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ABSTRACT

Predicting the presence or absence of spatial phenomena has been

of great interest to scientists pursuing research in several appli-

cations including epidemic diseases detection, species occurrence

prediction and earth observation. In this operation, a geographical

space is divided by a two-dimensional grid, where the prediction

(i.e, either 0 or 1) is performed at each cell in the grid. A common

approach to solve this problem is to build spatial logistic regression

models (a.k.a autologistic models) that estimate the prediction at

any location based on a set of predictors (i.e., features) at this lo-

cation and predictions from neighboring locations. Unfortunately,

existing methods to build autologistic models are computationally

expensive and do not scale up for large-scale grid data (e.g., fine-

grained satellite images). This paper introduces TurboReg, a scalable
framework to build autologistic models for predicting large-scale

spatial phenomena. TurboReg considers both the accuracy and ef-

ficiency aspects when learning the regression model parameters.

TurboReg is built on top of Markov Logic Network (MLN), a scalable

statistical learning framework, where its internals and data struc-

tures are optimized to process spatial data. A set of experiments

using large real and synthetic data show that TurboReg achieves

at least three orders of magnitude performance gain over existing

methods while preserving the model accuracy.
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1 INTRODUCTION

Predicting the presence or absence of spatial phenomena in a cer-

tain geographical area is a crucial task in many scientific domains

(e.g., Earth observations [25, 43], Epidemiology [13, 27, 37], Ecol-

ogy [4, 35], Agriculture [18, 22] andManagement [29]). For example,

ornithologists would need to predict the presence or absence of

a certain bird species across a certain area [39]. Meteorologists

would need to predict the hurricane or tornado boundaries. Epi-

demiologist would need to understand the spread of diseases across

various areas in the world. Typically, this is done by dividing the

geographical space (e.g., the whole world) by a two-dimensional
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grid, where each grid cell is represented with a binary variable (i.e.,

takes either 0 or 1) indicating the presence or absence of the spatial

phenomena in that grid cell, and a set of predictor variables (i.e.,

features) that help predicting the value of this binary variable. Then,

the prediction problem at any grid cell is formulated as: Given a

set of predictors defined over this cell along with a set of observed

or predicted values at neighbouring cells, predict the value of the

binary variable at this cell.

A common approach to solve the prediction problem is to build

a standard logistic regression model [5, 10] that uses a logistic

function to predict the value of each grid cell based on the values

of predictors in the same grid cell. However, standard logistic re-

gression models are deemed inappropriate for predicting spatial

phenomena as they assume that neighboring locations are com-

pletely independent of each other. This is definitely not the case for

spatial phenomena as neighboring locations tend to systematically

affect each other [40].

As a result, spatial variants of logistic regression models (a.k.a.,

autologistic regression) were proposed to take into account the spa-

tial dependence between neighboring grid cells [6, 8, 24]. However,

existing methods for autologistic regression (e.g., see [7, 24, 28, 41])

are prohibitively computationally expensive for large grid data, e.g.,

fine-grained satellite images [2, 43], and large spatial epidemiology

datasets [26]. For example, it could take about week to infer the

model parameters using training data of only few gigabytes [24]. As

a means of dealing with such scalability issues, existing techniques

tend to sacrifice their accuracy through two simplified strategies:

(1) Use only a small sample of the available training data, and

(2) Only allow individual pairwise dependency between neighbor-

ing cells. For example, if a prediction cell variable C1 depends on

two neighboring cellsC2 andC3, then current methods assume that

C1 depends on each of them individually, and hence define two pair-

wise dependency relations (C1, C2) and (C1, C3). Both approaches

lead to significant inaccuracy and invalidate the use of autologistic

regression for predicting spatial phenomena of current applications

with large-scale training data sets.

In this paper, we introduce TurboReg; a scalable framework for

using autologistic models in predicting large-scale spatial phenom-

ena. TurboReg does not need to sample training data sets. It can

support prediction over grids of 85000 cells in 10 seconds. Moreover,

TurboReg allows its users to define high degrees of dependency rela-

tions among neighbors, which opens the opportunity for capturing

more precise spatial dependencies in regression. For example, for

the case where a prediction cell variable C1 depends on two neigh-

boring cells C2 and C3, TurboReg is scalable enough to be able to

define a ternary dependency relation (C1,C2,C3), which gives much

higher accuracy than having two independent binary relations.



TurboReg exploits Markov Logic Networks (MLN) [12] (a scalable

statistical learning framework) to learn the autologistic regression

parameters in an accurate and efficient manner. Then, TurboReg
aims to provide an equivalent first-order logic [15] representation to

dependency relations among neighbors in autologistic models. This

is necessary to accurately express the autologistic models using

MLN. Since we focus on binary prediction variables, TurboReg trans-
forms each neighboring dependency relation into a predicate with

bitwise-AND operation on all variables involved in this relation.

For example, a ternary dependency relation between neighboring

variables C1, C2 and C3 is transformed to C1 ∧C2 ∧C3. This sim-

ple logical transformation allows non-expert users to express the

dependency relations within autologistic models in a simple way

without needing to specify complex models in a tedious detail.

TurboReg proposes an efficient framework that learns the model

parameters overMLN in a distributedmanner. It employs a spatially-

indexed learning graph structure, namely factor graph [42], along

with an efficient weights optimization technique based on gradient

descent optimization [47]. TurboReg represents the MLN bitwise-

AND predicates using the spatially-indexed factor graph. Then,

TurboReg runs multiple instances of learning algorithms in parallel,

where each instance handles the learning process over exactly one

factor graph partition. At the end, the obtained results from all

learning instances are merged together to provide the final autolo-

gistic model parameters. Using the proposed framework, TurboReg
converges to the optimal model parameters faster than existing

computational methods by at least three orders of magnitude.

