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Abstract—Device-free (DF) localization in WLANs has been introduced as a value-added service that allows tracking of indoor entities

that do not carry any devices. Previous work in DF WLAN localization focused on the tracking of a single entity due to the intractability

of the multi-entity tracking problem whose complexity grows exponentially with the number of humans being tracked. In this paper, we

introduce ACE: a system that uses a probabilistic energy-minimization framework that combines a conditional random field with a

Markov model to capture the temporal and spatial relations between the entities’ poses. A novel cross-calibration technique is

introduced to reduce the calibration overhead of multiple entities to linear, regardless of the number of humans being tracked. We

design an efficient energy-minimization function that can be mapped to a binary graph-cut problem whose solution has a linear

complexity on average and a third order polynomial in the worst case. We further employ clustering on the estimated location

candidates to reduce outliers and obtain more accurate tracking in the continuous space. Experimental evaluation in two typical

testbeds, with a side-by-side comparison with the state-of-the-art, shows that ACE can achieve a multi-entity tracking accuracy of less

than 1.3 m. This corresponds to at least 11.8 percent, and up to 33 percent, enhancement in median distance error over the state-of-

the-art DF localization systems. In addition, ACE can estimate the number of entities correctly to within one difference error for 100

percent of the time. This highlights that ACE achieves its goals of having an accurate and efficient multi-entity indoors localization.

Index Terms—Binary graph-cut, conditional random fields, device-free localization, energy minimization, Markov models, multi-entity tracking

Ç

1 INTRODUCTION

DEVICE-FREE (DF) localization [40] is a concept that
allows the detection and tracking of entities that do not

carry any devices nor participate actively in the localization
process. DF localization has a number of applications
including intrusion detection, border protection, smart
homes, and traffic estimation.

Different approaches have been proposed for addressing
the DF detection and tracking problem that can be catego-
rized into two main groups: Those that require special
hardware and those that leverage the already installed
wireless infrastructure. Radar-based systems, e.g., [8], [19],
[38], computer vision systems, e.g., [14], [20], and radio
tomographic imaging (RTI), e.g., [32], provide accurate DF
detection and tracking. However, all require the install-
ment of special hardware to track the DF entity. On the
other hand, systems that leverage the currently installed
wireless networks, e.g., WLAN [13], [21], [28], [37], [40],
provide a software only solution for DF localization and

have the advantage of scalability in terms of cost and cover-
age area.

WLAN DF localization systems are based on the con-
cept [40] that the presence of an entity in an RF environ-
ment affects the signal strength, which can be used to
detect, track, and identify the entities. Fig. 1 shows the
architecture of a typical WLAN DF localization system.
The system consists of signal transmitters (e.g., standard
APs); signal receivers or monitoring points (MPs), such as
any WiFi enabled device (e.g., laptops and APs them-
selves); and an application server that collects the received
signal strength (RSS) for the different streams (where a
stream is a single (AP, MP) pair) readings and processes
them to detect events.

To track entities, and due to the complex relation
between RSS and distance in indoor environment, a finger-
print has been traditionally used to capture the RSS behav-
ior at different locations in the area of interest. To construct
the fingerprint, a human stands at different locations in the
area of interest and her effect on the RSS of the different
streams is recorded at the MPs. For the multiple entities
case, it requires trying all the combinations of entities over
all calibration locations, which grows exponentially with the
number of fingerprint locations.

In this paper, we introduce ACE as a system for the accu-
rate and efficient detection and tracking of multiple DF
entities in a WLAN environment. ACE is based on a proba-
bilistic energy-minimization framework that combines a
conditional random field (CRF) with a Markov model:
Given a RSS vector from all the streams in the area of inter-
est, the problem of estimating the most probable active user
locations is mapped to an energy-minimization problem
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whose potential function is designed to preserve smooth and
consistent labels for active locations relative to their neigh-
bors and their movement history. In addition, we show that
the designed energy function is regular in the sense that it
can be mapped to a binary graph-cut problem whose solu-
tion has a linear complexity on average and a cubic polyno-
mial in the worst case. ACE also introduces a novel cross-
calibration technique to reduce the calibration overhead of
multiple entities to linear in the number of locations, as com-
pared to exponential for the current state-of-the-art. This also
helps in increasing the system accuracy.

Since a human can affect more than one location in the
area of interest, we further employ clustering on the esti-
mated location candidates as a means for reducing outliers
and obtaining more accurate tracking in the continuous
space. Each detected cluster represents a human whose
location in the center of mass of fingerprint locations inside
the cluster. Experimental evaluation in two typical testbeds,
with a side-by-side comparison with the state-of-the-art,
shows that ACE can achieve a tracking accuracy of less than
1.3 m. This corresponds to at least 11.8 percent, and up to 33
percent, enhancement in median distance error over the
state-of-the-art DF localization systems in the two testbeds,
while enabling the tracking of multiple entities. In addition,
ACE can estimate the number of entities with 100 percent
accuracy to within one difference error. This accuracy
advantage is obtained without scarifying computational
efficiency.

In summary, the contribution of this paper is four-fold:

1) We formulate the multi-entity DfP problem as an
energy-minimization framework that preserves both
spatial and temporal smoothness and consistency
(Section 2).

