
Computing and Fabricating Multilayer Models

Michael Holroyd
University of Virginia

Disney Research Zürich

Ilya Baran
Disney Research Zürich

Jason Lawrence
University of Virginia

Wojciech Matusik
MIT CSAIL

Disney Research Zürich

Abstract

We present a method for automatically converting a digital 3D
model into a multilayer model: a parallel stack of high-resolution
2D images embedded within a semi-transparent medium. Multi-
layer models can be produced quickly and cheaply and provide a
strong sense of an object’s 3D shape and texture over a wide range
of viewing directions. Our method is designed to minimize visi-
ble cracks and other artifacts that can arise when projecting an in-
put model onto a small number of parallel planes, and avoid layer
transitions that cut the model along important surface features. We
demonstrate multilayer models fabricated with glass and acrylic
tiles using commercially available printers.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface,
solid, and object representation

Keywords: multilayer models, fabrication, volumetric displays

Links: DL PDF WEB

1 Introduction

We describe a method for converting digital 3D models into multi-
layer models. Our work is inspired by artists like Carol Cohen1 and
Dustin Yellin2 who reproduce three-dimensional forms by painting
on glass or acrylic sheets and then stacking them together (Fig-
ure 2). A multilayer model thus consists of a small number of high-
resolution 2D images stacked along the 3rd dimension, and creates
a natural 3D effect by displaying parts of the object at the appropri-
ate depth over a range of viewing directions.

There is no substitute for the experience of holding and examin-
ing a physical 3D object in your hands. Technologies capable of
manufacturing 3D objects have seen significant advances in recent
years, most notably 3D printing [Dimitrov et al. 2006] and multi-
axis milling. However, despite these advances, producing a 3D pro-
totype in full color remains expensive and time-consuming. Fur-
thermore, objects with thin features and disconnected parts (e.g.,
the tree in Figure 14) cannot be printed at all using existing tech-
niques. In contrast, a multilayer model (as in Figure 1) can be fab-
ricated in minutes and for a fraction of the cost and provides many
of the benefits of a physical replica.

1carolcohen.com
2dustinyellin.com

Figure 1: A real object next to a multilayer model fabricated in
acrylic using our proposed algorithm.

The process of converting a 3D surface into a multilayer model re-
quires a number of algorithmic advances in order to produce high-
quality output. First, we observe that a naı̈ve projection of the in-
put surface onto multiple parallel planes creates artifacts caused by
visible seams or cracks and salient features being split between dif-
ferent layers. We propose a novel algorithm that warps each layer
based on the way it is occluded by the layers above it in order to
avoid these seams while simultaneously seeking cuts along tex-
tureless regions. Second, the shadows that each layers casts onto
those below it can undermine the intended 3D effect. We describe a
fast method for computing a correction factor that compensates for
these shadows. Finally, one also needs to consider the contrast loss
caused by light absorption in the embedding medium (e.g., glass
or acrylic). We propose a simple measurement process to estimate
parameters of an analytic absorption model. Based on this model,
we restrict the colors printed on each layer to a reduced color gamut
that can be achieved throughout the volume.

We show multiple examples of multilayer models produced with
our prototype system. Additionally, we include a comparison of
our method to simple alternatives that illustrate the importance of
properly handling cracks, seams, self shadowing, and volumetric
attenuation. We believe multilayer models can serve as useful rapid
prototypes, teaching aids, art, and personalized memorabilia.

2 Related Work

Volumetric Glass Models A source of inspiration for this work
are artists who use stacks of painted glass or acrylic sheets to create
three-dimensional forms (Figure 2). This stunning art makes it ap-
parent that they have overcome similar technical challenges to the
ones we address in this work. A related computer-driven technique

Figure 2: Our work is inspired by artists who use stacks of painted
glass to reproduce three-dimensional forms. Left: Carol Cohen,
Head With Halo (1989) Slumped glass, Paint, 12” x 16” x 12”.
Right: Dustin Yellin, Gold Skull Magnus, No. 1 (2009) Resin,
Acrylic, and Ink, 18” x 13” x 12.125”. Images reproduced with
the permission of the artists.

is laser-etched glass [Troitski 2005; Wood 2003]: a focused laser
beam creates tiny fractures at specific 3D points in a glass cube,
causing them to scatter light. This can produce very precise and
high-resolution point clouds, but is limited to monochrome repre-
sentations. Furthermore, the machines used for this type of etching
are bulky, expensive, and slow.

