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Abstract—We introduce Spot as an accurate and efficient
system for multi-entity device-free (DF) detection and tracking.
Current state-of-the-art systems focused on the tracking of a
single entity because of the intractability of the multi-entity
case that leads to exponential complexity. Spot provides a novel
cross-calibration technique that reduces the overhead of multiple
entities calibration from exponential to linear. Spot also captures
the spatial relations between the entities’ poses into a probabilistic
energy minimization framework via a conditional random field
model. The designed energy minimization function is solved by
a binary graph-cut algorithm. We evaluate our system using a
typical testbed and show that Spot can achieve a multi-entity
median tracking error of less than 1.44m. This corresponds to
108.33% enhancement in median distance error over the state-
of-the-art DF localization systems, which can only track a single
entity. In addition, Spot can estimate the number of entities
correctly to within one difference error with 92% accuracy. This
highlights that Spot achieves its goals of having an accurate and
efficient software-only DF tracking solution of multiple entities
in indoor environments.

Index Terms—Binary graph-cut, device-free localization, en-
ergy minimization, conditional random fields, multi-entity track-
ing and detection.

I. INTRODUCTION

Device-free (DF) localization [1] makes use of the already

installed wireless infrastructure, e.g. WLANs, to allow the

detection and tracking of entities that do not carry any de-

vices nor participate actively in the localization process. DF

localization can be used in smart homes, intrusion detection

[1], [2], border protection [3], and traffic estimation [4], [5].

Different approaches that require the installment of special

hardware have been proposed to address the DF detection

and tracking. These include, Radar-based systems, e.g. [6]–[8],

computer vision systems, e.g. [9], [10], and radio tomographic

imaging (RTI) [11]. On the other hand, [1], [2], [12]–[21]

use the currently installed wireless networks only to provide

scalable solutions in terms of cost and coverage area.

WLAN DF localization is based on the effect of human mo-

tion on the signal strength. A typical WLAN system consists

of signal transmitters (e.g. standard APs); signal receivers or

monitoring points (MPs), such as any WiFi enabled device

(e.g. laptops and APs themselves); and an application server

that collects the received signal strength (RSS) for the different

streams (where a stream is a single (AP, MP) pair) readings

and processes them to detect events.

DF tracking requires capturing the RSS behavior at different

locations in the area of interest. Thus, typically, a fingerprint

is constructed by recording the effect of a human standing

at different locations in the area of interest on the RSS at

the MPs. The complexity of fingerprint construction grows

exponentially with increasing number of entities to be tracked

due to the need for trying all combinations over all locations.

This forced previous work to focus only on single entity
tracking [1], [2], [12]–[21].

In this paper, we introduce Spot as an efficient multi-entities

DF detection and tracking system in a WLAN environment. It

provides a probabilistic energy minimization framework based

on a conditional random field representation to capture spatial

relations between moving entities. The potential function used

for estimating the most probable active users’ locations is

designed to preserve smooth labels for active locations relative

to their neighbors. The solution to this function is obtained

by mapping the problem to a binary graph-cut problem. In

addition, Spot reduces the calibration overhead of multiple

entities by introducing a novel calibration technique. We evalu-

ated Spot using a typical testbed. Spot shows superiority over

current state-of-the-art techniques: It can achieve a median

tracking error of less than 1.44m. This corresponds to 108.33%

enhancement in median error over the state-of-the-art DF

localization systems, while enabling the tracking of multiple

entities. In addition, Spot can estimate the number of entities

with 92% accuracy to within one difference error.

The rest of the paper is organized as follows: Section II

presents the energy-minimization framework and our novel

calibration technique. We evaluate Spot in a typical WiFi

testbed and compare it to a state-of-the-art DF WLAN local-

ization technique in Section III. We discuss different aspects

and challenges of Spot in Section IV. Finally, we briefly

present previous work related to Spot and conclude the paper

in sections V and VI respectively.

II. ENERGY MINIMIZATION FRAMEWORK

This section describes our probabilistic framework for mul-

tiple entities localization. This framework is designed to have

an energy model that represents the spatial constraints on the

human position by a Conditional Random Field (CRF) model

favoring coherence between adjacent locations (Figure 1).

A. Notations and Model

Without loss of generality, let X be a 2-dimensional physical

space with n locations. At each location x ∈ X, we can get the

signal strength from k streams. We denote the k-dimensional
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Fig. 1. Conditional Random Field model. This graphical model illustrates
both the signal strength likelihood together with the spatial prior. Spatial
dependencies are illustrated for a 4-neighborhood system. The entire envi-
ronment map affects the RSS vector st.

signal strength space as S. Each element in this space is a k-

dimensional vector, s = (s1, ..., sk), whose entries represent

the signal strength readings from a different (AP, MP) pair.

