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Abstract—Device-free (DF) indoor localization has grasped
great attention recently as a value-added service to the already
installed WiFi infrastructure as it allows the tracking of entities
that do not carry any devices nor participate actively in the
localization process. Current approaches, however, require a
relatively large number of wireless streams, i.e. transmitter-
receiver pairs, which is not available in many typical scenarios,
such as home monitoring.

In this paper, we introduce MonoPHY as an accurate mono-
stream device-free WLAN localization system. MonoPHY lever-
ages the physical layer information of WiFi networks supported
by the IEEE 802.11n standard to provide accurate DF localization
with only one stream. In particular, MonoPHY leverages both the
low-level Channel State Information and the MIMO information
to capture the human effect on signal strength. Experimental
evaluation in a typical apartment, with a side-by-side comparison
with the state-of-the-art, shows that MonoPHY can achieve an ac-
curacy of 1.36m. This corresponds to at least 48% enhancement
in median distance error over the state-of-the-art DF localization
systems using a single stream only.

Index Terms—Device-free localization, detection and tracking,
physical-layer based localization.

I. INTRODUCTION

Many localization systems have been proposed over the

years including the GPS systems [1], RF-based systems [2]–

[6], inertial-based systems [7]–[9], and infrared-based systems

[10]. All these systems require that the tracked entity carries a

device. On the other hand, device-free passive (DfP) localiza-

tion [11] is based on using typical wireless networks to detect

and track entities that do not carry any devices nor participate

actively in the localization process. It depends on the fact

that the RF signal strength is affected by human motion.

DfP localization can be used in many applications including

smart homes, intrusion detection, and traffic estimation. A

typical DfP system consists of signal transmitters (such as

standard access points (APs)), monitoring points (MPs) (such

as standard laptops or APs themselves), and an application

server for processing.

Current approaches for DfP localization include radar-based

systems, e.g. [12]–[14], computer vision based systems, e.g.

[15], [16] and Radio Tomographic Imaging (RTI), e.g. [17].

These systems, however, need special hardware and high

installation cost. On the contrary, a number of DfP localization

systems have been proposed that operate in standard WiFi

networks, e.g. [18]–[28], without requiring any additional

equipment. Therefore, these systems provide a value added-

service on top of the wireless infrastructure, just based on the

reported signal strength from the MAC layer. Nevertheless,

they still require a large number of streams (a data stream is

the data received from one AP at one MP), which limits their

applicability and accuracy in a large class of scenarios, such

as in homes, where usually a small number, typically one AP

is installed.

In this paper, we introduceMonoPHY as a single stream DF

localization system. To compensate for the reduced number of

streams, MonoPHY leverages the available detailed physical

layer information of WiFi networks. In particular, the IEEE

802.11n standard uses the OFDM modulation, where a wide

channel is divided into several orthogonal subcarriers each

arriving at the location of the receiver with distinct values of

phase and magnitude (denoted as Channel State Information

(CSI)). This provides rich information to detect the effect

of human motion on the magnitude of each subcarrier, as

compared to a single signal strength value that has been used

with the current approaches. In addition, the IEEE 802.11n

devices use the MIMO technology, which further provides

more information about each antenna pair from the transmitter

to the receiver.

MonoPHY captures the effect of the human standing at

different locations in the area of interest on the CSI vectors that

describe the channel performance at each OFDM subcarrier on

each MIMO antenna pair at the receiver in a training phase.

This CSI data at each location is modeled as Gaussian mixtures

and stored in what we call an RF fingerprint. During the

operation phase, few samples are collected at each MP, which

are further compared with each entry in the fingerprint map

to determine the closest location.

Experimental evaluation, in a typical apartment using a

single access point and a single laptop with an Intel 5300

wireless card shows that MonoPHY can achieve a localization

accuracy of less than 1.36m using a single stream. This

corresponds to at least 48.1% enhancement in median error

over the state-of-the-art DF localization systems using the

same WLAN installation.

