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Abstract— We propose an algorithm for design of optimal
inputs for system identification when amplitude constraints
on the input and output are imposed. In contrast to input
design with signal power constraints, this problem is non-convex
and non-smooth. We propose an iterative solution: in the first
step, a convex optimization problem is solved for input design
under power constraints. In subsequent steps, the constraints
considered are the p-norms of the input and output signals, p

increases for each iteration step. This is an adaptation of the
classical Pólya algorithm for function approximation, which
has previously been used for the related problem of signal
crest-factor optimization. Although the difficulty of the problem
prevents a proof of optimality, the performance of the algorithm
is discussed with reference to a simple example.

I. INTRODUCTION

System identification is the process of computing a mathe-

matical model of a real-world system based on experimental

input-output data. In many cases, though not all, the input to

the real-world system can be chosen with some freedom.

Ideally, the input should be chosen to maximize model

quality, whilst minimizing experiment time or disturbance

to the system’s operation.

Over several decades, a large body of literature has devel-

oped on the topic of optimal experiment design (e.g. [1], [2]).

Computationally speaking, the most powerful techniques are

based on the recognition that, for a linear system, the inverse

of the error covariance matrix is an affine function of the

input power spectrum. One can also choose constraints that

are affine functions of the input spectrum, and furthermore

the input spectrum can be affinely parametrized in various

ways. In this way, optimal input design can be character-

ized as a convex optimization problem, for which efficient

computational tools are readily available [3].

In this framework it is natural to consider power con-

straints on the input; frequency-by-frequency amplitude con-

straints can also be imposed. Unfortunately, in many practical

cases, the real constraint is the peak amplitude of the input

or input of the system. The peak value of a signal on the

particular realization of its power spectrum: not just the
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power of each frequency but phases as well. The relationship

between phases and peak amplitude is highly non-linear

and non-smooth, making optimization under amplitude con-

straints computationally challenging. Nevertheless, practical

applications render the problem worth considering.

A closely-related task is that of multi-sine crest-factor op-

timization: a signal with a particular discrete power spectrum

is desired, and the realization, i.e. phases, should be chosen

so that the peak amplitude is minimized [4]. The “crest

factor” or “peak factor” is the ratio of the peak amplitude

to the power. Again, this problem is highly non-convex and

non-smooth, and no general solution is known. However, an

iterative algorithm related to the classical Pólya algorithm

of function approximation was proposed [5] and showed

impressive results.

In this paper, we propose adapting the approach of [5] to

the problem of amplitude-constrained input design, whilst

taking full advantage of the computational advantages of

power-constrained input design. Roughly speaking, our ap-

proach is: perform a power-constrained optimization, then it-

eratively move towards the peak-amplitude-constrained prob-

lem by considering signal p-norms as p goes from 2 to

infinity. We consider design of a periodic signal expressed

as a multisine.

A. Motivating Application

Some medical diagnostic tasks are expressible as system

identification problems. In particular, the author was drawn

to the present problem through work in identification of the

cerebrospinal fluid system [6], [7], [8], [9]. In this procedure,

fluid is pumped through a needle into the patient’s intracra-

nial cavity with a pre-defined flow pattern and pressure

recordings are taken with another needle in order to detect

abnormalities in the absorption and fluid dynamics, which

can be an indicator of a disease known as hydrocephalus.

For patient comfort and efficient use of hospital resources,

it is important to minimize the time spent performing the

procedure (times can be upwards of an hour). However, it is

critical that safe pressure levels in the brain cavity are not

exceeded. Hence we have an optimal input design problem

with signal amplitude constraints.
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B. Paper Organization

In the next section we define some notation used through-

out the paper. In Section 3 we give the mathematical problem

statement. In Section 4 we discuss preliminary matters re-

lating to system identification, experiment design, and crest-

factor optimization. In Section 5 we give the algorithm which

is the main contribution of this paper. In Section 6 we discuss

the results of the algorithm on some simple examples. In

Section 7 make some brief conclusions and discuss future

work.

II. NOTATION

For a periodic discrete-time signal of period N , we make

use of the following standard norms:

• The peak value over the period:

‖x‖∞ = max
t=0,1,..,N

|x(t)|

• The p−norm, for p ≥ 2:

‖x‖p =

(

1

N

N
∑

t=0

|x(t)|p
)1/p

which we refer to as “power” for the case p = 2.

III. PROBLEM STATEMENT

We consider single-input single-output linear time-

invariant systems of the form1:

y = G(z, θ)u + H(z, θ)e (1)

where e is a Gaussian white noise with variance σ2
e , and u

is a control signal which may be chosen by the designer,

and G and H are rational transfer functions depending on

some parameter vector θ. The aim is to estimate θ from

experimental records of u and y. It is assumed that the model

set contains the true system, i.e. there exists a θ0 such that

relation 1 holds with θ = θ0.

