
156

Authoring and Animating Painterly Characters

KATIE BASSETT
Disney Research Zurich and ETH Zurich
ILYA BARAN
Disney Research Zurich
JOHANNES SCHMID and MARKUS GROSS
Disney Research Zurich and ETH Zurich
and
ROBERT W. SUMNER
Disney Research Zurich

Artists explore the visual style of animated characters through 2D concept
art, since it affords them a nearly unlimited degree of creative freedom. Re-
alizing the desired visual style, however, within the 3D character animation
pipeline is often impossible, since artists must work within the technical
limitations of the pipeline toolset. In order to expand the range of possible
visual styles for digital characters, our research aims to incorporate the ex-
pressiveness afforded by 2D concept painting into the computer animation
pipeline as a core component of character authoring and animation. While
prior 3D painting methods focus on static geometry or simple animations,
we develop tools for the more difficult task of character animation. Our sys-
tem shows how 3D stroke-based paintings can be deformed using standard
rigging tools. We also propose a configuration-space keyframing algorithm
for authoring stroke effects that depend on scene variables such as character
pose or light position. During animation, our system supports stroke-based
temporal keyframing for one-off effects. Our primary technical contribu-
tion is a novel interpolation scheme for configuration-space keyframing that
ensures smooth, controllable results. We demonstrate several characters au-
thored with our system that exhibit painted effects difficult to achieve with
traditional animation tools.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation; G.1.1 [Numerical Anal-
ysis]: Interpolation—Interpolation formulas

General Terms: Design, Algorithms

Additional Key Words and Phrases: Painterly animation, expressive anima-
tion, nonphotorealistic rendering

Authors’ addresses: K. Bassett (corresponding author), Disney Research
Zurich and ETH Zurich; email: kmbassett@gmail.com; I. Baran, Disney
Research Zurich; J. Schmid and M. Gross, Disney Research Zurich and
ETH Zurich; R. W. Sumner, Disney Research Zurich.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2013 ACM 0730-0301/2013/09-ART156 $15.00

DOI: http://dx.doi.org/10.1145/2484238

ACM Reference Format:

Bassett, K., Baran, I., Schmid, J., Gross, M., and Sumner, R. W. 2013.
Authoring and animating painterly characters. ACM Trans. Graph. 32, 5,
Article 156 (September 2013), 12 pages.
DOI: http://dx.doi.org/10.1145/2484238

1. INTRODUCTION

The visual design of the characters in a computer animated film
greatly influences the film’s emotional and comedic impact, mak-
ing character design a critical component of animation production.
During the design phase, concept artists explore a character’s vi-
sual style using traditional media or 2D digital painting tools. By
creating artwork that expresses a spectrum of different “looks,” the
artists search for a style and representation that perfectly captures
the character’s personality, background, and role in the film. A deli-
cate, vulnerable character may be depicted using soft, pastel strokes,
while a villain’s design could focus on bold, angular lines. These
conceptual works represent the artistic vision for the character’s
look and presence in the film.

Unfortunately, realizing this artistic vision within the constraints
of the modern computer animation pipeline is often impossible.
The animation pipeline encompasses a set of powerful tools for
modeling, rigging, texturing, posing, lighting, and rendering that
make animation creation tractable. However, while concept artists
have nearly unlimited creative freedom when working directly with
pencils, pastels, brushes, and paint, the animation pipeline provides
only indirect influence over the character’s final look through the
toolset of the pipeline software. These tools may not accomodate
the visual style envisioned for the character, requiring alterations
to conform to the pipeline’s technical limitations. As a result, the
final look of the character in the finished animation may deviate
significantly from the artist’s original vision, with those soft strokes
and bold lines lost in the translation.

Our research aims to incorporate the expressiveness afforded by
concept painting into the computer animation pipeline in order to
expand the range of possible visual styles for digital characters. We
approach this task using a few guiding principles. First, we want
to bring painting into the animation pipeline as a core component
of character authoring so that painted styles can extend beyond
mere static looks to directly determine a character’s appearance
in different poses, from different camera views, under different
lighting conditions, and at different times. Second, we focus on
providing direct control to the artist by ensuring that individual

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:2 • K. Bassett et al.

Fig. 1. Poses of a painterly ballerina authored and animated with our system. c© Disney

strokes painted during character authoring are faithfully rendered in
the final frame. Third, we want to augment and improve the existing
animation pipeline, rather than replacing it all together. In this way,
more subtle painterly styles can be accomplished by adding painted
embellishments on top of traditional digital animation methods. Or,
for full expressive flexibility, the artist can shape the character’s
appearance entirely and directly through painting. The painterly
ballerina in Figure 1 is an example of our work.

To accomplish these goals, we extend ideas from static stroke-
based 3D painting with a focus on painterly character authoring
and animation. First, we show how to associate the movement of
painted strokes with the movement of a character’s mesh so that
3D paintings can be deformed using standard rigging tools, regard-
less of the particular rigging algorithm employed. Next, we propose
a configuration-space keyframing algorithm for authoring pose-
dependent stroke effects. This mechanism allows stroke opacity or
movement to be keyframed to positions in a configuration space that
includes character pose and other scene variables such as light posi-
tion. With this mechanism, artists can create pose-dependent touch-
ups to fine-tune the look of a character, or larger-scale effects such as
an animated facial expression. Finally, during animation, our system
supports stroke-based temporal keyframing for one-off effects.

Our primary contribution is a system and workflow for painterly
character authoring and animation that provides direct control over
expressive, animated character appearance. In realizing this sys-
tem, we make several technical contributions, of which the most
significant is a novel configuration-space interpolation algorithm.
We also describe a stroke-skinning algorithm, stroke-based defor-
mation tools, and a stroke-based temporal keyframing function. We
demonstrate several characters authored with our system that exhibit
painted effects difficult to achieve with traditional animation tools.

2. RELATED WORK

Researchers have long recognized the importance of expressive
stylization in computer animation, and the NonPhotorealistic Ren-
dering (NPR) community has developed an impressive body of work
that achieves different stylizations through novel rendering or video
processing methods. Rendering algorithms target impressionism
[Meier 1996], watercolor [Curtis et al. 1997; Bousseau et al. 2006],
hatching [Praun et al. 2001], Seuss-esque illustrations [Kowalski

et al. 1999], and many other media and styles [Hertzmann 2003]
while addressing techincal challenges such as temporal coherence
[Bénard et al. 2011] and interactivity [Markosian et al. 1997]. Early
work in video stylization [Litwinowicz 1997; Hertzmann and Perlin
2000] shows how to transform a sequence of images into a “painted
video.” Recent methods in this area (e.g., Lin et al. [2010] and
Lu et al. [2010]) deliver compelling representations of different
painterly styles.

Although these rendering and video processing methods can con-
vincingly mimic a wide variety of styles and media, customizing the
result to achieve a particular look remains challenging. The tech-
niques are algorithmic in nature and provide only indirect influence
over the final result by tuning parameters such as stroke shape, tex-
ture, size, orientation, and density. Since these variables may be
unintuitive to an artist, Zhao and Zhu [2011] develop a perceptual
basis for stylization control variables in order to make parameter
tuning more intuitive. Sophisticated user interfaces also help make
customization easier [O’Donovan and Hertzmann 2012]. Other ap-
proaches use example-based control by copying pixels from an
exemplar image [Hertzmann et al. 2001] or by learning hatching
styles from a drawn example [Kalogerakis et al. 2011]. In all cases,
the primary focus is controlling stroke synthesis, rather than direct
specification of the final result.

