missile can be directly assigned. Instead, there is
a second-order transfer function from control command to missile
acceleration. Furthermore, the coefficients of this transfer function
are not exactly known.

The transfer function has the following form:

aM (s)
uc(s)

= (b + '2bu)

s2 + (a + '1au)s + (b + '2bu)
(5)

where '1 and '2 can range over the interval [−1, 1]. Note that for
all '1, '2 the transfer function has unity gain.

Because the nominal path is close to circular, the missile’s acceler-
ation will be almost constant when following it. Moreover, because
the transfer function of the autopilot has unity gain at s = 0, the
feedforward component of the control law remains unchanged.

The task of regulating the missile to its nominal path has, how-
ever, been changed significantly. For this we use a game-type robust
controller, derived in a way similar to H∞ control.

The aim is to regulate the LOS angle λ to ε + λoff, and the missile’s
acceleration aM to u f , using the control input uc. To this end, we
define the error vector xa , in which we have added hats to certain
variables to emphasize that, in a real system, these will be calculated
from a state estimate and not pure values.

xa(t) =




λ̂(t) − [ε̂(t) + λ̂off(t)]

âM (t) − u f (t)

˙̂aM (t) − u̇ f (t)



 (6)
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which should be regulated to zero. For small deviations about the
desired trajectory, the error dynamics can be described by the fol-
lowing uncertain linear system:

ẋa(t) = (F + H2'C1)xa(t) + (H1 + H2'D1)uc(t) (7)

where

F =




0 1/cM 0
0 0 1
0 −b −a



 , H1 =




0
0
b



 , H2 =




0 0
0 0
1 1





C1 =
[

0 −bu 0
0 0 −au

]
, D1 =

[
−bu

0

]
, ‖'‖ ≤ I2 (8)

Here ‖ · ‖ denotes the induced matrix norm.
Now we define a quadratic cost function

J =
∫ ∞

0

[xa(t)′ Q1xa(t) + u(t)′ R1u(t)] dt (9)

We now propose to use the guaranteed cost control method (see
Ref. 13, Chapter 5), which means that we minimize an upper bound
on the cost function (9) over all possible systems satisfying Eq. (7).

To this end, let X be a solution of the following Riccati equation:
[

F − H1(εR1 + D′
1 D1)

−1 D′
1C1

]′
X

+ X
[

F − H1(εR1 + D′
1 D1)

−1 D′
1C1

]

+ εX H2 H ′
2 X − εX H1(εR1 + D′

1 D1)
−1 H ′

1 X

+ (1/ε)C ′
1

[
I − D1(εR1 + D′

1 D1)
−1 D′

1

]
C1 + Q1 = 0 (10)

where ε is chosen so as to minimizeTrace(X ). Commercial packages
such as MATLAB include algorithms for solving Riccati equations,
and it is straightforward to do a one-parameter search over ε for the
solution with the smallest trace.

From this we form the gain matrix:

K1 = −(εR1 + D′
1 D1)

−1(εH ′
1 X + D′

1C1) (11)

Then the following control law is optimal in the guaranteed cost
sense:

u p(t) = K1xa(t) (12)

As just noted, because the nominal path is nearly circular (and ex-
actly circular for a stationary target) the function u f (t) is almost
constant. Hence its derivative u̇ f (t) is very nearly zero. Because it
is quite a complicated function, we therefore approximate it as zero,
and the last row of xa(t) becomes simply ˙̂aM (t).

Note that if all of the uncertainty terms are zero (H2, C1, D1 = 0),
then this control strategy reduces to the standard linear quadratic
regulator. This linear controller is then combined with the nonlinear
feedforward term u f (t) from Eq. (2):

uc = u p(t) + u f (t) (13)

Robust Nonlinear Estimator Design
The state of our system needs to be estimated, the dynamic model

is uncertain, and the measurements are nonlinearly related to the
states. We achieve this by constructing a robust extended Kalman
filter, which gives state estimates of a nonlinear system subject to
an integral quadratic constraint.

