
DOI: 10.1111/cgf.12257 COMPUTER GRAPHICS forum
Volume 00 (2013), number 0 pp. 1–13

Visibility Silhouettes for Semi-Analytic Spherical Integration

Derek Nowrouzezahrai1,2, Ilya Baran2,3, Kenny Mitchell2 and Wojciech Jarosz2

1Université de Montréal, Montréal, Canada
derek@iro.umontreal.ca

2Disney Research Zurich
baran37@gmail.com; {kenny.mitchell, wjarosz}@disneyresearch.com

3Belmont Technology, Inc.

Abstract
At each shade point, the spherical visibility function encodes occlusion from surrounding geometry, in all directions. Computing
this function is difficult and point-sampling approaches, such as ray-tracing or hardware shadow mapping, are traditionally used
to efficiently approximate it. We propose a semi-analytic solution to the problem where the spherical silhouette of the visibility
is computed using a search over a 4D dual mesh of the scene. Once computed, we are able to semi-analytically integrate
visibility-masked spherical functions along the visibility silhouette, instead of over the entire hemisphere. In this way, we avoid
the artefacts that arise from using point-sampling strategies to integrate visibility, a function with unbounded frequency content.
We demonstrate our approach on several applications, including direct illumination from realistic lighting and computation
of pre-computed radiance transfer data. Additionally, we present a new frequency-space method for exactly computing all-
frequency shadows on diffuse surfaces. Our results match ground truth computed using importance-sampled stratified Monte
Carlo ray-tracing, with comparable performance on scenes with low-to-moderate geometric complexity.

Keywords: all-frequency shadowing, image-based rendering, spherical visibility

ACM CCS: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and realism Color, shading, shadowing, and texture

1. Introduction

Shadows are one of the most identifiable real-world lighting phe-
nomena, providing important depth cues and information about the
surrounding lighting environment. Advances in rendering are in-
creasing the accuracy and performance of shadow generation, al-
lowing all-frequency shadows from real-world lighting on scenes of
growing complexity.

While initial work on high-performance realistic shadows fo-
cused on simple point and directional light sources (see recent sur-
veys [ESAW11, WP12]), the availability of real-world data has
prompted generalizations of these approaches to more complex
lighting. Efficiently computing accurate shadows from environment
lights is a difficult problem because, at each shading point, light must
be integrated from all directions and masked by the spherical binary
visibility function (or visibility, for brevity) at each shade point.

Computing visibility is often the bottleneck in realistic render-
ing algorithms. Only unoccluded light directions contribute to direct
illumination, after weighting by the view-evaluated BRDF. Comput-

ing the visibility is a difficult geometric problem (cf. [DDP02]), typ-
ically solved with sampling approaches, such as ray-tracing. Recent
GPU ray-tracing systems can accelerate this costly computation.

We propose a geometric solution to this problem and exploit the
fact that for many scenes, visibility can be compactly represented
by its (spherical) boundary, or silhouette. We do not consider scenes
where this assumption breaks down (e.g. stacked/jittered chain-
linked fences, complex foliage, etc.); our method would still work
on such scenes, but would suffer from reduced performance. We
compute the spherical geometric contours about a shade point using
a 4D acceleration structure, exploiting the fact that only a small per-
centage of all triangle edges contribute to these spherical contours.
We then use these contours to accurately compute semi-analytic
integrals of visibility-masked functions.

Integrals of visibility-masked functions appear in many render-
ing applications, such as direct lighting [GH06], ambient occlusion
(AO) [McG10], and pre-computed radiance transfer (PRT) [SKS02].
We apply our method to these applications and present an additional

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

1



2 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

Ambient Occlusion Environment Lighting (diffuse) Environment Lighting (glossy)

Figure 1: We compute spherical integrals of visibility-masked functions commonly found in rendering, e.g. in ambient occlusion and all-
frequency direct illumination. This scene (123.2k triangles) took ∼5 min to render on a 4-core CPU, independent of the lighting. These results
render at 84–106% the speed of a noise-free ray-traced image, depending on the lighting.

optimization for diffuse BRDFs. While our approach scales well in
the number of integration samples (or, put differently, the com-
plexity of the function being integrated), it does not scale as well
as ray-tracing with the size of the scene. As such, we are com-
petitive with optimized ray-tracing on scenes of low-to-moderate
complexity.

2. Related Work

We address a general problem with immediate applications in ren-
dering and discuss previous work in related areas.

2.1. Boundaries and sampling

Silhouette computation is critical to many non-photorealistic ap-
proaches [DFRS03] and we are motivated by the large literature in
this area. Hertzmann and Zorin [HZ00] use an octree defined over
a 4D dual mesh to quickly find contour edges, whereas we employ
a bounding volume hierarchy (BVH). Silhouette extraction using
Hough transforms may accelerate our approach [OZ06].

Shadow volumes [Cro77] are encased by planes defined by object
silhouette edges seen from a point light’s position. Depth counting
from the eye determines whether a pixel is in shadow or not. Be-
fore we can consider integrating visibility-masked functions, we
must compute spherical silhouettes at all shade points, which is
significantly more difficult.

Chen and Arvo [CA00] derive analytic expressions for irradiance
from polygonal lights and reduce the irradiance computation to a
contour integral over the edges of the polygonal source using Stokes’
theorem. Similarly, McGuire approximates AO, using Stokes’ theo-
rem to integrate over the edges of an extruded AO volume [McG10].
We also integrate over boundaries, but to compute accurate integrals
of visibility-masked functions.

Laine et al. [LAA*05] and Lehtinen et al. [LLA06] combine ray-
tracing with a silhouette-based approach to compute direct illumina-
tion from planar polygonal light sources. We also exploit silhouettes
to simplify the representation of visibility, although we consider the
more general problem of a textured spherical light domain. We addi-
tionally use line-sampled integration, whereas Laine et al. and Lehti-
nen et al. sample with points. Many additional works leverage sim-
ilar silhouette and depth complexity sampling in order to efficiently
compute soft shadows [FBP08, AAM03, ED07], but none consider

semi-analytic spherical integration. More recent works leverage lazy
visibility evaluation and analytic from—polygon form—factor com-
putation to compute soft shadows from geometric area lights and
AO effects [MAAG12, AMGA12]. We are motivated by works on
semi-analytic visibility [NN85, SR00, HMN05], which compromise
between stochastic sampling approaches that are sensitive to noise,
and more complex fully analytic solutions.