3D Printers The most common method of rapid prototyping is
additive 3D printing [Dimitrov et al. 2006], which constructs ob-
jects by depositing and accumulating layers of material. Today
there are a wide range of commercially available devices, ranging
from high-end machines like ZCorp’s ZPrinter 650 that can print
full color (but weigh a third of a ton and cost tens of thousands
of dollars) to single-material low-end desktop printers. However,
producing high-resolution 3D color prototypes is still prohibitively
expensive and time consuming for many people. Furthermore, even
when cost is not an issue, these printers cannot fabricate certain 3D
content including objects with very thin features, non-watertight
surfaces, or multiple disconnected components.

3D Displays There is an expanding terrain of 3D displays that fall
into two basic categories: stereoscopic displays and volumetric dis-
plays. Although 3D displays are able to present dynamic content,
which is not possible with our approach, we believe that some of
the techniques described in this paper could be adapted to dynamic
multilayer displays in the future.

Stereoscopic displays create a 3D effect using only a 2D display by
ensuring that each of a viewer’s eyes sees a different image and ex-
ploiting the binocular cue of stereopsis (disparity). In general, these
displays require either special glasses or are optimized for a spe-
cific viewing position by using either parallax barriers or lenticular
sheets to control the projected light field (autostereoscopic). These
systems can produce high quality images, but have limited angular
resolution (e.g., full “walk arounds”) and are often unresponsive to
subtle head movements.

In contrast, volumetric displays can support many users simultane-
ously. They are also fully responsive to head movements and benefit
from the additional depth cues of motion parallax, accommodation,
and convergence. Despite these advantages, however, construct-
ing accurate high-resolution volumetric displays remains difficult in
practice. Current designs rely heavily on multiplexing in time, for
example with a high-speed rotating component that sweeps over the
volume of interest while emitting or reflecting synchronized light
patterns [Jones et al. 2007; Soltan et al. 1992; Favalora 2005].

The 3D displays most closely related to our work consist of mul-
tiple parallel high-resolution 2D display surfaces arranged at var-
ious depths relative to the viewer. This includes systems that su-
perimpose multiple 2D displays using beamsplitters [Tamura and
Tanaka 1982; Akeley et al. 2004], a stack of LCD panels [Gotoda
2010; Wetzstein et al. 2011], or that project light onto thin layers of
fog [Lee et al. 2008], parallel sheets of water droplets [Barnum et al.
2010], or shutter planes [Sullivan 2004]. In all of these cases, the
density and number of projection barriers is limited by cost or prac-
tical considerations such as projector placement and refresh rate.
Thus, the challenge is to create a convincing 3D effect while mask-
ing the discrete locations of the display surface.

Rendering Imposters Approximating a complex 3D shape with
a relatively small number of 2D images is a common technique used
to accelerate rendering [Schaufler 1998b; Schaufler 1998a; Decoret
et al. 1999]. This can be used to achieve an adjustable level of
detail in which distant complex geometry is replaced with these im-
posters to trade rendering quality for speed. Unlike the case consid-
ered here of fabricating static multilayer models, these techniques
rely on the ability to dynamically update the proxy images based
on viewing location and often use a collection of interpenetrating
planes at different orientations to minimize artifacts.

3 Computing Multilayer Models

Our goal is to compute a multilayer model that best captures the ap-
pearance of an input 3D digital model. We will use the term “pixel”
to refer to a discrete location within each layer that is addressable
with, for example, a printer. Our goal is to compute a color and
opacity at each pixel that best reproduces the appearance of an in-
put model. We assume that the size, position, and resolution of the
layers relative to the input model are known in advance.

In the case of volumetric data, this problem can be solved using
well understood resampling methods from volume rendering. On
the other hand, 3D surfaces present a unique set of challenges that
have not been addressed by previous techniques.