The filter sees measurements of r and λ, each corrupted by noise,
denoted v. That is, the sensor provides the measurements

y(t) =
[

r(t)
λ(t)

]
+ v(t)

The noise on the angle measurements is the sum of three compo-
nents: a constant fading-noise component; a receiver-noise compo-
nent, which grows with range; and a glint-noise component, which
grows as the missile nears the target. Specifically,

σ 2
λ (r) = σ 2

f + σ 2
rnr 4 + σ 2

g

/
r 2 (14)

The noise on the range measurements is relatively small, and we
assume it has stationary covariance σ 2

r .
The target is assumed to be maneuvering, and this is repre-

sented using a modified Singer model.15 The difference between
our method and the standard Singer method is that the bandwidth
of the maneuver model is uncertain.

Let p be the nominal bandwidth of the maneuvers, k be a constant
representing the degree of uncertainty, and w(t) be a white noise
signal. Then the target acceleration aT (t) is modeled like so:

ȧT (t) = −(p + 'kp)aT (t) + pw(t) (15)

This model can be represented as a nominal system, plus an uncer-
tainty subject to an integral quadratic constraint (IQC):

ȧT (t) = −paT (t) + p[wm(t) + wu(t)]

z(t) = kaT (t)

where the noise input wu is subject to an IQC:
∫ s

0

‖wu(t)‖ dt ≤
∫ s

0

‖z(t)‖ dt (16)

The system (15) corresponds to an instantaneous inequality between
‖wu‖ and ‖z‖; however, inequalities of this type have not been found
to lead to tractable estimator designs. The integral inequality (16) is
a weaker condition, but leads to straightforward estimator equations.
Furthermore, this uncertainty description allows for nonlinear and
time-varying uncertainties.

For a moment we regard only the nominal case: k = 0; afterwards,
the model uncertainty comes back into consideration.

If the target accelerates randomly with a variance of σ 2
a and a

bandwidth p, then the variance of the white-noise input to the Singer
model is σ 2

w = 2σ 2
a /p. The covariance matrices of the measurement

noise and disturbance terms are then

)v =

[
σ 2

r 0

0 σ 2
λ (x̂)

]
, )w =

[
σ 2

w 0

0 σ 2
w

]

These noise inputs can be combined in an integral quadratic con-
straint, so that each noise input contributes an equal amount to the
left-hand side of the inequality:

∫ s

0

wm(t)′)−1
w wm(t) + v(t)′)−1

v (t)v(t) dt ≤ d (17)

Because wm and v are random, different values of d will represent
different level sets of a probability density function. A robust ex-
tended Kalman filter with this IQC would have exactly the same
equations as a standard extended Kalman filter.

The key advantage of the IQC framework, however, is that allows
us to combine uncertainties that come from exogenous sources (in
our case, measurement noise and target maneuver) with those which
are state dependent (maneuver-model uncertainty).

In reintroducing the model uncertainty, we again form weighting
matrices so that each uncertainty signal contributes an equal amount
to the left-hand side of the IQC. So to include the model uncertainty,
we need to know relative sizes of wu and wm . Let q = σ 2

u /σ 2
w be their

ratio. This can be arrived at by experimental studies, or theoretical
models. Then all of the uncertainty in our system can be included
in a single integral quadratic constraint:
∫ s

0

w(t)′ Qw(t) + v(t)′ R(t)v(t) dt ≤ d + α

∫ s

0

z(t)′z(t) dt (18)
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where

Q−1 = )w(1 + q), R−1 = )v

and

α = 1
/

σ 2
w(1 + q)

We assume that the filter gets information on the missile velocity vM
from an inertial navigation system unit. It would be straightforward
to account for errors on this signal, but in this study we assume they
are slight enough to be neglected.