In response to the need for direct control over NPR stylization, re-
searchers have focused on 3D painting or drawing interfaces. Work
in ab initio design uses drawing [Cohen et al. 2000; Bourguignon
et al. 2001; Tolba et al. 2001; Keefe et al. 2007; Rivers et al. 2010]
or painting [Keefe et al. 2001] to create objects and environments
from scratch, but lacks the painterly aesthetic possible with tradi-
tional 2D digital painting systems. This limitation is addressed by
embedding painted strokes on [Teece 1998; Daniels 1999] or near
[Schmid et al. 2011] a 3D proxy shape and replacing traditional
rendering with a “repainting” algorithm that ensures every painted
stroke is faithfully represented in the final imagery. These methods
present the artist with a blank slate on which to create an object’s
look, permitting a high degree of expressive freedom with little
algorithmic interference. However, they support only camera ani-
mation, and thus cannot accomodate animated characters that move
and deform.

As an alternative, Kalnins and colleagues [2002] strike an inter-
mediate balance with a system that combines more traditional NPR

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

Authoring and Animating Painterly Characters • 156:3

methods such as toon shading with a powerful painting interface to
directly control the stylization of annotations for silhouette strokes,
creases, hatching, and painted decals. By combining traditional
NPR shaders with authored annotations, animated characters and
level-of-detail operations are supported, albeit with some indirec-
tion between the authored style and the rendered result. Similarly,
Maya Paint Effects [2011] allows the creation of 3D structures that
can be rendered in a painterly fashion, but the focus is on geometry
instancing rather than tools for stroke-level animations tailored for
painterly characters.

Our work represents a change in core focus compared to previous
NPR research. Whereas existing work centers on new rendering or
image processing styles, we place the spotlight on character author-
ing and explore how stylized depiction can be incorporated into the
character rigging and animation stages. We give the artist tools to
author dynamic, stylized looks for animated characters that are as
expressive as the static looks currently possible with concept paint-
ing. We take inspiration from the level-of-detail authoring concept
in WYSIWYG NPR [Kalnins et al. 2002] and build upon existing
3D painting [Schmid et al. 2011] and rendering [Baran et al. 2011]
algorithms, with a focus on authoring and animating painterly char-
acters. To accomplish this goal, we propose a configuration-space
keyframing system for painted strokes and extend existing pose-
space interpolation algorithms [Lewis et al. 2000; Ngo et al. 2000;
Sloan et al. 2001] to allow high-quality stroke movement.

3. METHOD

Our work focuses on incorporating the expressiveness afforded by
traditional 2D concept painting into the 3D character authoring pro-
cess. We build upon existing research in stroke-based 3D painting
since it addresses similar goals for static scenes. In particular, the
OverCoat system of Schmid and colleagues [2011] permits a very
painterly aesthetic, and we use it as a starting point for our work.
However, other stroke-based 3D painting systems [Daniels 1999;
Kalnins et al. 2002] could also provide a strong foundation on which
to build our painterly character authoring system.

In OverCoat, the artist creates a simple proxy version of the object
she or he wishes to paint using traditional 3D modeling tools. This
proxy object defines an implicit 3D canvas, allowing the artist to
paint strokes into the space near the object using a familiar 2D
tablet for input. Strokes are stored as polylines in space and carry
additional information about color and brush texture that allows
the entire painting to be “repainted” from different viewpoints.
However, OverCoat paintings are entirely static, and are therefore
limited to models in a single pose with no support for animated
characters that move and deform.

Our system uses the 3D paint and embedding methods of Over-
Coat and extends beyond immobile 3D paintings to encompass the
authoring and animation of deformable characters with stroke-level
control. Specifically, we add stroke-skinning, editing, and keyfram-
ing capabilities. We allow keyframing both in time for one-off ef-
fects and in configuration space for creating a painterly “rig” anal-
ogous to pose-space deformation [Lewis et al. 2000]. Our tools for
editing paint strokes, called “smudge” and “expand,” work using a
paint-stroke metaphor themselves.

3.1 Workflow

Traditionally, character authoring includes modeling, rigging, and
texturing a character, while animation involves setting the values
of its rig parameters over time in order to create movement. We
leverage the traditional character animation pipeline and show how
to enhance it with stroke-based painting.

Fig. 2. A comparison of proxy geometry (left), a result after skinning de-
formation (middle), and after skinning and configuration-space keyframing
(right). Configuration-space keyframing allows the artist to add stroke ani-
mation for features that are not present in the geometry or rig, such as the
eyebrows, the cheeks, the pointed hairs, and the eye motion of this dog.
c© Disney

Painting. During the authoring phase, the artist creates a 3D
proxy model and rig for the character using traditional techniques.
Since much of the character’s detail will ultimately come from
painting, the character’s proxy geometry and rig need only be an
approximate representation. The artist then shapes the overall ap-
pearance of the character by painting it. Each painted stroke is
embedded in the space near the model according to the toolset of
the static 3D painting system. During this initial painting phase the
artist is no longer confined to painting the “rest pose” of the model,
as with OverCoat [Schmid et al. 2011], but is now able to paint the
character in any pose due to our skinning deformation algorithm
(Section 3.2). This algorithm can automatically move the painted
strokes together with the proxy geometry as the character is posi-
tioned, allowing the artist to see and work with the model in any
configuration.

Our system links to Maya [2012] in order to receive mesh pose
and animation data. During the initial painting phase, the artist can
move and pose the character using traditional rig and animation
tools in Maya while the character is simultaneously updated in our
interface. Our skinning algorithm (Section 3.2) stores paint-stroke
information in the rest pose regardless of the pose it was painted in,
allowing the artist to freely alternate between posing in Maya and
painting in our system. The initial state of the character is shaped
in this way, until the figure is satisfactory in any configuration the
artist may need.

Stroke Rigging. The artist shapes the overall appearance by
painting the character model as described earlier, but may desire
more fine-scale changes to take place at the stroke level when a
particular pose is achieved. For example, when activating a facial
blend shape, the artist may wish to include painted changes in
the character’s facial expression, as demonstrated in Figure 2. Our
configuration-space keyframing system (Section 3.3) supports this
functionality. The character’s rig parameters, together with other
scene variables such as light and camera positions, define the scene’s
configuration space. The artist can modify and key the opacity
or position of any stroke to the current scene configuration. Our
configuration-space interpolation algorithm (Section 4) ensures that
the keyframes are smoothly and predictably interpolated. To author
these stroke-level behaviors, the artist need only pose the character
in Maya, modify the strokes as desired, and set a configuration-space
key.