3.1 Surfaces

We assume that the position and orientation of the input surface
relative to the multilayer domain is defined in advance, so that each
pixel on each layer defines a 3D position in a common coordinate
system. In addition, we ignore view- and light-dependent aspects of
the surface appearance. The desired lighting and material properties
should be “baked” into a single RGB texture prior to applying our
algorithm. In practice, we render the input model under a constant
environment map and use the color as seen from a predetermined
camera location. We also assume a limited range of viewing angles
for our fabricated model. This is modeled as a cone with cutoff
angle θmax < 90◦, centered around a principal view direction (the
red cone in Figure 3), the front-facing view direction perpendicular
to the layer orientation. We typically use θmax = 45◦; the field of
view allowed by our approach is several times greater than that of
any autostereoscopic display.

3.1.1 Algortihm Overview

We compute a multilayer model from front to back, finalizing each
layer before moving on to the next one. First, we compute a projec-
tion of the surface onto each layer that avoids visible cracks within
the target viewing cone (Section 3.1.2). Second, we refine this as-
signment of surface locations to pixels in order to avoid splitting the
model along salient features (Section 3.1.3). Third, we compute a
correction factor that compensates for the shadows that layers cast

onto one another (Section 3.1.4). Finally, we map the output col-
orspace of each layer into a reduced gamut that accounts for the
light attenuation inside the fabrication medium (Section 3.1.5). We
then proceed to the next layer and repeat these same steps.

Layer 1

Layer 2

3D Surface

camera

Figure 3: Left: Directly projecting each point on the input surface
to its closest pixel in a multilayer model results in seams visible
along off-axis viewing directions. Right: We compute the color
of each pixel by sampling the surface along the mean visible view
direction, v, computed over the cone of permissible view directions
(red). Examples of v at other layer pixels are shown along with the
location they intersect the mesh and associated color.

3.1.2 Geometric Warping

The most straightforward approach for converting a surface to a
multilayer model is to project the color of each surface location
onto its nearest pixel. However, this creates seams at off-axis view-
ing directions, as shown in Figure 4. Prior work on using imposters
for accelerated rendering addressed this problem by expanding the
range of depths projected onto each layer, or “overdrawing”, until
these cracks disappear [Schaufler 1998b]. However, this can result
in duplicated surface features visible at extreme camera angles and
distorted silhouettes, also shown in Figure 4. We propose an alter-
native solution that avoids these problems.

At each pixel in the current layer, we compute the mean visible
view direction, v, illustrated in Figure 3. This is equal to the av-
erage of the vectors that lie within the viewing region and are not
occluded by other layers. We then intersect v with the surface to
determine the pixel’s color. We experimented with alternative ray
directions such as the vector centered within the largest cone of un-
occluded directions, but v has the advantage of varying smoothly
from one pixel to the next. This avoids sharp transitions in the
colors printed on each layer (see Figure 7a) that would otherwise
produce distracting artifacts in the result. This approach is similar
to the use of “bent normals” often performed along with ambient
occlusion calculations [Landis 2002]: an environment map is sam-
pled in the average unoccluded direction. In our case, this sampling
strategy effectively stretches the content printed on each layer so
that there are no seams or cracks visible within the target viewing
region. Figure 4 compares our result with several other methods.

Fast Approximation of v A brute-force computation of v re-
quires O(L2N2) time for L layers and N pixels per layer (about 2
hours per layer with 1024×1024 resolution). Instead, we introduce
an efficiently-computable approximation for multilayer models: we
collapse all occluding layers onto a single flattened layer above the
current one. This is equivalent to computing the maximum opacity
value seen at each pixel along a ray perpendicular to the layer ori-
entation. As Figure 5 shows, using this flattened layer in place of
the true geometry provides a good approximation of the occlusion
in most cases, especially for roughly convex objects. With a single
planar occluder above the current layer, v can be formulated as a
convolution and therefore computed efficiently.