The following equations describe the complete dynamical model
for the filter:

ẋ(t) = Aex(t) + BvvM (t) + Bww(t) (19)

y(t) = C[x(t)] + v(t) (20)

z(t) = K x(t) (21)

where

Ae =




02,2 I2 02,2

02,2 02,2 I2

02,2 02,2 −pI2



 , Bv =




−I2

02,2

02,2





Bw =




02,2

02,2

pI2



 , K = [02,4 k I2]

C(x) =

[ √
x2

1 + x2
2

tan−1(x2/x1)

]

Then the robust extended Kalman filter for the systems (19–21),
subject to the IQC (18), is given by the following equations, where
time dependence has been omitted for the sake of brevity:

x̂(0) = x0

˙̂x = Aex̂ + BvvM

+ P{∇x C(x̂)′ R(x̂)[y − C(x̂)] + αK ′K x̂} (22)

where P(t) is the solution to the matrix Riccati differential equation:

P(0) = 06,6

Ṗ = P A′
e + Ae P + Bw Q−1 B ′

w + P[αK ′K

− ∇x C(x̂)′ R(x̂)∇x C(x̂)]P (23)

Simulation Results
In this section we present the results of some computer simula-

tions, chosen to test the performance of the guidance law (2), (12),
and (13), based on the state estimate (23) and (23).

We assume that the missile goes blind upon coming within 10 m
of the target and holds the control signal equal to what it was outside
this ball.

In these simulations, the miss distance is defined as the smallest
range attained between missile and target, and the angle error is
defined in terms of relative positions at the time τ when r(τ ) = 10 m:
angle error ε(τ ) (see Fig. 2).

The numerical values listed in Tables 1 and 2 were used in all the
simulations except where otherwise noted.

The simulation results plotted in Fig. 3 show the performance
of CNG over a wide range of desired impact angles. These ranged
from β = −160 deg (nearly head on), through tail on (β = 0), up to
+160 deg. In all cases the missile started from a position behind
the tail of the missile. The black bar chart shows the percentage of
intercepts that also achieved miss distance less than 5 m and angle

Table 1 System variables

Variable Value

x(0) [866 500 600 0 − 25 97]′

β −165 deg
cM 600 m/s
cT 100 m/s
b 400
a 32
K1 [26.5 − 0.158 0.0384]
Q1 diag[1e5 1e2 0]
R1 1

Table 2 Noise and uncertainty values

Variable Value

σ 2
a 20 m2s−4

σ 2
f 0.1 rad2

σ 2
rn 1e − 11 rad2/m4

σ 2
g 10 rad2m2

σ 2
r 4 m2

au 5
bu 10
q 2.5e − 3
p 0.2 s−1

k 0.5

Fig. 2 Geometry for calculation of angle error.

Fig. 3 Percentage of intercepts achieving angle error 5 deg, and miss
distance 5 m (black) and 2 m (gray).
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Fig. 4 Miss distance vs noise multiplier.

Fig. 5 Angle error vs noise multiplier.

error less than 5 deg. The gray bar chart in front shows those that
also achieved a miss of less than 2 m.

Good performance was achieved over nearly the full range of
angles, but it is clear that the law performs particularly well when
β is around ±90 deg, that is, when the missile is to hit the target
from the side. We hypothesize that a reason for this is that the target
maneuvers are orthogonal to its velocity, so that the missile sees
them multiplied by the cosine of the approach angle.

We now take a more detailed look at a particularly difficult impact
angle, β = −165. The initial conditions are as in Table 1.

In Fig. 4 and 5 are the miss distances and angle errors over a range
of measurement noise levels. That is, all values were as in Table 2,
except the noise covariances σ 2

f , σ 2
rn, σ 2

g , σ 2
r were scaled by a factor

between zero and five. As can be seen, both angle error and miss
distance increase mildly as does the noise multiplier. The dotted
lines represent standard deviations, which also increase mildly.

Similar plots are shown in Figs. 6 and 7, in which it was the ma-
neuver covariance σ 2

a from Table 2 that was scaled by factor varied
from zero to five. Again, both the means and covariances increase
mildly with the scaling factor. Of course, the relative susceptibilities
of the filter to maneuvers, and to measurement noise, can be traded
against one another by tuning the relevant covariance matrices.

The same studies were performed for various autopilot models
with the bounds prescribed. It was found that there was very little
difference. The reason for this is that, after an initial transient to reach
the nominal circular path, the missile’s acceleration is essentially
constant, and so autopilot-model uncertainty has little effect. If the

Fig. 6 Miss distance vs maneuver multiplier.