By determining the spherical visibility, we can compute integrals
of arbitrary visibility-masked functions. We discuss the differences
between ours and the aforementioned approaches in Section 3 but,
put briefly, we generalize prior approaches to the spherical domain
while leveraging line, instead of point, sampling for semi-analytic
integration.

Many recent approaches use line samples to perform numer-
ical integration more efficiently than with point samples. Gribel
et al. [GBAM11] use line samples to compute motion blurred AO,
and Barringer et al. [BGAM12] determine camera visibility for ge-
ometric curve primitives (e.g. hair) using per-pixel line-sampled
integration. These techniques do not use silhouettes when testing
visibility and consider different visibility scenarios (e.g. not general
environment map occlusion). The way we perform line integration is
similar to the evaluation of invisibility proposed by Appel [App67],
as well as drawing parallels to fundamental work in pre-filtering and
anti-aliasing [GT96, JP00].

Wang et al. [WRG*09] use a visibility representation, suitable
for spatial interpolation, based on signed-distance functions. They
still use point-sampling to project visibility into a basis-space rep-
resentation for relighting: this projection can be accelerated with
our approach (see Section 4). Annen et al. [ADM*08] sample en-
vironment maps at few (e.g. 30) directions and use low-resolution
filtered shadow maps to sample visibility for all-frequency shadows
of dynamic scenes. Their filtering masks typical spatial and angu-
lar shadow mapping bias at the cost of blurring the shadows. We
instead determine spherical visibility geometrically and accurately
compute semi-analytic integrals of visibility-masked lighting and
BRDFs without any noise or blurring.

2.2. PRT and analytic rendering approaches

Recent work focused on static geometry and image relighting us-
ing spherical harmonics (SH) [SKS02], Haar Wavelets [NRH03,
NRH04] or radial basis functions [TS06, WRG*09]. These

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 3

Diffuse [RH01]×AO Low-order SH PRT SHExp [RWS∗06] Ours CPU Ray-trace (equal time) Ray-trace (equal quality)

5m:11s 2m:18s 0m:02s 0m:15s 0m:16s 4m:58s

Figure 2: We compare common approaches for handling visibility. For a noise-free ray-traced result, our approach outperforms importance-
sampled QMC on this simple test scene (37.8k triangles). PRT is computed per-vertex using QMC. QMC scales better with scene complexity,
whereas our approach scales favourably with spherical sampling rate (see discussion in Section 5).

approaches represent the lighting, BRDF, visibility, or a combina-
tion of these terms in basis expansions, and then perform relighting
entirely in the basis space.

Some PRT-based approaches approximate visibility at run-time
to handle dynamic geometry by rasterizing blockers into a hemi-
sphere [KLA04], multiplying pre-computed volumetric visibility
for rigid blockers using basis-space product operators [ZHL*05],
or using simplified blocker proxies and accumulating logarithmic
visibility in the basis space [RWS*06]. GPU-accelerated non-linear
projections [GHFP08] could be employed in the context of sampling
per-pixel spherical visibility in parallel; however, these techniques
scale linearly in the size of the scene.

Ramamoorthi and Hanrahan [RH01, RH02] show that outgoing
radiance is a convolution of the (radially-symmetric) view-evaluated
BRDF and incident radiance. By representing BRDF and lighting in
SH, this convolution simplifies to a frequency-space product. In the
case of diffuse reflection, they show that an order-3 SH expansion of
the clamped-cosine ensures a maximum shading error ≤3%. They
compute unshadowed shading, where incident radiance is equal to
the environment light (no visibility). Sloan [Slo08] shows that even
this slight error can become noticeable with high dynamic range
(HDR) lighting. With our semi-analytic integration, shadowed in-
cident radiance can be computed and used in a frequency-space
shading context. In fact, we will show that when clamping inci-
dent light to the upper hemisphere, diffuse shading can be perfectly
computed with all-frequency shadows using only band-1 SH (three
coefficients instead of nine). This resembles a vector irradiance for-
mulation by Arvo [Arv95] (see Section 4 and Appendix A).

3. Our Method

We integrate spherical functions f (ω) masked by visibility:

I =
∫

S2
V (ω)f (ω)dω, (1)

where S2 are all unit directions and f may be scalar or vector valued.
Since visibility is binary, we can write

I =
∫

{ω|V (ω)=1}
f (ω)dω. (2)

To compute the integral over the unoccluded region, {ω | V (ω) =
1}, we need to find the silhouette of all the occluders in the scene.

Previous approaches which consider visibility silhouettes [LAA*05,
LLA06] still require ray-tracing and only compute shading from
polygonal lights. We instead consider the full spherical visibility
(silhouette) and compute arbitrary integrals of the form in Equa-
tion (1). Finding only the silhouette edges is a difficult problem
because whether an edge is a silhouette edge or not may depend on
occluders far from the edge. Our approach is instead to find the con-
tour edges: edges which contain the silhouette and can be quickly
found using a dual-space BVH (see Section 3.1).

Given this superset of edges, we could use 2D geometric booleans
to determine which ones comprise the silhouette, but this is a costly
and error-prone procedure. Instead, we reduce the dimensionality
of the problem by parameterizing the sphere by u and v (we discuss
our specific choice of parameterization in Section 3.3), rewriting
Equation (2) as

I =
∫

u

(∫
{v|V (u,v)=1}

f (u, v)J (u, v)dv

)
du, (3)

where J (u, v) = ‖ dω

du
× dω

dv
‖. For each u, the region {v | V = 1} is

a set of disjoint intervals, allowing us to write

I =
∫

u

N (u)∑
i

(∫ v+
i

(u)

v−
i

(u)
f (u, v)J (u, v)dv

)
du, (4)

where N (u) is the number of intervals and [v−
i (u), v+

i (u)] is the ith
interval. Finally, we discretize along the u dimension, decomposing
the 2D problem into a set of 1D problems:

I =
∑

u

Nu∑
i

(∫ v+
i,u

v−
i,u

f (u, v)J (u, v)dv

)
�u, (5)

where Nu, v−
i,u and v+

i,u are the discrete analogues of the continuous
variables N (u), v+

i (u) and v−
i (u). In other words, we need only find

the intersection points of the silhouette with u-isolines, as illustrated
in Figure 3. The depth complexity function (DCF; Section 3.1) al-
lows us to find these points efficiently. This basic pattern of boolean
dimensionality reduction dates back to the early days of ray casting
(e.g. Roth [Rot82]); we use it for finding integration bounds. The

way we evaluate the definite integral
∫ v+

i,u

v−
i,u

f (u, v)J (u, v)dv depends

on f; we discuss specifics in Section 3.2

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



4 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

+1

1

2

v

u

3
-1

+2

-2

Figure 3: Visibility diagram of two polyhedral occluders projected
onto the sphere. W values (Section 3.1) are shown as well as
unoccluded portions of u-isolines. The DCF increments along a
u-isoline are shown in green. Examples of this picture using our
parameterization are in Figure 5.

