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Autologistic regression is one of the most popular statistical tools to predict spatial phenomena in several

applications including epidemic diseases detection, species occurrence prediction, earth observation and

business management. In general, autologistic regression divides the space into a two-dimensional grid, where

the prediction is performed at each cell in the grid. The prediction at any location is based on a set of predictors

(i.e., features) at this location and predictions from neighboring locations. In this paper, we address the problem

of building efficient autologistic models with multinomial (i.e., categorical) prediction and predictor variables,

where the categories represented by these variables are unordered. Unfortunately, existing methods to build

autologistic models are designed for binary variables in addition to being computationally expensive (i.e., do

not scale up for large-scale grid data such as fine-grained satellite images). Therefore, we introduce RegRocket;
a scalable framework to build multinomial autologistic models for predicting large-scale spatial phenomena.

RegRocket considers both the accuracy and efficiency aspects when learning the regression model parameters.

To this end, RegRocket is built on top of Markov Logic Network (MLN), a scalable statistical learning framework,

where its internals and data structures are optimized to process spatial data. RegRocket provides an equivalent

representation of the multinomial prediction and predictor variables using MLN where the dependencies

between these variables are transformed into first-order logic predicates. Then, RegRocket employs an efficient

framework that learns the model parameters from the MLN representation in a distributed manner. Extensive

experimental results based on two large real datasets show that RegRocket can build multinomial autologistic

models, in minutes, for 1 million grid cells with 0.85 average F1-score.
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1 INTRODUCTION
Autologistic regression [3, 6, 26] is an important statistical tool for predicting and analysing spatial

phenomena in many scientific domains (e.g., Earth observations [28, 59], Epidemiology [13, 32, 47],

Ecology [1, 44], Agriculture [19, 23], Archeology [24] and Management [5, 34]). Unlike standard

logistic regression [2, 8] that assumes predictions of spatial phenomena over neighbouring locations

are completely independent of each other, autologistic regression takes into account the spatial

dependence between neighbouring locations while building and running the prediction model

(i.e., neighbouring locations tend to systematically affect each other [53]). Typically, autologistic

regression divides the geographical space (e.g., the whole world) by a two-dimensional grid, where

each grid cell is represented with a variable indicating the prediction of the spatial phenomena in

that grid cell, and a set of predictor variables (i.e., features) that help predicting the value of this

prediction variable. Then, the prediction problem at any grid cell is formulated as: Given a set of

predictors defined over this cell along with a set of observed or predicted values at neighbouring

cells, estimate the value of the prediction variable at this cell. For example, ornithologists would use

autologistic regression to predict the existence of a certain bird species in a given location based

on two predictors such as the number of bird observers and the observing duration in this cell,

along with the predictions at neighbouring locations [50]. Meteorologists would need to predict

the hurricane strength at a certain area based on the wind direction at this area as a predictor and

the hurricane level at neighbouring areas. Epidemiologist would need to measure the infection

level of a disease (e.g., Ebola) in a certain country based on the preventive care level at this country

(i.e., predictor) and the infection levels of surrounding countries.

Myriad applications require the autologistic regression model to be built over large multinomial
(i.e., categorical) spatial data. Examples of these applications include multinomial brain [37] and

satellite images [51] analysis. In these applications, the prediction and/or predictor variables in

the regression model are multinomial, which means that the value of any variable comes from a

set of possible values (i.e., domain values). However, existing methods for autologistic regression

(e.g., see [4, 26, 33, 56]) face two main limitations. The first limitation is that these methods are

specifically designed for autologistic models with binary prediction and predictor variables (i.e.,

each variable takes either 0 or 1) only, and hence are not applicable for the multinomial case [58].

The second limitation is that these methods are prohibitively computationally expensive for large

grid data, e.g., fine-grained satellite images [36, 59], and large spatial epidemiology datasets [31].

For example, it could take about week to infer the model parameters using the training data of only

few gigabytes [26]. As a means of dealing with such scalability issues, existing techniques tend

to sacrifice their accuracy through two simplified strategies: (1) Use only a small sample of the

available training data, and (2) Only allow individual pairwise dependency between neighbouring

cells. For example, if a prediction cell variable C1 depends on two neighbouring cells C2 and C3,

then existing methods assume that C1 depends on each of them individually, and hence define two

pairwise dependency relations (C1, C2) and (C1, C3). Both approaches lead to significant inaccuracy

and invalidate the use of autologistic regression for predicting spatial phenomena of current

applications with large-scale training data sets.

In this paper, we introduce RegRocket; a scalable framework, which overcomes the above men-

tioned two limitations, for building autologistic models with multinomial prediction and predictor

variables. RegRocket does not need to sample training data sets. It can support the prediction over

grids of 1 million cells in few minutes. Moreover, RegRocket allows its users to define high degrees of
dependency relations among neighbours, which opens the opportunity for capturing more precise

spatial dependencies in regression. For example, for the case where a prediction cell variable C1

depends on two neighbouring cells C2 and C3, RegRocket is scalable enough to be able to define
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a ternary dependency relation (C1, C2, C3), which gives much higher accuracy than having two

independent binary relations.

RegRocket overcomes the first limitation by extending the standard multinomial logistic regres-

sion [12, 29, 30] to include spatial dependencies among prediction variables. We refer to this as

multinomial autologistic regression. To overcome the second limitation, RegRocket exploits Markov

Logic Networks (MLN) [11] (a scalable statistical learning framework) to learn the multinomial

autologistic regression parameters in an accurate and efficient manner. Then, RegRocket aims to pro-

vide an equivalent first-order logic [16] representation to dependency relations among neighbours

in autologistic models. This is necessary to accurately express the autologistic models using MLN.

RegRocket transforms each neighbouring dependency relation into a predicate with bitwise-AND

operation on all variables involved in this relation. For example, a ternary dependency relation

between neighbouring variables C1, C2 and C3 is transformed to C1 ∧C2 ∧C3. This simple logical

transformation allows non-expert users to express the dependency relations within autologistic

models in a simple way without needing to specify complex models in a tedious detail.

RegRocket proposes an efficient framework that learns the model parameters over MLN in a dis-

tributed manner. It employs a spatially-indexed learning graph structure, namely factor graph [57],

along with an efficient weights optimization technique based on gradient descent optimization [63].

RegRocket represents the MLN bitwise-AND predicates using the spatially-indexed factor graph.

Then, RegRocket runs multiple instances of learning algorithms in parallel, where each instance

handles the learning process over exactly one factor graph partition. At the end, the obtained results

from all learning instances are merged together to provide the final autologistic model parameters.

Using the proposed framework, RegRocket converges to the optimal model parameters of large

prediction grids (e.g., 1 million cells) in just few minutes.

RegRocket is the successor of TurboReg [42], from which it is distinguished by: (1) Providing a

new MLN representation along with its theoretical foundation for multinomial autologistic models,

unlike TurboReg that considers binary autologistic regression models only. The MLN representation

of RegRocket can be considered as a generalization of its counterpart in TurboReg. (2) Adapting the

MLN transformer, factor graph constructor, and model parameters learner modules of TurboReg to

efficiently implement the new MLN representation of the multinomial case. (3) Providing experi-

mental study of the different system settings in terms of running time, and prediction accuracy

while employing the MLN-based multinomial autologistic models.

We experimentally evaluate RegRocket using two real datasets of the daily distribution of bird

species [50], and the land cover distribution of Minnesota, USA [35, 54]. We compare the accuracy

and scalability of the built autologistic models over each dataset using the basic RegRocket and
two generalized variations of RegRocket, that consider higher neighbouring interactions between
predictions, with a state-of-the-art open-source autologistic model computational method, namely

ngspatial [25]. Our experiments show that RegRocket is scalable to large-scale autologistic models,

while achieving a high-level of accuracy in estimating the model parameters.

The rest of this paper is organized as follows: Section 2 gives a brief background of autologistic

models, both binary andmultinomial, and theMLN framework. Section 3 describes howmultinomial

autologistic regression is modeled using MLN. Section 4 gives an overview of the RegRocket system
architecture. Section 5 describes how the first-order logic predicates are generated for multinomial

autologistic models. Section 6 provides details about the spatially-indexed factor graph structure.

Section 7 illustrates the details of the weights learning phase. Section 8 provides the experimental

analysis of RegRocket. Section 9 covers the related work, while Section 10 concludes the paper.
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Fig. 1. An Example on Multinomial Autologistic Regression.

2 PRELIMINARIES
This section provides a brief discussion about the autologistic models (Section 2.1) and Markov

Logic Networks (MLN) (Section 2.2).