Like other graphics tools, our system supports the concept of lay-
ers, which, in our case, are collections of strokes. Because strokes
that are grouped together (logically, not necessarilly spatially)
will typically be animated together, our stroke-based keyframing

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:4 • K. Bassett et al.

mechanisms operate per-layer: a keyframe applies to all strokes in
the layer for which it is set. For the keyframing to be simple, it is
therefore important that the artist organize the scene elements into
layers. For example, the hair strokes on top of the head in Figure 2
are authored as a single layer. While the keyframes are set for each
layer, any stroke manipulation can be applied to individual strokes,
selected by color, layer, or region, or they can be applied across the
entire layer. The artist can change stroke opacity, and can modify
stroke geometry using the smudge and expand tools (Section 3.3).
Both the smudge and expand tools are based on the painting in-
put metaphor by using the same embedding facilities as the paint
strokes. Once the paint strokes have been modified in the current
pose, a key can be set, locking the stroke attributes in the active
layer to that pose and configuration.

Animation. In the animation phase, the character proxy geom-
etry is animated using traditional animation software like Maya.
During playback, our system deforms the painted strokes and in-
terpolates any configuration-space keyframes on stroke movement
or opacity that were created in the authoring phase. Our system
supports an additional keyframing mechanism that allows the opac-
ity and point positions of strokes to be keyed to the animation
timeline (Section 3.4). The procedure is the same as with setting
configuration-space keys: the artist moves the timeline in Maya to
the frame to be modified, makes the desired changes to the strokes,
and sets a time-specific key in our system. This functionality permits
one-off effects relevant to the particular context of the animation.
Once the character has been animated, final renders are created
using a mixed-order compositing algorithm that ensures temporal
coherence [Baran et al. 2011].

3.2 Skinning Deformation

Skinning deformation connects the movement of strokes to the
deformation of the proxy object, allowing 3D paintings to be de-
formed by traditional character rigs. We employ an algorithm based
on linear-blend skinning [Akenine-Möller et al. 2008] to accom-
plish this task. While linear-blend skinning is traditionally used in
the context of a skeleton, we blend transformations of surface el-
ements, similar to Singh and Kokkevis [2000]. For each vertex of
the proxy geometry, we compute a transformation that captures the
space deformation in a local neighborhood from a designated rest
pose to the target pose. For a given vertex vi and its one-ring V 1

i , our
algorithm uses Procrustes analysis to find a least-squares optimal
rigid motion 3-by-4 matrix Mi that aligns all vertices in V 1

i from
the rest pose to the target pose. These Mi’s serve as “bones.”

For the actual skinning deformation, paint strokes are transformed
from the rest pose by a convex combination of Mi , where each point
on a paint stroke has its own set of weights.

M =
∑

i

wiMi (1)

While computing good skinning weights is difficult in some ap-
plications, in our case paint strokes are typically located relatively
close to the proxy geometry’s surface. As a result, simply associ-
ating each stroke with the closest geometric primitive of the mesh
has proven sufficient. If the closest point on the surface lies within
a triangle, the barycentric coordinates of the closest point are used
as weights wi . When the closest point lies exactly on an edge or
vertex, the barycentric coordinates of any shared triangle delivers
the correct weights. As long as the proxy surface deforms smoothly,
transformations on adjacent vertices are similar, and blending them
does not result in common linear-blend skinning artifacts. Figure 3
shows a simple result of this skinning deformation method.

Fig. 3. This figure shows a simple result of our skinning deformation
algorithm. The red strokes are embedded on the surface, while the blue
stroke is embedded above it. Since we compute skinning transformations
based on rotations around the mesh vertices, they naturally extend to the
space surrounding the object.

Newly applied paint strokes are painted with respect to the cur-
rently active pose, but stored with respect to the rest pose. We
compute the skinning weights in the active pose, and then apply
M−1 to each stroke point to find its position in the rest pose. An
alternative would be to store the paint strokes with respect to the
pose in which they were painted, but doing so would require storing
each pose in which paint strokes were created as well as computing
separate transformations from them to the currently active pose.

3.3 Configuration-Space Keyframing

The skinning deformation described in the previous section allows
control over the gross movement of strokes. However, a core ad-
vantage of 3D painting is that it gives the artist the power to directly
paint details and subtle expressive elements that are not present in
the proxy geometry and difficult to realize through modeling op-
erations. Since animating such elements with traditional rigs may
be cumbersome or impossible, we give artists detailed stroke-level
control using a configuration-space stroke keyframing system.

The configuration space is a high-dimensional space defined by
the character’s rigging controls (joint angles, blend-shape variables,
etc.) and other scene parameters such as light and camera positions.
In this sense, it represents a generalization of Rademacher’s [1999]
work on view-dependent geometry. A keyframe is a point in this
space together with desired stroke information at that point. For an
arbitrary pose, the keyframes nearby in configuration space are in-
terpolated (Section 4). Our system allows stroke opacity and stroke
position and shape to be keyframed. We chose this set based on
the needs encountered during the creation of our example results.
However, other quantities such as color or stroke width could also
be keyframed in the same manner.

Since a 3D painting may consist of thousands of paint strokes,
we encourage the artist to partition the painting into layers that have
a semantic meaning with respect to animation. For example, if an
eyebrow is to be animated, all strokes belonging to the eyebrow
should be placed in a separate layer. Keyframes are always set with
respect to an entire layer. For example, a stroke position keyframe
captures the positions of all paint stroke points in a layer.

Opacity keyframing is straightforward. It involves a single opac-
ity measure that can be set to any value between 0 and 1 at any given
point in the configuration space. This opacity value modulates the
opacity of all strokes in the layer, allowing a whole group of paint
strokes to fade in or out during the animation.

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

Authoring and Animating Painterly Characters • 156:5

Fig. 4. This figure shows the result of applying the stroke smudging tool
to three paint strokes that were originally straight (top row), and of applying
the stroke expansion tool to a grid of strokes that was originally painted on
the sphere’s surface (bottom row).

Position keyframes are more complex because of their interac-
tion with skinning. Following pose-space deformation [Lewis et al.
2000], we interpolate all stroke point positions linearly in the rest
pose. Although more sophisticated gradient-domain blending can be
used, we did not see a need for it. Specifying a positional keyframe
involves providing all of the point positions that define the strokes
in a layer. Since setting these point positions manually would be
cumbersome, we provide the artist with two tools to deform paint
strokes: smudging and expansion. Both tools share a common input
metaphor with the painting process: they operate on stroke paths
embedded in space using the 3D painting system. Smudging moves
paint stroke points along the direction of the embedded smudge
stroke, while expansion moves stroke points along the normal de-
fined by the implicit canvas [Schmid et al. 2011]. Both tools only
affect stroke points within a certain radius around the embedded
path. The magnitude can optionally be modulated by a falloff func-
tion, such as the cubic step function 2r3 − 3r2 + 1, where r is
the distance normalized by the tool radius. Figure 4 illustrates the
operations of these shaping tools.

3.4 Temporal Keyframing

The configuration-space keyframing system described earlier fo-
cuses on character authoring and is used to incorporate stroke-based
effects that are common to character poses or other repeated scene
conditions. When a particular animation is created, the artist may
wish to add one-off effects that are specific to the context of the
animation. We accomplish these edits by allowing stroke opacities
and point positions to be keyed to the animation timeline.