3.1. Contour edge computation

At a point p, we are interested in the visibility function V (ω),
which specifies whether a ray starting at p towards ω intersects any
scene geometry. Although this definition suggests ray-tracing, we
entirely avoid ray-tracing in our method. The visibility function is
piecewise-constant (in fact, binary) and it changes precisely when
the ray crosses silhouette edges, by definition. To find the silhouette
edges, we define the DCF, W : S2 → N0, which generalizes V .

For a direction ω, W (ω) counts the times a ray starting at p in that
direction intersects the scene geometry. This function is also piece-
wise constant and its value changes when the ray crosses contour
edges, as shown in Figure 3. Although the DCF is more complicated
than visibility, silhouettes are defined by a global condition, whereas
contour edges are defined locally, making them easier to compute.

We assume that our scenes are represented with triangle meshes.
Consider what happens to W (ω) at a fixed p as we vary ω so that the
ray crosses a triangle edge e. If e is a boundary edge, i.e. has only
one adjacent triangle, then the ray goes from not intersecting this
triangle to intersecting it or vice versa. In this case, W (ω) changes
by ±1. If e is adjacent to two triangles, there are two possibilities:
the ray can go from intersecting one of the triangles to intersecting
the other, or the ray can go from intersecting neither to intersecting
both (Figure 4). Assuming that triangles are oriented consistently, if
the triangles are both front-facing w.r.t. p or both back-facing w.r.t.
p, then the first possibility occurs and W (ω) does not change. If, on
the other hand, one of the triangles is front-facing and the other is
back-facing (w.r.t. p), then W (ω) changes by ±2 when the edge is
crossed.

Let f1 and f2 be plane equations of the triangles, expressed as
4D vectors (the first three components are the normal, the fourth is
the offset). Then, W changes, according to the conditions detailed
above, when an edge is crossed and iff:

sign(f1 · p) �= sign(f2 · p), (6)

where p is expressed in homogeneous coordinates. The contour
edges for shade point p are therefore the mesh boundary edges and
edges that satisfy Equation (6).

Figure 4: Left: W changes by 2 when the edge is crossed (making
it a contour). Right: no change in W (not a contour).

Finding the mesh boundary contour edges, specifically the mesh
edges with only one adjacent triangle, is simple since they are the
same at every shade point. To quickly find the non-boundary con-
tour edges, we use a method similar to that of Hertzmann and
Zorin [HZ00], discussed below.

For scenes with smooth objects, only a small fraction of edges
are contour edges. To avoid testing whether each edge satisfies
Equation (6), we represent each edge e (in the primal domain) as
a line segment in a dual 4D space with endpoints f1 and f2. These
4D line segments form a 4D mesh in the dual space which we
place into a 4D BVH. To find contour edges, we perform a 3D
hyperplane (corresponding to the normal at p in the dual space)
versus 4D dual mesh intersection using the 4D BVH. We are only
interested in the visible half-space (x − p) · n ≥ 0 and we filter out
contour edges having both endpoints in the invisible half-space.
Since subsequent processing is done on a sphere, we project the
contour edges onto the unit sphere around p, making each edge the
arc of a great circle. At a high level, the above resembles the way
Laine et al. [LAA*05] consider silhouettes; however, we compute
integrals over line samples and handle arbitrarily large domains. We
discuss these and other distinguishing differences below.

3.2. Computing the final integral

We now use the contour edges to evaluate Equation (5) by computing
the depth complexity W along every discrete u-isoline and evalu-
ating the innermost integral along segments where W is zero. By
construction, W changes at intersections of the contour edges and
the u-isolines. We therefore associate a bucket with each u-isoline
where we store these intersections. For each edge, we determine
which discrete u-isolines it intersects, and put the v values of the
intersections as well as the change of W (±1 or ±2) into the as-
sociated buckets. We then sort each bucket, to obtain the changes
to W in order of increasing v. For a u-isoline, suppose we know
the value of W at v = 0. By traversing the sorted bucket, we can
then incrementally compute the value of W for each v and integrate
f (u, v)J (u, v), over the segments where it is 0.

There are two important caveats. First, determining the value of W

at v = 0. By choosing a parameterization so that all u-isolines start
at the same spherical point, we reduce the problem to computing
W at that single point. The robust solution is to trace a ray in that
direction [LAA*05]; we implement a simpler solution: we pick
an arbitrary W starting value, traverse the buckets to determine the
minimum W , and then offset the starting value so that this minimum
value is zero. The second caveat is that we filter out contour edges in

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 5

Figure 5: Three unfolded octahedra show the visibility about the three red points in the scene, in order of the point on the plane, on the sphere
and on the teapot. Octahedral edges are black, the visible half-space boundary is blue, contour edges are green and unoccluded sections of
u-isolines are red. y and z axes are reversed for the sphere and teapot points (see Section 3.3).

the invisible half-space, so if a u-isoline crosses into this half-space
and then crosses back, the values for W will not be correct. We
choose the parameterization so that once u-isolines cross into the
invisible half-space, they never cross back.

Although Laine et al. [LAA*05] use silhouettes to represent vis-
ibility, in addition to differences in silhouette detection and appli-
cations, our integration method is itself fundamentally different. In
their method, light integration is based on planar point samples,
while we integrate semi-analytically along entire contiguous spher-
ical (iso)lines. As a result, our integration scales as O(

√
k) in the

number of effective samples k, while the integration in their method
scales as O(k).