2) We show how to map the problem to a binary
graph-cut problem and obtain its solution effi-
ciently; and present the details of our novel cross-
calibration technique that reduces the calibration
complexity to linear in the number of locations,
rather than exponential as in the current state-of-
the-art (Section 3).

3) We present clustering techniques for reducing noise
and enhancing accuracy (Section 4).

4) We evaluate the system in two typical WiFi testbeds
and compare it to the state-of-the-art DF WLAN
localization techniques (Section 5).

We also present the related work in Section 6 and discuss
the other points related to the system in Section 7. Finally,
we conclude the paper and give directions for future work
in Section 8.

2 THE ACE SYSTEM

In this section, we give the details of ACE. We start by an
overview of the system architecture followed by the details
of the system modules.

2.1 Overview

Fig. 2 shows the system architecture. The system collects the
signal strength readings from the monitoring points for
processing. There are two phases of operation:

1) Offline training phase: to estimate the system parame-
ters based on the collected signal strength readings
and construct the device-free fingerprint. During
this phase, a human stands at different locations in
the area of interest and the RSS at each MP is
recorded. Note that our formulation requires only
one human for calibration in the offline phase,
regardless of the number of humans during the sys-
tem operation (Section 3.2). This significantly
reduces the calibration overhead as compared to
the state-of-the-art DF systems.

2) Online tracking phase: to estimate the multi-entities’
locations based on the received signal strength
from each stream and the fingerprint prepared in
the offline phase using the energy-minimization
framework.

The Noise Filtering module reduces the noise in the RSS
readings and filters outlier streams.

Fig. 1. Typical architecture of a DF WLAN localization system.

Fig. 2. ACE system architecture.
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The Fingerprint Builder module constructs the fingerprint
(training data) during the offline phase.

The Energy-Minimization Framework calculates the proba-
bilities used in the energy-minimization framework, con-
structs an equivalent graph, and estimates the most
probable active locations (i.e., environment map) based on
solving a binary graph-cut problem.

The Multi-Entity Detection and Estimation module uses clus-
tering techniques to estimate the number of entities and the
location of each entity. A non-zero estimated number of enti-
ties is equivalent to a detection event in the area of interest.

2.2 System Model

Without loss of generality, let X be a two-dimensional phys-
ical space. At each location x 2 X, we can get the signal
strength from k streams. We denote the k-dimensional sig-
nal strength space as S. Each element in this space is a
k-dimensional vector, s ¼ ðs1; . . . ; skÞ, whose entries repre-
sent the signal strength readings from a different (AP, MP)
pair.

Given that m humans are standing in the area of interest,
m � 0, these humans will affect the different streams.
Therefore, the problem becomes:

Problem 1. Given a RSS vector s, we want to both estimate the
number of humans m̂ and, if m̂ > 0, the locations of these
humans fxij0 < i � m̂; xi 2 Xg, such that the probability
P ðx1; x2; . . . ; xm̂jsÞ is maximized.

In Section 3, we assume a discrete X space. We discuss
the continuous space case in Section 4.

2.3 Noise Filtering

The aim of this module is to preprocess collected RSS read-
ings during the offline and online phases to reduce the noise
effects and detect outliers. We use two techniques: RSS fil-
tering and stream filtering.

2.3.1 RSS Filtering

RSS is a noisy quantity due to the time varying wireless
channel [39]. To reduce the noise effect, we apply an
a-trimmed Mean filter [37] to the measured RSS values. An
a-trimmed filter has the advantage of handling both
impulse and gaussian noise, as compared to mean and
median filters that can handle only one of them. In addition,
it is simple to implement: Given a window of q RSS samples,
the a-trimmed filter sorts the samples (such that
RSS1 � RSS2 � � � � � RSSq) and then discards the a

extreme samples and averages the remaining samples. The
output of the a-trimmed mean filter is

fðq;aÞ ¼ 1

q � 2 aqd e
Xq� aqd e

i¼ aqd eþ1

RSSi; (1)

where 0 � a < 0:5. We set a to 0.2 as it is a reasonable value
for the window size we use in our system (Section 5).

2.3.2 Streams Filter

Even after smoothing the RSS values, using the alpha-
trimmed filter, the readings of a single stream may have

significantly changed between the offline and online phases
due to changes in the environment. To detect this change
and filter outlier streams, we use the Analysis of Variance
(ANOVA) to test whether the mean of the RSS of a particu-
lar stream have significantly changed between the offline
and online phase. If there is a statistically significant differ-
ence, the stream is filtered from the current calculations.

3 ENERGY-MINIMIZATION FRAMEWORK

In this section, we assume a discreteX spacewith n locations.
Let fat

i; 0 < i < n} be a set of bernoulli random variables,
where at

i takes the value of 1 if a human is standing at loca-
tion i 2 X at time t, and 0 otherwise. Therefore, the problem
of estimating the number of entities m̂ and their locations,
given the received signal strength vector s (Problem 1), is
equivalent to finding the assignment of at

i’s that maximizes

P ðMt j sÞ; (2)

where Mt ¼ ðat
1;a

t
2; . . . ;a

t
nÞ. We refer to Mt as the environ-

ment map at time t. In this case, m̂ ¼ Pn
i¼1 a

t
i and the most

probable locations of the m̂ entities are the locations whose
at
i’s are assigned to one.
Traditional work on probabilistic WLAN localization,

both device-based and device-free, e.g., [26], [40], use Bayesian
inversion to estimate P ðMtjsÞ. However, these systems typi-
cally assume only one entity in the area of interest. Moving
to more than one entity makes this Bayesian inversion
approach intractable as the complexity of estimating
P ðsjMtÞ increases exponentially with the number of tracked
entities [26] (due to the need to try all combinations of
humans’ poses in the area of interest).