We experimentally evaluate TurboReg using a real dataset of

the daily distribution of bird species [39], and a synthetic dataset

about the crime types in Minneapolis, MN area. For each dataset,

we compare the accuracy and scalability of the built autologistic

models using TurboReg and a state-of-the-art open-source autol-

ogistic model computational method, namely ngspatial [23]. Our

experiments show that TurboReg is scalable to large-scale autolo-

gistic models compared to existing techniques, while preserving

high-level of accuracy in estimating the model parameters.

The rest of this paper is organized as follows: Section 2 gives

a brief background of autologistic models and MLN framework.

Section 3 describes how autologistic regression is modeled using

MLN. Section 4 gives an overview of TurboReg. Section 5 describes

how the first-order logic predicates are generated for autologistic

models. Section 6 provides details about the spatially-indexed factor

graph structure. Section 7 illustrates the details of the weights learn-

ing phase. Section 8 provides experimental analysis of TurboReg.
Section 9 covers related work, while Section 10 concludes the paper.

2 PRELIMINARIES

This section provides a brief discussion about the autologistic mod-

els (Section 2.1) and Markov Logic Networks (MLN) (Section 2.2).

2.1 Autologistic Regression

Autologistic regression builds a regression model that predicts the

value of a binary random variable (i.e., prediction variable that takes

either 0 or 1) at a certain location based on a set of predictors (i.e.,

features that help in the prediction process) at the same location

and a set of observed predictions from variables at neighbouring
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Figure 1: An Example on Autologistic Regression.
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Figure 2: Translating First-order Logic Predicates into A Fac-

tor Graph in MLN.

locations (i.e., spatial dependence). Formally, autologistic models

assume a set of n binary prediction variables Z = {z1, ..., zn }
(i.e., zi ∈ {0, 1}) at n locations L = {l1, ..., ln }, and a set of m
predictor variablesX(i) = {x1(i), ...,xm (i)}where the value of each
predictor variable x j (i) is a function of location li (e.g., a predicator
about the existence of water which could have a different value

for each location), and each location li has a set of neighbouring
locationsNi . Given a specific location li , the conditional probability
of prediction variable zi given the values of current predictors X

and the neighbouring prediction variablesZNi can be estimated

as follows [6, 24]:

log

Pr (zi = 1 | X(i),ZNi )

Pr (zi = 0 | X(i),ZNi )
=

m∑
j=1

βjx j (i) + η
∑
k ∈Ni

zk (1)

where the weights β = {β1, ..., βm } and η form the model param-

eters θ = {β ,η}. The objective of our work is to learn the values of

θ from previous observations (i.e., training data) of predictions and

predictors at locations L, in a scalable and efficient manner. Note

that the values of θ are shared among the whole locations L.

Assumptions. In general, predictor variables X can be either bi-

nary, categorical, or continuous. However, we focus only on binary

predictors (i.e., xm (i) ∈ {0, 1}). The extension to categorical and

continuous cases is intuitive as well, but, out of scope of this paper.

Example. Figure 1 shows a numerical example of autologistic re-

gression. In this example, we have a 4 x 4 grid (i.e., 16 cells), where

each cell li has a prediction variable zi and two predictor variables

x1(i) and x2(i). The model parameters β1 and β2 are trained by

observations from all locations except l14 which is unknown (i.e.,

needs to be predicted). The example also shows the calculations to

predict the value of z14 using the learned parameters.



2.2 Markov Logic Networks

Markov Logic Network (MLN) has recently emerged as a power-

ful framework to efficiently learn parameters of data models with

complex dependencies and distributions [9, 12, 31]. MLN combines

probabilistic graphical models (e.g., factor graphs [42]) with first-

order logic [15] to perform probabilistic learning based on logic

constraints, where logic handles model complexities and proba-

bility handles uncertainty. MLN has been successfully applied in

a wide span of data intensive applications including knowledge

bases construction [38], machine learning models [11], and genetic

analysis [34]. The success stories in such applications motivate us

to explore MLN in computing the parameters of models with spatial

dependencies such as autologistic regression.

2.2.1 Modeling with MLN. Any model can be represented with

MLN, only if it has two main properties: (1) the model can be

represented as a set of p binary random variablesV = {v1, ...,vp }
(vi ∈ {0, 1}). (2) the dependencies between model variablesV can

be described with a set of weighted constraints F = { f1, ..., fh }
defined over them, where these weightsW = {w1, ...,wh } are the

model parameters that need to be learned. The constraints describe

how the values of variablesV correlate with each other. A model

with these two properties can exploit MLN to learn weightsW

that maximize the probability of satisfying model constraints F .

Example. Assume a model of two variables vprof and vteach ,
where vprof denotes whether a person is professor or not, and

vteach denotes whether a person teaches or not. We can define

a constraint that "if a person is a professor then she teaches, and

vice versa". In this case, MLN learns a weightw that maximizes the

probability of vprof and vteach having the same value (i.e., either

vprof = 1 and vteach = 1 or vprof = 0 and vteach = 0).

2.2.2 First-order Logic. MLN employs first-order logic predi-

cates [15] (e.g., conjunction, disjunction and implication) to rep-

resent the model constraints. For example, the constraint defined

over vprof and vteach can be represented as a bitwise-AND predi-

cate vprof ∧vteach . Efficient logic programming frameworks were

proposed to generate first-order logic predicates on a large-scale

such as DDlog [38].

2.2.3 Factor Graph. To learn the values of weightsW associ-

ated with predicates (i.e., constraints), MLN translates these predi-

cates into an equivalent probabilistic graphical model, namely factor

graph [42], which hasW as the parameters of its joint probability

distribution. By doing that, the problem of learningW is reduced

into the problem of learning the joint distribution of this factor

graph. A factor graph G is a bipartite graph that represents each

model variable v ∈ V and constraint f ∈ F as a node, and there is

an edge between any constraint node f and each variable node v
that appears in f . Figure 2 shows an example of translating three

bitwise-AND logical predicates (f1, f2, and f3) defined over a model

of four variables (v1, v2, v3 and v4) into a factor graph.

