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Figure 1: (Left) Our differential blending supports poses that result in artifacts with existing skinning algorithms such as LB (linear blending
of dual quaternions) and SB (screw linear blending of dual quaternions). (Right) By utilizing differential blending, our system allows artists
to pose characters using familiar 2D cartoon animation concepts. The blue lines visualize the history of sketches used to create the expressive
character poses.

Abstract

Generating highly expressive and caricatured poses can be diffi-
cult in 3D computer animation because artists must interact with
characters indirectly through complex character rigs. Furthermore,
since caricatured poses often involve large bends and twists, arti-
facts arise with traditional skinning algorithms that are not designed
to blend large, disparate rotations and cannot represent extremely
large rotations. To overcome these problems, we introduce a dif-
ferential blending algorithm that can successfully encode and blend
large transformations, overcoming the inherent limitation of previ-
ous skeletal representations. Based on this blending method, we
illustrate a sketch-based interface that supports curved bones and
implements the line-of-action concept from hand-drawn animation
to create expressive poses in 3D animation. By interpolating stored
differential transformations across temporal keyframes, our system
also generates caricatured animation. We present a detailed techni-
cal analysis of our differential blending algorithm and show several
posing and animation results created using our system to demon-
strate the utility of our method in practice.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Skeletal animation, posing, skinning, deformation

1 Introduction

Caricatured poses and expressive movement are the hallmark of
hand-drawn animation, where pencil and paper afford the artist full
creative freedom when crafting the shape and movement of ani-
mated characters. In three-dimensional animation, however, highly
expressive and caricatured poses are more difficult to achieve, since

the artist interacts with the character indirectly via the character’s
rigging controls. Two primary issues contribute to this problem.
First, the character’s rigging system, which defines the space of
achievable poses, may not accommodate the range of expressive-
ness that the artist would like to achieve. Second, controlling a com-
plex character rig can be unwieldy, requiring individual attention to
tens or hundreds of rigging parameters just to achieve a single pose.
These two problems are interconnected: in order to accommodate
a wider range of expressiveness, character rigs become more and
more complex, making them even harder to control. Even with this
complexity, some poses are still not achievable, since the technical
components of the rigging system are not designed to support them.
As a result, expressive poses that come naturally from the fluid in-
teraction of paper and pencil can be cumbersome or impossible to
achieve using modern 3D animation tools.

Our research addresses these shortcomings in 3D animation by
proposing a novel blending method for skeletal deformations and
illustrating how it can be used to transfer the concept of line-of-
action curves from 2D hand-drawn animation for creating highly
expressive poses with intuitive sketch-based controls in 3D anima-
tion. In 2D animation, these curves serve as a guide to convey the
composition, balance, energy, and dynamics of the character’s pose
(Figure 2) [Blair 1994]. By interpreting these curves for 3D skele-
tal deformations, our system allows fast and intuitive creation of
highly expressive poses that are notoriously difficult to obtain with
complex classical rigs (Figure 3).

The core technical challenge of developing such a system lies in
blending skeletal transformations. Because highly expressive poses
involve large bends and twists, the rigging system is forced to blend
large, disparate rotations in complex regions such as the shoulder
where vertices are influenced by multiple portions of the skele-
ton. Due to ambiguities inherent in the representation of rota-
tions, blending algorithms used by existing rigging systems fail to
give smooth and intuitive results in this case. For example, dual-
quaternion blending [Kavan et al. 2008], accepted as one of the
best algorithms, interpolates rotations along geodesic curves. Inter-
polation from a fixed rotation in the shoulder to different rotations
along a highly deformed arm may follow very different geodesic
paths, although the arm rotations are similar to one another. Be-
cause the interpolation paths are different, nearby vertices in the
shoulder region may be transformed very differently. Refining the



Figure 2: In 2D animation, line-of-action curves capture the char-
acter’s overall motion and balance. These curves naturally match
the character’s skeleton and provide a guide to the artist when flesh-
ing out the full drawing. c©Disney

skeleton with additional bones [Mohr and Gleicher 2003] does not
address the problem, since transformations are concatenated along
joint chains, leading back to large rotation disparities. This subtle
problem results in significant, unacceptable artifacts when highly
expressive poses are created using traditional rigging algorithms,
as shown in Figure 1(left). As an added problem, existing methods
are not designed to represent rotations greater than 2π, leading to
additional artifacts when the user desires extremely large bending
or twisting.

To solve these problems, we propose a new blending technique
specifically designed for large and disparate transformations, as our
main contribution. Our differential blending method represents all
transformations in a differential manner and computes averages of
the differential transformations, which are then composed to get
the final blended transformation. Since averaging is used to com-
bine only small transformations, geodesic averaging always gives
the correct result and the artifacts that arise from blending disparate
transformations or ones that are too large to be represented cor-
rectly are avoided. By interpolating the differential transformations
between animation keyframes, our system naturally extends to an-
imated deformations. We provide a detailed analysis of our new
differential blending algorithm and show that it results in smooth
and intuitive skeletal deformations.