Alternatively, we use an energy-minimization frame-
work that leverages this joint estimation problem of at

i’s to
enhance the accuracy while, at the same time, leads to an
efficient solution. In particular, we represent the spatial con-
straints on the human position by a Conditional Random
Field model favoring coherence between adjacent locations.
The temporal relation between the human locations is cap-
tured by a second order Hidden Markov Model (Fig. 3).
Estimation is finally performed by mapping the problem to
a binary graph-cut problem that can be efficiently solved in
OðnÞ on average and Oðn3Þ in the worst case.

A CRF is an undirected graphical model that defines a
log-linear distribution over label sequences given a particu-
lar observation sequence [17]. It was introduced as a
framework for labeling and segmenting data that models
the conditional probability P ðY jXÞ, where X and Y are the
observations and the labels respectively. CRFs have the
advantage of relaxing the strong independence assump-
tions made by Hidden Markov Models (HMMs) [30] for a
large number of variables (such as those in the environ-
ment map). In addition, CRFs avoid the label bias problem
[14], a weakness exhibited by maximum entropy Markov
models (MEMMs) [16] and other conditional Markov mod-
els based on directed graphical models. Therefore, CRFs
outperform both MEMMs and HMMs on a number of real-
world sequence labeling tasks [14], [17], [19].

By combining a HMM for temporal relations with a CRF
for spatial relations, we gain the benefit of both worlds in
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terms of accuracy and efficiency. In this section, we describe
the energy-minimization framework construction and how
we efficiently solve it.

3.1 Framework Construction

Our model extends the model in Equation (2) to capture the
temporal constraints. In particular, our goal becomes to find
the environment map at time t,Mt, that maximizes:

P ðMt j st;Mt�1;Mt�2Þ (3)

assuming a second order temporal dependence in the Mar-
kov model as we discuss in details later.

Based on CRF theory [16], our combined model estimates
the probability of Equation (3) as

P ðMt j st;Mt�1;Mt�2Þ / exp� Ei
� �

(4)

where Ei ¼ Eðst;Mt;Mt�1;Mt�2Þ is defined as an energy
function that captures the required spatial and temporal
constraints on the DF tracking problem at location i . That
is, we want to estimate the current environments map given
the previous two environment maps and the current signal
strength vector measured at the monitoring points. This is
obtained by the joint maximization of the posterior in Equa-
tion (4), which is equivalent to the minimization of energy:

M̂t ¼ ðât
1; â

t
2; . . . ; â

t
nÞ ¼ argmin Ei: (5)

Energy terms. For our DF tracking problem, each Ei is
composed of three components that capture the observation
measurement and the spatial and temporal relations
between entities’ poses:

Ei ¼ Eðst;Mt;Mt�1;Mt�2Þ
¼ V TmðMt;Mt�1Mt�2Þ þ V SpðMt; stÞ þ USSðMt; stÞ: (6)

The term V TmðMt;Mt�1Mt�2Þ is a temporal prior term
that represents a second-order Markov chain that imposes a
tendency to temporal continuity on the environment map.

The term V SpðMt; stÞ presents a spatial prior term which
imposes a tendency to spatial continuity of the environment
map, favoring coherent assignments between adjacent
locations.

Finally, the USSðMt; stÞ term is a likelihood term that
evaluates the evidence for location labels based on the RSS
distributions in the case of human absence and presence.

This energy model captures both the signal strength like-
lihood together with the spatial and temporal priors. Fig. 3
shows the graphical representation of the model. Details of
these factors are given in the next subsections.

3.1.1 Temporal Prior Term

This term reflects the temporal smoothness captured by
the second order HMM. Fig. 4 shows the four different
temporal transitions a location assignment (label) can
undergo in an environment map, based on a two time
instances analysis. For instance, an active location may
remain active (locations labeled AA in Fig. 4) or move to
the inactive state (locations labeled AAc), etc. It is impor-
tant to note that a first-order Markov chain is inadequate
to convey the nature of temporal coherence in this prob-
lem; a higher order Markov chain is required. For exam-
ple, since a person who started walking will probably
continue walking, a location that was inactive at time
t� 2 and is active at time t� 1 is far more likely to remain
active at time t than to go back to the inactive state. A sec-
ond-order Markov chain is used to balance performance
and complexity. We quantify the effect of the order of the
chain in Section 5.2.5.

These intuitions are captured probabilistically and
incorporated in our energy-minimization framework by
means of a second order Markov chain, as shown in the
graphical model of Fig. 3. The temporal transition priors
(P ðat

i j at�1
i ;at�2

i Þ) are learned during the training phase.
This leads to the following joint temporal prior term:

V TmðMt;Mt�1Mt�2Þ ¼ b
Xn
i¼1

��
log P

�
at
i j at�1

i ;at�2
i

��
; (7)

where b < 1 is a discount factor to allow for multiple count-
ing across non-independent locations. The optimal value of
b, as well as the other parameters of the CRF, are obtained
discriminatively from the training data using the iterative
scaling algorithm [17].