Let Pθ be the expected covariance of θ given a prediction-

error estimation. Then we consider the following optimiza-

tion problem: to search for a signal u(t) such that

Pθ → min,

subject to ‖u‖∞ ≤ umax,

‖y‖∞ ≤ ymax,

where some scalar function of Pθ

IV. PRELIMINARIES

A. Input Design

Optimal input design for system identification has a sub-

stantial history beginning in the 1970’s, as a marriage of the

theories of linear systems and statistical experiment design

(see, e.g., [1], [2]). There has recently been renewed interest

in optimal input design as it has become clear that many

problems can be solved efficiently by methods of convex

optimization (see, e.g., [3], [10]).

1We will often drop the z argument for G and H for the sake of brevity

The usual formulation of an optimal input design is as

follows: minimize some scalar function of the parameter

estimate covariance Pθ, subject to some conditions on the

input signal, and possibly the system output signal. A dual

approach is to minimize in some sense the size of the input

signal, whilst satisfying constraints on the model quality

[10], although it has been shown that these approaches are

essentially equivalent [11]. In this paper this paper we will

only consider the first approach, however our method can

clearly be adapted to the dual approach.

In the prediction-error framework [2], the inverse of the

covariance matrix of the parameter estimate approximated

asymptotically by

P−1 ∼= M =
N

2π

∫ π

−π

F(ejω, θ0)Φ(ω)F∗(ejω, θ0)dω

with F representing the sensitivity of the prediction error to

changes in the parameter vector, close to θ0:

F(z, θ0) = H−1(z, θ0)

[

∂G(z, θ0)

∂θ

∂H(z, θ0)

∂θ

]

and the joint input-disturbance spectrum

Φ(ω) =

[

Φu(ω) Φue(ω)
Φue(ω)∗ σ2

e

]

.

In this paper we will consider only open-loop experiments,

for which Φue = 0. These expressions are, in general, only

true asymptotically.

Several reasonable optimization criteria exist for the ma-

trix M such as the determinant, trace, and the smallest

eigenvalue. In this paper, we will consider in particular the

objective function

J = det(M)1/n (2)

where n is the dimension of M . This function is concave in

M and since M is affine in the input power spectrum Φu

which can be freely chosen, the optimization problem is to

maximize a concave function of the decision variables.

At present the problem is infinite dimensional, however.

To render it finite-dimensional, a finite affine parametrization

of Φu must be chosen. If a periodic input signal is desired,

then a fourier series truncated at a certain reasonable fre-

quency presents a natural choice. Aperiodic signals can be

affinely parametrized by either finite dimensional or partial

covariance forms [3] though we do not consider this further

here.

In this paper we restrict our attention to inputs of the form:

u(t) =

nf
∑

i=1

Ai cos(ωit + φi)

The frequencies ωi are assumed predefined, and integrally

related. The amplitudes Ai and phases φi are the design

variables.

By Parseval’s relation, the power of the signal u(t) can be

written in terms of the amplitudes alone:

lim
N→∞

1

N

N
∑

t=1

u(t)2 =

nf
∑

i=1

A2
i

2
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if N is an integer number of periods of the fundamental

frequency of the multisine. Hence the power of a multisine

signal is affine in the input spectrum.

B. Crest-Factor Optimization

In many applications, such as communications, radar,

and sonar, one would like to minimize the peak-to-peak

amplitude of a signal having a certain pre-defined power

spectrum [4]. This is known as crest-factor optimization, or

sometimes peak-factor optimization.

The crest factor of a signal u(t) is defined as

CF :=
‖u(t)‖∞
‖u(t)‖2

i.e. the ratio of its peak value to its power.

Often this problem is considered in the case where u(t) is

a multisine [4], [12], [13], [5] with given amplitudes Ai. The

power ‖u(t)‖2 does not depend on the phases φi, and so the

crest-factor optimization problem is equivalent to choosing

the phases so as to minimize ‖u(t)‖∞.

Unfortunately, this problem is highly nonlinear, non-

convex and non-smooth. There is no known algorithm guar-

anteeing a global minimum, except in the simplest cases

where a search over all possible phases is feasible.

The first widely applicable algorithm was given by

Schroeder [4]. Schroeder’s formula is straightforward to

compute, and is based on the intuition of considering a signal

that switches between its component frequencies, rather than

sums them, and deriving approximate phase angles from this.

C. Pólya Algorithm for Crest-Factor Optimization

The Pólya algorithm is a classical method for computing

∞-norm optimal function approximations. The idea is to

consider p-norm optimizations, and iterate with increasing

values p until a sufficient approximation is found, based on

the fact that

lim
p→∞

‖x‖p = ‖x‖∞.