2.1 Autologistic Regression
Binary Models. Binary autologistic regression builds a regression model that predicts the value

of a binary random variable (i.e., prediction variable that takes either 0 or 1) at a certain location

based on a set of binary predictors (i.e., features that help in the prediction process) at the same

location and a set of observed predictions from variables at neighbouring locations (i.e., spatial

dependence). Formally, binary autologistic models assume a set of n binary prediction variables

Z = {z1, ..., zn } (i.e., zi ∈ {0, 1}) at n locations L = {l1, ..., ln }, and a set ofm predictor variables

X (i ) = {x1 (i ), ...,xm (i )} where the value of each predictor variable x j (i ) is a function of location

li (e.g., a predicator about the existence of water which could have a different value for each

location), and each location li has a set of neighbouring locations Ni . Given a specific location li ,
the conditional probability of prediction variable zi given the values of current predictors X and

the neighbouring prediction variablesZNi can be estimated as follows [3, 26, 42]:

log

Pr (zi = 1 | X (i ),ZNi )

Pr (zi = 0 | X (i ),ZNi )
=

m∑
j=1

βjx j (i ) + η
∑
k ∈Ni

zk (1)

where the weights β = {β1, ..., βm } and η form the model parameters θ = {β,η}. As shown in

Equation 1, for each prediction variable zi , there are two types of regression terms: predictor-based
terms {βjx j (i ) | j = 1, ..,m}, and neighbour-based terms {ηzk | k ∈ Ni }. Note that the values of θ
are shared among all locations L.

Multinomial Models. Binary autologistic models can be extended to the case of multinomial

(i.e., categorical) predictions and predictors. In this case, each prediction variable zi has r possible
outcomes Dzi = {λ1, λ2, ..., λr }, and each predictor variable x j (i ) has q possible domain values

Dx j (i ) = {t1, t2, ..., tq }. Since the variables are not binary, the model in Equation 1 is no longer

valid for the multinomial case. Our approach to obtain the appropriate model for a prediction

variable with r possible outcomes is to build r − 1 independent binary models, in which one

outcome is chosen as a pivot and then the other r − 1 outcomes are separately regressed against

the pivot outcome. Eventually, the probability of predicting the pivot outcome is calculated based

on these built r − 1 binary models (i.e., 1 −
∑

λ,p Pr (outcome is λ) where p is the pivot outcome).
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Such approach is already implemented in classical multinomial logistic regression [12, 29, 30], yet,

without considering the spatial dependence (i.e., neighbour-based regression terms).

In the generated binary models, each multinomial prediction variable zi will be represented with
r binary random variables {zi (λ) ∈ {0, 1} | λ ∈ Dzi }, where zi (λ) indicates whether the prediction
value at location li is λ or not. In addition, each multinomial predictor x j (i ) will be represented as a

set of (r − 1)q binary random variables {xλ,tj (i ) | λ ∈ Dzi − {p}, t ∈ Dx j (i ) }, where λ is a non-pivot

outcome to be predicted at location li and t is a possible domain value of x j (i ). The variable x
λ,t
j (i )

represents a binary predictor (i.e., {xλ,tj (i ) ∈ {0, 1}) in the autologistic regression model that is built

for the binary prediction variable zi (λ). Assuming the pivot outcome of prediction variable zi is λr ,
the r − 1 conditional probabilities corresponding to zi given the values of current predictors X and

the neighbouring predictionsZNi can be estimated as follows:




log

Pr (zi (λ1 )=1 |X (i ),ZNi )
Pr (zi (λr )=1 |X (i ),ZNi )

=
m∑
j=1

∑
t ∈Dxj (i )

βλ1,tj xλ1,tj (i ) +
∑

k ∈Ni

∑
s ∈Dzk

ηλ1,szk (s )

log

Pr (zi (λ2 )=1 |X (i ),ZNi )
Pr (zi (λr )=1 |X (i ),ZNi )

=
m∑
j=1

∑
t ∈Dxj (i )

βλ2,tj xλ2,tj (i ) +
∑

k ∈Ni

∑
s ∈Dzk

ηλ2,szk (s )

...

log

Pr (zi (λr−1 )=1 |X (i ),ZNi )
Pr (zi (λr )=1 |X (i ),ZNi )

=
m∑
j=1

∑
t ∈Dxj (i )

βλr−1,tj xλr−1,tj (i ) +
∑

k ∈Ni

∑
s ∈Dzk

ηλr−1,szk (s )

(2)

As shown in Equation 2, each binary predictor xλ,tj (i ) is associated with one weight βλ,tj . More-

over, in contrast to Equation 1 which has one weight η for the whole neighbour-based regression

terms, the multinomial autologistic model defines a weight ηλ,s for each possible pair of variables

(zi (λ), zk (s )), where zi (λ) and zk (s ) correspond to the predictions of a non-pivot outcome λ at loca-

tion li (i.e., λ ∈ Dzi − {p}) and any outcome s at each neighbouring location k ∈ Ni (i.e., s ∈ Dzk ).

The main reason for having multiple η weights is to capture more precise spatial dependencies

among neighbouring predictions compared to the one weight in traditional binary models. The

objective of our work is to build multinomial autologistic models that achieve both high prediction

accuracy and low running time by learning the values of model parameters θ = {β ,η}, where

β = {βλ1,t1
1
, ..., β

λr−1,tq
m } and η = {ηλ1,λ1 , ...,ηλr−1,λr }, from previous observations (i.e., training data)

of predictions and predictors at locations L, in a scalable and efficient manner. Note that the total

number of weights to be learned in β and η aremq(r − 1) and r (r − 1), respectively.
Assumptions. In general, prediction and predictor variables can be either binary, multinomial,

or continuous. However, we focus only on binary and multinomial variables. The extension to

continuous case is out of scope of this paper.

Example. Figure 1 shows a numerical example of multinomial autologistic regression. In this

example, we have a 4 x 4 grid (i.e., 16 cells), where each cell li has a prediction variable zi with three

possible outcomes (i.e., Dzi = {0, 1, 2}), and one binary predictor variable x1 (i ) (i.e., Dx1 (i ) = {0, 1}).
Assuming the prediction outcome 0 as pivot, each location i has 3 binary prediction variables

{zi (0), zi (1), zi (2)}, and 4 binary predictor variables {x1,0
1

(i ),x2,0
1

(i ),x1,1
1

(i ),x2,1
1

(i )}. As a result, we
have 4 predictor-based and 6 neighbour-based weights. These weights are trained by observations

from all locations except l14 which is unknown (i.e., needs to be predicted). The example also

shows the calculations to predict the value of z14 using the learned parameters. The probabilities of

the three possible outcomes of zi are first calculated, and then the outcome corresponding to the

highest probability is selected as the prediction value.
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Fig. 2. Translating First-order Logic Predicates into A Factor Graph in MLN.

2.2 Markov Logic Networks
Markov Logic Network (MLN) has recently emerged as a powerful framework to efficiently learn

parameters of data models with complex dependencies and distributions [7, 11, 39]. MLN combines

probabilistic graphical models (e.g., factor graphs [57]) with first-order logic [16] to perform

probabilistic learning based on logic constraints, where the logic handles model complexities and

the probability handles uncertainty. MLN has been successfully applied in a wide span of data

intensive applications including knowledge bases construction [48], machine learning models [9],

and genetic analysis [43]. The success stories in such applications motivate us to explore MLN in

computing the parameters of models with spatial dependencies such as autologistic regression.

2.2.1 Modeling with MLN. Any model can be represented with MLN, only if it has two main

properties: (1) the model can be represented as a set of p binary random variablesV = {v1, ...,vp }
(vi ∈ {0, 1}). (2) the dependencies between model variables V can be described with a set of

weighted constraints F = { f1, ..., fh } defined over them, where these weightsW = {w1, ...,wh }

are the model parameters that need to be learned. The constraints describe how the values of

variablesV correlate with each other. A model with these two properties can exploit MLN to learn

the weightsW that maximize the probability of satisfying the model constraints F .

Example. Assume a model of two variables vprof and vteach , where vprof denotes whether a

person is a professor or not, and vteach denotes whether a person teaches or not. We can define a

constraint that "if a person is a professor then she teaches, and vice versa". In this case, MLN learns

a weightw that maximizes the probability of vprof and vteach having the same value (i.e., either

vprof = 1 and vteach = 1 or vprof = 0 and vteach = 0).

2.2.2 First-order Logic. MLN employs first-order logic predicates [16] (e.g., conjunction, disjunction

and implication) to represent the model constraints. For example, the constraint defined over vprof
andvteach can be represented as a bitwise-ANDpredicatevprof ∧vteach . Efficient logic programming

frameworks were proposed to express and generate first-order logic predicates on a large-scale

such as DDlog [48] and XLog [46].

2.2.3 Factor Graph. To learn the values of weightsW associated with predicates (i.e., constraints),

MLN translates these predicates into an equivalent probabilistic graphical model, namely factor

graph [57], which has weightsW as the parameters of its joint probability distribution. By doing

that, the problem of learningweightsW is reduced into the problem of learning the joint distribution

of this factor graph. A factor graph G is a bipartite graph that represents each model variable

v ∈ V and constraint f ∈ F as a node, and there is an edge between any constraint node f and

each variable node v that appears in f .
Figure 2 shows an example of translating three bitwise-AND logical predicates (f1, f2, and f3)

defined over a model of four variables (v1, v2, v3 and v4) into a factor graph.