After explaining various components of our posing and animation
system in Section 3, we move on to the technical core of our work,
where we introduce differential blending in Section 4, and show
key mathematical properties of it in Section 5. Our figures use the
following convention: underlying skeleton is rendered in red, the
selected bones are rendered in cyan and, where applicable and un-
less otherwise stated, the sketched curves are shown in dark blue.

2 Related work

Skeleton-based deformations. Although invented in the 80s,
skeleton-based skinning [Magnenat-Thalmann et al. 1988] remains
the most popular method for animating articulated characters in
games and films, due to its simplicity, efficiency, and intuitiveness.
However, skinning methods have many problems, and over the
years a large set of techniques have been developed to address var-
ious shortcomings of the original method [Alexa 2002; Kavan and
Žára 2005; Yang et al. 2006; Forstmann and Ohya 2006; Forstmann
et al. 2007; Kavan et al. 2008; Jacobson and Sorkine 2011] rang-
ing from alleviating deformation artifacts such as collapsing elbows
and candy-wrapper joints to adding robust support for more com-
plex deformations such as bone twisting and bone stretching.

The relatively rigid structure of traditional skeletons with piece-
wise linear elements makes it difficult to create expressive poses
common in 2D animation that exhibit larger, full-body curves. For

Figure 3: (Left) 2D sketch using line of action. (Middle) Similar
pose created using our sketch based system. (Right) A snapshot
of a professional Maya rig (with around 100 degrees of freedom)
of the same character. Our system offers an interaction very close
to 2D sketching to create expressive skeleton-based poses, while
state-of-the-art methods can only approximate such poses through
sophisticated rigging techniques and cumbersome controls.

more artistic control, more bones and joints can be added to the
skeleton, but this results in additional effort and increased com-
plexity. A solution to this limitation is a skeleton with stretch-
able/twistable [Jacobson and Sorkine 2011] or curved bones [Yang
et al. 2006; Forstmann and Ohya 2006; Forstmann et al. 2007].
Even though curved bones can capture the expressiveness desired
by the artist, the current skinning methods that deform the model to
conform with the new pose often fail in the presence of large rota-
tions leading to visual artifacts as illustrated in Figure 1. While this
is also a limitation of traditional skeleton and skinning methods,
it is more prevalent when applied to expressive cartoon like poses
that are typically exaggerated for artistic purposes. Our novel dif-
ferential skinning method overcomes the shortcomings of previous
skinning methods allowing the user to transfer his or her full artistic
talent and intention to the animation.

Sketch based modeling and animation. A sketching interface
is an intuitive and familiar modeling paradigm for artists. Hence, it
comes as no surprise that sketch based interfaces for modeling and
deformation have received a lot of attention [Olsen et al. 2008].
Several works [Akeo et al. 1994; Zeleznik et al. 1996; Igarashi
et al. 1999; Nealen et al. 2007; Gingold et al. 2009; Gingold et al.
2009] focus on creating 3D content from scratch, while others use
sketching as a means of deforming existing shapes [Kho and Gar-
land 2005; Nealen et al. 2005; Zhou et al. 2005; Zimmermann et al.
2008; Kraevoy et al. 2009]. These techniques deform shapes by
mapping the sketched curves to some salient surface curves on the
model [Olsen et al. 2008] such as silhouette or ridge curves and use
these as geometric constraints. Although these methods are suited
for direct mesh manipulation and detail editing, they do not follow
the skeleton based animation pipeline, which is the most widely
used and mature method for character posing and animation due to
its predictable and intuitive nature and easy keyframing. For our
purposes, a skeletal representation also matches well with the se-
mantics of 2D curves.

Closer to our work, a further set of sketch based methods are tai-
lored to character posing and animation [Hoshino and Hoshino
2001; Thorne et al. 2004; Mao et al. 2005; Mao et al. 2007; Davis
et al. 2007; Mao et al. 2009]. However, most of these methods tar-
get animation prototyping, manipulating trivial models such as stick
figures and not detailed 3D characters that have complex and rich
geometry. In contrast, we aim to couple a sketch-based interface
that intuitively maps the sketched curves to the underlying skele-
ton to produce expressive poses with a novel skinning method that
can be used to deform rich and complex geometry without visual
artifacts.



Figure 4: (Left) The user draws a stroke to select a bone, (middle)
transformations from the frames on the projected curve for the bone
to those on the stroke are computed, and (right) are used to generate
the final deformation of the bone and the model.

3 The Posing and Animation System

Our system is designed for intuitive controlling of skeletal deforma-
tions via sketching, to mimic the 2D concepts familiar to artists. We
integrate and adapt various existing components [Kho and Garland
2005; Nealen et al. 2005] in the context of skeletal deformations to
achieve this goal.

The system accepts as input a 3D model with a traditional skeleton
rig that can be created using any standard rigging method [Baran
and Popović 2007] or commercial product available such as Maya,
making it very flexible to use. It then places samples along the
bones to obtain a skeleton with curved bones (please refer to Sec-
tion 4.4 for details). At posing time, the strokes drawn by the artist
are first mapped onto a subset of previously selected skeleton bones.
The selected bones are subsequently deformed to match the user’s
curve. Finally, the 3D model itself is deformed to match the new
pose. This process is illustrated in Figure 4 and the following sec-
tions presents these steps in more detail. The user can keyframe
several poses to create expressive animations as shown in the ac-
companying video.