Let D be the thickness of a layer, or equivalently, the distance from

the current layer to the flattened layer B above. Recall that θmax

is the maximum angle between the principal view direction and a
direction in the viewing cone. We write v(x, y) (unnormalized) as
a spherical integral over the viewing cone:

v(x, y) =

∫ 2π

0

∫ θmax

0

V (x, y, θ, φ)

(
sin θ cosφ
sin θ sinφ

cos θ

)
sin θ dθ dφ,

where V (x, y, θ, φ) = B(x+D tan θ cosφ, y+D tan θ sinφ) is
the binary visibility function. We now make the variable substitu-
tion θ = cos−1(D/

√
x̂2 + ŷ2 +D) and φ = tan−1(ŷ/x̂). Then

the integral becomes:

v(x, y) =

∫∫ ∞
−∞

B(x+ x̂, y + ŷ)G(x̂, ŷ) dx̂ dŷ,

where

G(x̂, ŷ) =

(
sin θ(x̂, ŷ) cosφ(x̂, ŷ)
sin θ(x̂, ŷ) sinφ(x̂, ŷ)

cos θ(x̂, ŷ)

)
sin θ(x̂, ŷ)

∣∣∣∣ dθdx̂ dθ
dŷ

dφ
dx̂

dφ
dŷ

∣∣∣∣
for θ(x̂, ŷ) ≤ θmax and G(x̂, ŷ) = 0 for θ(x̂, ŷ) > θmax. The (un-
normalized) mean unoccluded vector can therefore be written as
B ∗ G, the convolution of the occluding layer with the three com-
ponents of the filter function G. We compute these convolutions
efficiently using the FFT, taking O(LN logN) time for all layers.
For layers with 1024 × 1024 spatial resolution, this optimization
reduces the cost of computing v at every pixel from hours with a
brute force approach to only 3-4 seconds.

3.1.3 Preserving Salient Surface Features

Discontinuities produced by a multilayer model occur at layer
boundaries. When these “seams” intersect salient surface features,
they can lead to visible artifacts (Figure 6). We address this prob-
lem by lifting the requirement that each point on the input surface
be projected onto its closest pixel. Instead, we allow surface fea-
tures to remain intact on a single layer at the expense of increasing
the distance between their location and the pixel onto which they
are projected. We achieve this by reformulating the assignment of
surface points to layer pixels as the solution to a graph-cut problem.

We model each pixel in the current layer as a node in a graph with
edges that connect it to its adjacent pixels and to a source and sink
node. After the cut is computed, any pixels that are connected to
the source will remain on the current layer whereas those connected
to the sink will be discarded (to be printed on a subsequent layer).

So that surface points prefer being printed on their closest layer,
the weights along the edges connecting each node to the sink and

Figure 5: A comparison between a reference ambient occlusion
solution of a simple multilayer model (left) and our approximation
that involves collapsing the occluding layers and using the FFT to
expedite the computation (right). These solutions typically show
very close agreement, especially for roughly convex objects.

Figure 4: This figure compares the results of several projection strategies, rendered at an oblique angle. From the principal view direction,
all five renderings look the same. From left to right: input model, projection to the nearest plane, alpha-weighted projection to the nearest
two planes, overdraw (1.5×) [Schaufler 1998b], mean visible view direction (our method).

source are set based on the distance between the pixel and its in-
tersection with the surface along the direction v. To avoid cutting
across important features, the edge weights between adjacent pixels
are based on a saliency map S computed using the output from the
previous step (Figure 7).

Let t be the signed distance along the ray that connects the center of
each pixel i to its nearest surface point along v. Note that t > 0 if
this nearest point is above the current layer and t < 0 if it is below.
We compute a saliency map S by convolving the current layer with
a difference of Gaussians (σ = 5, 1), but more complex saliency
measures are possible including those computed in 3D over the in-
put surface. Alternatively, S can be “painted” by the user to protect
surface features not easily captured by automatic methods. Edge
weights are assigned as follows:

Source

Sink

Pixels

e
i→sink =

{
|t| if t < 0
0 otherwise

ei→source =
{
0 if t < 0
t otherwise

ei→j = Si + Sj

We compute the minimum graph cut using the library provided by
Boykov and Kolmogorov [2001]. Pixels connected to the sink are
discarded from the current layer (made transparent) and will ap-
pear in a lower layer. Figure 7 shows an example input layer,
saliency map, signed distance field, and the resulting minimum cut.
Note that important surface features such as the eyes remain intact,
whereas surface points far from the current layer are removed.