Probability Distribution. The full joint distribution of variables

V in a factor graph G can be estimated in terms of the constraints

(i.e., predicates) F and their weightsW as a log-linear model [12]:
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Pr (V = v) =
1

C
exp

( h∑
i=1

wi fi (v)
)

(2)

whereC is a normalization constant, fi (v) is the value of whether
the i-th constraint is satisfied or not, andwi is its weight. Scalable

optimization techniques have been proposed to efficiently learning

the values of weightsW in factor graph, such as gradient descent

optimization [44, 47].

3 AUTOLOGISTIC REGRESSION VIA

MARKOV LOGIC NETWORK

In this section, we describe how MLN is exploited to efficiently

solve the autologistic regression problem. We start by discussing

an MLN-based model for the basic autologistic regression in Equa-

tion 2 (Section 3.1). Then, we extend this model in case of more

complicated autologistic regression scenarios (Section 3.2).

3.1 MLN-based Autologistic Model

To represent an autologistic model using MLN, the model should

have the two main properties mentioned in Section 2.2.1. Obvi-

ously, the first property is satisfied because all prediction and

predictor variables (i.e., Z and X) are already binary. However,

to achieve the second property, the model is required to have a

set of equivalent constraints (i.e., logical predicates) that capture

the autologistic regression semantics. As shown in Equation 1,

there are two types of regression terms: (1) predictor-based terms

{βjx j (i) | j = 1, ..,m}wherem is the number of predictors at any lo-

cation li , and (2) neighbour-based terms {ηzk | k ∈ Ni } whereNi is
the set of neighbours at location li . TurboReg provides an equivalent
weighted first-order logic predicate to each regression term, either

predictor-based or neighbour-based, that preserves the semantic of

autologistic regression and can be represented with MLN as well.

For each prediction variable zi at location li , each predictor-based
regression term βjx j (i) has an equivalent bitwise-AND predicate

defined over zi and x j (i) (i.e., zi ∧ x j (i)) with weight βj . Similarly,

each neighbour-based regression termηzk has an equivalent bitwise-

AND predicate defined over zi and zk (i.e., zi ∧ zk ) with weight η.
The theoretical foundation of the proposed MLN-based autologistic

model is described in the Appendix A. Note that, using the pro-

posed model, the autologistic regression parameters θ = {β,η} are



translated into a set of weightsW of MLN constraints (i.e., pro-

posed equivalent bitwise-AND predicates), and hence learning the

autologistic model parameters θ becomes equivalent to learning

the values ofW in MLN (See section 2.2.3).

Example. Figure 3 shows an example of translating an autol-

ogistic regression model with one predictor variable x1 (i.e.,

log

Pr (zi=1 |X,ZNi )
Pr (zi=0 |X,ZNi )

= β1x1(i) + η
∑
k ∈Ni zk ) into an equivalent

MLN. The model is built for a 4-cells grid, where the neighbourhood

Ni of any cell li is assumed to be cells that share edges with li (i.e.,
first-order neighbourhood). The model is first translated into a set

of 8 bitwise-AND predicates with two weights β1 and η. Then, these
predicates are translated into a factor graph which can be used to

learn the weights β1 and η. Note that duplicate predicates that come

from neighbouring variables are removed to avoid redundancy (e.g.,

the neighbouring variables z1 and z2 have two equivalent z1 ∧ z2
and z2 ∧ z1 neighbour-based predicates, respectively, however, we

keep only one of them).

3.2 Generalized Autologistic Models

Some applications assumemodels withmore generalized neighbour-

based regression terms {ηG(zk1 , ..., zkd ) | k1, ...,kd ∈ Ni } (i.e.,
complex spatial dependence), where the regression term has a func-

tion defined over neighbouring prediction variablesG(zk1 , ..., zkd ),
and not just their sum as in Equation 1 (e.g., Ecology [36] and

Mineral Exploration [20]). Existing methods can not compute autol-

ogistic models with generalized regression terms because of their

prohibitively expensive computations, such as high-order matrix

multiplications [24]. In contrast, the MLN-based autologistic model

can be easily extended to find an equivalent combination of first-

order logic predicates [15] for any generalized regression term,

as long as the function G(zk1 , ..., zkd ) holds logical semantics. For

example, if prediction variable z1 at location l1 has a generalized
regression functionG(z2, z3) over neighbours z2 and z3 which con-

straints the value of z1 to be 1 only if both values of z2 and z3
are 1 at the same time, then TurboReg would translate this into an

equivalent bitwise-AND predicate z1 ∧z2 ∧z3. As another example,

ifG(z2, z3) constraints the value of z1 to be 1 only if the either z2 or
z3 is 1, then it can be translated into a predicate z1 ∧ (z2 ∨ z3) that
has a combination of bitwise-AND and bitwise-OR. The proof of

this extension is pretty similar to the proof in Appendix A, however,

it is removed due to space constraints. Our experiments show that

handling generalized regression terms using the MLN-based model

increases the learning accuracy while not affecting the scalability

performance (See Section 8).

4 OVERVIEW OF TURBOREG

Figure 4 depicts the system architecture of TurboReg. It includes
three main modules, namely, MLN Transformer, Factor Graph Con-
structor, andWeights Learner, described briefly as follows:

MLN Transformer. This module receives the autologistic regres-

sion model from TurboReg user and generates a set of bitwise-AND

predicates of an equivalent MLN. It employs an efficient logic pro-

gramming framework, called DDlog [38], to produce predicates in

a scalable manner. Details are in Section 5.