Fig. 7 Angle error vs maneuver multiplier.

range of possible autopilots included systems with nonunity gain, a
greater effect would be seen.
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I. Introduction

D IGITAL flight-control systems can be obtained via digital re-
design; that is, a known continuous-time (CT) autopilot is con-

verted to discrete time (DT) for digital implementation. With digital
redesign, the DT controllers are obtained either by discretizing the
individual CT controllers1 or by using a sophisticated method that
takes into account the closed-loop topology and the dynamics of
the system under control.2 The availability of a CT control sys-
tem prior to the selection of the sampling rate for digital control
is a key feature of digital redesign. However, the selection of the
sampling rates is constrained by the hardware selected for control,
sensing, and actuation.3 With single-rate DT systems, a high sam-
pling rate is usually needed to guarantee closed-loop stability and
performance, although, in practice, it may be inappropriate due to
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the risk of numerical errors and the unavailability of converters of
sufficiently high resolution and computers of appropriate processing
power, especially when design constraints on size, mass, and power
consumption are present. Multirate sampling can be used to optimize
the allocation of processing power and to allow greater flexibility in
the design of multichannel, multiloop autopilots. Using plant-output
sampling and control-input update at different rates can provide bet-
ter trade offs between performance and implementation costs; for
instance, a dual-rate control synthesis and implementation scheme
makes it possible to effectively handle multiple dynamic scales and
constraints on hardware effectively.4

This note proposes an optimal dual-rate digital-redesign method
that can be applied to CT and high-rate DT control systems. Briefly,
given the existence of a CT control system, or of a fast DT control
system, a DT H2 optimal-control problem is solved to convert the
known control system to either a low-rate or a dual-rate digital con-
trol system in a way that guarantees closed-loop stability and perfor-
mance in the DT H2 sense. The idea of performing digital redesign
using the H2 method on the closed-loop system comes from Ref. 5,
although the methods presented there yield single-rate digital control
systems. In this Note, the proposed dual-rate digital-redesign tech-
nique results in digital control systems that have satisfactory closed-
loop performance over an extended range of sampling rates, as com-
pared with other widely used methods of digital redesign. Interest-
ingly, the proposed dual-rate digital redesign applies to single- and
multiloop systems. Furthermore, the proposed method of digital re-
design makes use of generalized holds and samplers of the dual-rate
type, thereby providing an added level of flexibility.6 The proposed
dual-rate digital-redesign technique is, however, constrained by the
specific requirements that arise when a DT H2 problem is solved.

II. Optimal Dual-Rate Digital Redesign
A. Assumptions

Assumption 1: The uniform sampling periods are h (low rate of
1/h Hz) and T (high rate of 1/T Hz). The periods are related as
follows: h = N · T , N ∈ Z+, where Z+ is the set of positive integers.
T is chosen to be nonpathological7 with respect to the plant transfer
function.

Assumption 2: The hold device H and ideal sampler S, which can
each take a period equal to T or h, are synchronized at time t = 0.
The hold has a bounded response to a unit DT impulse input and does
not introduce any discrete zero into the hold-equivalent model of the
plant, which cancels a pole of the plant model at nonpathological
T values.8 For example, the zero-order hold (ZOH) satisfies this
condition.

Assumption 3: Dual-rate digital redesign is performed with the
objectives of preserving the step-input tracking performance6 and
the step-disturbance rejection property of the CT (or fast DT) closed-
loop system.

B. Proposed Method
1. Step 1: Fast Discretization of CT Control System

Suppose that the control system to be redesigned is as shown in
Fig. 1a. The CT control system provides satisfactory closed-loop
performance. The CT plant Ḡ(s) may comprise actuator and sensor
dynamics. Precede Ḡ(s) by a hold device H and place the ideal sam-
pler S at the output of Ḡ(s). H and S are synchronized at the high rate
of 1/T . The transfer function of SḠ H is given by G(z, T ). Proceed
similarly for controller C̄(s). Then there results a fast, single-rate

a)

b)

Fig. 1 Control system: a) CT and b) DT obtained by fast discretization.