3.1 User Interface

The user interaction starts with a sketch-based selection of the
bones that the user would like to deform (Figure 4 (left)). The user
can choose to select a single bone, a connected network of bones or
all bones in the hierarchy. Although automatic methods to infer se-
lections from the strokes could be used, relying on the user for this
task provides a more predictable and controllable behavior. Next,
the user can sketch a curve to shape the bones (Figure 4 (middle)).
The skeleton and model are deformed accordingly for instant feed-
back (Figure 4 (right)). If the result is not satisfactory, the artist can
repeat the stroke until the desired result is reached. This selection
and sketching process is then repeated for other parts of the char-
acter until the desired pose is realized. The accompanying video
contains a recording of a modeling session.

To provide more flexibility to the user, we added a few further user
interface features. We provide a tool for twisting selected bones
(Figure 5 (c)) by simply right-clicking. As stretching of the bones
depending on the stroke’s length can be counter-intuitive in some
cases, we provide the user with the option of preserving the original
length of the bones (Figure 5 (a)). Furthermore, depending on the
modeling intention of the current stroke, deforming the unselected
children of selected bones is also provided as an option (Figure 5
(b)).

3.2 Stroke Representation

A user stroke obtained using a mouse or a sketching pen is rep-
resented by a series of points. The goal is to use these points to
construct a parametric curve that can be easily used to compute
the local coordinate frames along the curve in order to transfer
them onto the selected bones. To accomplish this we fit a clothoid
spline [Baran et al. 2010] to the stroke points. The clothoid spline
has been shown to generate aesthetically pleasing curves due to the
linear variation of curvature over arc length.

3.3 Stroke Mapping

A key ingredient of our system is the intuitive mapping and defor-
mation transfer between the user strokes and the selected bones.
Figure 4 illustrates this process on a simple example. The tail bone
is mapped onto the sketched curve in 2D by projecting the bone
onto the projection plane and performing a direct arc-length cross
parametrization [Kho and Garland 2005]. We solve the ambigu-
ity of the initial correspondence by mapping the first point on the
sketched curve onto the closest end of the bone. The bone is then
deformed to match the curve and these transformations are stored
on the bones for the skinning step.

This mapping only works when the selected bones form a chain
(Figure 6 (right)). However, in order to mimic the line-of-action
sketching used in traditional 2D animation, the system needs to be
more general and allow the user to select bone configurations which
are trees and not just simple chains as shown in Figure 6 (left). Due
to topological incompatibilities, the mapping between such a tree
and the sketched curve is ill-posed. Inspired by the traditional 2D
rendering pipeline, we developed a method to perform intuitive de-
formation transfer from a sketched curve to an arbitrary user selec-
tion of bones.

As illustrated in Figure 2, the line-of-action (rendered in red) is an
imaginary line extending through the main action of the pose. If
we lift the line-of-action concept from 2D to 3D, the 3D line of ac-
tion (that we call the support curve) actually goes through the main
body, or the part of the body that is selected. With respect to the
rest pose, the support curve corresponds to the line that best fits,
in the least square sense, to the joints of the selected bones. The
exact positioning of the support line is not critical for the system.
We use the support curve as a common parametrization domain for
both the selected skeleton subtree and the sketched curve. To find
the correspondence between a point on the skeleton and the support
curve, the bones are projected onto the support curve. Next, we
compute a direct arc-length cross-parametrization [Kho and Gar-
land 2005] between the projected support curve and the sketched
curve. Combining these steps, we can compute a map between the
selected skeleton bones and the sketched curve. This method re-
sults in very intuitive deformations in practice as illustrated in the
figures and the video.

In our system, the user can decide which mode he or she would like
to use. While the line of action mode gives a more general control
over the body, resembling line-of-action sketching, the direct mode
that can only be applied to chains, enables to easily draw multiple
bones in detail, as illustrated in Figure 6.

4 Differential Blending

Once the deformation from the sketched curved is transferred to
the skeleton, the next step is to use a skinning method to deform the
3D model. Skinning methods compute the new location of a given
vertex by blending the transformations of several bones. Blending
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Figure 5: The user can (a) (dis-)allow stretch and (b) rotation of
children bones, and (c) twist bones according to the position clicked
on the bone.

Figure 6: Our system supports (left) line-of-action sketching, and
(right) detailed bone shape sketching.

transformations is non-trivial, particularly when the angular differ-
ence between rotations exceed π. However, exaggerated poses that
occur frequently in expressive animations are very often large. In
this section, we present a new method for blending transformations
that avoids the artifacts when using existing methods. After ex-
plaining the problem, we introduce our method, and show how it
can be used in practice in our posing and animation system.