Fig. 4. Temporal transitions at a location (assuming the human affects
four locations inside the circle). (a) An entity moves towards the right
from time t� 2 to time t� 1. (b) Between the two time instances, loca-
tions may remain in their own active or inactive states (denoted A and
Ac, respectively) or change state; thus defining four different kinds of
temporal transitions: A ! A, A ! Ac, Ac ! A, Ac ! Ac. Those transi-
tions influence the label that a location in the environment map is going
to assume at time t.

Fig. 3. Combined CRF-HMM model. This graphical model illustrates
both the signal strength likelihood together with the spatial and temporal
priors. The same temporal chain is repeated at each discrete location.
Spatial dependencies are illustrated for a four-neighborhood system.
The entire environment map affects the RSS vector st.
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3.1.2 Spatial Prior Term

This term should favor coherent environment maps, i.e.,
adjacent locations have similar labels. We adopt a varia-
tion of the Ising model commonly used for segmentation
applications [4] where the spatial energy term can be
represented as

V SpðMt; stÞ ¼
X

fci;cjg2N
V Sp
fci;cjg

�
at
ci
;at

cj
; st

�

¼ g
X

fci;cjg2N;atci 6¼atcj

�
1þ e

�kP ðstjatci Þ�P ðstjatcj Þk
2

2

	
;

(8)

where N is the set of pairs of neighboring locations. The
term P ðst j at

ci
Þ represents the conditional probability of

receiving the signal strength vector st when the human is
present at location ci (at

ci
¼ 1) or not present (at

ci
¼ 0).

This can be estimated during the training phase as
described in Section 3.2. Intuitively, the closer the two
probabilities, i.e., the more similar the two adjacent loca-
tions, the higher the value of eð:Þ, and hence the higher
the overall term. The constant g is a strength parameter
for the coherence prior that can be estimated based on the
training data.

3.1.3 Likelihood for Signal Strength

The term USSðMt; stÞ is the log-likelihood of the received
signal strength. The term is defined as :

USSðMt; stÞ ¼ d
Xn
i¼1

�� logP
�
stjat

i

��
; (9)

where d < 1 is a discount factor to allow for multiple count-
ing across non-independent locations whose optimal value
is obtained discriminatively from the training data.

RSS likelihoods are learned during the offline training
phase as described in the next section.

3.2 Fingerprint Construction

During the offline phase, ACE needs to estimate both the
RSS likelihood, P ðstjat

iÞ, and the temporal transition priors,
P ðat

i jat�1
i ;at�2

i Þ. This is the functionality of the Fingerprint
Builder Module.

3.2.1 RSS Likelihood

Fig. 5 shows the difference between the fingerprint for a tra-
ditional DF system and that of ACE. In particular, we use a
cross-calibration technique, where an entity standing at loca-
tion x contributes to the active RSS likelihoods of x
(P ðst jat

x ¼ 1)) and the inactive RSS likelihoods of the all
remaining n� 1 FP locations (P ðst jat

i ¼ 0; 8i 6¼ x)). This has
two advantages: (1) It reduces the coverage sparsity prob-
lem in the presence of few streams and (2) it converts the
intractable exponential number of cases of building the fin-
gerprint for traditional DF systems [26] to a linear complex-
ity problem, as only one human is needed for training,
regardless of the number of humans to be tracked. In sum-
mary, at each location, we have two histograms for the RSS
corresponding to the active and inactive states respectively
using the cross-calibration technique. The active histogram
is built only using the readings collected when the human is
standing at the same location. The inactive one is built by
merging all readings collected when the human is standing
at the other n� 1 locations into one set and using it to build
the histogram. The fingerprint is the collection of these two
histograms over all locations. We smooth the generated his-
tograms by convolution with separable gaussian kernels to
avoid the zero-probability problem of missing values dur-
ing training.

3.2.2 Temporal Transition Prior

Although there are eight possible transitions (Fig. 6), due
to probabilistic normalization (P ðat

i ¼ 1 jat�1
i ;at�2

i Þ ¼ 1�
P ðat

i ¼ 0 jat�1
i ;at�2

i Þ), the temporal priors have only four
degrees of freedom. These temporal priors are learned
from the training data.

3.3 Most Probable Map Estimation

In this section, we show how to obtain the optimal environ-
ment map by solving the energy-minimization problem in
Equation (5) efficiently through mapping it to a binary
graph-cut problem. We start by a brief background on
graph-cuts, followed by how to map the DF energy-minimi-
zation problem to a graph problem.