Probability Distribution. The full joint distribution of variablesV in a factor graph G can be

estimated in terms of the constraints (i.e., predicates) F and their weightsW with a log-linear

model [11] as follows:
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Fig. 3. MLN Representation of A Multinomial Autologistic Model (logical predicates and their factor graph).

Pr (V = v ) =
1

C
exp

( h∑
i=1

wi fi (v )
)

(3)

where C is a normalization constant, fi (v ) is the value of whether the i-th constraint is satisfied

or not, and wi is its weight. Scalable optimization techniques have been proposed to efficiently

learn the values of weightsW in factor graph, such as gradient descent optimization [27, 60, 63].

3 MULTINOMIAL AUTOLOGISTIC REGRESSION VIA MARKOV LOGIC NETWORK
In this section, we describe how MLN is exploited to efficiently solve the multinomial autologis-

tic regression problem. We start by discussing the MLN-based model for the basic multinomial

autologistic regression in Equation 2 (Section 3.1). Then, we extend this model in case of more

complicated multinomial autologistic regression scenarios (Section 3.2).

3.1 MLN-based Multinomial Autologistic Model
To represent a multinomial autologistic model using MLN, RegRocket extends the MLN-based

binary autologistic model in TurboReg [42] to support the multinomial case. TurboReg represents

all binary autologistic regression terms, whether predictor-based or neighbour-based, as a set of

weighted bitwise-AND logical predicates (i.e., weighted MLN constraints). In RegRocket, we follow
the same approach of mapping from regression terms to logical predicates, however, with two main

modifications. The first modification is to apply this mapping on each regression term defined

in the r − 1 binary regression models of the multinomial case (Equation 2). For each prediction

variable zi (λ) corresponding to a non-pivot possible outcome λ at location li , each predictor-based
regression term βλ,tj xλ,tj (i ) has an equivalent bitwise-AND predicate defined over zi (λ) and x

λ,t
j (i )

(i.e., zi (λ) ∧ xλ,tj (i )) with weight βλ,tj . Similarly, each neighbour-based regression term ηλ,szk (s )

has an equivalent bitwise-AND predicate defined over zi (λ) and zk (s ) with weight ηλ,s . Recall that
all prediction and predictor variables in Equation 2 are binary, and hence, it is valid to provide

equivalent logical predicates to them. The second modification is to define a constant predicate

of value 1 and weight 0 for any prediction variable zi (p) corresponding to a pivot outcome p at

location li . The theoretical foundation of the proposed MLN-based multinomial autologistic model
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is described in the Appendix A. Note that, using the proposed model, the autologistic regression

parameters θ = {β,η} are translated into a set of weightsW of MLN constraints (i.e., proposed

equivalent bitwise-AND predicates), and hence learning the autologistic model parameters θ
becomes equivalent to learning the values ofW in MLN (See section 2.2.3).

Example. Figure 3 shows an example of translating a multinomial autologistic regression model

into an equivalent MLN. This example defines a model with multinomial prediction of 3 possible

outcomes {0, 1, 2} (i.e., three binary prediction variables {zi (0), zi (1), zi (2)} at each location li )
where the pivot outcome is 0, and one multinomial predictor of 2 domain values {0, 1} (i.e., four

binary predictor variables {x1,0
1

(i ),x2,0
1

(i ),x1,1
1

(i ),x2,1
1

(i )} at each location li ). The model is built

for two neighbouring locations {l1, l2}. We first translate the autologistic model into a set of 16

bitwise-AND predicates and 2 constant predicates along with 4 predictor-based weights β1 =
{β1,0

1
, β2,0

1
, β1,1

1
, β2,1

1
} and 6 neighbour-based weights η = {η1,0,η1,1,η1,2,η2,0,η2,1,η2,2}. Then, these

predicates are translated into a factor graph which can be used to learn the weights β1 and η. Note
that duplicate predicates that come from neighbouring variables are removed to avoid redundancy

(e.g., the neighbouring variables z1 (2) and z2 (2) have two equivalent z1 (2) ∧ z2 (2) and z2 (2) ∧ z1 (2)
neighbour-based predicates, respectively, however, we keep only one of them).

3.2 Generalized Multinomial Autologistic Models
Some applications assume models with more generalized neighbour-based regression terms

{ηλ,sG (zk1 (s ), ..., zkd (s )) | k1, ...,kd ∈ Ni , s ∈ Dzi } (i.e., complex spatial dependence), where the

regression term has a function defined over neighbouring prediction variables G (zk1 (s ), ..., zkd (s )),
and not just their sum as in Equation 2 (e.g., Ecology [45] and Mineral Exploration [21]). Existing

methods can not compute autologistic models with generalized regression terms because of their

prohibitively expensive computations, such as high-order matrix multiplications [26]. In contrast,

the MLN-based multinomial autologistic model can be easily extended to find an equivalent combi-

nation of first-order logic predicates [16] for any generalized regression term, as long as the function

G (zk1 (s ), ..., zkd (s )) holds logical semantics. For example, if the prediction variable z1 (1) at location
l1 has a generalized regression function G (z2 (2), z3 (2)) over neighbours z2 (2) and z3 (2) which
constraints the value of z1 (1) to be 1 only if both values of z2 (2) and z3 (2) are 1 at the same time,

then RegRocket would translate this into an equivalent bitwise-AND predicate z1 (1) ∧ z2 (2) ∧ z3 (2).
As another example, if G (z2 (2), z3 (2)) constraints the value of z1 (1) to be 1 only if either z2 (2) or
z3 (2) is 1, then it can be translated into a predicate z1 (1) ∧ (z2 (2) ∨ z3 (2)) that has a combination

of bitwise-AND and bitwise-OR. Our experiments show that handling generalized regression terms

using the MLN-based model increases the learning accuracy while not affecting the scalability

performance (See Section 8).

4 OVERVIEW OF REGROCKET
Figure 4 depicts the system architecture of RegRocket. It includes three main modules, namely,MLN
Transformer, Factor Graph Constructor, and Weights Learner, described briefly as follows:

MLN Transformer. This module receives the autologistic regression model from a RegRocket user
and generates a set of bitwise-AND and constant predicates of an equivalent MLN. It employs

an efficient logic programming framework, called DDlog [48], to produce predicates in a scalable

manner. Details are in Section 5.

Factor Graph Constructor. This module prepares the input for theWeights Learner module by

building a spatially-indexed factor graph out of the generated predicates. The factor graph is

partitioned using a flat grid index, where each grid cell has a graph index for its factor graph part.

Details are in Section 6.
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Fig. 4. RegRocket System Architecture.

#Schema Declaration

z?(@key locId bigint, @key outcomeId bigint, value numeric).

x?(@key locId bigint, @key featureId bigint, @key inDomainId bigint, value numeric).

neighbour(locId1 bigint, outcomeId1 bigint, locId2 bigint, outcomeId2 bigint).

#Derivation Rules

z(locId, outcomeId) ^ x(locId, featureId, inDomainId):- z(locId).

z(locId1, outcomeId1) ^ z(locId2, outcomeId2) :- neighbour(locId1, outcomeId1, locId2, outcomeId2).

@weight(0)  1 :- z(locId, outcomeId), outcomeId = 0.

Fig. 5. Example of Using DDlog to Generate Bitwise-AND Predicates for Multinomial Autologistic Model.

Weights Learner. This is the main module in RegRocket which efficiently learns the weights that

are encoded in the spatially-indexed factor graphs. These weights represent the autologistic model

parameters. It takes the built factor graph along with learning configurations (e.g., number of

learning epochs) as input, and produces the final values of weights θ = {β ,η}. In this module,

RegRocket provides a scalable variation of gradient descent [63] technique, that is highly optimized

for learning the autologistic model parameters. Details are in Section 7.

5 MLN TRANSFORMER
The first step in RegRocket is to generate a set of equivalent logical predicates for the different

regression terms in the autologistic model. However, this step is challenging in two cases. The first

case is when the model has a large number (e.g., millions) of prediction variablesZ and/or predictor

variables X, which results in generating a large number of neighbour-based and predictor-based

predicates at the end. The number of prediction variables could explode in case of having large

2-dimensional grid (e.g., a 5000×5000 grid) and too many possible outcomes Dzi (e.g., 50 outcomes)

for each cell prediction. Similarly, there could be a large number of predictor variables due to a

large number of synthetic features, each with too many possible domain values Dx j (i ) . The second

case is when the model has very complicated generalized regression terms, which are translated

into predicates with a large number of combinations of first-order logic symbols (e.g., bitwise-AND,

bitwise-OR, and imply).

To remedy this challenge, RegRocket uses DDlog [48], a DBMS-based logic programming frame-

work, to generate equivalent predicates for any autologistic model in a scalable manner. DDlog

takes advantage of the scalability provided by DBMS when generating a large number and/or
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Fig. 6. Example of Spatially-indexed Factor Graph.

combinations of predicates. It provides users with a high-level declarative language to express

logical predicates using few template rules. These rules are then translated into SQL queries and

applied against the database relations of variables (e.g.,Z and X) to instantiate the actual set of

predicates. DDlog has been widely adopted in many applications due to its usability and efficiency

(e.g., knowledge bases [48] and data cleaning [40]).