4.1 Deformations with Skeletons

A traditional skeleton is represented as a tree of segments called
bones, which store transformations. Each mesh vertex x is bound
to one or more bones with skinning weights wb(x), non-negative
real numbers that sum to one,

∑nb
b=1 wb(x) = 1 for nb num-

ber of bones. A skeletal deformation is given by the set of
rigid (or more generally, affine) transformations qb that takes
the bone b from its rest pose to the current pose. The skele-
tal deformation is used to compute the deformed location of a
mesh vertex by transforming the vertex with a weighted aver-
age of the qb’s with the weights wb(x), which we denote by
A(w1(x), · · · , wnb(x);q1(x), · · · ,qnb(x)) = A(wb(x);qb).

Producing the types of expressive poses we seek with rigid bones
requires a large number of bones to accurately capture the highly
deformed skeleton shapes common in 2D animations. A new set
of skinning weights needs to be computed for each added bone,
making the skinning process tedious. A more viable alternative is
using curved bone based skeletons [Yang et al. 2006; Forstmann
et al. 2007]. In these structures, the bones represent a continu-
ous set of transformations. The transformations are parametrized
along the bone curves, and each vertex is attached to a particular
parameter sb(x) ∈ [0, 1] for bone b. Hence, the transformations
to be blended become functions of vertex positions, resulting in the
blending formula A(wb(x);qb(x)) = A(wb(x);qb(sb(x))). Due
to its flexibility, we employ such a skeleton with curved bones as
the underlying representation for the deformations.
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Figure 7: Although rotations θ1 and θ2 for two close vertices are
close (left), the shortest paths when interpolating them with the
identity rotation (θ = 0) are far apart (middle), leading to a dis-
continuity in the blended rotations (right).

4.2 Existing Transformation Blending Methods

Once skinning weights and (for curved bones) parameters of ver-
tices on bones are determined, the next step is to perform vertex
skinning by blending the transformations stored on bones. The
simplest existing approach to blending is linear blend skinning
(LBS), where the transformations are represented as matrices and
the blending operator A is a weighted linear combination of matri-
ces. Although simple and efficient, LBS produces well-known arti-
facts on deformed surfaces [Kavan et al. 2008]. These artifacts stem
from the fact that LBS averages transformations without respect-
ing the manifold of rigid transformations, SE(3), by computing
distances between transformations in the embedding space of this
manifold. Instead, intrinsic averages on this manifold can be com-
puted by representing transformations with dual quaternions [Ka-
van et al. 2008]. Since the distances are measured on SE(3),
this method leads to interpolations along geodesics. Hence, the
blended transformation minimizes the sum of intrinsic distances.
Both blending methods exhibit two important limitations.

Discontinuity problem. Although using shortest paths for
blending results in intuitive blended transformations for many
cases, it can lead to discontinuities when the blended transforma-
tions are far apart. To illustrate this problem, we consider the
simple case of 2D planar rotations in Figure 7. For this case,
a rotation can be represented by a single angle θ and shortest
path interpolation corresponds to simple averaging of the angles,
θ(t) = θ0(1 − t) + θ1t, t ∈ [0, 1]. Assume that we are given two
close vertices x1 and x2, for which the rotations are given by inter-
polations between the identity (θ = 0) and the angles θi, i = 1, 2.
Hence, the interpolated rotations are θ̄1 = θ1t and θ̄2 = θ2t, as-
suming the weight t for both are the same, since the vertices are
close to each other on the mesh.

For a smooth variation of rotations stored on the bones, we can as-
sume that θ1 and θ2 are close, and expect the blended rotations θ̄1

and θ̄2 for two vertices to be also close. Let the angles be given by
θ1 = π − ε and θ2 = π + ε, for a small angle ε (Figure 7, left),
and t = 0.5. The interpolated value for the first vertex is simply
half the angle θ̄1 = π−ε

2
. However, since θ2 is bigger than π, the

interpolation will choose the shorter path from 0 to θ2 (Figure 7,
middle), leading to θ̄2 = 3π

2
+ ε

2
(Figure 7, right). Hence, the two

close vertices will have very different rotations, leading to disconti-
nuities on the surface mesh. An example of this behavior is shown
in Figure 8 for a 3D model.

Large rotations problem. Another problem of shortest path in-
terpolation results from not being able to represent rotations bigger
than 2π with dual quaternions. For angles θ > 2π, the representa-
tion will reduce it to a smaller angle, leading to incorrect interpola-
tions.
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Figure 8: Blending continuous rotations on the bones leads to dis-
continuities on the mesh with LB (linear blending of dual quater-
nions) and SB (screw linear blending of dual quaternions) due to
their shortest path property, while DB (differential blending) gen-
erates a continuous blending. Skinning weights are plotted for the
middle bone to indicate the affected vertices.

A graph of the interpolated angle between 0 and θ is given in Fig-
ure 9 (left). The graph is discontinuous with jumps when the short-
est path changes, or when the angle becomes too large to be cor-
rectly represented. These problems extend to rigid transformations
in 3D. They are especially pronounced when expressive poses with
large rotations are needed. An example taken from a real animation
is presented in Figure 10. This behavior of existing skinning algo-
rithms severely limits the space of poses that can be generated via
our interface and the expressive quality of the resulting animations.
To overcome these problems, we develop a new blending technique,
described in the next section.