3.3. Spherical parameterization

The simplest parameterization to use is spherical angles. The u and
v coordinates are azimuthal and zenith angles. All u-isolines start
at the north pole and, as long as the north pole is in the visible
half-space, u-isolines that cross into the invisible half-space never
cross back. If the north pole is not in the visible half-space, we
simply reverse the direction of u and start from the south pole.
Unfortunately, computing the v coordinates of edge intersections
with u-isolines requires evaluating trigonometric functions, which
is expensive.

Our implementation instead uses an octahedral parameterization,
similar to Praun and Hoppe [PH03]. Instead of projecting edges

-y
y

z

-z

-z

z

xx -x-x y

-y

-y

-y-y

Figure 6: Unfolded octahedron (left) and u-isolines (right).

Figure 7: Editing the car’s paint in Figure 1 from glossy to diffuse,
and changing its texture. The BRDF is incorporated at shade time,
making material changes instantaneous.

onto the unit sphere, we project them through the origin onto a unit
octahedron |x| + |y| + |z| = 1 (Figures 5 and 6). This projection
maps (x, y, z) to (x,y,z)

|x|+|y|+|z| and has the property that within an oc-
tant, straight lines map to straight lines. This implies that for an
edge within an octant, the v coordinate of the intersection of the
u-isolines with the projection of that edge is a simple linear func-
tion of u and does not require trigonometry to evaluate. We use the
x and y coordinates of our projection as u and v. The z coordinate
is then determined up to sign: we have a set of buckets for +z and
a set of buckets for −z. This property allows our intersections to
be computed roughly twice as fast as for the spherical parameter-
ization. The change-of-variables term of this parameterization is
J (u, v) = (

u2 + v2 + (1 − |u| − |v|)2
)1.5

.

The situation with our two caveats from Section 3.2 is somewhat
more complicated in the octahedral parameterization. First, when
determining the value of W at v = 0, the u-isolines all start at
different points which requires us to calculate W values at every
point. We do this by recording all projected edge intersections with
v = 0 into a special bucket. We can then calculate W at ω(u, 0)
incrementally from W (ω(0, 0)) by traversing the elements in this
bucket. The second issue is that in this parameterization, a u-isoline
can cross into the invisible half-space and then back out. However,
this can only happen if |ny | < |nz| and in this case, we simply reverse
the y and z axes, temporarily rotating the domain in order to avoid
the double-crossing event.

4. Applications

We focus on applications in realistic rendering, where integrals of
the form in Equation (1) commonly arise. Each application can

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



6 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

G
ra

ce
42 = 16 samples 82 = 64 samples 152 = 225 samples 1282 = 16384 samples

3m:43s; RMSE = 0.0889 3m:58s; RMSE = 0.0264 4m:25s; RMSE = 0.0253 5m19s; RMSE = 0.0180

U
ffi

zi

3m:21s; RMSE = 0.0477 3m:39s; RMSE = 0.0366 4m:13s; RMSE = 0.0216 4m:47s; RMSE = 0.0108

Figure 8: Convergence with increasing sample counts on the Tank Car scene (85.2k triangles). Banding is caused by the uniform discretization
of f (ω) in our SAT shared across pixels. Our approach always converges to ground truth with k = 106.

be fully described by its f (ω). Our algorithm can sample shade
points arbitrarily; we use per-pixel shading in all cases except for
per-vertex PRT vector computation.

For a function f (ω) (e.g. environment map), we compute a
summed area table (SAT) over u-isolines, reducing definite in-
tegral computation to two lookups and a subtraction. Evaluating
f only affects SAT construction cost, which is negligible compared
to the cost of silhouette search and integration. We discuss below
how basis projections can be combined with our SAT to handle
higher dimensional functions.

AO. We compute AO with f (ω) = 
n · ω�0. Note that AO some-
times refers to average visibility [LS10] without the cosine; this
value corresponds to f = 1, assuming that no AO fall-off functions
are employed. Our approach cannot support typical distance-to-
intersection AO fall-off functions since we only mask functions
according to binary visibility. Figures 9 and 11 illustrate this appli-
cation.

PRT. We apply our approach to pre-computing basis projections
of visibility in PRT triple-product relighting. In this case, f (ω) =
B(ω), where B is a vector-valued function of the basis functions.
We use the real-valued SH basis functions, B = y where

ym
l (ω) =

⎧⎨
⎩

K0
l P

0
l (cos ωθ ), m = 0√

2Km
l cos (mωφ)P m

l (cos ωθ ), m > 0√
2K

|m|
l sin (|m|ωφ)P |m|

l (cos ωθ ), m < 0
and

y = [
y0

0 (ω), y−1
1 (ω), y0

1 (ω), y1
1 (ω), y−2

2 (ω) . . .
] (7)

and m indexes the (2l + 1) band-l basis functions, Km
l is a normal-

ization term, and P m
l are associated Legendre polynomials. Note,

however, that any basis with a double- or triple-product formulation
can be employed, including data-driven bases [NKLN10]. By mul-
tiplying B with an arbitrary f , we can also project visibility-masked
functions onto a basis which is different, and generally more accu-
rate, than performing a product with visibility in the basis space.

Image relighting. For a fixed view, we can pre-compute silhouettes
and modify the light at run-time. Therefore, we integrate the prod-
uct of visibility and view-evaluated BRDF, fr (ω,ωo), weighted by
cosine foreshortening: f (ω) = fr (ω,ωo)
n · ω�0, where ωo is the
view vector.

All-frequency diffuse shading. Diffuse shading is the convolu-
tion of a clamped cosine kernel, aligned along n, with the incident
radiance. Since this kernel is clamped to the upper hemisphere,
the sharp discontinuity along the equator in the angular domain
causes infinite frequencies in its SH projection. Ramamoorthi and
Hanrahan [RH01] show that a 9 coefficient, order-3 SH projection
of this kernel captures the majority of its energy, despite its infinite
frequency content. They project the unshadowed incident radiance
(the environment map, for distant lighting) into order-3 SH and
shade using analytic SH convolution.

We will show that by incorporating hemispherical clamping into
the incident radiance computation before projecting into SH, we can
compute all-frequency shadows with a band-limited unclamped co-
sine, requiring only three SH coefficients. We avoid soft-shadowing
approximation errors caused by SH projection in PRT by projecting
visibility-masked incident illumination. We discuss below how to
perform final shading using a fully band-limited BRDF kernel.