Factor Graph Constructor. This module prepares the input for

the Weights Learner module by building a spatially-indexed factor
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Figure 4: TurboReg System Architecture.

graph out of the generated bitwise-AND predicates. The factor

graph is partitioned using a flat grid index, where each grid cell has

a graph index for its factor graph part. Details are in Section 6.

Weights Learner. This is the main module in TurboReg which

efficiently learns the weights that are encoded in the spatially-

indexed factor graphs. These weights represent the autologistic

model parameters. It takes the built factor graph along with learn-

ing configurations (e.g., number of learning epochs) as input, and

produces the final values of weights θ = {β ,η}. In this module,

TurboReg provides a scalable variation of gradient descent [47]

technique, that is highly optimized for learning the autologistic

model parameters. Details are in Section 7.

5 MLN TRANSFORMER

The first step in TurboReg is to generate a set of equivalent logical

predicates for the different regression terms in the autologistic

model. However, this step is challenging if : (1) the model has a

large number of prediction variablesZ (i.e., large 2-dimensional

grid) and/or predictor variables X (e.g., large number of synthetic

features), which results in generating a large number of neighbour-

based and predictor-based predicates at the end. (2) the model has

very complicated generalized regression terms, which are translated

into predicates with large number of combinations of first-order

logic symbols (e.g., bitwise-AND, bitwise-OR, and imply).

To remedy this challenge, TurboReg uses DDlog [38], an DBMS-

based logic programming framework, to generate equivalent predi-

cates for any autologistic model in a scalable manner. DDlog takes

advantage of the scalability provided by DBMS when generating

large number or combinations of predicates. It provides users with

a high-level declarative language to express logical predicates using

few template rules. These rules are then translated into SQL queries

and applied against database relations of variables (e.g.,Z and X)

to instantiate the actual set of predicates. DDlog has been widely

adopted in many applications due to its usability and efficiency

(e.g., knowledge bases [38] and data cleaning [32]).

Example. Figure 5 shows an example of using DDlog to express

the bitwise-AND predicates of the autologistic model in Figure 3.

DDlog has two types of syntax; schema declaration and derivation
rules. Schema declaration defines the relational schema of variables

that appear in predicates. For example, prediction variablesZ and

predictor variables X are stored in relations z? and x?, respectively,



#Schema Declaration

z?(@key id bigint, value numeric).

x?(@key id bigint, value numeric).

neighbor(id1 bigint, id2 bigint).

#Derivation Rules

z(id) ^ x(id):- z(id).

z(id1) ^ z(id2) :- neighbor(id1, id2)

Figure 5: Example of Using DDlog to Generate Bitwise-AND

Predicates for Autologistic Model.

where any row in each relation corresponds to one variable and

stores its location ID and its to-be-predicted value in attributes id
and value , respectively. Note that variable relations are differenti-
ated from normal relations with a question mark at the end of their

names. Derivation rules are templates to instantiate predicates. In

this example, the first derivation rule is a template for bitwise-AND

predicates coming from predictor-based regression terms (i.e., f1,
f4, f6 and f8 in Figure 3), where the body of rule (i.e., right side

after symbol ":-") specifies that a predicate is defined over any z
and x only if they have same location id (i.e., selection criteria).

During execution, this rule is translated into a hash join between

relations z and x with selection predicate over id . Similarly, the

second derivation rule is a template for predicates corresponding to

neighbour-based regression terms (i.e., f2, f3, f5 and f7 in Figure 3),

where a predicate is defined for each individual pair of neighbouring

predication variables.

6 FACTOR GRAPH CONSTRUCTOR

Figure 6 depicts the organization of a spatially-indexed factor graph

for the predicates that are generated in Figure 3. The index is com-

posed of two main layers, namely, neighbourhood layer and graph
layer, described as follows:

6.1 Neighbourhood Index Layer

The neighbourhood index layer is basically a two-dimensional in-

dex on the given factor graph. There is already a rich literature on

two-dimensional index structures, classified into two categories:

Data-partitioning index structures (e.g., R-tree [19]) that partition

the data over the index and space-partitioning index structures (e.g.,

Quadtrees [14]) that partition the space. In TurboReg we decided to

go with the Grid Index [30] as an example for space-partitioning

data structures because it aligns with the nature of spatial phenom-

ena that are predicted over grids. Having said this, TurboReg can

accommodate other two-dimensional index structures as a replace-

ment of our grid index. Each grid cell in the neighbourhood layer

keeps a graph index for its factor graph part. Figure 6 gives an

example of a neighbourhood index layer as a 2-cells grid (i.e., C1

and C2), where C1 contains the factor graph part corresponding to

predicates in locations l1 and l3, andC2 holds predicates in locations

l2 and l4. TurboReg takes the grid resolution as input from the user.

6.2 Graph Index Layer

Each cell in the two-dimensional neighbourhood grid points to two

indexes of variables and predicates. Together, these two indexes

form the factor graph part in this cell.

Variables Index. This index contains all predication and predictor

variables that exist in the grid cell. Each node in the index corre-

sponds to one variable, and points to a list that has three types of
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information (1) location as a first element in list, (2) value (i.e., 1 or

0) as a second element in the list and (3) predicates that this variable

appear in, which are stored as a set of pairs in the rest of list. Each

pair consists of a pointer to a predicate in the predicates index, and
the weight associated with this predicate. Figure 6 shows the details

of variable z1 in the variables index.

Predicates Index. This index contains all predicates that defined

over variables in this grid cell. Each node in the index corresponds

to one predicate and has a list of pointers to variables that appear

in this predicate. Figure 6 shows the details of predicate f6 in the

predicates index. Note that we replicate predicates that have vari-

ables in two different grid cells (e.g., f7 is duplicated in C1 and C2

because it has variable z3 ∈ C1 and z4 ∈ C2).