Since animation takes place after authoring, temporal keyframes
should override any existing configuration-space keys. To bound
the regions where temporal keyframes are in effect, we employ the
concept of “sentinel keys.” In contrast to “normal” temporal keys,
sentinel keys do not carry any data. Let t be the current animation
time. If t is between two normal temporal keyframes, the keyframed
result should be the interpolation between the two keyframe values
(we use our interpolation method restricted to one dimension). If
t is between two sentinel keys (or between a sentinel key and the
beginning/end of the animation), temporal keyframing is inactive.
In this case, the keyframed value is determined entirely by the
configuration-space keyframes. To avoid sudden jumps around a
temporally keyframed region, there needs to be a smooth transition
between configuration-space and temporal keyframing. Therefore,

Fig. 5. Sentinel keys are used to bound the regions where temporal
keyframing is active. In this figure, the horizontal line at the top represents
the parameter values that result from interpolating the temporal keyframes,
while the one at the bottom represents the parameter values resulting from
the configuration-space keyframes. Between the sentinel keys and their
neighboring temporal keyframes, the results of temporal keyframing and
configuration-space keyframing are blended to ensure a smooth transition.

we blend the result of configuration-space keyframing and the value
of the neighboring temporal keyframe if t is between a sentinel key
and a temporal keyframe (Figure 5).

4. CONFIGURATION-SPACE INTERPOLATION

Given a set of keyframes in configuration space Rd , our system
needs to be able to interpolate them to all other points in configura-
tion space. The interpolant has to generate natural-looking anima-
tion, which is difficult to define mathematically. Instead, we provide
a number of simple requirements that should not be violated. Let
(xi , yi) be n keyframes, with xi the locations in configuration space
and yi the values (e.g., layer opacities or stroke positions). Let ŷ(x̂)
be the interpolant.

REQUIREMENT 1. The interpolant should interpolate the
keyframes: ŷ(xi) = yi .

If the interpolant does not actually interpolate, controlling the output
can be very frustrating for the artist.

REQUIREMENT 2. The interpolant ŷ should be C1 in x̂. It should
also be continuous in xi and yi .

Small changes to the inputs that cause jumps in the output also make
controlling animations difficult.

REQUIREMENT 3. If xi span an affine subspace of the configura-
tion space and if x̂ − x̂′ is orthogonal to that subspace, then ŷ(x̂)
should equal ŷ(x̂′).

If, for example, we key a layer to an elbow, we do not want that
layer affected by changes in knee parameters.

A few requirements are harder to define formally, but are still
desirable.

REQUIREMENT 4. The interpolation scheme should work on
high-dimensional configuration spaces.

REQUIREMENT 5. The interpolation scheme should not require
the user to set too many parameters. It should naturally adapt to
the spacing between keyframes and the different scales associated
with different dimensions.

REQUIREMENT 6. Outside the region bounded by the keyframes,
the interpolant should level off to the value at the closest keyframe.

Extrapolation requires large negative weights, which tend to amplify
defects in strokes, so we found it best to avoid it.

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:6 • K. Bassett et al.

REQUIREMENT 7. Changing a value yi should not affect the inter-
polant “far away” from the associated xi . Changes to the location
xi should also not affect the interpolant far away.

The notion of far away is intentionally fuzzy, as it needs to capture
the user’s perception of which keyframes are unrelated.

These requirements are simple individually, but are quite difficult
to satisfy simultaneously. In fact, we are not aware of any prior
interpolation scheme that satisfies Requirements 1–5. We present a
new interpolation method that we call smooth Voronoi interpolation.
It satisfies Requirements 1–5 and, to some degree, Requirements 6
and 7.

4.1 Previous Methods

Prior methods that needed configuration-space interpolation use
radial-basis functions [Lewis et al. 2000; Igarashi et al. 2005], or
even linear interpolation [Baran et al. 2009]. These techniques and
other common methods violate one or more of our requirements. It
is impossible to enumerate all interpolation methods that have been
developed, but we discuss some of the most popular ones.

Geometric approaches like natural-neighbor coordinates [Sibson
1981], finite element thin-plate spline approaches [Hegland et al.
1997], and bounded biharmonic weights [Jacobson et al. 2011]
are difficult to compute in higher dimensions, violating Require-
ment 4. Nearest-neighbor interpolation satisfies all requirements
except smoothness.

Shepard interpolation [Shepard 1968], Moving Least Squares
(MLS) [Levin 1998], radial-basis functions, and closely related
kriging methods all require a kernel function φi(x) centered at each
data point. Typically, the kernel functions are all the same and only
depend on the distance from xi : φi(x) = φ(‖x − xi‖). The function
φ(r) may be a Gaussian, 1/r2, or any of a number of other functions.
We briefly review the schemes and then discuss which requirements
are violated for which kernel functions.

The RBF interpolant is

ŷ(x̂) =
∑

i

wiφi(x̂), (2)

where for each j , wi’s satisfy the equation:
∑

i wiφi(xj) = yj , and
can thus be found by solving a linear system. This interpolant is not
affine invariant (adding a constant to all the yi does not result in a
shifted interpolant) so commonly a constant or a polynomial term
is added. Alternatively, normalized RBFs can be used

ŷ(x̂) =
∑

i

wiφi(x̂)∑
j φj (x̂)

, (3)

with wi chosen to guarantee interpolation.
MLS interpolation is defined using a class F of functions on Rd ,

often linear functions. The interpolant is then fx̂(x̂), where fx̂ is a
local least-squares fit to the data.

fx̂ = arg min
f ∈F

∑
i

φi(x̂)‖f (xi) − yi‖2 (4)

If F is the class of constant functions, the MLS interpolant reduces
to the Shepard interpolant.

ŷ(x̂) =
∑

i

φi(x̂)∑
j φj (x̂)

yi (5)

These schemes satisfy Requirement 4 and, as long as φ is
smooth, Requirement 2. They generally do not satisfy Require-
ment 6. Whether the other requirements are satisfied depends on
the kernel function.

Fig. 6. A comparison of our method (blue) and normalized Gaussian radial-
basis functions with kernel radii 1, 2, 3, 4, 5 (green and red). The RBF
interpolant with kernel radius 2 is shown in red. This radius is both large
enough to cause an overshoot after the point at x = 2 and small enough to
have a step around x = 12, demonstrating that picking a good kernel radius
can be an impossible task.

Interpolation (Requirement 1). Radial-basis functions guar-
antee interpolation by construction, but Shepard and MLS methods
do not necessarily interpolate the data points, for example, if φ is
a Gaussian. Interpolation for these methods is guaranteed if φ(r)
goes to infinity as r approaches zero or if φi(xj) = 0 for i �= j (only
for the Shepard method).

Affine Subspace (Requirement 3). If the kernel is a Gaus-
sian, for example, φi(x) = e−‖x−xi‖2

, and if x′ is x displaced in
a direction normal to x − xi , so (x − xi) · (x′ − x) = 0, then
φi(x′) = e−‖x′−x‖2

φi(x). In other words, the value of φi is scaled by
a function of only the displacement distance. This property ensures
that Requirement 3 is satisfied when the kernel is a Gaussian for
Shepard, MLS, and normalized RBFs. Other kernels, such as 1/r2,
violate this requirement.

It is tempting to take an interpolant that does not satisfy Require-
ment 3 and apply it to the affine span of xi computed explicitly,
for example, using PCA. However, a slight perturbation of xi can
change the dimensionality of the relevant subspace, making such a
scheme not continuous.