Fig. 5. Difference between fingerprint (FP) construction for traditional DF

systems and ACE. Left figure represents an example while the figure to

the right represents all required combinations (FP complexity). (a) FP

construction for one entity in a traditional DF system: One histogram,

representing the active state RSS, is stored in only one location (where

the user is standing). (b) FP construction for two entities in a traditional

DF system: Two humans are needed along with trying all their poses

combinations in the area of interest (n2). A total of 2n combinations are

required to capture the fingerprint of all possible number of humans and

their locations. (c) FP construction in ACE: Only one human is needed to

construct the FP regardless of the actual number of humans to be

tracked (due to the environment map formulation). A human standing at

one location (x) captures the RSS active histogram at this location

(P ðst jat
x ¼ 1)) and affects the inactive histograms at all other FP loca-

tions, (P ðst jat
i ¼ 0;8i 6¼ x)), (cross-calibration). This leads to two histo-

grams at every FP location.
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3.3.1 Binary Graph-Cuts

Let G ¼ ðE;VÞ be a directed graph with nonnegative edge
weights that has two special vertices (terminals): the source
s and the sink t. An s� t-cut (or a binary graph-cut)
C ¼ fS; Tg is a partition of the vertices of V into two disjoint
sets S and T such that s 2 S and t 2 T . The cost of the cut is
the sum of costs of all edges that go from S to T :

cðS; T Þ ¼
X

u2S;v2T;ðu;vÞ2E
cðu; vÞ:

The minimum s� t-cut problem is to find a cut C with the
smallest cost. Ford and Fulkerson [7] proved that this is
equivalent to computing the maximum flow from the
source to sink. This problem can be solved in a low order
polynomial in n [5].1 This way, a binary graph-cut can be
considered as a binary labeling of the graph nodes to be
either s or t.

3.3.2 DF Tracking as a Binary Graph-Cut Problem

Not every energy-minimization function can be solved
using a graph-cut approach. According to [12], the follow-
ing theorem gives a necessary and sufficient condition for a
function to be solved using the binary min-cut algorithm.

Theorem 1. Let E be a function of n binary variables in the form
of

Eðx1; . . . ; xnÞ ¼
X
i

EiðxiÞ þ
X
i< j

Eijðxi; xjÞ:

Then, E is graph-representable if, and only if, each term Eij

satisfies the inequality

Eijð0; 0Þ þ Eijð1; 1Þ � Eijð1; 0Þ þ Eijð0; 1Þ: (10)

Note that the condition only involves the binary terms,
i.e.,7 those that involve the relation between two varia-
bles. This maps only to the spatial consistency term in our
DF energy function (Equation (8)).

Corollary 1. The DF energy-minimization function is graph-
representable.

Proof. The proof follows directly by mapping the terms of
Equations (8) to (10) noting that the LHS of Equation (10)
is zero in the DF tracking problem and the two RHS
terms are positive. tu
The above corollary tells us that we can find a polyno-

mial time efficient solution to the DF energy-minimization
problem using the binary graph-cut mapping. Fig. 7 shows
how our energy-minimization problem can be mapped to a
binary graph-cut problem. We construct a graph that has
nþ 2 nodes, where n nodes are the original discrete envi-
ronment map locations and two additional nodes are
added to represent the source and sink nodes. There are
two types of edges. Those between the original discrete
environment map locations (n-edges) and those between
each node and the source and sink terminal nodes
(t-edges). The edge weights are assigned in the following
way to guarantee that the min-cut solution to this graph is
equivalent to minimizing the energy function in Equation
(5) [12]:

1) The t-edge between the source and node x is assigned
a weight of P ðst jat

x ¼ 0Þ þ P ðat
x ¼ 0 jat�1

x ;at�2
x Þ.

2) The t-edge between node x and the sink is assigned a
weight of P ðst jat

x ¼ 1Þ þ P ðat
x ¼ 1 jat�1

x ;at�2
x Þ.

3) The n-edge ðx; yÞ between node x and node y is

assigned a weight of 1þe
�kP ðst jatx¼1Þ�P ðst jaty¼0Þk2

2 .

Theorem 2. The binary graph-cut solution on the constructed
graph is a solution to the corresponding energy-minimization
problem in Equation (5).

Proof. The proof can be found in the Appendix, which can
be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TMC.2014.2320265. tu
Therefore, any node connected to the source (sink) node

after the cut is considered inactive (active).

Fig. 7. Mapping the DF energy-minimization problem to a binary graph-
cut problem.

Fig. 6. Finite state diagram for the possible temporal transitions at any
location. The sum of arcs originating from any node is one, leading to
only four degrees of freedom.

1. Note however that generalizations of the minimum s-t-cut prob-
lem to involve more than two terminals are NP-hard. We prove in the
next subsection that our problem can be mapped to a binary graph-cut
problem.
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3.4 Computational Complexity

The binary graph-cut algorithm requires Oðn3Þ operations,
where n is the number of fingerprint locations. However,
we use the algorithm in [5] as it provides an iterative fast
algorithm. Although the algorithm has the same complexity
in the worst case, its average complexity is OðnÞ. This has
been confirmed in our experiments.

3.5 Discussion

Using the proposed technique, we could reduce the training
complexity from Oð2nÞ to OðnÞ. This is a significant reduc-
tion in the calibration overhead which turns the multi-entity
tracking problem to a feasible problem.

The proposed framework also treats the detection and
tracking problem in a homogenous manner. In particular,
detection can be regarded as a special case of the system,
where a non-zero estimate of the number of entities is
equivalent to a detection event.