Example. Figure 5 shows an example of using DDlog to express the bitwise-AND predicates of

the multinomial autologistic model in Figure 3. DDlog has two types of syntax; schema declaration
and derivation rules. Schema declaration defines the relational schema of variables that appear

in predicates. For example, prediction and predictor variables are stored in relations z? and x?,
respectively, where any row in each relation corresponds to one binary variable. In case of z?,
each row (i.e., variable) stores location ID, outcome ID and the to-be-predicted value of a binary

prediction variable in the attributes locId , outcomeId and value , respectively. Similarly, in case of

x?, each row stores location ID, feature ID, possible domain value ID, and the input value of a binary

predictor variable in attributes locId , f eatureId , inDomainId and value , respectively. Note that
variable relations are differentiated from normal relations with a question mark at the end of their

names. Derivation rules are templates to instantiate predicates. In this example, the first derivation

rule is a template for bitwise-AND predicates coming from predictor-based regression terms (i.e.,

f4, f5, f9, f10, f15, f16, f17 and f18 in Figure 3), where the body of rule (i.e., right side after symbol

":-") specifies that a predicate is defined over any z and x only if they have the same location id
(i.e., selection criteria). During execution, this rule is translated into a hash join between relations

z and x with selection predicate over id . Similarly, the second derivation rule is a template for

predicates corresponding to neighbour-based regression terms (i.e., f2, f3, f5, f6, f7, f8, f11, f12, and
f13 in Figure 3), where a predicate is defined for each individual pair of neighbouring predication

variables. Finally, the third derivation rule defines the constant predicates (i.e., predicates of value 1

and weight 0) over prediction variables of pivot outcome 0 (i.e., f1 and f14). Note that the first two
derivation rules are not associated with the @weight tag because the weights associated with their

predicates (i.e., β and η) are still unknown and will be learned later.
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6 FACTOR GRAPH CONSTRUCTOR
Figure 6 depicts the organization of a spatially-indexed factor graph for the predicates that are

generated in Figure 3. The index is composed of two main layers, namely, neighbourhood layer and

graph layer, described as follows:

6.1 Neighbourhood Index Layer
The neighbourhood index layer is basically a two-dimensional index on the given factor graph.

There is already a rich literature on two-dimensional index structures, classified into two categories:

Data-partitioning index structures (e.g., R-tree [20]) that partition the data over the index and

space-partitioning index structures (e.g., Quadtrees [14]) that partition the space. In RegRocket
we decided to go with the Grid Index [38] as an example for space-partitioning data structures

because it aligns with the nature of spatial phenomena that are predicted over grids. Having said

this, RegRocket can accommodate other two-dimensional index structures as a replacement of our

grid index. Each grid cell in the neighbourhood layer keeps a graph index for its factor graph part.

Figure 6 gives an example of a neighbourhood index layer as a 2-cells grid (i.e., C1 and C2), where

C1 contains the factor graph part corresponding to predicates in locations l1 and l2, and C2 holds

predicates in locations l3 and l4. RegRocket takes the grid resolution as input from the user.

6.2 Graph Index Layer
Each cell in the two-dimensional neighbourhood grid points to two indexes of variables and
predicates. Together, these two indexes form the factor graph part in this cell.

Variables Index. This index contains all predication and predictor variables that exist in the grid

cell. Each node in the index corresponds to one variable, and points to a list that has three types of

information (1) location as a first element in list, (2) value (i.e., 1 or 0) as a second element in the

list and (3) predicates that this variable appears in, which are stored as a set of pairs in the rest of

list. Each pair consists of a pointer to a predicate in the predicates index, and the weight associated

with this predicate. Figure 6 shows the details of variable z1 (0) in the variables index.

Predicates Index. This index contains all predicates that are defined over variables in this grid

cell. Each node in the index corresponds to one predicate and has a list of pointers to variables that

appear in this predicate. Figure 6 shows the details of predicate f18 in the predicates index. In the

case of predicates with variables in two different cells, we replicate these predicates in each cell.

7 WEIGHTS LEARNER
This is the most important module in RegRocket, which takes the spatially-indexed factor graph

along with learning configurations from the user and returns the final weights θ = {β ,η} of the
multinomial autologistic model.

Main Idea. A typical solution to efficiently learn the weightsW of any MLN model is to provide

an approximate log-likelihood function for the full joint distribution in Equation 3 as follows [27]:

log Pr (V = v ) =
h∑
i=1

wi fi (v ) − logC (4)

Equation 4 provides an objective function to optimize when learning the weightsW of the

model. As shown in [27], we can estimate the gradient of any weightwi as follows:

∂

∂wi
log Pr (V = v ) = fi (v ) − E[fi (v )] (5)
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Algorithm 1 Function LearnWeights (FactorGraphCellsC , LearningInstances S , LearningEpochs
E, StepSize α )

1: β ← Random, η← Random

2: e ← E
S /* Num. of Learning Epochs Per Instance*/

3: while e , 0 do

4: for all s ∈ {1, 2, ..., S } do in parallel

5: for all c ∈ C do in parallel

6: Vc ← Variables index in cell c
7: Pc ← Predicates index in cell c
8: for each vi ∈ Vc do

9: UpdateWeights (vi ,Vc , Pc , α ) (Algorithm 2)

10: end for

11: β ←
∑S
s=1 βs
S , η←

∑S
s=1 ηs
S

12: e − −
13: end while

14: return β and η

where E[fi (v )] is the expected value of whether the i-th constraint (i.e., predicate) is satisfied

or not. Equation 5 can direct how to incrementally converge to the weights that maximize the

satisfaction of the MLN model. For example, by applying Equation 5 on the training data, if the

gradient value of weightwi is positive, then the current assignment of variables in fi (v ) increases
the satisfaction of the MLN model, and hence the corresponding weight wi should be rewarded

(i.e., should be increased), otherwise it should be punished (i.e., should be decreased). However,

estimating the value of E[fi (v )] is known to be computationally-expensive in MLN models and

requires approximate inference algorithms [27, 49].

As a result, instead of contrasting the satisfied value of the i-th predicate fi (v ) against its
expectation value E[fi (v )] (Equation 5), RegRocket contrasts the estimated prediction value of the

autologistic model (Equation 2) where this predicate belongs to against the corresponding observed

prediction from the training data. This approximation has been shown in a recent MLN-based

application [48] to converge to the weights that maximize the satisfaction of the MLN model as

long as there is no predicate whose observed value is unknown in the training data, which is

the case of our regression models. In addition, this approximation is efficient-to-compute as the

prediction is estimated by a direct substitution in Equation 2 (i.e., no need for approximate inference

algorithms). As an example, to estimate the gradient value of the weight βλ,tj of the predicate

zi (λ) ∧ x
λ,t
j (i ), RegRocket uses the following two items: (1) the estimated prediction value ẑi (λv )

based on the current value of xλ,tj (i ), and (2) the observed value of zi (λv ) from the training data. If

the estimated prediction ẑi (λv ) is similar to the observed prediction zi (λv ), then the weight βλ,tj
should be rewarded, otherwise it should be punished. To that end, we adapt a variation of the

gradient descent optimization [63] that punishes and rewards weights using the proposed gradient

approximation. The details of algorithms that implement this idea are described below.

LearnWeightsAlgorithm.Algorithm 1 depicts the pseudo code for our scalable weights learner

that takes the following four inputs: the spatially-partitioned factor graphC , the number of learning

instances S that can run in parallel, the number of learning iterations E needed to converge to

the final values of weights, and the step size α which is a specific parameter for the optimization

algorithm 2 that will be described later. The algorithm keeps track of the current best values of
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Algorithm2 FunctionUpdateWeights (Variablev , VariablesIndexV , PredicatesIndexP, StepSize

α )

1: if v is not a prediction variable for a pivot outcome, and belongs to the training data then

2: li ←V[v].location, д← 1 /* Gradient Value */

3: ẑi (λv ) ← Prediction of outcome λv at li using β and η (Equation 2)

4: if V[v].value , ẑi (λv ) then
5: д← -1

6: end if

7: if v is any predictor variable xλv ,tvj (i ) ∈ X (i ) then

8: βλv ,tvj ← βλv ,tvj + α д /* Gradient Descent on βλv ,tvj */

9: else

10: for each βλv ,tvj ∈ β do

11: βλv ,tvj ← βλv ,tvj + α д /* Gradient Descent on βλv ,tvj */

12: end for

13: end if

14: if v is prediction variable zi (λv ) then
15: for each p ∈ P[v] do
16: if p is a neighbour-based predicate then

17: ẑk (sp ) ← Prediction of outcome sp at neighbour lk in p using β and η
18: if V[vk ].value , ẑk (sp ) then
19: д← -1

20: else

21: д← 1

22: end if

23: ηλv ,sp ← ηλv ,sp + α д /* Gradient Descent on ηλv ,sp */

24: end if

25: end for

26: end if

27: end if

weights through variables: β and η, initialized by random values. The algorithm then starts by

computing the number of learning epochs that can be handled per each learning instance and stores

it in a variable e . Note that e represents the actual number of learning epochs that run sequentially

because different learning instances execute in parallel. Each of these learning instances then starts

to process one learning epoch in parallel (i.e., S learning epochs are running simultaneously). In

such learning epoch, we learn an optimal instance of weights βs and ηs , where these values are
incrementally learned from variables in the factor graph using UpdateWeights function (Line 9

in Algorithm 1)(details of this function are described in Algorithm 2). To reduce the learning

latency, we process the variables from different factor graph partitions in parallel (Lines 5 to 10 in

Algorithm 1). After all learning instances finish their current learning epoch, we set the values of β
and η with the average of the obtained weights from these instances (Line 11 in Algorithm 1) and

then proceed to another learning epoch with the new weights. We repeat this process e times and

then return the final values of weights.