Parameters (Requirement 5). None of the interpolation meth-
ods we discuss (including ours) is invariant to anisotropic scaling
of the configuration space. Therefore, the configuration-space vari-
ables should be scaled to roughly correspond to their relative im-
portance. However, methods that use a fixed-radius Gaussian kernel
are not invariant to isotropic scaling and are very sensitive to the
kernel radius. Gaussian kernels that are too narrow lead to abrupt
transitions in the animation, while overly wide kernels lead to over-
shooting and, for RBFs, poor conditioning. Figure 6 illustrates that
a good kernel radius may not even exist if the keyframes are not
uniformly spaced. Specifying a separate covariance matrix for each
φi can address this issue, but is an undue burden on the user.

Local Influence (Requirement 7). If φ is nonzero everywhere,
changes to xi or yi affect the interpolants produced by all three
methods everywhere. If φi’s are locally supported, Shepard and
MLS interpolants at x do not depend on xi or yi if φi(x) = 0. How-
ever, care must be taken to ensure that at every point at least one φi

is nonzero; otherwise, the interpolant is undefined. For radial-basis

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

Authoring and Animating Painterly Characters • 156:7

Fig. 7. A comparison of our method (blue), Shepard interpolation with the
1/d2 kernel (green), and using our φ’s directly (red). The task is to inter-
polate the five regularly spaced points shown. The steps produced by these
prior methods would manifest themselves as stuttering during animation
playback.

functions, even if φi’s are locally supported, as long as each xi is
in the support regions of neighboring φ’s, changing yi or xi affects
the interpolant everywhere: the inverse of the matrix with i, j th

entry φi(xj) is likely to be dense even if the matrix itself is sparse.

Derivatives. Shepard interpolation tends to have problems with
derivatives at the keyframes (Figure 7) being zero, which leads to
stuttering motions. These can be alleviated by blending local linear
fits instead of the values yi , for instance, using

ŷ(x̂) =
∑

i

φi(x̂)∑
j φj (x̂)

fxi
(x̂) (6)

with fxi
defined as in Eq. (4). Similar ideas with different kernel

functions and local interpolants were explored for interpolation over
R2 by Franke [1977]. This modification, however, does not address
the requirement violations discussed before.

4.2 Smooth Voronoi Interpolation

We design our interpolant as a blend of local linear interpolants,
similar to Eq. (6), but with important differences. Instead of a single
kernel φ(r), we construct a specialized kernel φi(x) around each data
point that is adapted to the distribution of keyframes around xi . This
kernel is a smooth bump centered at xi that falls off to zero towards
every other keyframe, so φi(xj) = δij , where δij is the Kronecker
delta. The linear fits around each keyframe are computed also using
these kernels.

The functions φi(x) are defined based on a smooth step func-
tion. A Hermite cubic step could be used, but we have found the
quadratic-linear-quadratic step for γ = 0.2 to produce better results
because its maximal derivative is smaller, which leads to smoother-
looking interpolation.

Sγ (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t ≤ 0
1 if t ≥ 1

t2

2γ−γ 2 if 0 < t ≤ γ

1 − (1−t)2

2γ−γ 2 if 1 − γ < t < 1

0.5 + t−0.5
1−γ

if γ < t ≤ 1 − γ

(7)

Figure 8 shows the step for different values of γ .

Fig. 8. The function Sγ (t) for γ = 0.05 (blue), 0.2 (green), 0.5 (red).

To compute the kernel φi , we project x̂ onto the line connecting xj

to xi for each j �= i and evaluate S for the resulting line parameter
value, so that the result is 1 if the projection is at or past xi and 0
if it is at or past xj . We then take the product of the smooth steps
toward each keyframe

φ′
i(x̂) =

∏
j �=i

S

(
(x̂ − xj) · (xi − xj)

‖xi − xj‖2

)
(8)

and normalize the result: φi(x̂) = φ′
i(x̂)/

∑
j φ′

j (x̂). These kernels
have several useful properties: they vary between 0 and 1, they are
as smooth as S, and they are constant in directions orthogonal to the
affine subspace spanned by xi’s. Also, φi(x̂) > 0 precisely when
(x̂ + xi)/2 is in the Voronoi region of xi (hence the name of the
interpolation). However, because each φi is smooth and reaches its
extreme values at the keyframes, the gradient of φi at each xj is zero,
and if we use Eq. (5) we will get the stepping artifacts discussed
earlier (Figure 7).

To avoid the stepping artifacts, instead of blending yi’s di-
rectly, we blend linear functions that approximate the data near
keyframes. To ensure interpolation, the linear function associated
with keyframe i must pass through yi , so we can write it as
fxi

(x) = yi + gi · (x̂ − xi), where gi is the gradient of fxi
. Then

Eq. (6) becomes

ŷ =
n∑

i=1

φi(x̂) (yi + gi · (x̂ − xi)) . (9)

It remains to estimate the gradients gi . For fxi
(xj) to equal yj , the

directional derivative in the direction towards xj must equal
yj −yi

‖xj −xi‖ .

The directional derivative of fxi
towards xj is given by gi · xj −xi

‖xj −xi‖ .
Ideally, the directional derivative would match the desired value
exactly.

gi · xj − xi

‖xj − xi‖ = yj − yi

‖xj − xi‖
However, unless yi’s lie on a linear function of x, we will not be able
to satisfy all of these constraints. Instead, we treat these as least-
squares constraints, and, combining them, we formulate a quadratic
energy that we minimize to find gi .

E(gi) =
∑
j �=i

a2
ij

(
gi · xj − xi

‖xj − xi‖ − bij

yj − yi

‖xj − xi‖
)2

(10)

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:8 • K. Bassett et al.

Here aij is used to ensure that only immediate neighbors have an
influence on the gradient estimate and bij is used for forcing the
gradient at extreme keyframes to zero to avoid overshooting and
satisfy Requirement 6. To prevent distant keyframes from influenc-
ing the gradient, we smoothly reduce aij using the kernels φi as xij

is moved away from xi . Specifically, we set

aij = φi(αxi + (1 − α)xj) (11)

with α = 0.5. To set the gradient to zero at extreme points, we
determine whether there are keyframes on both sides of xi in the xj

direction.

bij = S

(
−β · min

k �=i

(xk − xi) · (xj − xi)

‖xk − xi‖‖xj − xi‖
)

(12)

with β = 5. In the 2D con-
figuration shown here, xi is
an extreme point with re-
spect to xj , so bij = 0,
but not with respect to xj ′ ,
so bij ′ = 1. The minimiz-
ing xk is the same for both
cases.

The problem of minimizing the energy E is typically undercon-
strained, as no information is available in directions orthogonal to
the affine subspace spanned by the keyframes. To satisfy Require-
ment 3, the directional derivative needs to be zero in these directions.
This requirement is achieved by adding the Tikhonov regularization
term ε‖gi‖2 to the energy function with ε = 0.2. We then minimize
E using singular value decomposition.