We further assume that the samples from different streams

are independent. Given that m humans are standing in the

area of interest, m ≥ 0, these humans will affect the different

streams. Therefore, the problem becomes to both estimate the

number of humans m̂ and, if m̂ > 0, the locations of these

humans {xi|0 < i ≤ m̂, xi ∈ X}, such that the probability

P (x1, x2, ..., xm̂|s) is maximized. Let {αt
i, 0 < i < n} be a

set of bernoulli random variables, where αt
i takes the value of

1 if a human is standing at location i ∈ X at time t, and 0

otherwise. Therefore, the problem can be equivalent to finding

the assignment of αt
i’s that maximizes

P (Mt|s) (1)

where M
t = (αt

1, α
t
2, ..., α

t
n). We refer to M

t as the environ-
ment map at time t. In this case, m̂ =

∑n
i=1 α

t
i and the most

probable locations of the m̂ entities are the locations whose

αt
i’s are assigned to one.

B. Framework Construction

Traditional work on probabilistic WLAN localization, both

device-based and device-free, e.g. [22], use Bayesian inversion

to estimate P (Mt|s). However, these systems typically assume

only one entity in the area of interest. Moving to more than one

entity makes this Bayesian inversion approach intractable as

the complexity of estimating P (s|Mt) increases exponentially

with the number of entities that need to be tracked (due to the

need to try all combinations of humans’ poses in the area of

interest).

Based on CRF theory [23], [24], our model estimates the

probability from Equation 1 as

P (Mt|st) ∝ exp−{
Ei

}
(2)

where Ei = E(st,Mt) is an energy function that captures

the required constraints on the DF tracking problem. That

is, we want to estimate the current environment map given

the current signal strength vector measured at the monitoring

points. This is obtained by the joint maximization of the pos-

terior in Equation 2, which is equivalent to the minimization

of energy:

M̂
t = (α̂t

1, α̂
t
2, ..., α̂

t
n) = argminEi (3)

Energy Terms: For our DF tracking problem, each Ei is

composed of two components:

Ei = E(st,Mt)

= V Sp(Mt, st) + USS(Mt, st)
(4)

The term V Sp(Mt, st) presents a spatial prior term which

imposes a tendency to spatial continuity of the environment

map, favoring coherent assignments.

The USS(Mt, st) term is a likelihood term that evaluates the

evidence for location labels based on the RSS distributions in

the case of human absence and presence.

Figure 1 shows the graphical representation of the model.

Details of these factors are given in the next subsections.

1) Spatial prior term: This term should favor coherent

environment maps, i.e. adjacent locations have similar labels.

We adapt a variation of the Ising model commonly used for

segmentation applications [25] where the spatial energy term

can be represented as:

V Sp(Mt, st) =
∑

{ci,cj}∈N
V Sp

{ci,cj}(α
t
ci , α

t
cj , s

t)

= γ
∑

{ci,cj}∈N,αt
ci
�=αt

cj

⎛
⎝1 + e

−
∥
∥
∥P (st|αt

ci
)−P (st|αt

cj
)
∥
∥
∥

2

2

⎞
⎠ (5)

where N is the set of pairs of neighboring locations. The term

P (st|αt
ci) represents the conditional probability of receiving

the signal strength vector st when the human is present

at location ci (αt
ci = 1) or not present (αt

ci = 0). This

can be estimated during the training phase as described in

Section II-C. The constant γ is a strength parameter for the

coherence prior that can be estimated based on the training

data.

2) Likelihood for signal strength: The term USS(Mt, st) is

the log likelihood of the received signal strength. The term is

defined as :

USS(Mt, st) = δ

n∑
i=1

[− logP (st | αt
i)
]

(6)

where δ < 1 is a discount factor to allow for multiple count-

ing across non-independent locations whose optimal value is

obtained discriminatively from the training data.

RSS likelihoods are learned during the offline training phase

as described in the next section.

C. Fingerprint Construction

We need to estimate the RSS likelihood, P (st | αt
i), during

calibration. Based on the described signal strength terms in

the energy function, i.e. the spatial prior and signal strength

likelihood, the fingerprint of Spot is unique among all the

previous device-based and device-free WLAN localization

systems. In particular, we use a calibration technique where
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an entity standing at location x contributes to the active

RSS likelihoods of x (P (st | αt
x = 1)) and the inactive

RSS likelihoods of the all remaining n − 1 FP locations

(P (st | αt
i = 0, ∀i �= x)). This has the advantage of converting

the intractable exponential number of cases of building the

fingerprint for traditional DF systems to a linear complexity

problem, as only one human is needed for training, regardless

of the number of humans to be tracked.