3.1.4 Accounting for Shadowing Between Layers

Each opaque pixel potentially casts shadows onto the layers below.
As illustrated in Figure 8, these shadows can reveal the discrete
nature of a multilayer model and undermine the desired 3D illusion.
If we assume that the lighting environment is known a priori, we

Figure 6: (left) Artifacts occur when salient image features, such
as the bird’s eye, are split between neighboring layers. (right) We
solve a graph-cut problem that refines the projection of the surface
onto each layer in order to keep features intact on a single layer.

(a) (b)

(c) (d)

Figure 7: (a) Starting from the mean view direction projection of
the surface onto the current layer, we compute the minimum cut
of a graph designed to avoid splitting features between different
layers. (b) Image saliency, computed from the 2D projection, deter-
mines the edge weights between adjacent pixels. (c) Signed distance
from each pixel to the nearest surface location along v determines
the source/sink edge weights. (d) The minimum cut discards pixels
that are sampled from distant surface locations while avoiding cuts
across salient features such as the eyes and mouth.

can compensate for the shadowing at each pixel by adjusting its
brightness. Under a constant environment, this correction factor is
equivalent to dividing by the ambient occlusion at each pixel.

We efficiently approximate the ambient occlusion using the same
convolution strategy described in Section 3.1.2, but replace the fil-
terGwith a scalar cosine-weighted filter that accounts for the (n·l)
falloff. Figure 8 shows a global illumination rendering3 of a mul-
tilayer model before and after applying this correction factor based
on our approximation of a constant diffuse environment. Figure 9
illustrates that correcting using ambient occlusion is acceptable for
other low-frequency lighting environments.

3.1.5 Accounting for Absorption in the Fabrication Medium

Another important consideration is the way light is absorbed and
scattered by the fabrication medium itself (e.g., acrylic or glass).
This can reduce the contrast and brightness of layers near the
back of the model and lead to an uneven appearance. Inspired
by “airlight” models used for atmospheric correction [Nayar and

3Jakob, Wenzel. mitsuba-renderer.org

Figure 8: Global illumination renderings of the multilayer bird
model. (left) The dark bands around each layer are caused by shad-
owing and can disrupt the intended 3D effect. (right) We compen-
sate for this shadowing by increasing the brightness at each pixel
according to the ambient occlusion.

Figure 9: (left) The bird model after our shadow correction in the
Grace Cathedral environment. (right) The same model illuminated
by a small area lightsource that casts hard shadows. Our method
for shadow compensation breaks down under these types of high-
frequency lighting conditions.

Narasimhan 1999], we chose to fit the parameters of an analytic
function that predicts color desaturation as a function of the dis-
tance a ray of light travels through the medium. Our model ac-
counts for both the absorption of the medium as well as multiple
scattering. Specifically, we assume that an opaque pixel with color
K, when observed through our print medium with depth d, will
produce a color K′ = Ke−σd + A(1− e−βd), where A is known
as the “airlight” color and refers to the color of the medium itself
due to multiple scattering. We estimate the airlight color A, the
scattering coefficient σ, and the isotropic in-scattering coefficient β
by recording measurements of a printed color checker chart below
an increasing number of layers of our print medium.

The results we obtained for our materials are shown in Figure 10.
When using non-flatbed printers, we print onto thin acetate sheets
that are then attached to the surface of either acrylic or glass tiles
(Section 4.1). These graphs plot measurements and the resulting fits
with and without these acetate sheets. Because these functions flat-
ten out rather quickly, we found that reducing the gamut of just the
first few layers to compensate for the contrast loss of lower layers
was sufficient and avoids unnecessarily reducing the entire model’s
contrast to that of the back-most layer. We perform simple linear
rescaling to compress the gamut of the first three layers so that they
do not exceed the range of colors visible on the fourth layer. Within
this reduced gamut, we then solve for K, the color that we ulti-
mately print, in order to achieve an observed color K′. Figure 11
shows a printed model with and without this correction applied.