4 MULTI-ENTITY DETECTION AND ESTIMATION

The output of the binary graph-cut operation is a set of can-
didate locations. However, these locations cannot be used
directly as a human present at a location typically affects
the signal strength at more than one neighboring location
(Fig. 4) leading to overestimating the actual number of
humans and their locations. This effect on neighboring loca-
tions decreases as we move away from the actual human
location. Therefore, the Multi-entity Detection and Estimation
Module applies clustering to the output of the binary graph-
cut algorithm, such that the number of output clusters
determines the number of entities and the center of mass of
each cluster gives the coordinates of human corresponding
to this cluster. This not only solves the problem of

overestimating the number of entities, but also in locat-
ing the entities in the continuous space by the weighted
averaging of all the samples within a cluster. This allows
ACE to achieve accuracy that is finer than the fingerprint grid
spacing. To further enhance accuracy, we apply clustering
to the last w environment maps by merging them into
one map.

4.1 Approach

We used a hierarchical clustering technique as it gives us an
intuitive means to estimate the number of clusters. In partic-
ular, leaf nodes represent individual candidates. Each inter-
nal node represents a possible cluster. As we go up in the
tree, clusters are combined to form a bigger cluster using
euclidean distance between clusters centers as a similarity
measure. The root of the tree corresponds to one cluster that
contains the entire set of candidate nodes. Starting from the
root of the tree, if the degree of inconsistency between two
clusters is high, based on a parameter r, we split them as
two separate clusters. This process is repeated recursively
for each of the split clusters until the degree of inconsistency
is below r. The final number of clusters represents the
estimated number of humans and the center of mass of
each cluster is the estimated human location, where the
center of mass is obtained by assigning to each location
inside the cluster a probability that is proportional to
how many times it appeared in the window w as a can-
didate location.

4.2 Clustering Complexity

The hierarchical clustering requires Oðc3Þ operations, where
c is the number of candidate locations. Typically, c is � n.
Therefore, clustering has a low overhead. We quantify this
effect in Section 5.

5 PERFORMANCE EVALUATION

In this section, we analyze the performance of ACE and
compare it to the best state-of-the-art DFWLAN localization
systems: a probabilistic single-entity system (Nuzzer) [26],
and two multi-entity tracking systems: (SPOT) [25] and
(SCPL) [34]. We start by describing the experimental setup
and data collection. Then, we analyze the effect of different
parameters on the system performance.

5.1 Testbeds and Data Collection

We evaluate our system in two different testbeds (Figs. 8
and 9). The first testbed covers a residential apartment with
an area of 114 m2 (about 1,228 sq. ft.) while the second
testbed represents an office building with an area of 130 m2

(about 1,400 sq. ft.). The two testbeds were covered by TP-
link TL-WA500G APs and D-Link Airplus G+DWL-650
wireless NICs.

For data collection, we used a sampling rate of one hertz
similar to [34]. We had six RSS data streams for both test-
beds. A total of 25 fingerprint locations, uniformally dis-
tributed over the testbed, are sampled for both testbeds.
An independent test set at 17 (22) test locations for the first
(second) testbed, was collected at different times of day,
different locations from the training set, and by different
persons. The training set was based on our cross-

Fig. 8. Testbed 1 layout.
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calibration method (Section 3.2), and involved only one
man with 1:78 m height and 70 kg weight. While the inde-
pendent testing set involved other three different persons (a
1:64 m height 63 kg weight woman, a 1:55 m height 59 kg
weight teenager, and a 1:81 m height 89 kgweight man). In
all experiments, persons were moving in their normal real
life paths at an average speed of 1.32 meters per second.
Other human speeds can be tracked with no problem given
the one hertz sampling rate.

We give the details of the results of the first testbed and
summarize the results of the second. Fig. 10 shows an exam-
ple of the output of the system.

5.2 Parameters Effect

In this section, we study the effect of changing the system
parameters on the performance of ACE. The average dis-
tance error is used as the main metric.

We have adapted a variation of multi-entity tracking
metric called OSPA [24] to calculate the distance error, at
any time instant t, between the sets of ground truth loca-
tions Qt ¼ fq1t ; q2t ; . . . ; qgt g and the estimated entities’ poses
Q̂t ¼ fq̂1t ; q̂2t ; . . . ; q̂mt g. The number of ground truth and esti-
mated entities are g and m respectively. For the case of
g � m, the metric is defined as

dðQt; Q̂tÞ ¼ 1

m

�
min
p2Pm

Xg
i¼1

d
�
qit; q̂

pðiÞ
t

�þ ðm� gÞ � h
	
; (11)

where Pm includes the set of permutations of length g with
elements 2 f1; 2; . . . ;mg, dðqit; q̂pðiÞt Þ is the euclidean distance
between qit and q̂

pðiÞ
t . h is a cut-off threshold.2 In our case, q

is the entity’s actual location and q̂ is the center of her
estimated location. For the case m < g, the definition in
Equation (11) becomes dðQ̂t; QtÞ.

Table 1 shows the default values of the different
parameters.

5.2.1 Clustering Window Size (w)

Fig. 11 shows the effect of changing the clustering window
size (Section 4) on accuracy. The figure shows that choos-
ing a too short window will degrade the system accuracy.
On the other hand, choosing a very long window will
increase the latency of the location estimation. However,
this will result in better accuracy due to leveraging more
information.

An improvement of 33 percent can be achieved between
w ¼ 1 and w ¼ 13, after which the accuracy saturates. There-
fore, an application should balance the latency-accuracy
tradeoff based on its requirements. Note that the averaging
operation performed by the clustering module allows ACE
to achieve accuracy that is finer than the grid spacing.