In summary, at each location, we have two histograms

for the RSS corresponding to the active and inactive states

respectively. The fingerprint is the collection of these two

histograms over all locations x ∈ X. We smooth the generated

histograms by convolution with separable gaussian kernels to

avoid the zero-probability problem of missing values in the

training set.

D. Most Probable Map Estimation

Based on the results in [26], our DF energy minimization

function can be solved using a graph-cut approach. An efficient

binary graph-cut was proposed to solve the problem in a low

order polynomial in n [27]. Although, the binary graph-cut

algorithm requires O(n3) operations, where n is the number of

fingerprint locations, [27] provides an iterative fast algorithm

with O(n) as average complexity. This has been confirmed in

our experiments.

We construct a graph that has n+ 2 nodes, where n nodes

are the original discrete environment map locations and two

additional nodes are added to represent the source s and sink

t nodes. There are two types of edges. Those between the

original discrete environment map locations (n-edges) with

weights based on V Sp(Mt, st) and those between each node

and the source and sink terminal nodes (t-edges) with weights

based on USS(Mt, st). According to this assignment, we

guarantee that the min-cut solution to this graph is equivalent

to minimizing the energy function in Equation 3 [28].

III. PERFORMANCE EVALUATION

In this section, we analyze the performance of Spot and

compare it to the state-of-the-art Nuzzer DF WLAN localiza-

tion system [2], [15]. We start by describing the experimental

setup and data collection. Then, we analyze the effect of

different parameters on the system performance.

A. Testbeds and Data Collection

We evaluate our system in a typical testbed (Figure 2).

The testbed covers a residential apartment with an area of

114m2 (about 1228 sq. ft. The testbed is covered by TP-link

TL-WA500G APs and D-Link Airplus G+DWL-650 wireless

NICs.

For data collection, we used a sampling rate of one hertz.

We had six RSS data streams for both testbeds. A total of 25

fingerprint locations, uniformally distributed over the testbed,

are sampled. An independent test set at 17 test locations was

collected at different times and by different persons.

Fig. 2. Experimental testbed.

TABLE I
DEFAULT PARAMETERS VALUES.

Parameter Default value Meaning

k 6 Num. of used streams
n 25 Num. of FP locations

B. Parameters Effect

In this section, we study the effect of changing the system

parameters on the performance of Spot. The median distance

error is used as the main metric where the error is calculated

as the difference between the estimated location and the

closest ground truth location. We present zone-based error
as the average error based on the centers of zones where

estimated and actual locations belong to. To calculate the

distance error for multiple entities, we use the Euclidean

distance between the estimated zone of each entity and the

closest fingerprint zone. Table I shows the default values of

the different parameters.

1) Fingerprint density (n): Figure 3 shows that increasing

the fingerprint density increases accuracy. As small as 20

locations, corresponding to a density of one FP location every

5.7m2, is enough to achieve the best accuracy. Increasing the

density beyond this value does not significantly enhance the

accuracy.

2) Number of streams (k): Figure 4 shows that increasing

the number of streams increases the system accuracy, espe-

cially for a higher number of entities, to a certain limit after

which the performance saturates. As few as four streams can

achieve less than 3.5 meter overall accuracy.

C. Comparison with Other DF Systems

1) Accuracy: Figure 5 shows the CDF of distance error

for the different techniques (note that current state-of-the-art

supports only one entity). Table II summarizes the results.

The results show that Spot has the best performance with an

2020



 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  5  10  15  20  25

A
ve

ra
ge

 d
is

ta
nc

e 
er

ro
r (

m
)

Number of radio map locations

Three entities
Two entities

One entity
Overall

Fig. 3. Effect of changing the fingerprint density (n) on accuracy.
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Fig. 4. Effect of changing the number of streams (k) on accuracy.
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enhancement of 108.33% in median error over the state-of-

the-art technique.

Figure 6 also shows that Spot can estimate the number of
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entities in the area of interest to within one difference error

with more than 92% accuracy.

2) Running Time: Figure 7 and Table II show the running

time for Nuzzer and Spot components. The results show that

the overall Spot operations take less 0.356ms per location

estimate. The min-cut algorithm consumes the largest time,

followed by calculating the probabilities. Spot significantly

reduces the running time by 400% as compared to Nuzzer.