If one can find the optimal p-norm approximation at each

step, then under certain conditions the algorithm is guaran-

teed to converge to the ∞-norm optimal approximation [14].

Guillaume and co-workers applied this algorithm to the

problem of crest-factor optimization [5]. The phases given

by Schroeder’s algorithm were chosen as a starting point,

and then ‖u(t)‖p was optimized for increasing values of p.

Since each step is a nonlinear optimization, typically a good

initial guess is required. Using the Pólya algorithm, each step

in the optimization uses the output of the previous step as

its initial condition.

Unfortunately, due to the highly complex way in which

phases effect the shape of a signal, optimal solutions for the

intermediate p-norm stages cannot be guaranteed, and hence

the algorithm is not certain to converge to a global minimum.

Despite this, comparisons with the Schroeder phases and

previous algorithms for crest-factor optimization showed it

to give impressive results. To the author’s knowledge it is the

best presently-known algorithm for crest-factor optimization.

V. THE ALGORITHM

The algorithm we propose in the present paper can be

considered as an extension of the crest factor optimization

algorithm of [5].

However, rather than the Pólya algorithm being applied

to the objective function, in our algorithm it is applied to

the constraint equations. For every iteration, the objective

function remains that given in (2). So we consider a sequence

of constrained optimization problems, the output of each

becoming the initial guess for the next nonlinear optimization

problem.

Step 1: Convex Optimization

Optimize power spectrum subject to power constraints:

λ∗ = arg max
λ

det(P−1(λ))1/n,

subject to
∑

i

λi ≤ 2u2
max,

∑

i

|G(ejωi)|2λi ≤ 2y2
max,

λ∗

i ≥ 0 ∀ i.

The initial amplitudes are chosen as A1,i =
√

λi

Initial phases are chosen according to Schroeder’s formula

[4]:

φ∗

1,j = −2π

j−1
∑

l=1

(j − l)λl.

Step k = 2, 3, 4... : Iterate Nonlinear Optimization

Define the following constraint functions:

fu,p(A,φ) := ‖u(A,φ)/umax‖p
p,

fy,p(A,φ) := ‖y(A,φ)/ymax‖p
p,

with p = 2k. Take output of the previous step, rescaled to

fit the constraints:

Âk =
A∗

k−1

max[fu,p(A∗

k−1, φ
∗

k−1), fy,p(A∗

k−1, φ)∗k−1]
,

φ̂k = φ∗

k−1.

Perform the following nonlinear optimization with Âk, φ̂k as

an initial guess:

A∗

k, φ∗

k = arg max
A,φ

det(P−1(A))1/n

subject to

fu,p(A,φ) ≤ 1,

fy,p(A,φ) ≤ 1.

Iterate until an acceptable design is obtained. �
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A. Derivatives

An advantage of the formulation we have chosen is that an-

alytical derivatives of the objective and constraint functions

can be derived, which can speed up nonlinear optimization

algorithms.

The derivative of the objective function is given by:

∂J

∂Ai
=

1

n
(det(M))(1/n−1) det(M)Tr

(

M−1 ∂M

∂Ai

)

(3)

where

M = P−1(A),
∂M

∂Ai
= 2AiF diag(ei)F∗, (4)

where ei be a vector of length nf which is all zeros, except

for its ith term, which is 1.

Since the information matrix does not depend on phases,

we have
∂J

∂φi
= 0.

To compute the derivatives of the constraints, we note that

since p is a multiple of 2, can write the constraint functions

as:

fu =
1

N
ηT

u ηu, fy =
1

N
ηT

y ηy.

with

ηu(t) := u(t)q/uq
max,

ηy(t) := y(t)q/yq
max,

and q = p/2. Then we have

∂fu

∂Ai
=

2

N
ηT

u

∂ηu

∂Ai
,

∂fu

∂φi
=

2

N
ηT

u

∂ηu

∂φi
,

∂fy

∂Ai
=

2

N
ηT

y

∂ηy

∂Ai
,

∂fy

∂φi
=

2

N
ηT

y

∂ηy

∂φi
,

with

∂ηu

∂Ai
(t) = quq−1 cos(ωit + φi),

∂ηu

∂φi
(t) = −quq−1Ai sin(ωit + φi),

∂ηu

∂Ai
(t) = qyq−1|G(ejω)| cos[ωit + φi + ∠G(ejω)],

∂ηu

∂φi
(t) = −qyq−1|G(ejω)|Ai sin[ωit + φi + ∠G(ejω)].

B. Modification to Improve Convergence

It may occur that the power-constraint optimal result of the

initial convex optimization has many amplitudes Ai equal to

zero. In particular, it is well known that the optimal input

for an LTI system with power constraints on the input alone

is the sum of a finite number of sinusoids (see, e.g., [15]).