3.2 Volumes

For completeness, we describe a method for producing multilayer
models from volumetric datasets, such as those produced by a CT
machine, MRI machine, or density estimation simulation. For vol-
umetric data, assigning color and opacity values to the pixels in
each layer can be viewed as a classic resampling problem that has

Figure 10: Measured falloff in available gamut (circles) and our
airlight model fit (lines) as a function of the number of layers. Up-
per and lower lines represent the maximum and minimum apparent
color K′ that can be observed (red channel; other channels are
similar).

Figure 11: Left: A multilayer model printed using polycarbonate
and acetate sheets without accounting for attenuation and multi-
ple scattering. Right: The same model printed after applying these
corrections. This model is composed of seven layers of polycarbon-
ate with acetate sheets. Note how the brightness and contrast of the
front-most layers match the back layers in the corrected model.

been well studied in the past [Marschner and Lobb 1994]. We use
a simple linear filter that is anisotropic along the sparsely sampled
z-axis as shown in Figure 12. To improve performance, rather than
integrating over the filter’s domain at each pixel we instead forward-
project in parallel every voxel of the input onto its set of overlapping
pixels.

Our printouts are designed to be subtractive – the fabricated vol-
umes are backlit and the ink deposited at each pixel absorbs some
amount of light. All light passes through the same number of lay-
ers, thus we do not need to correct for attenuation through the print
medium. Fabricating emissive layers would require applying the
type of attenuation correction we use for surfaces (Section 3.1.5).

4 Results

We used three commercially available printers and a variety of
transparent media to fabricate multilayer models. Note that a max-
imum possible viewing angle can be determined from the index of
refraction of the embedding medium using Snell’s law (42◦ in the
case of acrylic, which has an index of refraction of η = 1.49).
This provides a natural way of determining the cut-off value of the
viewing region θmax. We ignored refraction otherwise because the

Figure 13: Left: Input model. Right: Four views of the corresponding 9-layer physical replicas constructed from lead-free glass.

Layer 1

Layer 2

Layer 3

Figure 12: We resample an input volume (light gray) using an
anisotropic linear filter (dark green). Instead of iterating over pix-
els in each layer, we iterate over voxels in the input and project
their values onto their surrounding layers (red).

effect is essentially equivalent to shifting the viewer position.

4.1 Surfaces

Fabricating multilayer surface models requires the ability to apply
opaque ink to a semi-transparent medium. Our initial prototypes
used an ALPS MD-5500 thermal printer to apply an opaque white
base coat followed by the desired layer colors in a second pass.
This particular printer cannot print directly onto glass or acrylic
and were therefore required to use thin flexible transparencies that
in our experience are of lower optical quality than glass or acrylic
tiles alone. We found that .005” thick acetate film transparencies are
sturdy enough for printing and sufficiently clear to produce good
results. We set the printed film between glass or acrylic tiles to

produce the final model.

We experimented with two different types of tiles. Borosilicate
glass tiles of size 4” × 4” × .125” required about 30 seconds of
printing time and cost $8 per tile. Polycarbonate acrylic came in
6” × 6” × .236” tiles and required roughly 2 minutes of print-
ing time and cost $2.60 per tile. We also had multilayer models
produced using a Durst flatbed UV printer, which can deposit ink
directly onto glass tiles. We used high quality lead-free glass to im-
prove the optical quality of our final models. In this case, 6” × 6”
tiles required 3-4 minutes per layer and cost $18 per tile.

Converting a 3D surface to a multilayer model using our system
takes between 5 to 45 seconds per layer, the majority of which is
spent calculating ray/geometry intersections.

Figure 1 shows a 7-layer polycarbonate model computed from a 3D
surface scanned from a real object [Holroyd et al. 2010]. Figure 14
shows a 10-layer polycarbonate model of a tree that has many thin
features and disconnected components, created using image-based
tree modeling [Tan et al. 2007]. This type of object would be impos-
sible to fabricate using an additive 3D printer or a milling machine.
Figure 13 shows several 9-layer models produced using lead-free
glass, along with renderings of the original models.