7 WEIGHTS LEARNER

This is the most important module in TurboReg, which takes the

spatially-indexed factor graph along with learning configurations

from user and returns the final weights θ = {β ,η} of the autologistic
model. The main idea is to incrementally converge to weights that

maximize the satisfaction of bitwise-AND predicates represented

in the factor graph. For example, if the predicate zi ∧ xi is satisfied,
then the current value of its weight η should be rewarded (i.e.,

should be increased), otherwise should be punished (i.e., should

be decreased). To that end, we adapt a technique that punishs and

rewards weights using gradient descent optimization [47]. To test

satisfaction of any bitwise-AND predicate in autologistic regression,

we suggest to substitute in Equation 1 with the values of variables

that appear in the predicate along with its weight. The details of

algorithms that implement this idea are described below.

LearnWeights Algorithm. Algorithm 1 depicts the pseudo

code for our scalable weights learner that takes the following four

inputs: the spatially-partitioned factor graph C , the number of

learning instances S that can run in parallel, the number of learn-

ing iterations E needed to converge to the final values of weights,

and the step size α which is a specific parameter for the optimiza-

tion algorithm 2 that will be described later. The algorithm keeps

track of the current best values of weights through variables: β
and η, initialized by random values. The algorithm then starts by

computing the number of learning epochs that can be handled per

each learning instance and stores it in variable e . Note that e repre-
sents the actual number of learning epochs that run sequentially

because different learning instances execute in parallel. Each of

these learning instances then starts to process one learning epoch



Algorithm 1 Function LearnWeights (FactorGraphCells C ,
LearningInstances S , LearningEpochs E, StepSize α )

1: β ← Random, η← Random

2: e ← E
S /* Num. of Learning Epochs Per Instance*/

3: while e , 0 do

4: for all s ∈ {1, 2, ..., S} do in parallel

5: for all c ∈ C do in parallel

6: Vc ← Variables index in cell c
7: Pc ← Predicates index in cell c
8: for each vi ∈ Vc do
9: UpdateWeights (vi ,Vc , Pc , α ) (Algorithm 2)

10: end for

11: β ←
∑S
s=1 βs
S , η←

∑S
s=1 ηs
S

12: e − −
13: end while

14: return β and η

in parallel (i.e., S learning epochs are running simultaneously). In

such learning epoch, we learn an optimal instance of weights βs
and ηs , where these values are incrementally learned from variables

in factor graph using UpdateWeights function (Line 9 in Algo-

rithm 1)(details of this function are described in Algorithm 2). To

reduce the learning latency, we process the variables from different

factor graph partitions in parallel (Lines 5 to 10 in Algorithm 1).

After all learning instances finish their current learning epoch, we

set the values of β and η with the average of the obtained weights

from these instances (Line 11 in Algorithm 1) and then proceed

to another learning epoch with the new weights. We repeat this

process e times and then return the final values of weights.

UpdateWeightsAlgorithm.Algorithm 2 gives the pseudo code

for our weights optimizer that applies gradient descent optimiza-

tion [47] technique to incrementally update the values of weights

given a certain variable vi (either prediction or predictor). The

main idea is to punish or reward current weights based on their

performance in correctly estimating the prediction value zi at lo-
cation li where variable vi belongs to. The algorithm takes the

following inputs; a variable vi , the variablesV and predicates P

indexes in the grid cell containing vi (i.e., graph index), and a step

size α that controls the amount of punishing/rewarding during

the optimization process. The algorithm keeps track of the current

status of whether weights need to be punished or rewarded weights

through variable д, where it takes either 1 in case of rewarding

or −1 in case of punishing, and is initialized by 1. The algorithm

starts by estimating the prediction ẑi at location li that contains vi
using Equation 1. If the estimation ẑi never matches the observed

prediction value zi from training data, then we set the status д to

−1 (i.e., the associated weight with current variable vi needs to be

punished), otherwise the status remains rewarding. In case vi is a
predictor variable x j (i), we only update its associated weight βj by
evaluating the gradient descent equation using current values of

д and α (Line 7 in Algorithm 2) and jump to the end of algorithm.

In case vi is the prediction variable zi itself, we apply gradient

descent optimization on all weights β associated with its predictors

(Lines 9 to 11 in Algorithm 2), and on weight η associated with

neighbouring predicates (Lines 14 to 24 in Algorithm 2) as well.

Algorithm 2 Function UpdateWeights (Variable vi , VariablesIn-
dexV , PredicatesIndex P, StepSize α )

1: li ←V[vi ].location, д← 1 /* Gradient Value */

2: ẑi ← Prediction at li using β and η (Equation 1)

3: if V[vi ].value , ẑi then
4: д← -1

5: end if

6: if vi is any predictor variable x j (i) ∈ X(i) then
7: βj ← βj + α д /* Gradient Descent on βj */
8: else

9: for each βj ∈ β do

10: βj ← βj + α д /* Gradient Descent on βj */
11: end for

12: end if

13: if vi is prediction variable zi then
14: for each p ∈ P[vi ] do
15: if p is a neighbour-based predicate then

16: ẑk ← Prediction at neighbour lk in p using β and η
17: if V[vk ].value , ẑk then

18: д← -1

19: else

20: д← 1

21: end if

22: η← η + α д /* Gradient Descent on η */

23: end if

24: end for

25: end if

Complexity. The complexity of the aforementioned algorithms

can be estimated asO( ES
(n2+nm)

C )where n is number of predictions,

m is number of predictors,C is number of factor graph partitions, E
is number of learning epochs and S is number of learning instances.

This complexity can be further approximated to be O( ES
(n2)
C ). Note

that we assume having SC working threads to process C factor

graph partitions in each of the S learning instances in parallel.