UpdateWeights Algorithm. Algorithm 2 gives the pseudo code for our weights optimizer that

applies the gradient descent optimization [63] technique to incrementally update the values of

weights given a certain variable v (either non-pivot prediction or predictor) from the training data.
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Assume the outcome that appears in v is λv . Similarly, in case v is a predictor variable, assume

the possible domain value in v is tv . The main idea is to punish or reward current weights based

on their performance in correctly estimating the prediction value zi (λv ) at location li where the
variable v belongs to.

The algorithm takes the following inputs: a variable v that belongs to the training data, the

variablesV and predicates P indexes in the grid cell containingv (i.e., graph index), and a step size

α that controls the amount of punishing/rewarding during the optimization process. The algorithm

keeps track of the current status of whether weights need to be punished or rewarded through a

variable д, where it takes either 1 in case of rewarding or −1 in case of punishing, and is initialized

by 1. The algorithm starts by estimating the prediction ẑi (λv ) at location li that containsv based on

the current values of β and η using Equation 2. If the estimation ẑi (λv ) never matches the observed

prediction value from the training data, then we set the status д to −1 (i.e., the associated weight

with current variable v needs to be punished), otherwise the status remains rewarding. In case

v is a predictor variable xλv ,tvj (i ), we only update its associated weight βλv ,tvj by evaluating the

gradient descent equation using the current values of д and α (Line 8 in Algorithm 2) and jump to

the end of algorithm. In case v is the prediction variable zi (λv ) itself, we apply the gradient descent
optimization on all weights β associated with its predictors (Lines 10 to 12 in Algorithm 2), and on

all weights η associated with the neighbouring predicates (Lines 15 to 25 in Algorithm 2) as well.

Complexity. The complexity of the two aforementioned algorithms can be estimated as

O ( ES
(n2r 2+nrmq (r−1))

C ) where nr is the number of prediction variables, mq(r − 1) is the number

of predictor variables,C is the number of factor graph partitions, E is the number of learning epochs

and S is the number of learning instances. This complexity can be further approximated to be

O ( ES
(n2r 2 )
C ). Note that we assume having SC working threads to process C factor graph partitions

in each of the S learning instances in parallel.

8 EXPERIMENTS
In this section, we experimentally evaluate the accuracy and scalability of RegRocket in build-

ing multinomial autologistic models (i.e., learning their weights). To the best of our knowledge,

RegRocket is the first end-to-end system that supports multinomial autologistic regression (see

Section 9). As a result, we compare the performance of RegRocket with multinomial models built on

top of a state-of-the-art binary autologistic regression package, namely ngspatial [25]. Specifically,

we compare our performance with multinomial models built on top of the most accurate algorithm

in ngspatial that employs Bayesian inference using Markov Chain Monte Carlo (MCMC) [26]. In

addition, we extensively investigate the performance of different variations of RegRocket under
different grid size (Section 8.2), learning epoch (Section 8.3), optimization (Section 8.4), factor graph

partitioning (Section 8.5) and parallelism (Sections 8.6) configurations.

8.1 Experimental Setup
8.1.1 Datasets. All experiments in this section are based on the following two grid datasets:

• MNLandCover dataset, which represents the land cover distribution in Minnesota state

and is compiled from the USGS National Land Cover [54] and Multi-Resolution Land Cover

Consortium [35] data repositories. Figure 7(a) depicts the land cover distribution inMinnesota,

where each grid cell is either crops (yellow color), forest (green color) or others (blue color).

Thus, we generate a multinomial (i.e., categorical) prediction variable at each grid cell, where

each variable takes one of these three possible values. As shown in a recent study [52], the

land cover prediction is influenced by three factors; the elevation and slope of the ground as

well as the distance to nearby roads. Based on this study, we also generate three multinomial
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(a) MNLandCover Dataset (b) Ebird Dataset

Fig. 7. Datasets Used in Experiments.

predictors corresponding to these factors based on the elevation [10] and transportation [55]

datasets of Minnesota at each grid cell. Each predictor takes one value out of 11 possible

values. We generate six versions of this dataset with different grid sizes, ranging from 1000

to 1 million cells, to be used during most of our experiments.

• Ebird dataset [50], which is a real dataset of the daily distribution of a certain bird species,

namely Barn Swallow, over North America. Each grid cell holds a predication of the bird

existence in the cell or not (i.e., binary prediction). Figure 7(b) shows the Ebird data distri-

bution, where blue dots refer to cells with bird existence. We generate six versions of this

dataset with different grid sizes, ranging from 250 to 84000 cells, to be used during most of

our experiments. This dataset has three multinomial predictors at each grid cell including

bird observers, observing duration, and the spatial area covered by observers. Each predictor

takes one value out of 3 possible values.

8.1.2 Parameters. Unless otherwise mentioned, Table 1 shows the settings of both MNLandCover

and Ebird datasets. We select the 250k and 84k variations of MNLandCover and Ebird, receptively,

to be used by default. In each dataset, we divide the cells in each grid into training and testing sets,

where we randomly select 20% of cells for testing and keep the rest for training. All training and

testing cells have ground truth predictions (i.e., no missing values). During the testing phase, we

use the following three inputs to perform the prediction at any testing cell: (1) the learned model

parameters, (2) the values of the predictors at this cell, and (3) the ground truth predictions at the

neighbours of this cell. Table 2 also shows the default learning configurations that are used with

RegRocket. In most of the experiments, we run three variations of our system: the basic RegRocket
that has pairwise neighbourhood relationships (i.e., neighbourhood degree of 1), and other two

generalized variations with 4-ary and 8-ary neighbourhood relationships (i.e., neighbourhood

degrees of 4 and 8), referred to as RegRocket-4 and RegRocket-8, respectively (See Section 3.2).

In RegRocket-4, each predication has a bitwise-AND predicate over the vertical and horizontal

neighbours surrounding it (i.e., neighbours that share edges with this location only). Similarly,

in RegRocket-8, each predication has a bitwise-AND predicate over the whole 8 neighbours (i.e.,

neighbours that share points with this location). Note that the neighbourhood relationships are

pre-specified and fixed during both the training and testing phases. Table 3 shows the total number
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Parameter MNLandCover

Dataset

Ebird Dataset

Grid Training Size 200000 cells 67200 cells

Grid Testing Size 50000 cells 16800 cells

Number of Predictors 3 3

Number of Possible Predictor Values 11 3

Number of Possible Prediction Values 3 2

Table 1. Default Dataset-specific Parameters.

Parameter Default Value

Learning Epochs E 1000

Neighbourhood Degree D 1, 4, 8

Step Size α 0.001

Number of Threads 7

Factor Graph Partitions C 200

Table 2. Default Learning-specific Parameters.

Grid Size RegRocket RegRocket-4 RegRocket-8
1k 70k 66.8k 66.7k
4k 280k 267.7k 267.4k
15k 1.05m 1m 998.5k
60k 4.2m 4m 3.9m
250k 17.5m 16.7m 16.5m
1m 70m 66.9m 66.7m

Grid Size RegRocket RegRocket-4 RegRocket-8
250 3.2k 2.4k 2.3k
1k 13k 9.8k 9.7k
3.5k 45.5k 34.7k 34.5k
5k 65k 49.7k 49.4k
21k 273k 209k 208.7k
84k 1.09m 838.8k 837.6k

Table 3. Number of Predicates for the MNLandCover (Left) and Ebird (Right) datasets.

of predicates that are generated for both datasets when using the basic RegRocket, RegRocket-4 and
RegRocket-8 during our experiments.

8.1.3 Environment. We run all experiments on a single machine with Ubuntu Linux 14.04, 8

quad-core 3.00 GHz processors, 64GB RAM, and 4TB hard disk.

8.1.4 Metrics. We use the total running time of learning weights as a scalability evaluation metric.

To measure the model accuracy, we use the following three metrics to evaluate the prediction

quality of each outcome λ (i.e., category):

• Precision (Prec.): the number of correctly predicted cells with the outcome λ over the total

number of predicted cells with the outcome λ.
• Recall (Rec.): the number of correctly predicted cells with the outcome λ over the total

number of testing cells that are actually labelled with the outcome λ from the ground truth.