We chose the number of layers for each model manually. While
increasing the number of layers improves the quality of the final
model, it also increases the cost and printing time. Figure 15 shows
the bird model with 5, 9, and 17 layers, which corresponds to .118,
.236, and .472 inch thickness tiles respectively.

Figure 15: The input bird model (left) and the 5, 9, and 17 layer multilayer models (right) for two different views.

Figure 14: A 10-layer model of a tree constructed from polycar-
bonate and acetate sheets, viewed from approximately 20◦ above
the principal view direction. Objects with very thin features such as
this tree cannot be printed using additive 3D printers.

4.2 Volumes

For volumetric multilayer models, we used a DCS Direct Jet 1309
flatbed printer,4 which can print semi-transparent ink directly onto
100×100×3mm acrylic tiles. For 16-20 layer models, resampling
the original volume takes only a few seconds, and the entire printing
process requires approximately 20 minutes. We estimate the cost of
materials (acrylic and ink) to be $2.80 per tile.

Figure 16 shows an MRI volume dataset comprised of 170 slices
next to a 17-layer model fabricated with our system. We believe
multilayer models of volumetric datasets could serve as useful vi-
sualization aids and instructional tools.

4directcolorsystems.com

4.3 Limitations and Discussion

Our method produces compelling results in most of the cases we
tested, but has difficulty in others. The best results we obtained
were for primarily convex objects with varying surface texture,
which helps make seams less conspicuous. Long thin features that
cross multiple layers may cause cracks from certain views regard-
less of the warp applied (e.g., the lion’s rear right leg in Figure 13).
Additionally, hard directional lighting runs counter to our ambient
occlusion assumption as illustrated in Figure 9. Our method is also
limited to diffuse surfaces. An interesting area of future work is to
reproduce directionally-dependent appearance in multilayer mod-
els.

An alternative approach to our layer-by-layer algorithm would be
to solve a global optimization over all layers simultaneously. The
challenge in that case is defining an objective function that cap-
tures our desired visual properties and can be computed in a feasi-
ble amount of time. One possible approach is to compute optimal
images in a least-squares sense over a discrete set of viewpoints.
This approach is taken by Wetzstein et al. [2011] who use a tomo-
graphic solver to match a target lightfield. Although this method
can achieve excellent results for small fields of view, it can lead
to overblurring when computed over larger fields of view due to
an insufficient number of degrees of freedom. Our method avoids
this problem by relaxing the requirement that multilayer models
match the 3D model in the least squares sense; it instead allows
the introduction of non-linear spatial distortions to accomodate the
objective.

5 Conclusion and Future Work

We have described a set of algorithms for converting 3D surfaces
and volumes into multilayer models. Our algorithm avoids visi-
ble cracks between layers, splitting surface features between layers,
and compensates for inter-layer shadows and light absorption in-
side the fabrication medium. We demonstrated a prototype system
for fabricating multilayer models that uses commercially available
printers with glass or acrylic tiles and demonstrated that these mod-
els are fast and inexpensive to construct. Our approach is approx-
imate but fast, allowing the user to interactively adjust the orienta-
tion of the object along with the number of layers before printing.

Figure 16: A MRI dataset fabricated using our volumetric resampling algorithm. Left: Traditional 170 slice rendering. Right: three views
of a printout formed from a stack of 17 acrylic tiles.

We plan to adapt these core algorithms to active multilayer dis-
plays, which could be achieved by assembling a series of parallel
transparent LCDs. The key issues we expect to face are how to
ensure temporal coherency between frames and how to achieve in-
teractive framerates. We also intend to study using flatbed printer
technology with a wider range of inks to create more compelling
and realistic printouts. Another consideration is the possibility of
modifying the surface geometry of individual tiles, for example by
milling the acrylic surface, to enable multilayer models with more
complex surface shading.

Acknowledgements

We wish to thank Dustin Yellin and Carol Cohen for granting us
permission to reproduce images of their art. We’d also like to thank
the CAVGRAPH and SIGGRAPH reviewers for their helpful and
constructive feedback.