4.3 Differential Blending of Transformations

The discontinuities while blending with existing methods stem
from trying to average transformations that are far apart from each
other, or too large to be represented correctly. Hence, if only small
transformations are involved in the averages, the shortest path will
always give the most intuitive result. Following this observation,
our main idea is to represent all transformations to be blended as
compositions of small transformations. These differential transfor-
mations are blended with shortest path methods, and the blends are
composed to get the final weighted average.

Following the example in Figure 7, we illustrate how this idea
avoids discontinuities and large rotation problems by restricting the
transformations to rotations in a 2D plane in Figure 11. We assume
that the rotation of angle θ is to be averaged with the identity trans-
formation (i.e. rotation of 0 angle), which should simply give θ/2.
First, θ is divided into two smaller angles ∆θ1 and ∆θ2 (Figure 11
(b)). These are then interpolated with 0 in the shortest path to give
∆θ1/2 and ∆θ2/2 (Figure 11 (c)), which are finally composed to
get the average rotation (Figure 11 (d)). The result is in contrast
with that of direct shortest path interpolation of θ as illustrated in
Figure 11 (e).

This idea can be extended to rigid transformations in 3D. In this
work, we represent transformations with dual quaternions and the
multiplication q1q2 and blending operator A are defined accord-
ing to [Kavan et al. 2008]. Given n transformations qi to be aver-
aged, their weights in the averagewi, and their decompositions into
small transformations qi = qi1 · · ·qil, the blended transformation
is given by the following formula

A∆(wi;qi) =

l∏
j=1

A(wi;qij), (1)

where A(wi;qij) = A(w1, · · · , wn;q1j , · · · ,qnj). Here, the
intrinsic averaging function A gives the correct average since the
transformations qij are small. By composing these averages, the
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Figure 9: Graphs of interpolation between θ and the identity trans-
formation. Shortest path interpolation is discontinuous when the
shortest path changes or when the rotation is too large to be rep-
resented (left), while differential blending correctly interpolates for
all angles (right).

final average is computed. Differential blending is illustrated in
Figure 12 for the case of two transformations. Starting from the
identity transformation, each small transformation in the compo-
sition of the transformations to be blended can be seen as a step
on SE(3). When the number of differentials are not the same
for all qi’s such that qi = qi1 · · ·qili , we define A∆ by taking
l = maxi(li), and appending identity transformations to qi’s such
that all li’s become the same and equal to l. A detailed analysis and
properties of differential blending is provided in Section 5.

4.4 Skinning with Differential Blending

In our system we use a curved bone based skeletal structure. The
skeleton consists of a tree of bones. Unlike traditional skeletons, in
a curved bone skeleton, each bone is implicitly subsampled into a
sequence of nodes that store local transformations (Figure 13 (left
and middle)). These transformations are updated based on the user
sketch and used to determine the position of the vertices bound
to their bone. In order to use our differential blending strategy
that avoids blending large deformations, rather than storing the full
transformation at each node, we store the differential transforma-
tion ∆q, which is the difference between the current sample trans-
formation q and the previous qprev on the path from the root to q,
∆q = qq∗prev (Figure 13 (middle)).

Hence, the skeleton stores the root transformation q(0), and a num-
ber ns of differential transformation samples ∆qbi = ∆qb(si),
si ∈ [0, 1] on each bone b. Here, si ∈ [0, 1] denotes the parame-
ters of the samples on the bones. Since we assume the same sam-
pling scheme for all bones, the set of si’s for all bones is the same.
We could reconstruct any sample transformation qb(si) by simply
composing all differential transformations on the path from the root
as qb(si) = ∆qb(si) · · ·q(0). This representation avoids the large
rotation ambiguity by effectively tracking where each large rotation
comes from and representing it as a composition of infinitesimal (in
practice, finite but small) rotations.

Each vertex x on the mesh is assigned a parameter sb(x) ∈ [0, 1]
for each bone b. In general, this parameter does not coincide with
the sample parameters. To get the transformation at the parame-
ter sb(x), we use linear interpolation of the transformation samples
around it, which implies that ∆qb (sb(x)) = ∆qb(si)

u. Here,
si−1 and si are the sample parameters before and after sb(x), re-
spectively, when starting the path from the root, and u = |sb(x)−
si−1|/|si − si−1| (Figure 13 (right)).

We assume that initially all bones are straight and thus a classi-
cal skeleton and a set of vertex weights wb(x) are provided. Given
these inputs, the bones are sampled, and the parameters sb(x) of the
vertices on the bones are computed. Although more sophisticated
methods [Jacobson and Sorkine 2011] can be used to compute these
attachment points, we found that it is sufficient to use a simple pro-
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Figure 10: The discontinuities due to blending with existing methods are avoided by differential blending. DB (differential blending), LB
(linear blending of dual quaternions), SB (screw linear blending of dual quaternions).
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Figure 11: (a) In order to compute the average of θ and 0, (b) θ is divided into two smaller rotations, (c) which are averaged with 0 using
shortest path interpolation, and (d) then composed to get the correct interpolated angle θ̄. This is in contrast to (e) direct shortest path
interpolation of θ and 0.

jection of the vertex locations onto the bones in the rest pose. Once
these are completed, the rig is ready to be used for posing.