5.2.2 Clustering Inconsistency Threshold (r)

Fig. 12 shows that for small values of r, i.e., r < 0:15, the
system tends to generate one cluster, regardless of the num-
ber of entities in the area of interest, underestimating the
true number of humans. As r approaches its maximum

Fig. 10. A heatmap highlighting the system output. Two close entities are
present on the left and another entity is present on the right.

TABLE 1
Default Parameters Values

Fig. 9. Testbed 2 layout.

2. We use the length of the diagonal of the area-of-interest as the
threshold h.
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value, i.e., one, the system generates a lot of clusters, overes-
timating the actual number of humans. This quantifies the
advantage of the clustering module. An optimal value for r
occurs around 0:25.

5.2.3 Fingerprint Density (n)

The denser the fingerprint is, the more accurate results we
can achieve (Fig. 13). The curves level out as we approach
25 fingerprint locations, which corresponds to a density of
one location every 4:56 m2.

5.2.4 Number of Streams (k)

Fig. 14 shows that, as expected, increasing the number of
streams leads to increasing the system accuracy. However,
due to the cross-calibration technique employed by ACE
(Section 3.2), it can tolerate a low number of streams as com-
pared to the other state-of-the-art DF localization systems
(as quantified in the next section).

5.2.5 HMM Order (o)

Fig. 15 shows that a second order model enhances perfor-
mance over lower order models by at least 11 percent in
overall performance. A third order model does not perform
much better than a second order model, with the increase in
complexity. Actually, in some cases, e.g., when one entity is
present in the area of interest, a third order model performs
worse than a second order mode due to over-training. This
justifies the use of a second order HMM.

5.3 Comparison with Other DF Systems

5.3.1 Accuracy

Fig. 16 shows the CDF of distance error for the single and
multiple entities cases of ACE.

Table 2 summarizes the performance of different techni-
ques for the two testbeds. The results show that ACE has
the best performance under the two testbeds with an
enhancement of at least 11.81 percent in median error over

Fig. 12. Effect of changing the clustering inconsistency threshold (r) on
accuracy.

Fig. 13. Effect of changing the fingerprint density (n) on accuracy.

Fig. 14. Effect of changing the number of streams (k) on accuracy.Fig. 11. Effect of changing the clustering window size (w) on accuracy.

Fig. 15. Effect of changing the HMM order (o) on accuracy.
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the best state-of-the-art techniques and at least 8.98 percent
in average error. In addition, it can perform multi-entity
tracking with high accuracy. All techniques perform better
in Testbed 2 due to the closer separation of training point in
Testbed 2. Note that due to the possibility of estimating the
number of entities incorrectly, the performance of the ACE
single-entity case may not always be better than the ACE
multi-entity case.

Fig. 17 also shows that ACE can estimate the number of
entities in the area of interest with at most one difference
error.

5.3.2 Running Time

Fig. 18 shows the running time of the different components
of ACE compared to the other multi-entity techniques: Spot
[25] and SCPL [34]. The results show that the overall ACE
operations take less 1:9 ms per location estimate for both
testbeds. The clustering component consumes the largest
time, followed by the min-cut algorithm, and finally calcu-
lating the probabilities.

Table 2 summarizes the running time for the different
techniques. Although SCPL [34] shows a comparable perfor-
mance to ACE in accuracy, it has a higher computational
complexity in the number of fingerprint locations. All
remaining algorithms (including ACE) nearly have the

same complexity (as c � n). However, the running time
does differ. This is due to the proportionality constants for
the small n andm values in our experiment.

ACE takes higher running time than SPOT (less than
31.57 percent on average for both testbeds). However, it sig-
nificantly outperforms SCPL and Nuzzer, with at least 49
percent enhancement on average in running time. This
highlights that ACE significant gain in accuracy and reduc-
tion in training overhead comes at a negligible increase in
running time.

6 RELATED WORK

Ubiquitous and Context-Aware services are grasping more
attention these days. Location is considered a key context
information that can be utilized in many ways. A lot of
Device-based localization systems have been proposed to
provide motion detection and tracking of an entity carrying
a device either with the use of special hardware like acceler-
ometers or sensors [3], [23], or by using the existing network
infrastructures like wireless networks [11], [15], [31], [40]
and GSM [2], [29]. DFP comes with the goal of bypassing
the need that the entity being localized to carry a device or
even participate actively in the localization process. In DFP,
the already installed WiFi settings in the environment is

Fig. 16. CDF of distance error for Testbed 1. Fig. 17. CDF of num. of entities estimation error for Testbed 1, and a
comparison with other systems.

TABLE 2
Performance Summary for the Different Systems under the Two Testbeds

The results of ACE-multiple entities are the average of one, two and three entities’ results. Number between parenthesis represent percentage of
ACE-One entity advantage. c is the number of candidate locations after the graph-cut phase in ACE and first phase of Nuzzer. c is typically << n.
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exploited to estimate the locations of moving objects in the
area of interest.

Device-free tracking systems have been introduced over
the year including: radar-based [8], [19], [38], camera-based
[14], [20], and sensors-based [32].