Diffuse direct lighting is computed as the following integral:

I = ρ

π

∫
S2

Lin(ω)V (ω)H (ω, n)(n · ω) dω, (8)

where the hemispherical clamping function, H (ω, n), is 1 when
n · ω > 0 and 0 otherwise. The integral of a product of two spher-
ical functions is the dot product of their SH projection coefficient
vectors. Previous approaches projected the functions Lin(ω) and
V (ω)H (ω, n)(n · ω) into SH, because this enabled run-time manip-
ulation of lighting for static geometry. Both of these terms have
unbounded frequency content, which means that the accurate com-
putation of the dot product of their coefficients requires infinitely
many terms. Ramamoorthi and Hanrahan’s observation relates to

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 7

Figure 9: Rendering with different lighting: (left to right) ambient, Uffizi, Grove and Grace. Render times for each scene (Fly 1 and BMW)
are independent of lighting and take (top to bottom) 4m:07s, 1m:24s and 1m:29s. Changing the materials from diffuse to glossy in the BMW
scene does not add significant overhead, due to our frequency-space optimization.

the fact that while the clamped cosine has unbounded frequency
content, most of it is concentrated in the first three SH bands.

In our case, to avoid pre-computing a SAT for each normal,
we need to decouple incident light from n · ω by integrating the
hemispherical clamping in our silhouette integration of Lin, treating
it as a part of visibility. The incorporation of hemispherical clamping
in the silhouette computation is performed by default, as discussed
in Section 3.1

The remaining function, n · ω, is unclamped and has bounded
frequency content. This function only has non-zero SH projection
coefficients in the linear l = 1 band. This permits us to compute
the integral of the product of these two terms using a single SH
band, meaning that we need only retain the linear band of the SH
projection of Lin(ω)H (ω, n).

We obtain these three coefficients with f (ω) = Lin(ω)
H (ω, n) y1(ω), where y1(ω)= [y−1

1 (ω), y0
1 (ω), y1

1 (ω)] is a vector
valued function of the three linear SH basis functions (Appendix A
relates this discussion to vector irradiance). This representation of
incident radiance can be extended to non-diffuse BRDFs where,
unlike prior work, shading can be computed more accurately and
efficiently.

Glossy rendering. We compute the optimal SH projection of in-
cident radiance depending on the BRDF. For diffuse BRDFs, we
only use l = 1, whereas for Phong BRDFs, we choose the SH order
according to guidelines set by Ramamoorthi and Hanrahan [RH02]:
namely, that a larger SH expansion is required as the Phong expo-
nent increases. As opposed to shading uniformly with a maximum
SH order regardless of the underlying BRDF, this approach guar-
antees that additional computation is only performed as needed.
We do, however, pre-compute a single SAT for a maximum SH or-
der. Figures 1 and 9 illustrate scenes with both diffuse and glossy
BRDFs. While we chose SH to leverage our new diffuse formu-
lation, other basis representations could easily be substituted (i.e.
different families of B(ω)).

Material editing. We can support a simple material editing sce-
nario: in the context of image relighting, we allow a user to inter-
actively change the BRDF of the objects in a scene. By comput-
ing the basis projection of cosine-weighted incident radiance with
f (ω) = Lin(p, ω)
n · ω�0y(ω) using a pre-determined number of
basis functions (unlike the diffuse case), we can compute the basis
projection of fr (ω,ωo) on-the-fly and shading is computed with a
dot product of the projection coefficients [SKS02] (see Figure 7).

5. Results and Discussion

Our experiments were performed on a 4-core hyper-threaded Intel
Core i7-2600K, with an NVidia GTX 560. In our method, the GPU
was only used for final shading; the actual integral computation was
done in parallel on the CPU, both for our method and for Monte
Carlo. Because we do not exchange data between shade points, our
memory usage beyond the BVH and the output texture is negligible:
even our largest scene used less than 170 MB of RAM.

We use Intel’s optimized Embree v1.1 [Int11] ray-tracer for com-
parisons but, like our method, the surrounding code (ray generation,
sampling, shading, etc.) is not as optimized as the ray-tracing en-
gine. Embree is optimized for tracing incoherent rays, and we note
that our AO and/or direct-illumination computations generate more
coherent ray structures. Once Embree constructs the ray-tracing ac-
celeration structure (a BVH variant), we compute a PDF according
to the environment light and then generate and warp deterministic
Halton distributions by this PDF, at each shade point. At shad-
ing time, we reject (importance-sampled) directions in the lower
hemisphere and launch shadow rays for the remaining samples,
evaluating the BRDF at these directions.

The performance of our integration is largely independent of
f (ω)’s complexity, and is primarily a function of scene complexity.
The majority of our algorithm’s processing time is spent finding
visibility silhouettes; once found, these are used during final inte-
gration which scales linearly with

√
k but only composes a small

portion of the final render time. The cost to construct the BVH and

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



8 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

raConihR2ylF1ylFWMB
O

ur
s

0m:56s; RMSE = 0.0237 2m:53s; RMSE = 0.0408 2m:19s; RMSE = 0.0413 4m:49s; RMSE = 0.0293

Q
M

C

0m:28s; RMSE = 0.023 0m:24s; RMSE = 0.0525 0m:27s; RMSE = 0.0527 0m:29s; RMSE = 0.0324
102 = 100 integration samples per pixel

O
ur

s

1m:01s; RMSE = 0.0285 3m:02s; RMSE = 0.0358 2m:28s; RMSE = 0.0337 5m:01s; RMSE = 0.0352

Q
M

C

0m:52s; RMSE = 0.007 0m:54s; RMSE = 0.0125 0m:47s; RMSE = 0.0122 0m:51s; RMSE = 0.0081
222 = 484 integration samples per pixel

O
ur

s

1m:07s; RMSE = 0.0035 3m:16s; RMSE = 0.0021 2m:44s; RMSE = 0.002 5m:24s; RMSE = 0.0053

Q
M

C

3m:08s; RMSE = 0.0052 3m:59s; RMSE = 0.006 3m:04s; RMSE = 0.0064 3m:17s; RMSE = 0.0057
452 = 2025 integration samples per pixel

Figure 10: Convergence and performance against QMC at equal sampling rates for the scenes (but not the same lighting) in Table 1. Our
discretization of f (ω) shared across pixels results in banding artefacts at low sampling rates, whereas different sampling patterns at each
pixel for QMC result in noise. Our algorithm’s processing time is dominated by silhouette search and it scales well with increasing sample
counts; however, QMC scales better with increasing geometric complexity (see Section 5).