4.5 Animation with Interpolation of Differentials

Apart from supporting differential blending for posing, the differ-
ential transformation samples can also be utilized for animation by
interpolating between two or more poses, e.g., for keyframing. Be-
cause all of the ∆q’s represent small transformations, there is no
rotation ambiguity, and we can simply interpolate the individual
∆q’s. With enough samples, we could even blend ∆q’s linearly as
matrices: for small transformations, linear blending does not suffer
from artifacts. However, to keep the number of samples small, we
represent ∆q’s as dual quaternions and use dual quaternion linear
blending [Kavan et al. 2008].

5 Analysis of Differential Blending

We have shown how differential blending can be used to eliminate
discontinuities in blending transformations. However, this prop-
erty in itself is not sufficient for differential blending to be useful
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Figure 12: A schematic representation of differential blending of
the transformations q1 and q2. Each pair q1i, q2i of differential
transformations on the paths is averaged using shortest path inter-
polation (written asA(q1i,q2i)). Composition of these differential
averages gives the final interpolation, A∆(q1,q2) (the weights are
omitted for brevity).

in practice. In this section, we discuss some of the most impor-
tant properties that have been shown to be essential for high qual-
ity blendings [Kavan et al. 2008]. Namely, we explain that dif-
ferential blending produces unit dual quaternions that represents
valid rigid transformations, is coordinate invariant, and gives re-
sults close to shortest path interpolation when shortest path is in-
deed the correct path for interpolation. The first property is trivial
to show since composition and intrinsic averaging always generate
valid rigid transformations. Hence, below we discuss the latter two
properties.

5.1 Coordinate Invariance

For intuitive skinning, the coordinate system chosen should not
have an effect on the deformed mesh other than a global rigid
motion. This implies that changing the coordinate system in
which the transformations are defined before or after blending
should give the same result. Formally, this can be written as
A(wi;mqim

∗) = mA(wi;qi)m
∗. Hence, coordinate invari-

ance can be proved by showing right and left invariance given by
A(wi;qim) = A(wi;qi)m and A(wi;mqi) = mA(wi;qi), re-
spectively.

Differential blending depends on the intrinsic averaging function
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 * 

* 

Figure 13: We utilize (left) a hierarchical skeleton where (middle)
each bone stores a set of differential transformation samples. These
differentials are interpolated (right) to get the differential transfor-
mation for a parameter on a given bone.



A, which can be shown to be right and left invariant [Kavan et al.
2008]. Denoting the differential representation of m as m =
m1 · · ·mh, right invariance of A∆ can be proved as follows:

A∆(wi;qim) = A∆(wi;qi1 · · ·qilm1 · · ·mh)

=

l∏
j=1

A(wi;qij)

h∏
k=1

A(wi;mk)

= A∆(wi;qi)

h∏
k=1

mk

= A∆(wi;qi)m. (2)

Left invariance can be proved analogously, implying that differen-
tial blending of transformations is coordinate invariant.

5.2 Deviation from Shortest Path Interpolation

For some sets of transformations, intrinsic averages where dis-
tances are measured along the shortest paths do not violate the
continuity of skinning. In those cases, we would like the differ-
ential blending to give results close to shortest path based intrin-
sic averages. For shortest path interpolation of two transforma-
tions, there exists a simple closed form solution that we denote by
I(t;a,b) = (ba∗)t a. The differential interpolation is then given
as I∆(t;a,b) =

∏l
i=1 (bia

∗
i )
t ai.

To quantify the deviation of differential interpolation from shortest
path interpolation, we consider e = I(t;a,b)I∆(t;a,b)∗.
Note that due to right invariance of I and I∆, this can
also be written as I(t; I,ba∗)a (I∆(t; I,ba∗)a)∗ =
I(t; I,ba∗)aa∗I∆(t; I,ba∗)∗ = I(t; I,ba∗)I∆(t; I,ba∗)∗,
where I denotes the identity transformation. Hence, we can equiv-
alently consider the interpolation of a transformation q = q1 · · ·ql
with the identity transformation, for which the difference becomes
e = qt

(
qt1 · · ·qtl

)∗.
Computationally analyzing or deriving bounds for the deviation e
is very challenging due to the dimension of the space of variables to
consider for the former, and the intractability of the solutions of the
equations for the latter. In this section, we perform a computational
analysis on rotational deviation for the case where two differentials
make up the transformation such that q = q1q2. In addition to
being illustrative, the results of this analysis will be used to validate
our theoretical analysis in Section 5.3.

When considering rotations, dual quaternions can be replaced by
quaternions. Hence, below, q and qi denote regular quaternions.
Our goal is to computationally analyze the rotation angle of e =
qt
(
qt1q

t
2

)∗ with the constraint that q = q1q2. The first step of this
analysis is deriving e such that it can be represented as a function
of a few variables, which are sampled to get the maximum devia-
tion. Denoting the quaternions by qi = cos(θi/2) + si sin(θi/2),
it can be shown that e can be represented as a function of t, θ1,
θ2, and ‖s1 × s2‖, where · × · denotes the cross product when
the pure quaternions si are regarded as vectors in R3. Note that
in order for the shortest path to give the correct interpolation,
〈q, I〉 = cos(θ/2) > 0 [Kavan et al. 2008], since we are inter-
polating between q and I. This is always satisfied for θ1 + θ2 < π.