If Ai = 0, then it is clear from Equations (3) and (4) that

the derivative of the objective function with respect to Ai

is zero. As such, a numerical optimization algorithm may

not search along this dimension, despite the fact that the

objective function – which is to be maximized – in fact

increases with increasing Ai.

This being the case, we have found that with some

numerical optimization packages more reliable convergence

can be obtained if, instead of setting

Âk =
A∗

k−1

max[fu,p(A∗

k−1, φ
∗

k−1), fy,p(A∗

k−1, φ)∗k−1]
,

one sets

Âk =
A∗

k−1 + ǫ1

max[fu,p(A∗

k−1, φ
∗

k−1), fy,p(A∗

k−1, φ)∗k−1]
,

where ǫ is a small positive number and 1 is a vector of all

ones.

VI. ILLUSTRATIVE EXAMPLE

To illustrate the algorithm, we consider a optimizing the

input for a simple output-error structure:

y = G(θ)u + e

in which θ is a scalar parameter and

G(θ) =
1 − θ

z − θ

corresponding to a first-order low-pass filter with DC-gain

of 1 and a bandwidth of − log θ. We set θ0 = exp(−0.1) ≈
0.905 for a bandwidth of 0.1 rad/s. For this example, we set

ǫ = 10−2.

The convex optimization was performed using CVX [16],

[17] and the nonlinear optimizations in the remaining stages

were performed using the MATLAB optimization toolbox.

For this system

F(z, θ) =
−z + 1

z2 − 2θ + θ2

In the case of a scalar parameter θ, the objective function

reduces to

J = det(P−1
θ )1/n =

1

σ2
θ

where σ2
θ is the asymptotic variance of the estimate of θ.

The input is to be optimized subject to the constraint

‖u‖∞ ≤ 1.

The input u(t) was parametrized as a multisine having

frequencies 0.01k rad/s, where k = 1, 2, ...30.

It is well known that the optimal input for such a system

under input power constraints is a pure sinewave with a

frequency equal to the bandwidth of the system [1]. Indeed,

this is what is found as a result of the first step in the

algorithm. The final step computed, corresponding to p = 60,

appears closer to a square wave, see Figure 1. Clearly as a

square wave allows the signal to have more power at the fun-

damental frequency than a sinewave of the same amplitude,

and furthermore the additional frequencies contribute further

information. The spectra of the initial and final stages are

plotted in Figure 2.

To evaluate the gain in information each iteration’s com-

puted input signal was rescaled so that it satisfies ‖u‖∞ ≤
1, and the resulting asymptotic error covariance σ2

θ was

computed. This is plotted in Figure 3. Note that, between the
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Fig. 1. Optimal input signals for ‖u‖p < 1 with p = 2 and p = 256.
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Fig. 2. Optimal input power spectra for p = 2 (◦) and p = 156 (+).

first and last iteration, a 38% reduction in error covariance

has been achieved.

A simpler approach to amplitude-constrained input design

might be the following:

1) calculate a multisine input power spectrum using con-

vex optimization, assuming power constraints;

2) choose the sinewave phases using a crest-factor opti-

mization routine, such as [4], [5].

3) rescale the input so that the amplitude constraints are

satisfied.

However, it is clear from Figure 2 that such an approach

would not be successful for this example. The result of

stage 1 would have a single sinewave, and hence stage 2

would be superfluous, and from the results in Figure 3 the

error covariance would be significantly greater than what is

possible.

The essential difference in our strategy is that at each

stage, a coupled optimization is performed on both the

amplitudes and phases.
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Fig. 3. Expected covariance of the estimate of θ for optimizations with
different p.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have approached the problem of de-

signing an optimal input signal for system identification,

with amplitude constraints on the input and output signals.

The algorithm we have proposed is modelled on the Pólya

algorithm of function approximation, in which an ∞-norm

is approached by successive p-norm approximations.

Due to the highly nonlinear, nonconvex, and nonsmooth

nature of the problem, one cannot prove that the algorithm

will always converge to the global optimum. Thus its per-

formance must be established over application to a series of

real problems. In this paper, we have proposed the algorithm,

and shown its performance with a simple example. In this

case, it seems to have converged close to a true optimum.

Other examples will be considered in the future.

It is clear from the example that results obtained by our

algorithm are better than could be obtained by separately

considering power-constrained optimization and crest-factor

optimization.

As mentioned in the introduction, the motivation for

studying this problem was an application in neurological

diagnosis that can be expressed as a system identification

problem [6]. As such, immediate future work will be on

adapting this algorithm to that problem. In particular: the

effect of feedback in the system will need to be investigated.
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