8 EXPERIMENTS

In this section, we experimentally evaluate the accuracy and scala-

bility of TurboReg in building autologistic models (i.e., learning their

weights). We compare the performance of TurboReg with ngspa-

tial [23], a state-of-the-art open-source package for autologistic

model implementations. Specifically, we compare our performance

with themost accurate algorithm in ngspatial that employs bayesian

inference using Markov Chain Monte Carlo (MCMC) [24]. We ex-

tensively investigate the accuracy and scalability of both systems

under different grid sizes (Section 8.2), learning epochs (Section 8.3),

and neighbourhood structures (Sections 8.4 and 8.5).

8.1 Experimental Setup

Datasets. All experiments are based on the following two grid

datasets: (1) Ebird dataset [39], which is a real dataset of the daily

distribution of a certain bird species, namely Barn Swallow, over

North America. Each grid cell holds a predication of the bird exis-

tence in the cell or not. Figure 7(a) shows the Ebird data distribution,

where blue dots refer to cells with bird existence. We generate eight



(a) Ebird Data (b) MNCrime Data

Figure 7: Datasets Used in Experiments.

versions of this dataset with different grid sizes, ranging from 250 to

84000 cells, to be used during most of our experiments. This dataset

has three binary predictors including whether number of bird ob-

servers high or not, whether the observing duration is long or not,

and whether observers cover large spatial area or not. (2)MNCrimes
dataset, which is a synthetic dataset about predicting the existence

of bike theft crime in 87 neighborhoods in Minneapolis. Figure 7(b)

shows the MNCrimes data distribution, where red and green cells

refer to the crime existence and non-existence, respectively. This

grid is constructed based on three public datasets about Minneapo-

lis neighbourhoods [3], census [1] and crime incidents [3]. It also

uses the information about other 11 crime types as binary predic-

tors. In both Ebird and MNCrimes datasets, we randomly select 15%

of the grid cells as testing data, and use the rest 85% for training.

We use Ebird dataset in all experiments, except the experiment in

the last Figure 11(b) which uses MNCrimes dataset.

Parameters. Unless otherwise mentioned, table 1 shows the de-

fault settings of both Ebird and MNCrimes datasets. Note that we

use small number of grid cells as a default value, because the ngspa-

tial technique fails in large cases. However, we have standalone

experiments to show the scalability of TurboReg with large number

of grid cells. Table 2 also shows the default learning configurations

that are used with TurboReg and ngspatial. In most of experiments,

we run two variations of our system: the basic TurboReg that has

pairwise neighbourhood relationships (i.e., neighbourhood degree

of 1), and another generalized variation with 8-ary neighbourhood

relationships (i.e., neighbourhood degree of 8), referred to as G-
TurboReg-8 (See Section 3.2). In G-TurboReg-8, each predication has

a bitwise-AND predicate over the whole 8 neighbours surrounding

it. In case of ngspatial, we set the default standard deviation α of

any bayesian prior distributions with the recommended value 1000

as in their documentation [23].

Environment. We run all experiments on a single machine with

Ubuntu Linux 14.04. Each machine has 8 quad-core 3.00 GHz pro-

cessors, 64GB RAM, and 4TB hard disk.

Metrics. In all experiments, we use the total running time of learn-

ing weights as a scalability evaluation metric, and the ratio of cor-

rectly predicted cells to the total number of test cells as an accuracy

evaluation metric.

Parameter Default Value

Grid Training Size (Ebird) 860 Cells

Grid Testing Size (Ebird) 140 Cells

Number of Predictors (Ebird) 3

Grid Training Size (MNCrimes) 72 Cells

Grid Testing Size (MNCrimes) 12 Cells

Number of Predictors (MNCrimes) 11

Table 1: Dataset-specific Parameters.

Parameter Default Value

Learning Epochs E 1000

Neighbourhood Degree D 1, 8

Step Size α (TurboReg) 0.001

Number of Threads (TurboReg) 7

Factor Graph Partitions (TurboReg) 200

Standard Deviation σ (ngspatial) 1000

Table 2: Learning-specific Parameters.
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Figure 8: Effect of Grid Size on Scalability and Accuracy.

8.2 Effect of Grid Size

In this section, we compare the performance, both scalability and

accuracy, of basic TurboReg and G-TurboReg-8 with ngspatial, while

having five different sizes of prediction grids.

Figure 8(a) shows the running time for each algorithm while

scaling the grid size from 250 to 84k cells. For the five grid sizes,

both TurboReg and G-TurboReg-8 were able to significantly reduce

the running time compared to ngspatial. Specifically, both TurboReg
variants and ngspatial have an average running time of 6 seconds

and 6 hours, respectively. This means that TurboReg has at least

three orders of magnitude reduction in the running time over ngspa-

tial. The poor performance of ngspatial comes from two reasons:

(1) although ngspatial relies on parallel processing in its sampling,

prior estimation and parameters optimization steps, it runs a cen-

tralized approximate Bayesian inference algorithm [24]. In contrast,

TurboReg is a fully distributed framework. (2) ngspatial requires es-

timating a prior distribution for each predictor variable, and hence

it suffers from a huge latency before starting the actual learning pro-

cess. Note that the ngspatial curve in Figure 8(a) is incomplete after

a grid size of 3.5k cells because of a failure in satisfying the memory

requirements needed for its internal computations. The running

times of TurboReg and G-TurboReg-8 are almost identical, except

with grid sizes larger than 21k cells which have 13 seconds average

difference. This shows that TurboReg is efficient when scaling up

the grid size regardless of the neighbourhood degree.
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Figure 9: Effect of Number of Learning Epochs on Scalability

and Accuracy.