Once we represent θe in terms of the desired variables, we can
sample these variables for the deviation analysis. By sampling,
we found out that the maximum of e occurs when t = 1/2 and
‖s1 × s2‖ = 1. This is in accordance with the intuition that the
deviation is maximum when the interpolated transformation qt is
furthest from both I and q, and the axes of rotation for q1 and q2

are orthogonal. With these variables fixed, we plot e as a function
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Figure 14: Rotational deviation of differential interpolation from
shortest path interpolation as a function of (left) angles θ1, θ2 of
the two differentials used, (middle) θ = θ1 = θ2 that corresponds
to the black line on the left, and (right) the cross product of the axes
s1 and s2 of rotations of the two differentials.

DB LB SB 

Initial Pose 
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Figure 15: Differential blending based deformations are close to
those provided by shortest path based methods, when they generate
smooth results without artifacts. We illustrate two difficult cases for
differential blending, where (top) the rotation axis change along the
bones, and (bottom) large translations along and rotations around
different axes are applied. DB (differential blending), LB (linear
blending of dual quaternions), SB (screw linear blending of dual
quaternions).

of θ1 and θ2 in Figure 14 (left). Decreasing angles leads to smaller
deviations, with a quadratic tendency, as shown for θ1 = θ2 in
Figure 14 (middle). The maximum angular deviation is around 4.5
degrees for θi = 45. Finally, as illustrated in Figure 14 (right), the
angular deviation depends approximately linearly on ‖s1 × s2‖.

5.3 Theoretical Derivation of the Deviation

The exact formula for e we derived in the last section is fairly
complex to analyze analytically. However, it is possible to derive
much simpler and very accurate expressions by utilizing the Baker-
Campbell-Hausdorff formula. In this section, we derive the angular
and translational deviation by a second order analysis.

We would like to find a closed form formula for ‖log(e)‖ that con-
tains the angular and translational parts of e. The deviation e can be
written as e = et log(q1q2)e−t log(q2)e−t log(q1). Hence, it is suffi-
cient to find a formula of the form exey = ef(x,y) for some func-
tion f . For non-commutative Lie groups, it is in general not true
that exey = ex+y for x and y in the corresponding Lie algebra.
Instead, this multiplication is given by exey = eBCH(x,y), where
BCH is the Baker-Campbell-Hausdorff formula (e.g. [Govindu
2004]):

BCH(x,y) = x + y +
1

2
[x,y] + h.o.t.. (3)
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Figure 16: The discontinuities due to blending with existing methods are avoided by differential blending. LBS (linear blend skinning), LB
(linear blending of dual quaternions), SB (screw linear blending of dual quaternions), DB (differential blending).

Here, [x,y] = xy − yx denotes the commutator or Lie bracket
and h.o.t. stands for higher order terms. Defining a = log(q),
a1 = log(q1), and a2 = log(q2), this second order expansion can
be applied to e = qt(qt2)∗(qt1)∗ as follows:

log(e) = log
(
et(a1+a2+ 1

2
[a1,a2])e−ta2e−ta1

)
=

t(1− t)
2

[a1,a2] , (4)

keeping terms up to second order. Hence, it is sufficient to compute
the commutator [a1,a2] = log(q1) log(q2) − log(q2) log(q1).
The logarithms of the dual quaternions qi can be written as
log(qi) = θi0+εθiε

2
(si0 + εsiε). Here, θi0 is the rotation around

and θiε is the translation along the screw axis si0. Plugging these
into [log(q1), log(q2)], one can compute the following expressions
for the angular and translational parts:

|θe0| =
1

2
|t(t− 1)θ10θ20|‖s10 × s20‖ (5)

|θeε| =
1

2
|t(t− 1) (γθ10θ20 + θ1εθ20 + θ2εθ10)| ‖s10 × s20‖,

where γ = 〈 ̂s10 × s20,
s1ε×s20+s10×s2ε
‖s10×s20‖

〉 with x̂ = x/‖x‖. The
equation for |θe0| is computationally shown to be very accurate in
Figure 14. By utilizing vector identities, it can be shown that γ
depends on 〈s10, s20〉 and hence when the two axes are orthogonal,
γ = 0. Thus, when the rotation error is maximum, the bound for
|θeε| simplifies to:

|θeε| ≤
1

2
|t(t− 1) (θ1εθ20 + θ2εθ10)| . (6)

Longer paths. So far, we have assumed that the transforma-
tions to be blended are composed of two differentials. Using the
Baker-Campbell-Hausdorff formula (Equation 3) and writing the
deviation in the form of Equation 4 for more than two differentials
such that q = q1 · · ·qn, it is possible to show that

‖log(e)‖ =

∣∣∣∣ t(1− t)2

∣∣∣∣
∥∥∥∥∥
n∑
i=1

∑
j>i

[log(qi), log(qj)]

∥∥∥∥∥ . (7)

6 Discussion and Results

To demonstrate and validate our method, we have created a set of
expressive poses and animations using a number of pre-rigged mod-
els. The rigs are obtained using a standard skeleton with straight
bones. We generated the vertex weights using Pinocchio [Baran
and Popović 2007], and attachment points as described in Sec-
tion 4.4. We use 10 differential transformation samples on each
bone, uniformly spaced along the bones. Once these are computed,
the model is ready to be posed using our framework.