• F1-score (F1): the harmonic mean of precision and recall for the outcome λ as 2× (Prec .×Rec .)
Prec .+Rec . .

To handle the multinomial case, we calculate these three metrics for each outcome, and then

report the average of each metric over the total number of outcomes.

8.2 Effect of Grid Size
In this section, we compare the performance, both accuracy and scalability, of basic RegRocket
and two generalized variations RegRocket-8 and RegRocket-4 with ngspatial, while scaling up the
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Grid

Size

Metric ngspatial RegRocket RegRocket-
4

RegRocket-
8

Prec. 0.498 0.746 0.872 0.731

1k Rec. 0.491 0.757 0.837 0.763

F1 0.476 0.653 0.708 0.683

Prec. 0.667 0.803 0.808 0.933

4k Rec. 0.601 0.834 0.856 0.871

F1 0.606 0.742 0.704 0.782

Prec. 0.671 0.804 0.906 0.962

15k Rec. 0.741 0.832 0.898 0.903

F1 0.635 0.721 0.841 0.834

Prec. N/A 0.822 0.913 0.976

60k Rec. N/A 0.821 0.919 0.919

F1 N/A 0.678 0.736 0.798

Prec. N/A 0.864 0.932 0.967

250k Rec. N/A 0.893 0.912 0.915

F1 N/A 0.839 0.781 0.806

Prec. N/A 0.878 0.929 0.961

1m Rec. N/A 0.908 0.931 0.895

F1 N/A 0.859 0.868 0.873

Grid

Size

Metric ngspatial RegRocket RegRocket-
4

RegRocket-
8

Prec. 0.551 0.846 0.847 0.858

250 Rec. 0.951 0.966 0.976 0.985

F1 0.698 0.902 0.907 0.917

Prec. 0.503 0.801 0.876 0.883

1k Rec. 0.981 0.986 0.965 0.961

F1 0.665 0.884 0.918 0.921

Prec. 0.477 0.865 0.916 0.901

3.5k Rec. 0.977 0.991 0.992 0.985

F1 0.641 0.924 0.952 0.941

Prec. N/A 0.885 0.875 0.912

5k Rec. N/A 0.984 0.986 0.984

F1 N/A 0.932 0.927 0.947

Prec. N/A 0.864 0.866 0.895

21k Rec. N/A 0.984 0.991 0.991

F1 N/A 0.921 0.924 0.941

Prec. N/A 0.889 0.929 0.919

84k Rec. N/A 0.991 0.993 0.991

F1 N/A 0.937 0.956 0.954

Table 4. Effect of Grid Size on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

prediction grid size. In each experiment, either accuracy or scalability, we report the average of 5

different runs (we follow the same approach in all the experiments in the paper).

Table 4 shows the precision, recall and F1-score values for each algorithm while scaling the grid

size from 1k to 1 million cells in case of MNLandCover dataset, and from 250 to 84k cells in case of

Ebird one. In all grid sizes, RegRocket and its variants RegRocket-8 and RegRocket-4 were able to
significantly achieve better precision, recall and F1-score results than ngspatial. Specifically, in both

datasets, RegRocket variants have an average precision of 0.87, recall of 0.92, and F1-score of 0.85,

while ngspatial has an average precision of 0.56, recall of 0.79, and F1-score of 0.62. This indicates

the efficiency of RegRocket in representing multinomial autologistic regression models. Note that

the ngspatial results are incomplete after a grid size of 15k cells in case of the MNLandCover

dataset, and 3.5k cells in case of the Ebird one, because of a failure in satisfying the memory

requirements needed for its internal computations. We can also observe that the F1-score achieved

by any RegRocket variation in both datasets is at least 0.65, which happens in the MNLandCover

dataset with 1k cells, and can reach up to 0.95 at some cases. In general, the accuracy for small

datasets tend to be lower than large ones due to the small number of grid cells used to train the

model. As we can see from the table, the basic RegRocket has at maximum 20% lower F1-score

than both RegRocket-4 and RegRocket-8. The reason for that is the basic RegRocket captures less
accurate neighbourhood dependencies than both of them. Note that RegRocket-4 and RegRocket-8
have very close accuracy results in some cases. This happens when the significant information

between neighbourhoods with degrees 8 and 4 is very little, which makes the accuracy in the two

cases are pretty similar.

Figures 8(a) and 8(b) depict the running time performance of each algorithm while using the

same grid sizes in Table 4. We can observe that the three RegRocket variants and ngspatial have

an average running time of 14 minutes and 8 hours, respectively. This means that RegRocket is at
least 34 times faster than ngspatial. The poor performance of ngspatial comes from two reasons:

(1) although ngspatial relies on parallel processing in its sampling, prior estimation and parameters

optimization steps, it runs a centralized approximate Bayesian inference algorithm [26]. In contrast,

RegRocket is a fully distributed framework. (2) ngspatial requires estimating a prior distribution for

each predictor variable, and hence it suffers from a huge latency before starting the actual learning
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Fig. 8. Effect of Grid Size on Scalability.

Num. of

Epochs

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.815 0.883 0.906

100 Rec. 0.845 0.864 0.854

F1 0.772 0.732 0.715

Prec. 0.864 0.932 0.967

1000 Rec. 0.893 0.912 0.915

F1 0.839 0.781 0.806

Prec. 0.881 0.931 0.966

10k Rec. 0.866 0.909 0.915

F1 0.826 0.785 0.795

Num. of

Epochs

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.849 0.899 0.909

100 Rec. 0.845 0.835 0.825

F1 0.847 0.866 0.865

Prec. 0.889 0.929 0.919

1000 Rec. 0.991 0.993 0.991

F1 0.937 0.961 0.954

Prec. 0.909 0.919 0.919

10k Rec. 0.925 0.935 0.995

F1 0.917 0.927 0.955

Table 5. Effect of Learning Epochs on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

process. Note that the ngspatial curve is incomplete for grids with sizes more than 15k cells in case

of the MNLandCover dataset, and 3.5k cells in case of the Ebird one as in Table 4. We also find

that in case of datasets with large grids (e.g., 1 million cells in the MNLandCover dataset), both

RegRocket-4 and RegRocket-8 achieve lower latency overhead than basic RegRocket. For example,

at 1 million case, RegRocket-4 and RegRocket-8 variations are two times faster on average. This is

because increasing the neighbourhood degree leads to producing less number of predicates (See

Table 3), and hence less number of factor graph nodes to process, which makes the weights learning

process faster. In this experiment, the performance of the three RegRocket variations are almost

similar in case of small grid sizes (i.e., the average accuracy difference between the three variations

is less than 20 seconds). However, the difference becomes significant in the case of large grid sizes

(average of 600 seconds difference for grid size of 1 million cells). This shows that RegRocket is
efficient when scaling up the grid size regardless of the neighbourhood degree. Note that both

figures 8(a) and 8(b) follow a log-scale.

8.3 Effect of Learning Epochs E
In this section, we evaluate the performance, both accuracy and scalability, of basic RegRocket,
RegRocket-4 and RegRocket-8, while having three different values of learning epochs. In the following
experiments, we fix the grid size in both datasets to the default values.

Table 5 shows the values of accuracy metrics for the three variations of RegRocket while changing
the number of epochs from 100 to 10k. The results show an interesting observation that all variations
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Fig. 9. Effect of Learning Epochs on Scalability.

Step

Size

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.829 0.921 0.966

0.0001 Rec. 0.816 0.789 0.915

F1 0.782 0.825 0.875

Prec. 0.864 0.932 0.967

0.001 Rec. 0.893 0.912 0.915

F1 0.839 0.781 0.806

Prec. 0.819 0.871 0.926

0.01 Rec. 0.806 0.838 0.875

F1 0.756 0.745 0.795

Prec. 0.779 0.861 0.916

0.1 Rec. 0.766 0.828 0.865

F1 0.676 0.745 0.785

Step

Size

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.914 0.909 0.929

0.0001 Rec. 0.993 0.998 0.995

F1 0.952 0.951 0.961

Prec. 0.889 0.929 0.919

0.001 Rec. 0.991 0.993 0.991

F1 0.937 0.956 0.954

Prec. 0.879 0.909 0.899

0.01 Rec. 0.985 0.985 0.985

F1 0.929 0.945 0.941

Prec. 0.779 0.884 0.879

0.1 Rec. 0.985 0.895 0.895

F1 0.871 0.889 0.887

Table 6. Effect of Optimization Step Size on Accuracy for the MNLandCover (Left) and Ebird (Right) datasets.

of RegRocket can rapidly converge to their optimal values of weights (i.e., number of learning epochs

1000 only). The rapid convergence happens because weights are shared among all locations which

makes their values updated multiple times using the gradient descent optimization in each epoch. As

a result, RegRocket just needs a small number of epochs for weights convergence. In general, basic

RegRocket needed a higher number of epochs (i.e., 10k), compared to RegRocket-4 and RegRocket-8,
to achieve higher accuracy. This matches our performance hint that generalized variations such as

RegRocket-4 and RegRocket-8 could be more efficient than the basic RegRocket.
Figures 9(a) and 9(b) show the running time for the different variations given the same setup

in Table 5. In general, RegRocket with all variations is extremely efficient because of the parallel

processing of learning epochs in RegRocket. However, we observe that RegRocket-8 significantly
outperforms RegRocket-4 and RegRocket. It is at least 40% and 25% faster than both of them in

the MNLandCover and Ebird datasets, respectively. Note that Figure 9(a) follows a log-scale, but

Figure 9(b) is not.