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 9

Our Result (∼6m:02s; SAT Sampling Rate: 5002 = 250000, regularly distributed)

Quasi-Monte Carlo (Equal Time; ∼2300 – 2600 samples)

16× absolute luminance difference image

Quasi-Monte Carlo (Equal Quality)

8500 samples / 18m:47s 6000 samples / 14m:51s 6500 samples / 15m:27s 8000 samples / 18m:41s

Figure 11: We perform an equal-time/quality comparison with importance-sampled QMC ray-tracing in the Crash scene (184.5k triangles).
Our integration is independent of f (ω), and so our results compute in (approximately) equal time.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



10 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

O
ur

s
52 = 25 samples 452 = 2025 samples 52 = 25 samples 452 = 2025 samples

24m:12s; RMSE = 0.0511 29m:38s; RMSE = 0.0314 23m:48s; RMSE = 0.0296 29m21s; RMSE = 0.0047

Q
M

C

0m:48s; RMSE = 0.0614 8m:01s; RMSE = 0.0312 0m:42s; RMSE = 0.0898 7m:38s; RMSE = 0.0061

Figure 12: Stress test: comparing convergence/performance versus QMC on a large scene (1.9 million triangles).

the SAT for f is negligible compared to the cost of integrating at all
the points. The cost of integrating at a point is roughly proportional
to the number of contour edges that point sees (subject to the cost of
finding them using the BVH). For a scene with n triangles, the num-
ber of contour edges for an average shade point increases roughly
in proportion to n0.8 [McG04].

Although asymptotic analysis ignores many considerations, it can
nevertheless shed light on how different algorithms scale. If we use
m shade points (m ≤ 1024×768 in our examples) and a sampling
rate of k for f , our run-time scales roughly as O(m

√
kn0.8). Due to

the 4D BVH, extracting the contour edges is roughly proportional
to their number O(mn0.8) but with a larger constant. Our method
takes approximately the same time to compute AO, all-frequency
direct lighting, and PRT vectors. In contrast, Monte Carlo integra-
tion is dominated by ray-tracing and shading. Tracing a ray has
approximately logarithmic complexity in n (the number of trian-
gles) therefore for similar sampling rates, Monte Carlo will require
roughly O(mk log n) time. The actual sampling rate depends on the
lighting: as Figure 11 shows, Monte Carlo requires more samples for
low-frequency lighting, as importance sampling cannot adapt to the
variance. Similarly, Monte Carlo requires more rays to render glossy
surfaces: glossy BRDFs require different sampling distributions at
every shade point, reducing the effectiveness of light-importance
sampling. This can be alleviated to a certain degree with BRDF
sampling in a multiple importance sampling framework [VG95].
For larger scenes, ray-tracing overtakes our method (Figure 12).

‘Samples’ in our approach correspond to the number of uv iso-
buckets into which we semi-analytically discretize the visibility
silhouette for integration; our sampling resolution is set to match
f (ω)’s SAT resolution. For QMC, ‘samples’ correspond to the num-
ber of integration rays launched at each pixel. We use independent
sampling sets at each pixel for QMC, resulting in noise when fea-
tures are under-sampled, whereas a global coordinate system is used
when bucketing silhouette segments in our approach, resulting in
banding artefacts for under-sampled features. For low-to-medium
geometric complexity and at the higher sampling rates required to
obtain converged results, our approach occasionally outperforms
QMC (see Figures 10 and 11).

When integrating higher dimensional (e.g. BRDFs) or spatially-
varying functions, basis projections can be employed and a com-
ponent of our render time will contain a linear dependence on the
size of the basis expansion. At every shade point, we cannot eas-
ily consider only a subset of the scene geometry when computing
silhouettes; as such, we do not support AO with arbitrary fall-off
functions. Our approach is consistent and, for high-frequency envi-
ronment maps, a sampling rate of 642 to 2562 (k = {642, 2562}) is
sufficient to generate converged results. The time required to com-
pute a single spherical integral with our algorithm grows much more
rapidly with scene complexity than with sampling rate. For simpler
scenes (Figure 2 and BMW), this time varies roughly between 0.06
and 0.13 ms. For moderately complex scenes (Fly 1, Fly 2, Rhino
Car, and Tank Car), it varies roughly between 0.26 and 0.61 ms. The

Table 1: Timing comparison of our approach and importance-sampled QMC for different sampling rates (in brackets). With few samples, QMC outperforms
our technique and scales well with scene complexity. Our approach can outperform QMC at sample rates necessary to obtain artefact-free images for our
scenes with low-to-mid geometric complexity (see Figure 10).

Ours QMC Ours QMC Ours QMC

Scene # Triangles Environment (5002) (752–852) (502) (502) (102) (102)

BMW 50.2k Ambient 1m:24s 6m:37s 1m:10s 3m:42s 0m:56s 0m:28s
Fly 1 89.9k Uffizi 4m:07s 8m:16s 3m:27s 3m:57s 2m:55s 0m:21s
Fly 2 89.9k Grove 3m:19s 4m:20s 2m:49s 2m:35s 2m:16s 0m:23s
Rhino Car 123.2k Grace 6m:16s 4m:22s 5m:47s 1m:32s 4m:53s 0m:27s
Teapot Grid 1.9M Grove 31m:57s 17m:33s 30m:12s 8m:03s 28m:22s 1m:18s

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 11

time per integral for Crash (184.5k triangles; Figure 11) and Teapot
Grid (1.9M triangles; Figure 12) were from 0.79 to 2.48 ms.

Timings are reported in Table 1 and Figures 8 and 10. Images
are rendered at 1024×768 and equal-quality comparisons use an
RMSE ≈0.01 versus ground truth computed with QMC and k=106:
from Figures 8 and 10, we note that at sample counts over 452 =
2025, the majority of the QMC images visually converge to almost
noise-free results. QMC typically exhibits better performance versus
quality behaviour than our approach at low sample counts and scales
much better with geometric complexity; however, our approach
scales better with the sampling rate (O(

√
k) vs. O(k) for QMC).