Figure 8(b) shows the accuracy for each algorithm while using

the same grid sizes in Figure 8(a). In this experiment, we divide the

cells in each grid into training and testing sets, where we randomly

select 15% of cells for testing and keep the rest for training. We

repeat this process 5 times and then average the accuracy results

(we follow the same approach in the whole accuracy experiments in

the paper). As can be seen in the figure, G-TurboReg-8 has the same

accuracy achieved by ngspatial, while basic TurboReg is at maximum

20% less accurate than both of them on average. The reason for

that is the basic TurboReg captures less accurate neighbourhood

dependencies than G-TurboReg-8. Note that the ngspatial curve is
incomplete for grids with sizes more than 3.5k cells as in Figure 8(a).

8.3 Effect of Learning Epochs

In this section, we evaluate the performance, both scalability and

accuracy, of basic TurboReg and G-TurboReg-8 with ngspatial, while

having four different values of learning epochs. In the following

experiments, we fix the grid size to be 1k cells.

Figure 9(a) shows the running time for the different algorithms

while changing the number of epochs from 100 to 100k. Both ba-

sic TurboReg and G-TurboReg-8 significantly outperform ngspatial.

They are at least 2 orders of magnitude faster than ngspatial. This

is because of the parallel processing of learning epochs in TurboReg
compared to the sequential learning in ngspatial. The results of

ngspatial are incomplete after 10k epochs because its learning pro-

cess requires saving huge intermediate state. In contrast, TurboReg
never needs an intermediate state because it updates the model

weights in place using the gradient descent optimization technique

(See Algorithm 2). The figure also shows that the running times of

TurboReg and G-TurboReg-8 are identical and never depend on the

neighbourhood degree. This confirms the complexity estimation of

the weights learning algorithm in Section 7.

Figure 9(b) shows the accuracy of the different algorithms given

the same setup in Figure 9(a). This experiment shows an interesting

observation that both TurboReg and ngspatial can rapidly converge

to their optimal values of weights (i.e., number of learning epochs

less than 100). This is because ngspatial provides a good estimate

to the prior of its predication and predictor variables, which makes

the convergence process faster. In case of TurboReg, the rapid con-

vergence happens because weights are shared among all locations

which makes their values updated multiple times using the gradient
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Figure 10: Effect of Neighbourhood Degree on Scalability

and Accuracy.

descent optimization in each epoch. As a result, TurboReg just needs
small number of epochs for weights convergence.

8.4 Effect of Neighbourhood Degree

In this section, we evaluate the performance, both scalability and

accuracy, of basic TurboReg and two generalized variations G-
TurboReg-8 and G-TurboReg-4, while scaling up the grid size. Unlike
G-TurboReg-8, G-TurboReg-4 considers neighbourhood degree of

4, in which each location prediction depends on neighbours that

share edges with this location only.

Figure 10(a) depicts the performance for each algorithm while us-

ing the same grid sizes in Figure 8(a). The results of this experiment

confirm the previous ones we have shown in Figure 8(a). Increas-

ing the neighbourhood degree leads to producing less number of

predicates, and hence less number of factor graph nodes to process,

which makes the weights learning process faster. In this experiment,

the performance of different algorithms are almost similar in case

of small grid sizes (i.e., the average accuracy difference between the

three algorithms is less than 0.1 seconds). However, the difference

becomes significant in case of large grid sizes (average of 16 seconds

difference for grid size of 84k cells).

Figure 10(b) shows the accuracy of TurboReg, G-TurboReg-4 and
G-TurboReg-8 using the same setup of grid sizes. As we can see,

the accuracy of TurboReg is 9% less accurate than both G-TurboReg-
4 and G-TurboReg-8. Note that G-TurboReg-4 and G-TurboReg-8
almost have the same accuracy. This is a spatial case for the Ebird

dataset becausewe observe that the significant information between

neighbourhoods with degrees 8 and 4 is very little, which makes

the accuracy in the two cases are pretty similar.

8.5 Effect of Number of Threads and Hybrid

Neighbourhood Degrees

Figure 11(a) shows the effect of increasing the number of threads

from 1 to 8 on TurboReg and G-TurboReg-8. These threads are used
to parallelize the work in the weights learner module of TurboReg.
As expected, the performance of both algorithms linearly improves.

For example, the running time of TurboReg using 8 threads is 2 times

faster than using 1 thread. This shows the ability of autologistic to

scale up with system threads.

Figure 11(b) shows the accuracy of both autologistic and ngspa-

tial in case of having hybrid neighbourhood degrees (i.e., each

location has a different neighbourhood degree). In this experiment,
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we use the MNCrimes dataset which consists of locations with 1

to 9 neighbourhood degrees. We compare the basic TurboReg that

runs pairwise neighbouring depdencies, G-TurboReg-H that runs

adaptive neighbourhood dependencies, and ngspatial. We find that

the accuracy of G-TurboReg-H is higher than TurboReg with 12%

and ngspatial with 29%.

9 RELATEDWORK

Autologistic TheoreticalModels. There are twomain theoretical

models of autologistic regression: (1) Traditional model [6] simply

estimates the logistic function of the predication probability at any

location as a linear combination of predictors at this location and

the predictions of its neighbours. However, this model biases its

prediction to the presence case (i.e., predicted value is 1) in case

of sparse training data. (2) Centered model [8] is similar to the tra-

ditional model, however, the model parameters are normalized to

avoid the biased cases. This adds more complexity when learning

the model parameters. TurboReg is the first framework to imple-

ment those models on a large-scale without sacrificing the accuracy

of learned model parameters. Recent research has proposed an

extension for spatio-temporal autologistic models [45, 46] (and cen-

tered variants [41]), which incorporates the temporal dependence

between predictions at the same location. However, this line of

research is out of the scope of this paper.

Autologistic Computational Methods. A wide array of tech-

niques that are capable of learning the autologistic model parame-

ters on a small scale (see [24] for a comprehensive survey, and [23]

for open-source implementations). Learning the autologistic model

parameters is much harder than learning parameters of classical

non-spatial regression models due to the spatial dependence effect.