This highlights the gains of Spot in terms of both accuracy

and latency.

IV. DISCUSSION

In this section, we discuss different aspects of Spot.

A. Path Training

Using the proposed framework, we could reduce the train-

ing complexity from O(2n) to O(n). This is a significant

reduction in the calibration overhead which turns the multi-

entity tracking problem to a feasible problem. However, there
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TABLE II
PERFORMANCE SUMMARY FOR THE DIFFERENT SYSTEMS. NUMBER

BETWEEN PARENTHESIS REPRESENT PERCENTAGE OF SPOT-ONE ENTITY

ADVANTAGE.

Median Average Running
System

error error time

Spot-One ent. 1.44m 1.89m 0.356ms
Spot-Multi-ent. 2m

(38.88%)
2.61m
(38%)

0.435ms
(22.19%)

Nuzzer [15] 3m
(108.33%)

3.54m
(87.3%)

1.78ms
(400%)

is still some effort in calibrating the area of interest as

the user has to stand at each location for a certain time.

One possibility to reduce this overhead is to use path-based

training, where a user continuously moves between two points

and samples are collected along the path. This continuous

calibration reduces the overhead, but provides less samples.

Multiple passes around the area of interest can be used to

increase the number of available samples along with density

interpolation between adjacent locations. Further experiments

need to be performed though to asses the tradeoffs of this

technique.

B. Identification

Although we can track multiple entities in the area of

interest, identifying these entities remains an open problem.

This identification includes knowing the entities’ physical

identity (e.g. its name) or virtual identity, i.e. associating a

unique ID to the detected entity. This entity labeling problem

is well known in other fields, such as computer vision [29].

The entities movement history and trajectories can be used to

detect these virtual identities.

C. Number of Entities History Model

Spot can correctly estimate the number of entities with

high accuracy. This can be further enhanced based on adding

constraints for the temporal smoothness of the number of

entities. In other words, outliers in estimating the number of

entities can be detected based on the history of the detected

number of entities.

V. RELATED WORK

Over years, multiple technologies have been introduced to

address the device-free tracking problem: radar-based, camera-

based, sensors-based, and WLAN-based systems. Table III

shows how Spot compares to the different systems.

Radar-based systems: The key idea is to transmit pulses of

radio waves into the area of interest and track required objects

via measuring the received reflections. Ultra-wideband (UWB)

systems [6], doppler radar [7], and MIMO radar systems [8]

are considered state-of-the-art radar-based technologies.

Camera-based systems: Inspired by computer vision, pre-

vious research work was proposed to exploit and analyse the

captured images from cameras to estimate the trajectory of

moving objects of interest. Device-free tracking is tackled

from two perspectives: background subtraction and temporal

correspondence [9], [10].

Sensor-based systems: these systems rely on installed

sensor nodes to cover the area of interest. For example, [11]

applies radio tomographic techniques to the readings of a

dense array of sensors to obtain accurate DF tracking.

All the technologies above share the requirement of in-

stalling special hardware to be able to perform DF tracking,

which reduces their scalability in terms of cost and coverage

area. In contrast, WLAN DF tracking aims at exploiting the

already installed WLAN. The DF localization in WLANs

was first introduced in [1] along with feasibility experiments

in a controlled environment. Several papers followed the

initial vision to provide different techniques for detection and

tracking [12]–[15]. However, all these techniques focus on

the problem of a single entity. Tracking multiple entities, to-

date, has been considered an intractable problem due to the

exponential increase in the number of training combination

required.

Spot, on the contrary, is designed to provide accurate

and efficient, i.e. linear training complexity, multi-entity DF

localization for WLAN environments.

VI. CONCLUSION

We presented the design, analysis, and implementation of

Spot: a system for accurate and efficient multi-entity device-

free WLAN localization. Spot leverages probabilistic tech-

niques to provide a smooth environment image. It uses a cross-

calibration technique and an energy minimization framework

to reduce the calibration overheard to linear in the number

of locations, which turns the DF multi-entity tracking to a

tractable problem. We showed an efficient solution to the

proposed energy minimization framework by mapping the

energy function to a binary graph-cut problem.

Implementation on standard WiFi hardware shows that Spot
can achieve 1.44m median distance multi-entity tracking error,

which is better than the stat-of-art techniques by 108.33%. In

addition, it can estimate the number of entities correctly to

within one entity difference 92% of the time. This highlights

the promise of Spot for a wide range of multi-entity DF

tracking applications.

Currently, we are expanding Spot in multiple directions

including reducing calibration effort, entity identification, and

tracking the history of the number of entities.
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