Like all discussed schemes, this interpolation method only de-
pends linearly on the yi’s because gi is a linear function of yi’s.
Therefore, we only need to compute basis functions wi(x) such
that ŷ(x̂) = ∑

i wi(x̂)yi and use them to interpolate many different
strokes or other y’s. Note that these basis functions are different
from the kernel functions φi(x) because wi’s incorporate the effect
of using the gradient in the interpolation. Example basis functions
generated with smooth Voronoi interpolation are shown in Figure 9.
Because configuration space is hard to visualize, we show an appli-
cation of our interpolation to spatial keyframing [Choi et al. 2008]
in Figure 10. The accompanying video demonstrates the practical
impact of the interpolant on a 3D painting of an elf’s face, compar-
ing our method to Gaussian kernel radial-basis functions and linear
moving least squares with 1/r2 weights.

We now discuss the extent to which smooth Voronoi interpolation
satisfies our requirements. Requirement 1 (interpolation) is satisfied
because φi(xj) = δij and fxi

(xi) = yi .
Requirement 2 (smoothness) is also satisfied. The interpolant is

C1 in x̂ because φi is C1 in x̂. The interpolant is linear in yi’s and
therefore smooth. Continuity in xi depends on the minimum of E
varying continuously with xi . The aij and bij are continuous in xi

and the regularization ensures the minimization left-hand side is
nonsingular, which implies the continuity of the inverse.

Requirement 3 is satisfied because neither φi(x̂) nor gi · x̂ changes
when x̂ is displaced in the direction orthogonal to the affine span of
the keyframes.

Although the presented method has parameters α, β, γ , and ε,
they do not need to be adjusted depending on keyframe positions,
unlike the σ ’s of Gaussian kernels. We used the same parameter
values for all of the results shown in this article (α = 0.5, β = 5,
γ = 0.2, ε = 0.2). We therefore consider Requirement 5 satisfied.

Limitations. Like prior methods, our scheme does not always
satisfy Requirement 6: the gradients at extreme keyframes may not

Fig. 9. Basis functions w generated by our interpolation scheme in 2D. The
“keyframes” are at (0.2, 0.2), (0.8, 0.8), (0.2, 0.8), (0.8, 0.2), and (0.3, 0.4).

Fig. 10. A painted smiley face has been keyframed to show various ex-
pressions. The configuration space is defined by the 2D position of the face.
The left figure shows all keyframes at their respective 2D positions. The
right figure shows interpolated faces superimposed on the keyframes.

end up zero and overshooting can occur. Although it is not hard
to construct examples where this happens, we did not run into this
issue when producing our animated characters.

Requirement 7 is also partially satisfied. Changing xi changes the
function globally because each φi depends on all of the keyframe
locations. On the other hand, dependence on yi is more local.
The kernels φi do not extend beyond the Voronoi neighbors of
xi : the support regions for some of the φi’s for Figure 10 are shown
in Figure 11. The gradient gi only depends on yj ’s for which aij is
nonzero, namely those at xj ’s within the Voronoi cell of xi scaled
by 2/(1 − α). The interpolant at x̂ depends only on the gradients
associated with the keyframes for which φi(x̂) is nonzero. The ba-
sis functions thus go to zero away from their associated keyframes
(Figure 9).

Another limitation of our interpolant is that it may have local
extrema away from the keyframes, which can occasionally lead to
unintuitive interpolation (Figure 12). All other interpolation meth-
ods discussed share this limitation.

Complexity. We perform different sets of computations as
part of the interpolation method. When the user sets or moves a
keyframe, we must recompute everything from scratch. When the
user changes the current configuration x̂, we must recompute the
wi’s, but do not need to recompute gi’s. To actually blend the stroke
positions and opacities, we only need to use the already computed
wi’s.

For n keyframes with a d-dimensional configuration space, eval-
uating φ′

i(x̂) takes O(nd) time. Evaluating all of the φi’s at the same
point x̂ thus takes O(n2d) time. To find the weights wi , we must
evaluate Eq. (9) for each i, with different y’s. When the φi’s and

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

Authoring and Animating Painterly Characters • 156:9

Fig. 11. The supports of the kernels φi are shown here for three of the
keyframes in Figure 10. These are the Voronoi cells of the points, each
scaled by a factor of two around its data point. Note that the regions of
influence of the keyframes are larger due to the gradients.

Fig. 12. An example in which the values at keyframes increase monotoni-
cally, but the interpolant does not.

gi’s are already computed, this calculation takes O(n2 + nd) time.
Overall, when the user changes x̂, computing wi’s takes O(n2d)
time. When the user changes one or more of the xi’s, the gi’s need
to be recomputed. Computing the aij ’s is the bottleneck for this
computation and each can be computed in O(n2d) time (because
all of the φ′ must be computed to compute φ). The total time spent
computing aij ’s is thus O(n4d). Many optimizations are possible,
especially if one is allowed to vary the formulation slightly, but
in all of our examples, we use fewer than 20 keyframes per layer
and interpolation takes no noticeable time compared to the time
required for rendering. On a single CPU thread of a Core i7 930
desktop, with n = 20 and d = 100, computing the interpolant from
scratch takes 35ms, while only recomputing wi’s takes 120μs. For
n = 40, the times go up to 540ms and 470μs, respectively, roughly
as predicted by the asymptotics.

5. RESULTS

We authored and animated several example characters to demon-
strate our skinning deformation system and the range of applications
for our configuration-space and temporal keyframing methods. All
characters are purely stroke-based paintings rendered using mixed-
order compositing [Baran et al. 2011]. No traditional computer
graphics elements are used.

The accompanying video shows the examples from Figures 3
and 10, as well as all other results discussed in this section. We
found that proxy geometry animation is best for gross movement
of many strokes in tandem. Configuration-space keyframing is best
for fine-scale stroke control, to sculpt the way strokes move on a
detailed level that is not easily represented by the proxy geometry.

In the smiley-face animation, the configration-space position is
represented by a bomb icon, and the eyes of the face stay fixed on
the bomb position thanks to the configuration-space keyframing.

Fig. 13. Painted lighting effects such as the highlight, shading, and shadow
of this apple can be achieved by including the light’s position in the con-
figuration space and setting stroke position and stroke opacity keyframes to
the light’s position. c© Disney

The dog example (Figure 2) demonstrates both skinning and
configuration-space keyframing. In the rig’s blend shape, only the
snout, ears, and jaw move. We use stroke position keyframing to
make the hair stand up, create eyebrows, animate the pupils, and
pull the cheeks out. Opacity keyframing is used to add highlights
and shadows around the cheeks and eyebrows.

Lighting is a crucial element in many animations. Figure 13 shows
a painted lighting example in which a light source’s position is
included in the configuration space. Keyframes for stroke positions
and opacities are added for different positions of the light source to
create the illusion of a moving highlight, shadow, and shading. In
this example, no actual lighting calculations are made. Everything
is accomplished with configuration-space keyframing.

The blowfish animation (Figure 14) makes use of all aspects of
our animation system. The mesh animation was created with blend
shapes and skeletal rigging and contains the overall deformation of
the body and the movement of the fins. The eyes, however, do not
move in the original animation and were animated by smudging and
keyframing the pupils to a 2D eye target position in the configuration
space. The spikes were folded out with the smudging tool and
keyframed to the blend-shape weight that corresponds to the blown-
up shape of the fish. Spike stretching is avoided by constraining all
points along one spike to a single point on the surface. The blend-
shape weight parameter also causes the cheeks and lips to turn red
via opacity keyframing. As the fish inflates, the distances between
paint strokes increase, leading to gaps in the surface. We filled these
gaps with additional paint strokes that are keyframed to appear
only as the body expands. The difference is visible in the blowfish
comparison segment in the video. The blinking eyes were realized
by keying opacity to a separate parameter in the configuration space.
Figure 15 shows three frames of the blowfish animation with and
without the configuration-space effects.