Figure 10 compares our convergence/performance profile to
QMC. At lower sampling rates, QMC has a favourable performance
versus error behaviour. However, at the high sampling rates required
to obtain converged results on scenes like ours with low-to-moderate
geometric complexity, we can outperform the QMC solution (see,
e.g. BMW, Fly 1 and Fly 2 with k = 452). The convergence of
our approach (as a function of k) depends on f (ω) as, e.g. higher
frequency lighting environments may exhibit more drastic banding
artefacts during convergence (Figure 8); however, in all cases we
observed visual convergence with 64 ≤ √

k ≤ 256. Figure 9 illus-
trates our approach on scenes with progressively higher-frequency
lighting, and we stress-test our approach on a scene with 1.9 mil-
lion triangles (Figure 12). While our approach does not scale as
favourably with scene complexity as ray-tracing, which benefits
from three decades of research on acceleration structures, we hope
that our work will motivate investigations on such structures for
silhouette extraction.

6. Future Work

Our algorithm is data-parallel, implemented on a multi-threaded
CPU, but a high-end 4-core CPU is not capable of as many FLOPS
as a single GPU. We leave GPU acceleration of our approach to
future work. Our approach is orthogonal to adaptive spatial and
image-space sampling (e.g. Sloan et al. [SGNS07]), and our ap-
proach can be extended to compute occlusion-aware irradiance gra-
dients [RMB07] for irradiance caching [WRC88] with environment
lighting.

A preliminary investigation of building a hierarchy over shade
points using a Cartesian product tree, similar to hierarchical penum-
bra casting [LA05], only yielded marginal performance improve-
ments; however, this and other adaptive approaches are interesting
directions of future work. Extensions to indirect lighting and dy-
namic geometry are left for future work. The latter will benefit from
research in fast BVH reconstruction (we currently use a simple axis-
aligned bounding box BVH). Our approach does not scale well to
complex geometry, e.g. foliage, especially when this complexity
increases the DCF. Addressing these shortcomings mandates more
scalable silhouette searching.

7. Conclusion

We have presented a semi-analytic approach for computing spher-
ical integrals of visibility-masked functions. We demonstrate the
feasibility of our approach on several rendering applications and,

while our approach does not scale as well as Monte Carlo ray-tracing
on complex scenes, our proof of concept competes with optimized
ray-tracing on scenes with low-to-moderate geometric complexity.
Our algorithm is data-parallel, has a modest memory footprint and
its performance is independent of the function being integrated (de-
pending only on the function’s resolution).

We hope our approach will promote work on new acceleration
structures for silhouette detection to improve the performance and
scalability of our approach on complex scenes.

Appendix A: Linear SH and Vector Irradiance

Our l = 1 SH incident radiance is related to a vector irradiance
formulation of diffuse shading. Arvo [Arv95] shows that diffuse
radiance can be formulated as the dot product of the surface normal
with the first moment of scalar irradiance, called vector irradiance:

v =
∫

�n

⎡
⎣ x

y

z

⎤
⎦ · Lin(p, ω)dω, such that Lo(p) = n · v,

where �n is the hemisphere about n. Since band-l SH basis
functions are degree-l polynomials in the Cartesian coordinates
of ω = (x, y, z), the l = 1 SH incident radiance coefficients are
just a scaled permutation of the elements of v, and the vector ir-
radiance formulation is equivalent to our optimal hemispherical
representation.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A geometry-based
soft shadow volume algorithm using graphics hardware. ACM
Transactions on Graphics 22, 3 (July 2003), 511–520.

[ADM*08] ANNEN T., DONG Z., MERTENS T., BEKAERT P., SEIDEL

H.-P., KAUTZ J.: Real-time, all-frequency shadows in dynamic
scenes. ACM Transactions on Graphics 27, 3 (2008), 1–8.

[AMGA12] APOSTU O., MORA F., GHAZANFARPOUR D., AVENEAU L.:
Analytic ambient occlusion using exact from-polygon visibility.
Computers & Graphics 36, 6 (2012), 727–739.

[App67] APPEL A.: The notion of quantitative invisibility and the
machine rendering of solids . In Proceedings of the 22nd national
conference (NY, USA, 1967), ACM, pp. 387–393.

[Arv95] ARVO J.: Analytic Methods for Simulated Light Transport.
PhD thesis, Yale University, Dec. 1995.

[BGAM12] BARRINGER R., GRIBEL C. J., AKENINE-MÖLLER T.: High-
quality curve rendering using line sampled visibility. ACM Trans-
actions on Graphics 31, 6 (2012), 162:1–162:10.

[CA00] CHEN M., ARVO J.: A closed-form solution for the irradiance
due to linearly-varying luminaires. In Proceedings of Rendering
Techniques (2000).

[Cro77] CROW F. C.: Shadow algorithms for computer graphics.
Proceedings of SIGGRAPH 11, 2 (July 1977).

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



12 D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration

[DDP02] DURAND F., DRETTAKIS G., PUECH C.: The 3d visibility
complex. ACM Transactions on Graphics 21, 2 (2002), 176–206.

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SANTELLA

A.: Suggestive contours for conveying shape. ACM Transactions
on Graphics (SIGGRAPH) 22, 3 (July 2003), 848–855.

[ED07] EISEMANN E., DÉCORET X.: Visibility sampling on GPU and
applications. Computer Graphics Forum 26, (2007), 535–544.

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER M.:
Real-Time Shadows. A.K. Peters, Boca Raton, FL, 2011.

[FBP08] FOREST V., BARTHE L., PAULIN M.: Accurate shadows
by depth complexity sampling. Computer Graphics Forum 27,
(2008), 663–674.

[GBAM11] GRIBEL C. J., BARRINGER R., AKENINE-MÖLLER T.: High-
quality spatio-temporal rendering using semi-analytical visibil-
ity. Transactions on Graphics 30, (2011), 54:1–54:12.

[GH06] GHOSH A., HEIDRICH W.: Correlated visibility sampling for
direct illumination. Visual Computer 22 (2006), 693–701.

[GHFP08] GASCUEL J.-D., HOLZSCHUCH N., FOURNIER G., PEROCHE

B.: Fast non-linear projections using graphics hardware. In Pro-
ceedings of the ACM Symposium on Interactive 3D Graphics and
Games (Feb 2008).