References

AKELEY, K., WATT, S. J., GIRSHICK, A. R., AND BANKS, M. S.
2004. A stereo display prototype with multiple focal distances.
ACM Transactions on Graphics 23, 3 (Aug.), 804–813.

BARNUM, P. C., NARASIMHAN, S. G., AND KANADE, T. 2010.
A multi-layered display with water drops. ACM Transactions on
Graphics 29, 4 (July), 1.

BOYKOV, Y. Y., AND KOLMOGOROV, V. 2001. An experimen-
tal comparison of min-cut/max-flow algorithms for energy min-
imization in vision. In EMMCVPR, 359–374.

DECORET, X., SILLION, F., SCHAUFLER, G., AND DORSEY, J.
1999. Multi-layered impostors for accelerated rendering. Com-
puter Graphics Forum 18, 3 (Sept.), 61–73.

DIMITROV, D., SCHREVE, K., AND DE BEER, N. 2006. Ad-
vances in three dimensional printing state of the art and future
perspectives. Rapid Prototyping Journal 12, 136–147.

FAVALORA, G. 2005. Volumetric 3D displays and application in-
frastructure. Computer 38, 8 (Aug.), 37–44.

GOTODA, H. 2010. A multilayer liquid crystal display for au-
tostereoscopic 3D viewing. In Proc. SPIE, vol. 7524.

HOLROYD, M., LAWRENCE, J., AND ZICKLER, T. 2010. A coax-
ial optical scanner for synchronous acquisition of 3D geometry
and surface reflectance. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2010).

JONES, A., MCDOWALL, I., YAMADA, H., BOLAS, M., AND
DEBEVEC, P. 2007. Rendering for an interactive 360 degree
light field display. ACM Trans. Graph. 26 (July).

LANDIS, H., 2002. Production-ready global illu-
mination. Course 16 notes, SIGGRAPH 2002.
http://www.spherevfx.co.uk/downloads/ProductionReadyGI.pdf.

LEE, C., DIVERDI, S., AND HÖLLERER, T. 2008. Depth-fused
3D imagery on an immaterial display. IEEE transactions on vi-
sualization and 15, 1, 20–33.

MARSCHNER, S., AND LOBB, R. 1994. An evaluation of recon-
struction filters for volume rendering. Proceedings Visualization
’94, 100–107,.

NAYAR, S. K., AND NARASIMHAN, S. G. 1999. Vision in bad
weather. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 820–827.

SCHAUFLER, G. 1998. Image-based object representation by lay-
ered impostors. Proceedings of the ACM symposium on Virtual
reality software and technology 1998 - VRST ’98, 99–104.

SCHAUFLER, G. 1998. Per-object image warping with layered
impostors. Rendering Techniques 1, 145–156.

SOLTAN, P., TRIAS, J., ROBINSON, W., AND DAHLKE, W. 1992.
Laser Based 3-D Volumetric Display System (First Generation).
SPIE-The International Society for Optical, May, 9–14.

SULLIVAN, A. 2004. DepthCube solid-state 3D volumetric display.
In Stereoscopic Displays and Virtual Reality Systems XI, SPIE,
San Jose, CA, USA, A. J. Woods, J. O. Merritt, S. A. Benton,
and M. T. Bolas, Eds., vol. 5291, 279–284.

TAMURA, S., AND TANAKA, K. 1982. Multilayer 3-d display by
multidirectional beam splitter. Applied Optics 21, 3659–3663.

TAN, P., ZENG, G., WANG, J., KANG, S. B., AND QUAN, L.
2007. Image-based tree modeling. ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH 2007) 27.

TROITSKI, I. 2005. Laser-induced image technology (yesterday,
today, and tomorrow). In Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, vol. 5664, 293–301.

WETZSTEIN, G., LANMAN, D., HEIDRICH, W., AND RASKAR,
R. 2011. Layered 3D: Tomographic image synthesis for
attenuation-based light field and high dynamic range displays.
ACM Trans. Graph. 30, 4.

WOOD, R. 2003. Laser-induced damage of optical materials. Tay-
lor & Francis.