The hardest obstacle we faced during modeling sessions was the ar-
tifacts when skinning with existing methods. We illustrate the skin-
ning problems occurring with shortest path based methods, namely
linear blending of dual quaternions (LB) [Kavan et al. 2008] and
iterative screw linear blending of dual quaternions (dual quaternion
iterative blending) (SB) [Govindu 2004] and how the new differ-
ential blending (DB) technique avoids these on toy examples in
Figure 16. As shown on the top row, simple operations such as
straightening a bar can easily create skinning artifacts. The arti-
facts also appear often when twisting or bending is required (Fig-
ure 16, second and third rows). Due to the gradual blending of
differentials, our method gives smooth results without artifacts for
all cases. Skinning comparisons for poses extracted from real ani-
mations are shown in Figures 1 and 10. Especially for poses with
exaggerated deformations, these artifacts become unavoidable for
many cases. In contrast, differential skinning provided smooth and
intuitive results for all animations and poses created, with deforma-
tions close to shortest path blending for cases without artifacts, as
illustrated in Figure 15. This behavior is also verified via computa-
tional and theoretical analysis, as shown in Figure 14 and explained
in Section 5.

Differential blending based skinning avoids the artifacts caused
by previous blending methods regardless of the underlying skele-
tal structure used. We illustrate this in Figure 17, where a classi-
cal skeleton with many straight bones are used to approximate the
curved bones. The discontinuity problem persists in all cases due
to blending transformations that are far apart.

Our results show that the line-of-action sketching metaphor popu-
lar in traditional 2D drawing can be intuitively adapted to 3D mod-
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Figure 17: Blending of large transformations with disparate rotations leads to discontinuities, irrespective of the underlying skeleton structure
used. LB (linear blending of dual quaternions), SB (screw linear blending of dual quaternions), DB (differential blending).

eling, circumventing the tedious rigging controls of conventional
3D modeling. Our system allows much more intuitive interaction
with the skeleton, close to 2D sketching. Poses generated via our
system were impossible or very difficult to obtain even with very
sophisticated rigs and controls (Figure 3, please see the accompa-
nying video for a modeling session comparison with our system
and Maya). This allowed the artists to create expressive poses very
efficiently and fluidly with a few simple curves as illustrated in Fig-
ures 1, 19, and 18. Please also refer to the accompanying video for
the keyframing animations generated purely using our system.

Limitations. With our current implementation running on a
multi-core CPU architecture, skinning a frame of a model with
11k vertices and 10 samples on each bone takes about 0.5 seconds.
Since our goal was posing a single character, this performance was
sufficient to provide the user nearly instant visual feedback. Signif-
icant speedups can be obtained by utilizing further parallelization
along with caching strategies to avoid repeated computations, mak-
ing the algorithm’s performance competitive with simple methods
such as linear blend skinning. We leave this for future work.

7 Conclusion

In this paper, we proposed a novel way of blending transforma-
tions that generates continuous and intuitive skeletal deformations
for large and disparate transformations that are typical for expres-
sive posing and animation. This method allowed us to extend the
range of achievable poses in a sketch-based posing and animation
system that incorporates tried-and-true techniques from traditional
2D illustration. By adapting these techniques to 3D character pos-
ing, our system can be used to intuitively create caricatured and
expressive poses that are difficult or impossible to get with existing
3D skeletal methods.

We expect differential blending to be utilized in skeleton-based ani-
mation pipelines and hence to have a significant impact on 3D char-
acter animation, providing a new level of expressive power. The
idea of differential blending can also be adapted for geometry in-
terpolation and deformations without an underlying skeletal struc-
ture. Furthermore, our work shows the potential of re-interpreting
proven concepts from 2D illustration in the context of 3D animation
and points to many other areas of future work. While we have fo-
cused on line of action curves as inspiration, silhouette lines, guide
strokes, reference shapes, and solid sketches [Blair 1994] could pro-
vide additional starting points for novel 3D animation representa-
tions and interfaces. Likewise, timing diagrams [Whitaker and Ha-
las 2002], traditionally used in 2D animation, could lead to more
fluid ways to interact with the timing of 3D animations. An even
more far-reaching direction of future work lies in exploring hybrid
representations that use 2D illustration concepts not only for posing
but also for the visual representation of 3D animations by exploring
the middle ground between the 2D and 3D worlds.
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MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proc. Graphics interface
’88, Canadian Information Processing Society, Toronto, Ont.,
Canada, Canada, 26–33.

MAO, C., QIN, S., AND WRIGHT, D. 2005. A sketch-based ges-
ture interface for rough 3d stick figure animation. In Proc. SBIM.
Dublin, 2005, Eurographics.

MAO, C., QIN, S., AND WRIGHT, D. 2007. Sketch-based virtual
human modelling and animation. In Smart Graphics, A. Butz,
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