Finally, the ballerina character, shown in Figure 1, has a detailed
rig that allows the animated painting to rely heavily on stroke skin-
ning. However, the input animation exhibits a number of rigging
artifacts, including the leg protruding through the skirt and the col-
lapsing deformation in the shoulders. Such artifacts can easily be
remedied with our configuration-space keyframing system, as illus-
trated in Figure 16. In the particular case of the shoulders, we mod-
ified the behavior of the problematic strokes by keying new stroke
positions to the angles of the shoulder joints using 10 keyframes
to fix both shoulders. The leg protrusion was fixed with three pose
keyframes to move the skirt upward. Apart from alleviating issues
in the input animation, we also added an embellishing effect an-
imation that causes the ballerina’s tutu to twist in reaction to her
pirouette. This effect was achieved with three temporal keyframes
during her spin that marks the maximum deformation of the fabric.

Table I gives complexity statistics for our results, including the
number of layers, strokes, configuration-space position keyframes,

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:10 • K. Bassett et al.

Fig. 14. A blowfish gets a shock when catching sight of a fishing hook. c© Disney

Fig. 15. An illustration of the different authoring steps for the blowfish
example. The top row shows the animated proxy geometry, the middle row
shows the painted result with skinning deformation only, and the bottom
row shows the result with configuration-space keyframing. The middle row
lacks the blinking and spike animations, and shows holes in the blown-up
pose because the original paint strokes have moved too far apart. c© Disney

Table I. Complexity Statistics for Our Results
CS Pos. CS Op. Temp.

Result Layers Strokes Keys Keys Keys
Dog 42 10,095 43 19 0
Blowfish 20 8,281 15 10 5
Ballerina 69 7,436 60 4 54
Apple 24 807 41 15 0

configuration-space opacity keyframes, and temporal keyframes for
the dog, blowfish, ballerina, and apple examples.

6. CONCLUSION

We have presented a system for authoring and animating painterly
characters that incorporates much of the expressive freedom of 2D
concept painting into the character animation pipeline. In essence,
our work upgrades painting from its restricted role in concept design
and texturing to become an integrated piece of expressive depiction
that impacts modeling, rigging, posing, lighting, and rendering. We
show how painted strokes can be deformed together with the char-
acter’s surface. Our configuration-space and temporal keyframing

Fig. 16. In the ballerina example, we used configuration-space keyframing
(right column) to fix issues that arose from the proxy geometry animation
(left and middle columns), such as the skinning artifacts in the shoulder
regions and the leg protruding through the skirt. c© Disney

system allows artists to fine-tune the movement of strokes in order
to accomplish stroke-level effects that are difficult or impossible to
achieve using more traditional modeling and animation tools. We
have demonstrated results for facial animation, animated lighting,
and full body animation ranging in style from comical and cartoony
to fine-art impressionism.

Although our system gives the artist new control over painterly
animation, it also comes with many limitations that offer exciting
opportunities for future work. The freedom to shape the depiction
of painted strokes in different poses, under different lighting con-
ditions, and at different times can mean that character authoring
becomes more laborious. The extra time required for painting is
somewhat balanced by the possibility of using a simpler geometric
model and rigging deformations. Nonetheless, an interesting area of
future work lies in exploring methods to fill a character with strokes
without having to paint each and every one individually. Such a
system must strike an effective balance between its automatic na-
ture and the level of artistic control.

Lighting represents a challenge in and of itself. Our current sys-
tem allows painted lighting effects, such as the moving shadow,
highlight, and shading on the apple in Figure 13. This example is
somewhat simplistic, and the amount of work involved in creat-
ing extremely complex lighting effects can make authoring them

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

Authoring and Animating Painterly Characters • 156:11

impractical. Incorporating automatic lighting into our animation
system is thus an important area of future work. As mentioned
before, the key challenge involves automating the process without
stealing the artist’s expressive control.

Image-space effects, such as silhouettes, are not easily accom-
plished by our system. Incorporating the WYSIWYG annotation
system [Kalnins et al. 2002] for silhouettes, creases, and hatching
is thus an interesting future work direction. On the technical side,
our configuration-space keyframe interpolation algorithm avoids
stuttering when interpolating multiple keyframes, but does not pro-
vide precise control over the interpolation procedure. Generalizing
the spline control typically found in animation packages to higher
dimensions in an effective way is a challenging area of future work.

A final future work direction is more conceptual. An animated
painting brings together two seemingly incompatible worlds since
3D movement must be conveyed using a medium that has been static
for thousands of years. Our system attempts to give the animator
explicit control over this movement. Discovering the boundaries of
this control and how to move past them to create effects and styles
we have not yet dreamed is a future direction that relies on art just
as much as it relies on science.

ACKNOWLEDGMENTS

We thank Eakta Jain and Jessica Hodgins for providing us with
the ballerina motion capture. Thanks to Maurizio Nitti for creating
the blowfish example. We thank Alec Jacobson, Olga Sorkine,
and Jovan Popović for helpful early discussions regarding smooth
Voronoi interpolation. We also thank the anonymous reviewers for
feedback that helped to greatly improve the article.

REFERENCES

AKENINE-MOLLER, T., HAINES, E., AND HOFFMAN, N. 2008. Real-Time Ren-
dering 3rd Ed. A. K. Peters, Ltd., Natick, MA.

BARAN, I., SCHMID, J., SIEGRIST, T., GROSS, M., AND SUMNER, R. W. 2011.
Mixed-order compositing for 3d painting. ACM Trans. Graph. 30, 6,
132:1–132:6.

BARAN, I., VLASIC, D., GRINSPUN, E., AND POPOVIC, J. 2009. Semantic de-
formation transfer. ACM Trans. Graph. 28, 3, 36:1–36:6.

BENARD, P., BOUSSEAU, A., AND THOLLOT, J. 2011. State-of-the-art report on
temporal coherence for stylized animations. Comput. Graph. Forum 30,
8, 2367–2386.

BOURGUIGNON, D., CANI, M.-P., AND DRETTAKIS, G. 2001. Drawing for il-
lustration and annotation in 3d. Comput. Graph. Forum 20, 3, 114–122.

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F. X. 2006. Inter-
active watercolor rendering with temporal coherence and abstraction. In
Proceedings of the 4th International Symposium on Non-Photorealistic
Animation and Rendering. 141–149.

CHOI, B., YOU, M., AND NOH, J. 2008. Extended spatial keyframing for
complex character animation. Comput. Anim. Virtual Worlds 19, 3–4,
175–188.

COHEN, J. M., HUGHES, J. F., AND ZELEZNIK, R. C. 2000. Harold: A world
made of drawings. In Proceedings of the 1st International Symposium on
Non-Photorealistic Animation and Rendering. 83–90.