The rest of the paper is organized as follows: Section II

presents a brief background about the physical layer informa-

tion used in MonoPHY and its properties that can be used

to identify the human location based. Section III discusses
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the system architecture and the proposed model. We eval-

uate MonoPHY in a typical WiFi testbed and compare it

to the state-of-the-art DF WLAN localization techniques in

Section IV. Finally, we conclude the paper and give directions

for future work in Section V.

II. BACKGROUND AND CSI CHARACTERIZATION

In this section, we introduce the necessary background on

the physical layer information we use along with the basic

principles our system is based on.

A. Channel State Information (CSI)

Most WLANs, including IEEE 802.11a/g/n, use OFDM

modulation in which signals are transmitted over several

orthogonal frequencies called subcarriers. The OFDM channel

is a wide channel divided into subcarriers where each signal,

transmitted on a subcarrier, has a different signal strength and

phase. Typical wireless cards provide received signal strength

information as received from the MAC layer, which represents

a fused value that captures the wireless channel between

the transmitter and receiver, regardless of the number of

antennas or subcarriers between them.

On the other hand, some of the common IEEE 802.11n

standard based cards available in the market, e.g. the Intel

5300 card, provides detailed information about the physical

layer of the RF channel represented as Channel State Infor-

mation (CSI), which provides the signal strength and phase of

the OFDM subcarriers between each pair of transmitter and

receiver antennas. In particular, the Intel 5300 card reports the

CSI for 30 groups of subcarriers, which is about one group

for every 2 subcarriers for the 20MHz channels operating on

the 2.4GHz frequency [29].

B. MIMO Technology

The IEEE 802.11n nodes also use another technology which

is Multiple-Input Multiple-Output (MIMO). In MIMO, there

are multiple transmitter and receiver antennas, where each

combination of receiver and transmitter antennas can be con-

sidered as a separate stream. This facility provides multiple

virtual streams between a transmitter-receiver pair and hence

should lead to better accuracy.

C. CSI Properties

In this section, we show some of the properties of CSI

that can be used to identify the human location based on

changes of the CSI. Due to space constraints, we focus on

the CSI magnitude in this paper and leave leveraging phase

information to a future paper.

Figure 1(a) shows the probability density function (pdf) for

the CSI magnitude for a single virtual stream (signal strength

of one subcarrier of one link). The figure shows that this pdf

fits a Gaussian distribution mixture nicely, which confirms to

previous analysis [30].

Figures 1(b) and 1(c) show the CSI magnitude for one

stream over different packets (each packet is represented by a

line) for the 30 subcarriers. We can notice from the figure that
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(a) PDF of the CSI magnitude showing the Gaus-
sian mixture representing the two clusters.
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(b) Link with two clusters. For a specific subcar-
rier, the signal strength magnitude samples over
different received packets have two clusters (blue
and black), each can be modeled by a Gaussian
distribution (as in Subfigure a).
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(c) Link with one cluster. For a specific subcar-
rier, the signal strength magnitude samples over
different received packets can be modeled by a
Gaussian distribution.

Fig. 1: Channel State Information properties for one link (one

transmitter-receiver antennas pair). Each line represents the

CSI magnitude of one packet over all subcarriers. Different

lines represent different packets.

the CSI values for each stream form clusters. In Figure 1(b),

two clusters are formed while in Figure 1(c) the CSI values

form only one cluster. Although the number of clusters for

each location in the fingerprint map is variable, we found that

it does not exceed three clusters. This observation simplifies

the clustering operation and allows the usage of efficient

techniques in terms of running time (e.g. k-means algorithm).
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(b) Human at Location 1
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(c) Human at Location 2

Fig. 2: Channel State Information magnitudes for different

human presence/location scenarios.

Figure 2 shows the CSI magnitude for the silence case as

well as the presence of the human at two different locations

for one stream. The figure shows that the CSI magnitude

information can be used to identify the human presence as

well as determine her location.

III. THE MONOPHY SYSTEM

In this section, we give the details of MonoPHY. We start

by an overview of the system architecture, the system model,

and the system details.

A. Overview

Figure 3 shows the system architecture. We have two phases

of operation, offline and online phases:

The Offline training phase is used to build a clusters-based

fingerprint. During this phase, a person stands at different

Fig. 3: System Architecture

locations in the area of interest. For each location, CSI values

are recorded for all transmitter-receiver pairs and used to

construct clusters to discriminate this location from others.