[GT96] GUENTER B., TUMBLIN J.: Quadrature prefiltering for high
quality antialiasing. ACM Transactions on Graphics 15, 4
(October 1996), 332–353.

[HMN05] HAUMONT D., MÄKINEN O., NIRENSTEIN S.: A low di-
mensional framework for exact polygon-to-polygon occlusion
queries. In EGSR’05: Proceedings of the Conference on Render-
ing Techniques (2005), Eurographics, pp. 211–222.

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth surfaces. In
Proceedings of SIGGRAPH (NY, USA, 2000), ACM.

[Int11] Intel Corp.: Embree, 2011. software.intel.com/en-us/
articles/embree-photo-realistic-ray-tracing-kernels/ (Accessed
May 2012).

[JP00] JONES T. R., PERRY R. N.: Antialiasing with line samples. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques (June 2000), pp. 197–206.

[KLA04] KAUTZ J., LEHTINEN J., AILA T.: Hemispherical rasteriza-
tion for self-shadowing of dynamic objects. In Proceedings of
Rendering Techniques (2004), pp. 179–184 .

[LA05] LAINE S., AILA T.: Hierarchical penumbra casting. Computer
Graphics Forum 24, 3 (2005), 313–322.

[LAA*05] LAINE S., AILA T., ASSARSSON U., LEHTINEN J., Akenine-
Möller T.: Soft shadow volumes for ray tracing. In Proceedings
of SIGGRAPH (2005).

[LLA06] LEHTINEN J., LAINE S., AILA T.: An improved physically-
based soft shadow volume algorithm. Computer Graphics Forum
25, 3 (2006), 303–312.

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In Proceed-
ings of the Symposium on Interactive 3D Graphics (NY, USA,
2010), ACM.

[MAAG12] MORA F., AVENEAU L., APOSTU O., GHAZANFARPOUR D.:
Lazy visibility evaluation for exact soft shadows. Computer
Graphics Forum 31, 1 (2012), 132–145.

[McG04] MCGUIRE M.: Observations on silhouette sizes. Journal of
Graphics Tools 9, 1 (2004), 1–12.

[McG10] MCGUIRE M.: Ambient occlusion volumes. In Proceedings
of High Performance Graphics (2010).

[NKLN10] NGUYEN C. H., KYUNG M.-H., LEE J.-H., NAM S.-W.:
A PCA decomposition for real-time editing and relighting with
global illumination. Computer Graphics Forum 29, 4 (2010),
1469–1478.

[NN85] NISHITA T., NAKAMAE E.: Continuous tone representation of
three-dimensional objects taking account of shadows and inter-
reflection. In SIGGRAPH ’85: Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1985), ACM, pp. 23–30.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-frequency
shadows using non-linear wavelet lighting approximation. Trans-
actions on Graphics 22, 3 (2003), 376–381.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple product
wavelet integrals for all-frequency relighting. Transactions on
Graphics 23, 3 (2004), 477–487.

[OZ06] OLSON M., ZHANG H.: Silhouette extraction in hough space.
Computer Graphics Forum 25, 3 (2006), 273–282.

[PH03] PRAUN E., HOPPE H.: Spherical parameterization and remesh-
ing. ACM Transactions on Graphics 22, 3 (2003), 340–349.

[RH01] RAMAMOORTHI R., HANRAHAN P.: An efficient representa-
tion for irradiance environment maps. In Proceedings of the
SIGGRAPH (NY, USA, 2001), ACM.

[RH02] RAMAMOORTHI R., HANRAHAN P.: Frequency space environ-
ment map rendering. In Proceedings of SIGGRAPH (NY, USA,
2002), ACM.

[RMB07] RAMAMOORTHI R., MAHAJAN D., BELHUMEUR P. N.: A first-
order analysis of lighting, shading, and shadows. Transactions
on Graphics 26, 1 (2007).

[Rot82] ROTH S. D.: Ray casting for modelling solids. Computer
Graphics and Image Processing 18, 2 (February 1982), 109–
144.

[RWS*06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X., SUN B.,
SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-time soft shadows
in dynamic scenes using spherical harmonic exponentiation. In
Proceedings of the SIGGRAPH (NY, USA, 2006), ACM.

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K., NOWROUZEZAHRAI

D., SNYDER J.: Image-based proxy accumulation for real-time

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.



D. Nowrouzezahrai et al. / Visibility Silhouettes for Semi-Analytic Spherical Integration 13

soft global illumination. In Proceedings of Pacific Graphics
(Washington, DC, 2007), IEEE.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency light-
ing environments. Transactions on Graphics 21 (July 2002), 527–
536.

[Slo08] SLOAN P.-P.: Stupid spherical harmonics (SH) tricks. In Pro-
ceedings of Game Developers Conference (2008).

[SR00] STARK M. M., REISENFIELD R. F.: Exact illumination in polyg-
onal environments using vertex tracing. In Proceedings of the Eu-
rographics Workshop on Rendering Techniques 2000 (London,
UK, 2000), Springer-Verlag, pp. 149–160.

[TS06] TSAI Y.-T., SHIH Z.-C.: All-frequency precomputed radiance
transfer using spherical radial basis functions and clustered tensor
approximation. Transactions on Graphics 25, 3 (2006), 967–976.

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sampling
techniques for monte carlo rendering. In Proceedings of the
SIGGRAPH (1995), pp. 419–428.

[WP12] WOO A., POULIN P.: Shadow Algorithms Data Miner. Taylor
& Francis, Boca Raton, FL, 2012.

[WRC88] WARD G. J., RUBINSTEIN F. M., CLEAR R. D.: A ray tracing
solution for diffuse interreflection. In Proceedings of SIGGRAPH
(1988).

[WRG*09] WANG J., REN P., GONG M., SNYDER J., GUO B.: All-
frequency rendering of dynamic, spatially-varying reflectance.
Transactions on Graphics 28 (2009), 133:1–133:10.

[ZHL*05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Precomputed
shadow fields for dynamic scenes. In Proceedings of SIGGRAPH
(NY, USA, 2005), ACM.

C© 2013 The Authors
Computer Graphics Forum C© 2013 The Eurographics Association and John Wiley & Sons Ltd.