Thus, the techniques are categorized into three main categories

based on their methods of approximation to the original parame-

ters distributions: Pseudo likelihood estimation [7, 45](and centered

variants [24]), Monte Carlo likelihood estimation [16](and centered

variants [24, 45]), Bayesian inference estimation [28] (and centered

variants [23, 45]). TurboReg, conversely, is the first technique to
apply large-scale Markov Chain Monte Carlo estimation to learn

the model parameters.

Other Spatial Regression Models. Autologistic models belong

to the class of non-Gaussian spatial modelling [21], in which the

spatial dependence between predictions is conditionally modelled

through direct neighbours. However, there are three other classes:

(1) linear spatial models [21], (2) spatial generalized linear mod-

els [17] and (3) Gaussian Markov random field models [33], that

encode the spatial dependence through a distance-based covari-

ance matrix. This matrix defines how much the prediction in one

location is affected by predictions in all other locations based on

their relative distances. Another main difference is that autologistic

models focus on binary predictions, while other classes are mainly

developed for continuous and categorical predictions.

10 CONCLUSIONS

This paper has delivered TurboReg, a scalable framework for build-

ing spatial logistic regression models (a.k.a autologistic models) to

predict spatial binary data. TurboReg provides an efficient modeling

for the autologistic regression problem using Markov Logic Net-

work (MLN), which is a scalable statistical learning framework. Tur-
boReg employs first-order logic predicates, a spatially-partitioned

factor graph data structure, and an efficient gradient descent-based

optimization technique to learn the autologistic model parameters.

Experimental analysis using real and synthetic data sets shows that

TurboReg achieves at least three orders of magnitude performance

gain over existing state-of-the-art techniques while preserving the

same accuracy.
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A THEORETICAL FOUNDATION OF

TURBOREG USING MLN

Theorem 1. Given an autologistic model with a set of n
prediction variables Z = {z1, ..., zn } defined over n locations
L = {l1, ..., ln }, a set of m weighted predictor variables βX(i) =
{β1x1(i), ..., βmxm (i)} at each location i and neighbouring weight η,
there is an equivalent Markov Logic Network (MLN) to this model, if
and only if: (1) each predictor-based regression term βjx j (i) at loca-
tion li has an equivalent bitwise-AND predicate zi ∧x j (i) with weight
βj . (2) each neighbour-based regression term ηzk at location li has
an equivalent bitwise-AND predicate zi ∧ zk with weight η.

Proof. Assume a model that consists of n + nm binary random

variables V = {Z,X} = {z1, ..., zn ,x1(1), ...,xm (n)}. In addi-

tion, assume a set of constraints F = {F1, ..., Fn } are defined

over variables V , where constraints Fi at location li consist of
two subsets of constraints: (1) a set ofm bitwise-AND predicates

{zi ∧ x j (i) | j = 1, ...,m} with β weights (each predicate corre-

sponds to a predictor-based regression term), and (2) a set of si
bitwise-AND predicates {zi ∧ zk | k ∈ Ni } with η weight (each

corresponds to a neighbour-based regression term) where si is the
size of neighbouring locations Ni of location li . Based on these

assumptions, the model satisfies the two main properties in Sec-

tion 2.2.1 that are needed to represent it using MLN, and hence its

joint probability distribution overV is estimated using Equation 2.

SinceZ andX are binary variables, the evaluation of any bitwise-

AND predicate over them can be represented as a mathematical

multiplication (i.e., the value of zi ∧ x j (i) is zix j (i) and the value of
zi ∧ zk is zizk ). As a result, the joint probability distribution ofV

from Equation 2 becomes:

Pr (V = v) = Pr (Z,X) =
1

C
exp

( n∑
i=1

m∑
j=1

βjzix j (i)+η
n∑
i=1

∑
k ∈Ni

zizk

)
(3)

Based on Equation 3, the conditional probability distribution of

any prediction variable zi at location li given the predictor variables
X(i) at li and its neighbouring prediction variables ZNi can be

estimated as:

Pr (zi = 1 | X(i),ZNi ) =
1

C
exp

( m∑
j=1

βjzix j (i) + η
∑
k ∈Ni

zizk

)
(4)

By substituting with possible values of zi (i.e., either 1 or 0)

in Equation 4, we can obtain the ratio between the conditional

probabilities of zi = 1 and zi = 0 as follows:

Pr (zi = 1 | X(i),ZNi )

Pr (zi = 0 | X(i),ZNi )
=

exp

(
1 ×

∑m
j=1 βjx j (i) + 1 × η

∑
k ∈Ni zk

)
exp

(
0 ×

∑m
j=1 βjx j (i) + 0 × η

∑
k ∈Ni zk

)
=

exp

( ∑m
j=1 βjx j (i) + η

∑
k ∈Ni zk

)
exp

(
0

)
= exp

( m∑
j=1

βjx j (i) + η
∑
k ∈Ni

zk

)
(5)

By taking the log value of both LHS and RHS of Equation 5, we

obtain the autologistic model defined in Equation 1. This means

that the assumed model at the beginning, which can be represented

with MLN, is equivalent to the basic autologistic model.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Autologistic Regression
	2.2 Markov Logic Networks

	3 Autologistic Regression via Markov Logic Network
	3.1 MLN-based Autologistic Model
	3.2 Generalized Autologistic Models

	4 Overview of TurboReg
	5 MLN Transformer
	6 Factor Graph Constructor
	6.1 Neighbourhood Index Layer
	6.2 Graph Index Layer

	7 Weights Learner
	8 Experiments
	8.1 Experimental Setup
	8.2 Effect of Grid Size
	8.3 Effect of Learning Epochs
	8.4 Effect of Neighbourhood Degree
	8.5 Effect of Number of Threads and Hybrid Neighbourhood Degrees

	9 related work
	10 Conclusions
	References
	A Theoretical Foundation of TurboReg using MLN