The Online localization phase is used to estimate the

entity location based on the currently collected CSI for each

transmitter-receiver pair and the clusters-based fingerprint pre-

pared in the offline phase.

The CSI Preprocessing module extracts CSI values from

sent packets for each stream and filters outlier values.

The Clusters Builder module constructs discriminative clus-

ters for locations using the k-means algorithm. Each subcarrier

at every fingerprint location is represented by up to three

clusters as discussed in Section II-C. Clusters with members

below a threshold are filtered out.

The Location Estimator module calculates the minimum

distance between the currently collected CSI in the online

phase and the stored clusters, selects a set of candidate

locations, and estimates the most probable location. It has two

modules: one for the discrete-space estimation and the other

for the continuous-space estimation.

B. System Model

Assume a DF system installed in an area with l fingerprint

locations. This area is covered by only one AP (with n

MIMO antennas) and one MP (laptop with a card with m

MIMO antennas). This leads to n.m virtual links between the

transmitter and receiver. Using the OFDM modulation, each

transmitted packet is sent using f subcarriers on each of the n

antennas. This leads to a total of n.m.f virtual signal strength

streams at the receiver, where each stream corresponds to one

carrier for each virtual link.

Based on the discussion in Section II-C, the signal strength

of each virtual stream can be mapped into k clusters, k ≤ 3,
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where each cluster is represented by a mixture of up to

k Gaussian random variables (see e.g. Figure 1a). Let R

represents the entire fingerprint. Therefore, the fingerprint

at each radio map location (Rl) can be represented by a

vector Rl = (U, V ), where U = U
a,b
i,j and V = V

a,b
i,j

represent the mean and variance (respectively) of the Gaussian

random variable representing the signal strength received from

transmitter antenna i at receiver antenna j on subcarrier a of

cluster b.

Therefore, the problem becomes, given a received

packet with an associated signal strength vector S =
(s11,1, s

2
1,1, · · · , s

f
n,m), where sai,j represents the CSI magni-

tude of the packet received from transmitter antenna i at

receiver antenna j on subcarrier a, we want to estimate the

most probable entity location. In the next subsection, we

assume a discrete space while in Section III-D we handle the

continuous space case1.

C. MonoPHY Discrete-Space Estimator

Given the received signal strength vector S, we want to find

the location l∗ in the fingerprint that maximizes the probability

P (l|S). That is:

l∗ = argmax
l

P (l|S) (1)

Using Baysian inversion, this can be represented as:

l∗ = argmax
l

P (S|l).P (l)

P (S)
(2)

Assuming all locations are equally likely2 and noting that

P (S) is independent of l, Equation 2 becomes:

l∗ = argmax
l

P (S|l) (3)

P (S|l) can be estimated from the constructed fingerprint,

R, as

P (S|l) =

max
b

f
∏

a=1

n
∏

i=1

m
∏

j=1

s
f
i,j

+ 1

2
∫

s
f
i,j

−
1

2

1

2π(V a,b
ij )2

exp

(

−
(x− U

a,b
ij )2

2(V a,b
ij )2

)

dx

(4)

where U
a,b
i,j and V

a,b
ij are the mean and variance vectors

of the Gaussian mixtures as defined in the system model and

the constant 1

2
represents the quantization interval of signal

strength.

To improve the robustness of the localization output, we

apply Equation 4 on a sequence of packets during a time win-

dow w. A voting process is applied on all location candidates

obtained during the window, where the fingerprint location

with the highest vote is returned as the most probable location.

1Note that the silence case (i.e. when no entity is present in the area of
interest) can be treated as a special location with its own fingerprint.

2If the probabilities distribution of P (l) is known, it can be used directly
in Equation 2

Fig. 4: Experimental testbed with training locations (red

crosses) and testing locations (green circles)

D. MonoPHY Continuous-Space Estimator

The previous estimator will always return one of the fin-

gerprint locations, even if the entity is standing in between.

To further enhance accuracy, the continuous space estimator

estimates the location as the weighted average of the most

probable r locations, where each location is weighed by its

probability normalized by the sum over all probabilities.