8.4 Effect of Optimization Step Size α
In this section, we evaluate the performance, both accuracy and scalability, of the different variations

of RegRocket while varying the value of the step size α that is used during the execution of gradient

decent optimization (See Section 7). We use the same datasets used in the previous experiments.
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Fig. 10. Effect of Optimization Step Size on Scalability.

Num. of

Partitions

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.945 0.962 0.971

50 Rec. 0.894 0.931 0.912

F1 0.852 0.877 0.914

Prec. 0.913 0.954 0.961

100 Rec. 0.891 0.923 0.931

F1 0.843 0.812 0.861

Prec. 0.864 0.932 0.967

200 Rec. 0.893 0.912 0.915

F1 0.839 0.781 0.806

Prec. 0.782 0.812 0.815

300 Rec. 0.734 0.831 0.821

F1 0.689 0.701 0.712

Num. of

Partitions

Metric RegRocket RegRocket-4 RegRocket-8

Prec. 0.967 0.944 0.968

50 Rec. 0.992 0.991 0.982

F1 0.979 0.967 0.975

Prec. 0.923 0.941 0.937

100 Rec. 0.971 0.981 0.983

F1 0.946 0.961 0.959

Prec. 0.889 0.929 0.919

200 Rec. 0.991 0.993 0.991

F1 0.937 0.959 0.953

Prec. 0.674 0.789 0.792

300 Rec. 0.782 0.712 0.812

F1 0.724 0.748 0.802

Table 7. Effect of Number of Factor Graph Partitions on Accuracy for the MNLandCover (Left) and Ebird
(Right) datasets.

Table 6 depicts the effect of increasing the value of step size from 0.0001 to 0.1. In general, the

accuracy of all RegRocket variations decreases by increasing the step size in both datasets. We also

observe that the highest prediction accuracy tends to saturate in most cases at value 0.001. The

main reason behind this is that large step sizes lead to large updates while optimizing the weights

and hence they cannot smoothly converge to the optimal values. We conclude that the step size

should be kept relatively small on average in RegRocket. However, this comes with higher latency

as in Figures 10(a) and 10(b) that show the corresponding running times. For example, decreasing

the step size from 0.01 to 0.001 in the MNLandCover dataset incurs 26% additional latency overhead

while running RegRocket-4.

8.5 Effect of Number of Factor Graph Partitions C
In this section, we evaluate the performance, both accuracy and scalability, of the different variations

of RegRocket while varying the number of factor graph partitions C (See Section 6.1) from 50 to

300. We use the same datasets used in the previous experiments with the default configurations.

Table 7 shows the effect of increasing the number of factor graph partitions on the precision, recall

and F1-score values. We observe that the F1-score values decrease when increasing the number of

partitions because the number of predicates that are replicated among partitions increases. This
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Fig. 11. Effect of Number of Factor Graph Partitions on Scalability.

 100

 200

 300

 400

 500

 600

 700

 800

1 2 3 4 5 6 7 8

T
im

e
 i

n
 S

e
c

.

Number of Threads

RegRocket
RegRocket−4
RegRocket−8

(a) MNLandCover Dataset

 20
 40

 80

 120

 160

 200

 240

1 2 3 4 5 6 7 8

T
im

e
 i

n
 S

e
c

.

Number of Threads

RegRocket
RegRocket−4
RegRocket−8

(b) Ebird Dataset

Fig. 12. Effect of Number of Threads on Scalability.

results in more iterations to update the weights as in shown in Algorithm 2 (Lines 15 to 25), which

makes the weights suffer from an over-fitting issue, and hence the accuracy decreases. For example,

in both datasets, when increasing the number of partitions from 200 to 300, the F1-scores in case of

RegRocket, RegRocket-8 and RegRocket-4 decrease by 17%, 10% and 11%, respectively, on average.

Figures 11(a) and 11(b) depict the running time for the different variations of RegRocket given
the same setup in Table 7. Increasing the number of partitions leads to more parallelism, and

hence the running time starts to decrease. However, increasing the number of partitions after a

certain threshold (e.g., 200) makes the running time overhead to handle the predicates replication

significant, and hence the whole running time slightly increases again. For example, in both datasets,

the average F1-score decrease is 30% in all variations when changing the number of partitions

from 100 to 200. After that, the F1-score starts to increase due to the replication overhead. In our

experiments, we choose the number of partitions to be 200 in order to balance between the accuracy

and the running time.
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8.6 Effect of Number of Threads
Figures 12(a) and 12(b) show the effect of increasing the number of threads from 1 to 8 on the three

variations of RegRocket for both datasets. These threads are used to parallelize the work in the

weights learner module of RegRocket. As expected, the performance of all variations significantly

improves by increasing the number of threads. For example, the running time of the basic RegRocket
using 8 threads is at least 4 times faster than using 1 thread in the MNLandCover dataset. This

shows the ability of RegRocket to scale up with system threads. Note that the performance difference

between 7 and 8 threads is almost the same because all cores are exploited in both cases.

9 RELATEDWORK
In this section, we first provide an overview of existing theoretical models and computational

methods of autologistic regression. Then, we briefly mention other related spatial regression models.

Autologistic Theoretical Models. There are two main theoretical models of autologistic regres-

sion: (1) Traditional model [3] simply estimates the logistic function of the predication probability

at any location as a linear combination of predictors at this location and the predictions of its neigh-

bours. However, this model incurs prediction biasing in case of sparse training data. (2) Centered
model [6] is similar to the traditional model, however, the model parameters are normalized to

avoid the biased cases. This adds more complexity when learning the model parameters. Other

than TurboReg [42], the predecessor of RegRocket, all existing implementations of both traditional

and centered autologistic models provide a trade-off between the running time complexity and

the accuracy of learning model parameters. In contrast, both RegRocket and TurboReg achieve the

performance efficiency while preserving the model accuracy at the same time.

Recent research has proposed an extension for spatio-temporal autologistic models [61, 62] (and

centered variants [15, 56]), which incorporates the temporal dependence between predictions at

the same location. However, this line of research is out of the scope of this paper.

Autologistic Computational Methods. A wide array of techniques that are capable of learning

the autologistic model parameters on a small scale (see [26, 58] for a comprehensive survey, and [25]

for open-source implementations). Learning the autologistic model parameters is much harder

than learning parameters of classical non-spatial regression models due to the spatial dependence

effect. Thus, the techniques are categorized into three main categories based on their methods of

approximation to the original parameters distributions: Pseudo likelihood estimation [4, 61](and

centered variants [26]), Monte Carlo likelihood estimation [17](and centered variants [26, 61]),

Bayesian inference estimation [5, 33] (and centered variants [25, 61]). TurboReg [42], conversely,

applies Markov Logic Networks (MLN) [11] to learn the autologistic regression parameters, yet, for

binary predication and predictor variables only. RegRocket, on the other hand, is the first framework

to support both multinomial prediction and predictor variables in the same autologistic model.

Other Spatial RegressionModels.Autologistic models belong to the class of non-Gaussian spatial

modelling [22], in which the spatial dependence between predictions is conditionally modelled

through direct neighbours. However, there are three other classes: (1) linear spatial models [22],

(2) spatial generalized linear models [18] and (3) Gaussian Markov random field models [41], that

encode the spatial dependence through a distance-based covariance matrix. This matrix defines

how much the prediction in one location is affected by predictions in all other locations based on

their relative distances. Another main difference is that these spatial regression classes are mainly

developed for prediction of continuous variables, which is out of the scope of this paper.
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10 CONCLUSIONS
This paper has presented RegRocket, a scalable framework for building multinomial autologistic

regression models to predict spatial categorical data. RegRocket focuses on the autologistic models

that consist of prediction and predictor variables with unordered categories. RegRocket provides
an efficient modeling for the multinomial autologistic regression problem using Markov Logic

Network (MLN), which is a scalable statistical learning framework. RegRocket employs first-order

logic predicates, a spatially-partitioned factor graph data structure, and an efficient gradient descent-

based optimization technique to learn the autologistic model parameters. Experimental analysis

using real data sets shows that RegRocket is efficient, scalable and provides accurate capturing for

the multinomial autologistic regression problem.
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A THEORETICAL FOUNDATION OF REGROCKET USING MLN
Theorem 1. Given an autologistic model defined over n locations L = {l1, ..., ln } with

• n multinomial prediction variables Z = {z1, ..., zn }, each has r possible outcomes Dzi =

{λ1, ..., λr }, and are represented with a set of nr binary variables {z1 (λ1), ..., zn (λr )},
• m weighted multinomial predictor variables X (i ) = {x1 (i ), ...,xm (i )} at each location i , each
has q possible domain values Dx j (i ) = {t1, ..., tq}, and are represented with a set ofmq(r − 1)

weighted binary variables {βλ1,1
1

xλ1,1
1

(i ), ..., β
λr−1,q
m x

λr−1,q
m (i )}, where λr is a pivot outcome of

any multinomial prediction zi , and
• r (r − 1) neighbouring weights η = {ηλ1,λ1 , ...,ηλr−1,λr }

there is an equivalent Markov Logic Network (MLN) to this autologistic model, if and only if:

• each predictor-based regression term βλ,tj xλ,tj (i ) at location li has an equivalent bitwise-AND

predicate zi (λ) ∧ x
λ,t
j (i ) with weight βλ,tj , where λ is not a pivot outcome (i.e., λ , λr ).