In the radar-based systems, pulses of radio waves are
transmitted into the area of interest and based on measuring
the received reflections, objects could be tracked. Several
technologies have been presented in this class including
ultra-wideband (UWB) systems [38], doppler radar [19],
and MIMO radar systems [8].

Camera-based tracking systems are based on analyzing a
set of captured images to estimate the current locations of
objects of interest [14], [20]. The analysis consists of two
main processes: background subtraction and temporal cor-
respondence. However, regular cameras can fail to work in
the dark or in the presence of smoke, and they can cause pri-
vacy concerns.

Sensor-based systems use especially installed sensor
nodes to cover the area of interest. For example, RTI tech-
nology [22], [32], [33] applies radio tomographic techniques
to the readings of a dense array of sensors to obtain accurate
DF tracking. In this method, the relationship between an
entity’ location and the RSS variation can be mathematically
modeled. [32] proposed a linear model to capture the atten-
uation of RSS values caused by entities when the Line-of-
Sight is blocked. In [9], it is shown that the accuracy of RTI
can be consistently improved by using channel diversity.
Another technique was presented in [10] to provide a real-
time RTI-based localization with online re-calibration.

All the technologies above share the requirement of
installing special hardware to be able to perform DF track-
ing, which reduces their scalability in terms of cost and cov-
erage area. In contrast, WLAN DF tracking tries to avoid the
previous drawbacks by exploiting the already installed
WLANs.

WLAN DF localization was first introduced in [40] along
with feasibility experiments in a controlled environment.
Several papers followed the initial vision to provide differ-
ent techniques for detection and tracking [1], [13], [21], [25],
[26], [28], [37]. However, all these techniques focus on the
problem of a single entity.

The closest systems to ours are Spot [25] and SCPL [34],
[35]. Spot focuses only on the spatial constraints and does
not handle the problem of overestimating the number of
entities. In addition, SCPL focuses only the temporal transi-
tions in human trajectories and models them as a state tran-
sition process. SCPL also uses traditional fingerprinting of a
single-entity for counting and localizing multiple entities.
ACE innovates in the area of multi-entity DF tracking prob-
lem by combining temporal an spatial constraints in a uni-
fied framework, using a nivel cross-calibration technique,
handling RSS and streams outliers, as well as handling the
overestimation of the number of entities. Table 3 shows
how ACE compares to the different systems.

7 DISCUSSION

7.1 Dynamic Changes in the Environment

An important aspect of the practical deployment of DF
localization techniques is handling the dynamic changes in
the environment. ACE currently needs manual re-calibra-
tion of the area-of-interest, which can be cumbersome and
costly. To reduce this effort, different approaches can be
used to capture these dynamic changes including automatic
radio map generation using CAD tools, e.g., [6]; leveraging
cameras as in [36]; and dynamically updating the stored
parameters, e.g., using anomaly detection techniques as in
[13]. Other approaches were applied in the context of real-
time DF localization to reduce the calibration, e.g., [10].

7.2 Impact of Multiple Entities on RSS Values

The effect of multiple entities on the RSS attenuation is chal-
lenging because of the multi-path effect. Briefly, multi-path
can cause nonlinear interference when multiple entities
coexist in the same radio space. In addition, the RSS changes
even when the entity is several meters away from the LoS

Fig. 18. Running time for the different components of ACE and a com-
parison with other systems running time.

TABLE 3
Comparison of Different RF-Based DF Localization Systems
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link. Similar challenges have been addressed previously in
environments with dense sensors, e.g., [32], [34] and can be
used with ACE.

7.3 New Crowd-Based Applications

Traditional application scenarios for DF localization sys-
tems typically assume that the area of interest is silent (i.e.,
has no activities and no entities). In our experiments, RSS
readings have been acquired when there were people mov-
ing in the same floor where ACE was deployed, but not in
the experiment area.

We believe, however, that when the crowds are close to
each other in the area of interest, they could form a big high
likelihood area in the reconstructed fingerprint map. When
the crowds are scattered, their shadowing effects on streams
will be different and they could form lots of high likelihood
areas in the reconstructed fingerprint map. The recon-
structed fingerprint map could represent the distribution of
the crowd. This can enable a new set of device-free applica-
tions, including indoor analytics and crowd management.

8 CONCLUSIONS

We presented the design, analysis, and implementation of
ACE: a system for accurate and efficient multi-entity device-
free WLAN localization. ACE leverages probabilistic techni-
ques to provide a smooth and consistent environment
image. It uses a cross-calibration technique and an energy-
minimization framework to reduce the calibration over-
heard to linear in the number of locations, which turns the
DF multi-entity tracking to a tractable problem. We showed
that the selected energy-minimization terms lead to an effi-
cient solution by mapping the energy function to a binary
graph-cut problem. We further showed how to perform
clustering on the generated environment map to remove
outliers and enhance accuracy.

Implementation on standard WiFi hardware in two dif-
ferent testbeds show that ACE can achieve 1.3 m median
distance multi-entity tracking error, which is better than the
stat-of-art techniques by at least 11.8 percent, and up to 33
percent, in both testbeds. In addition, it can estimate the
number of entities correctly to within one entity difference
100 percent of the time. This highlights the promise of ACE
for a wide range of multi-entity DF tracking applications.

Currently, we are expanding ACE in multiple directions
including robustness to environment changes, entity identi-
fication, and automating the construction of the fingerprint.
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