IV. PERFORMANCE EVALUATION

In this section, we analyze the performance of MonoPHY

and compare it to the state-of-the-art DF WLAN localization

systems [20], [31]. We start by describing the experimental

setup and data collection. Then, we analyze the effect of

different parameters on the system performance. We end the

section by a comparison with the state-of-the-art.

A. Testbed and Data Collection

We evaluated MonoPHY in a typical apartment with an area

of approximately 100m2 (about 1077 sq. ft.) as shown in

Figure 4. The area was covered by a single Cisco Linksys

X2000 AP and a Dell Adamo XPS laptop as a MP. The

laptop has an Intel 5300 card that can provide CSI information

[29]. The fingerprint is constructed for 35 different locations,

uniformly distributed over the testbed area. An independent

test set of 17 locations are chosen randomly between the

training locations at different times of day using different

persons from the training set.

Table I shows the default values for the different parameters.

B. Effect of Different Parameters

1) Effect of the number of receiver antennas (m): Figure

5 shows the effect of changing the antennas combinations

on the median distance error. The figure shows that different

combinations lead to different accuracy. This is due to the

noisy wireless channel and the different multipath effects
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Parameter Default value Meaning

m 2 Num. of receiver antennas

n 1 Num. of transmitter antennas

r 6 Num. of averaged locations

w 20 Window size for votes

f 20 Num. of subcarriers

TABLE I: Default parameters values.
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Fig. 5: Effect of different combinations of receiver antennas

(a, b, c).

encountered by the packets received at the different antennas.

This means that using more antennas does not necessarily

lead to better accuracy. The good news is that the SNR

associated with the antennas can be used to determine the

best combination. For the rest of this section, we use antennas

a and c (i.e. m = 2) as they lead to the best accuracy.

2) Effect of the time window size for voting (w): Figure 6

shows the effect of increasing w. The figure shows that as the

window size used for voting increases, the accuracy increases.

However, increasing w increases the latency. Therefore, there

is a tradeoff that a designer needs to balance based on her

needs. Using w = 20 gives high accuracy of 1.36m with

reasonable latency.

3) Effect of processed subcarriers (f ): Figure 7 shows the

effect of increasing the number of subcarriers on the median

distance error. The figure shows that increasing the number of

subcarriers leads to better accuracy until it saturates at about

20 subcarriers.

4) Effect of number of averaged locations (r): Figure 8

shows the effect of increasing the number of averaged loca-

tions (r) for the continuous-space estimator. The figure shows

that increasing the number of averaged locations reduces the

median distance error until it saturates around r = 6.

C. Comparison with the State-of-the-Art

Figure 9 shows the CDF of the distance error for the

discrete-space and continuous-space estimators ofMonoPhy as

compared to the Deterministic [20] and Probabilistic Nuzzer

[31] traditional DF systems. Table II summarizes the results.

The results show that MonoPhy has the best accuracy with
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Fig. 6: Effect of the time window size used for voting (w).
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an enhancement of at least 48.1% in median distance error

over the best state-of-the-art techniques using only a single

stream.
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Technique Median distance error Percentage
enhancement of
MonoPHY-Cont

Determ. Nuzzer 3.16 56.81%
Prob. Nuzzer 2.63 48.10%

MonoPHY-Discrete 2.75 50.34%
MonoPHY-Cont 1.36 N/A

TABLE II: Comparison between MonoPHY and the state-of-

the-art techniques.

V. CONCLUSION

We presented the design, analysis, and implementation of

MonoPHY: an accurate device-free WLAN localization system

based on a single stream. MonoPHY leverages Channel State

Information (CSI) from the physical layer as well as the

MIMO information to achieve its high accuracy with limited

hardware.

Experimental evaluation in a typical WiFi testbed shows that

MonoPHY can achieve 1.36m median distance error, which is

better than the state-of-the-art techniques by at least 48%. This

highlights the promise of MonoPHY for real-time DF tracking

applications.

Currently, we are expandingMonoPhy in multiple directions

including integrating the CSI phase information, multiple

entities detection and tracking, and entity identification.
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