• each neighbour-based regression term ηλ,szk (s ) at location li has an equivalent bitwise-AND
predicate zi (λ) ∧ zk (s ) with weight ηλ,s , where λ is not a pivot outcome (i.e., λ , λr ).
• each prediction variable zi (λr ) at location li is associated with a constant predicate of value 1
and weight 0.

Proof. Based on the conditional probabilities of multinomial autologistic model in Equation 2, the

probability of predicting any possible non-pivot outcome λ (i.e., λ , λr ) at location li given the

predictor variables X (i ) at li and the neighbouring prediction variablesZNi can be estimated as:

Pr (zi (λ) = 1 | ϕi ) = Pr (zi (λr ) = 1 | ϕi ) exp
( m∑
j=1

∑
t ∈Dxj (i )

βλ,tj xλ,tj (i ) +
∑
k ∈Ni

∑
s ∈Dzk

ηλ,szk (s )
)

(6)
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where ϕi = {X (i ),ZNi }. As a result, the probability of predicting the pivot outcome λr at

location li can be calculated as follows:

Pr (zi (λr ) = 1 | ϕi ) = 1 −
∑

λ∈Dzi ,λ,λr

Pr (zi (λ) = 1 | ϕi )

= 1 −
∑

λ∈Dzi ,λ,λr

Pr (zi (λr ) = 1 | ϕi ) exp
( m∑
j=1

∑
t ∈Dxj (i )

βλ,tj xλ,tj (i ) +
∑
k ∈Ni

∑
s ∈Dzk

ηλ,szk (s )
)

=
1

1 +
∑

λ∈Dzi ,λ,λr
exp

( m∑
j=1

∑
t ∈Dxj (i )

βλ,tj xλ,tj (i ) +
∑

k ∈Ni

∑
s ∈Dzk

ηλ,szk (s )
)

(7)

From equations 6 and 7, the probability distribution of any outcome prediction zi (λ) is:

Pr (zi (λ) = 1 | ϕi ) =




exp

(
m∑
j=1

∑
t∈Dxj (i )

βλ,tj xλ,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηλ,szk (s )

)
1+

∑
h∈Dzi ,h,λr

exp

(
m∑
j=1

∑
t∈Dxj (i )

βh,tj xh,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηh,szk (s )

) λ , λr

1

1+
∑

h∈Dzi ,h,λr
exp

(
m∑
j=1

∑
t∈Dxj (i )

βh,tj xh,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηh,szk (s )

) λ = λr

(8)

Now, assume a model that consists of nr + nmq(r − 1) binary random variablesV = {Z,X} =

{z1 (λ1), ..., zn (λr ),x
λ1,1
1

(i ), ...,x
λr−1,q
m (i )}, coming from nr prediction and nmq(r − 1) predictor vari-

ables over all locations L. In addition, in case λ , λr , assume a set of constraints F = {F1, ..., Fn }
are defined over variablesV , where constraints Fi at location li consist of two subsets of constraints.
The first subset consists ofmq(r − 1) bitwise-AND predicates zi (λ) ∧ x

λ,t
j (i ) with β weights (each

predicate corresponds to a predictor-based regression term). The second subset consists of r (r −1)si
bitwise-AND predicates zi (λ) ∧ zk (s ) with η weights (each corresponds to a neighbour-based

regression term) where si is the size of neighbouring locations Ni of location li . Finally, in case

λ = λr at each location li , assume one constant predicate of value 1 with weight 0. Based on

these assumptions, the model satisfies the two main properties in Section 2.2.1 that are needed to

represent it using MLN, and hence its joint probability distribution overV is estimated based on

Equation 3 as follows:

Pr (Z,X) =




1

C exp

( n∑
i=1

m∑
j=1

∑
(λ,t )∈Dzi ×Dxj (i )

βλ,tj fλ,t (zi (λ),x
λ,t
j (i ))

+
n∑
i=1

∑
k ∈Ni

∑
(λ,s )∈Dzi ×Dzk

ηλ,s fλ,s (zi (λ), zk (s ))
)

λ , λr

1

C λ = λr

(9)

where fλ,t (.) and fλ,s (.) represent functions to evaluate the bitwise-AND predicates zi (λ)∧x
λ,t
j (i )

and zi (λ) ∧ zk (s ), respectively, and return either 1 or 0 as output. Note that in the case of pivot

outcome λr , we have a constant predicate of value 1 with weight 0, and hence its probability

becomes
1

C exp(0(1)) = 1

C , where C is the normalization constant of the model.

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.



RegRocket: Scalable Multinomial Autologistic Regression with Unordered Categorical Variables Using Markov Logic Networks xx:27

Based on Equation 9, the conditional probability distribution of any prediction variable zi (λ) at
location li given the predictor variables X (i ) at li and its neighbouring prediction variablesZNi
(i.e., ϕi = {X (i ),ZNi }) can be estimated as:

Pr (zi (λ) = 1 | ϕi ) =




1

C exp

( m∑
j=1

∑
t ∈Dxj (i )

βλ,tj fλ,t (1,x
λ,t
j (i ))

+
∑

k ∈Ni

∑
s ∈Dzk

ηλ,s fλ,s (1, zk (s ))
)

λ , λr

1

C λ = λr

(10)

where the normalization constant C is calculated over all possible outcomes of zi , to ensure the

probability value of any outcome ∈ [0, 1], as follows:

C =
[ ∑
h∈Dzi ,h,λr

exp

( m∑
j=1

∑
t ∈Dxj (i )

βh,tj fh,t (1,x
h,t
j (i )) +

∑
k ∈Ni

∑
s ∈Dzk

ηh,s fh,s (1, zk (s ))
)]
+ exp(0)

= 1 +
∑

h∈Dzi ,h,λr

exp

( m∑
j=1

∑
t ∈Dxj (i )

βh,tj fh,t (1,x
h,t
j (i )) +

∑
k ∈Ni

∑
s ∈Dzk

ηh,s fh,s (1, zk (s ))
)

Since all variables are binary, the evaluation of fλ,t and fλ,s can be represented as a mathematical

multiplication (i.e., the value of fλ,t (1,x
λ,t
j (i )) is xλ,tj (i ) and the value of fλ,s (1, zk (s )) is zk (s )). As

a result, the joint probability distribution of zi (λ) from Equation 10 becomes:

Pr (zi (λ) = 1 | ϕi ) =




exp

(
m∑
j=1

∑
t∈Dxj (i )

βλ,tj xλ,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηλ,szk (s )

)
1+

∑
h∈Dzi ,h,λr

exp

(
m∑
j=1

∑
t∈Dxj (i )

βh,tj xh,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηh,szk (s )

) λ , λr

1

1+
∑

h∈Dzi ,h,λr
exp

(
m∑
j=1

∑
t∈Dxj (i )

βh,tj xh,tj (i )+
∑

k∈Ni

∑
s∈Dzk

ηh,szk (s )

) λ = λr

(11)

which is the same probability distribution of the autologistic model defined in Equation 8. This

means that the assumed model at the beginning, which can be represented with MLN, is equivalent

to the multinomial autologistic model.

Received November 2018; revised XXX 2019; accepted XXX 2019

ACM Trans. Spatial Algorithms Syst., Vol. x, No. x, Article xx. Publication date: October 2019.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Autologistic Regression
	2.2 Markov Logic Networks

	3 Multinomial Autologistic Regression via Markov Logic Network
	3.1 MLN-based Multinomial Autologistic Model
	3.2 Generalized Multinomial Autologistic Models

	4 Overview of RegRocket
	5 MLN Transformer
	6 Factor Graph Constructor
	6.1 Neighbourhood Index Layer
	6.2 Graph Index Layer

	7 Weights Learner
	8 Experiments
	8.1 Experimental Setup
	8.2 Effect of Grid Size
	8.3 Effect of Learning Epochs E
	8.4 Effect of Optimization Step Size 
	8.5 Effect of Number of Factor Graph Partitions C
	8.6 Effect of Number of Threads

	9 related work
	10 Conclusions
	References
	A Theoretical Foundation of RegRocket using MLN