CURTIS, C. J., ANDERSON, S. E., SEIMS, J. E., FLEISCHER, K. W., AND SALESIN,
D. H. 1997. Computer-generated watercolor. In Proceedings of the Annual
ACM SIGGRAPH Conference on Computer Graphics and Interactive
Techniques. 421–430.

DANIELS, E. 1999. Deep canvas in disney’s tarzan. In Proceedings of the ACM
SIGGRAPH Conference Abstracts and Applications (SIGGRAPH’99).
200.

FRANKE, R. 1977. Locally determined smooth interpolation at irregularly
spaced points in several variables. IMA J. Appl. Math. 19, 4, 471–482.

HEGLAND, M., ROBERTS, S., AND ALTAS, I. 1997. Finite element thin plate
splines for surface fitting. In Proceedings of the Conference on Computa-
tional Techniques and Applications (CTAC’97). 289–296.

HERTZMANN, A. 2003. A survey of stroke-based rendering. IEEE Comput.
Graph. Appl. 23, 4, 70–81.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND SALESIN, D. H.
2001. Image analogies. In Proceedings of the Annual ACM/SIGGRAPH
Conference on Computer Graphics and Interactive Techniques. 327–340.

HERTZMANN, A. AND PERLIN, K. 2000. Painterly rendering for video and
interaction. In Proceedings of the 1st International Symposium on Non-
Photorealistic Animation and Rendering (NPAR’00). ACM Press, New
York, 7–12.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. 2005. Spatial keyfram-
ing for performance-driven animation. In Proceedings of the
ACM/SIGGRAPH/Eurographics Symposium on Computer Animation.
107–116.

JACOBSON, A., BARAN, I., POPOVIC, J., AND SORKINE, O. 2011. Bounded
biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4,
78:1–78:8.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., LEE, J.
C., DAVIDSON, P. L.,WEBB, M., HUGHES, J. F., AND FINKELSTEIN, A. 2002.
Wysiwyg npr: Drawing strokes directly on 3d models. ACM Trans. Graph.
21, 3, 755–762.

KALOGERAKIS, E., NOWROUZEZAHRAI, D., BRESLAV, S., AND HERTZMANN, A.
2011. Learning hatching for pen-and-ink illustration of surfaces. ACM
Trans. Graph. 31, 1, 1:1–1:17.

KEEFE, D., ZELEZNIK, R., AND LAIDLAW, D. 2007. Drawing on air: Input
techniques for controlled 3d line illustration. IEEE Trans. Vis. Comput.
Graph. 13, 1067–1081.

KEEFE, D. F., FELIZ, D. A., MOSCOVICH, T., LAIDLAW, D. H., AND LAVIOLA, J.
J. JR. 2001. Cavepainting: A fully immersive 3d artistic medium and inter-
active experience. In Proceedings of the ACM Symposium on Interactive
3D Graphics. 85–94.

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L., BARZEL,
R., HOLDEN, L. S., AND HUGHES, J. F. 1999. Art-based rendering
of fur, grass, and trees. In Proceedings of the Annual ACM/SIGGRAPH
Conference on Computer Graphics and Interactive Techniques. 433–438.

LEVIN, D. 1998. The approximation power of moving least-squares. Math.
Comput. 67, 224, 1517–1532.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space deformations: A
unified approach to shape interpolation and skeleton-driven deformation.
In Proceedings of the Annual ACM/SIGGRAPH Conference on Computer
Graphics and Interactive Techniques. 165–172.

LIN, L., ZENG, K., LV, H., WANG, Y., XU, Y., AND ZHU, S.-C. 2010. Painterly
animation using video semantics and feature correspondence. In Proceed-
ings of the 8th International Symposium on Non-Photorealistic Animation
and Rendering (NPAR’10). ACM Press, New York, 73–80.

LITWINOWICZ, P. 1997. Processing images and video for an impressionist
effect. In Proceedings of the Annual ACM/SIGGRAPH Conference on
Computer Graphics and Interactive Techniques. 407–414.

LU, J., SANDER, P. V., AND FINKELSTEIN, A. 2010. Interactive painterly styl-
ization of images, videos and 3d animations. In Proceedings of the ACM
Symposium on Interactive 3D Graphics and Games. 127–134.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealistic ren-
dering. In Proceedings of the Annual ACM/SIGGRAPH Conference on
Computer Graphics and Interactive Techniques. 415–420.

MAYA. 2012. http://www.autodesk.com/maya.

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

156:12 • K. Bassett et al.

MEIER, B. J. 1996. Painterly rendering for animation. In Proceedings of
the Annual ACM/SIGGRAPH Conference on Computer Graphics and
Interactive Techniques. 477–484.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L., AND ZHU, S.
2000. Accessible animation and customizable graphics via simplicial
configuration modeling. In Proceedings of the Annual ACM/SIGGRAPH
Conference on Computer Graphics and Interactive Techniques. 403–
410.

O’DONOVAN, P. AND HERTZMANN, A. 2012. Anipaint: Interactive painterly
animation from video. IEEE Trans. Vis. Comput. Graph. 18, 3, 475–487.

PAINT EFFECTS. 2011. Painting in 3d using paint effects. In Autodesk Maya
Learning Resources. http://download.autodesk.com/us/maya/2011help.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Realtime
hatching. In Proceedings of the Annual ACM/SIGGRAPH Conference on
Computer Graphics and Interactive Techniques. 579–584.

RADEMACHER, P. 1999. View-dependent geometry. In Proceedings of the
Annual ACM/SIGGRAPH Conference on Computer Graphics and Inter-
active Techniques. 439–446.

RIVERS, A., IGARASHI, T., AND DURAND, F. 2010. 2.5d cartoon models. ACM
Trans. Graph. 29, 4, 59:1–59:7.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. W. 2011. Overcoat:
An implicit canvas for 3d painting. ACM Trans. Graph. 30, 4, 28:1–
28:10.

SHEPARD, D. 1968. A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 23rd ACM National Conference. ACM
Press, New York, 517–524.

SIBSON, R. 1981. A brief description of natural neighbor interpolation. In
Interpolating Multivariate Data. John Wiley and Sons, 21–36.

SINGH, K. AND KOKKEVIS, E. 2000. Skinning characters using surface ori-
ented free-form deformations. In Proceedings of the Annual Graphics
Interface Conference. 35–42.

SLOAN, P.-P. J., ROSE, C. F. III, AND COHEN, M. F. 2001. Shape by example.
In Proceedings of the ACM Symposium on Interactive 3D Graphics. 135–
144.

TEECE, D. 1998. 3d painting for non-photorealistic rendering. In
ACM/SIGGRAPH Conference Abstracts and Applications. ACM Press,
New York, 248.

TOLBA, O., DORSEY, J., AND MCMILLAN, L. 2001. A projective drawing sys-
tem. In Proceedings of the ACM Symposium on Interactive 3D Graphics.
25–34.

ZHAO, M. AND ZHU, S.-C. 2011. Customizing painterly rendering styles using
stroke processes. In Proceedings of the ACM/SIGGRAPH/Eurographics
Symposium on Non-Photorealistic Animation and Rendering (NPAR’11).
ACM Press, New York. 137–146.

Received August 2012; revised February 2013; accepted May 2013

ACM Transactions on Graphics, Vol. 32, No. 5, Article 156, Publication date: September 2013.

