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The Rise of Machine Learning

Let's take a look at a brief article that explores machine leaming and how the recent surge
of data has empowered a field of computer science.

When smartphones, cars, and other devices learn,
@ businesses and people win.
IDC forecasts that spending on Machine Learning will grow from $12 billionin 2017 to $57.6 billionby  BY Tom Haunert

2021 What's more, Machine Learning patents grew at a 34 percent CAGR between 2013 and 2017, JulyiAugust 2016

making it the thirdfastest growing category of al patents granted Futurists and science fiction writers have created some high expectations over the
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years. “Where's my flying car?” has become a classic rhetorical question as people look
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The rise of machine learning In the investment
o industry

The investment industry has evolved dramatically over the last several decades and
= continues to do so amid increased competition, technological advances, and a challenging

®economic environment. In this article, we will review several key trends that have shaped

e ey (0 e some smar programming Experts share ow machine learing =he nyestment environment in aeneral. and the context for alaorithmic tradina more

“Machine learning is a core, transformative way by which we’re rethinking everything

we’re doing.” -Google CEO Sundar Pichai
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The rise of machine learning

By Adrian Pennington | 25 September 2017

Alis an increasingly important tool for media companies, helping to automate
repetitive tasks and free up staff to focus on delivering quality content.

Much of what is now referred to as Artificial Intelligence (AI) and Machine Learning (ML) is, in
reality, just advanced image or metadata analysis. Rather than ‘learning’ by themselves, machines
need to be trained in detail to get good results and will only get better through additional training.

Why machine learning will see explosive growth over
the next 2 years

Uy Macy Bayern 2415 in Artificial Intelligence

on September 18, 2018, 7:21 AM PST
While current production of machine learning projects

companies expect them to Incre

e in the next couple

\N TechRepublic
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The Rise of Machine Learning in
Cybersecurity

How the critical capability of machine
learning can help prevent today's most
sophisticated attacks




The Ubiquity of Big Spatial Data
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B Detailed Techniques

B End-to-End Systems
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Knowledge Base Construction

tables, relations of facts
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Probabilistic Knowledge Base Construction
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Probabilistic Knowledge Base Construction

Probabilistic \ tables, relations of facts
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DeepDive: ML-based Knowledge-Based Construction
Built on scalable implementation of Markov Logic Networks
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C. Zhang, C. Re, M. Cafarella, J. Shin, F. Wang, S. Wu. “DeepDive: Declarative Knowledge Base
Construction” In Communications of ACM 60(5): 93-102 (2017)

F. Niu, C. Ré, A. Doan, J. Shavlik. “Tuffy: Scaling up Statistical Inference in Markov Logic Networks using

an RDBMS” In PVLDB 4(6): 373-384 (2011)




DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
City C|lE

Minneapolis| 1 [0.7 Q ta
St. Paul ? 10.7 I
Eagan ? 10.7
Rochester | ? [0.7 Q

Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level

Inference

Rule: P1&P2 =» Y has high crime rate Rules

<
«dD DeepDive

Result

St. Paul 0.5
Eagan 0.5
Rochester 0.5 QcRl
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
. =N
City C|lE
Minneapolis| 1 [0.7 Q ta
St. Paul ? 10.7 I
Eagan ? 10.7
Rochester | ? [0.7 Q
Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles
Inference
Rules
Rule: P1&P2&P3 =» Y has high crime rate

<
«dD DeepDive

Result

St. Paul 05 0.7
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Rochester 85— 0 el Y | 4
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DeepDive with Spatial Data ...

Crime rates in Minnesota Ebola infection rates in Liberia
Crimes Infections
R [
City C|E County [I | S
Minneapolis| 1 [0.7 Q Data Montserradg 1 [0.6 Q
St. Paul ? 0.7 D Marqibi ? 0.6 - ™ J o
Eagan ? 0.7 Bong ? 0.6 & e 5
Rochester | ? |0.7 Q Gbarpolu ? 10.6 o [}/_
Education Sanitation
Pl: City X has high crime rate Pl: County X has high Ebola infection rate
P2: Cities X&Y have same education level P2: Counties X&Y have same sanitation level

P3: Cities X&Y are within 80 miles

Inference
Rules

Rule: P1&P2 =» Y has high infection rate

<
dD DeepDive

Rule: P1&P2&P3 =» Y has high crime rate

<
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Result

St. Paul 05 0.7 Margibi 0.54

Eagan —ot— 0.7 Bong 0.52

Rochester 85— 0 Gbarpolu ~ 0.63 et & | .4
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
. =N
City C|E
Minneapolis| 1 [0.7 Q
St. Paul ? 10.7 I
Eagan ? 10.7
Rochester | ? [0.7 Q
Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3: Cities X&Y are within 80 miles
Rule: P1&P2&P3 =» Y has high crime rate

<
«dD DeepDive
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Rochester 05— 0
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Ebola infection rates in Liberia

Infections
[ Iy
County [I | S
Montserradq 1 |0.6 Q
Margibi ? 10.6 N
Bong ? 0.6
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Sanitation
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P2: Counties X&Y have same sanitation level
P3: Counties X&Y are within 150 miles
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Rule: P1&P2&P3 =» Y has high infection rate
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
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P2: Cities X&Y have same education level
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Rule: P1&P2&P3 =» Y has high crime rate
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Ebola infection rates in Liberia
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GADGET BEST NAVIGATION APPS

NEWS X ARTS & LIFE J MusIic (3 SHOWS & PODCASTS Q SEARCH

Google Maps Leads About 100 Drivers
Into A 'Muddy Mess' In Colorado

Navigation Features

Best Maps & Navigation Apps for Mabile Accidents, Al

Alternate Routes, | Alternate Routes, Accidents, Road Yes
Accidents, Road | Accidents, Road Rg:tl:zg:a:o‘ggk‘ Wark, Traffic
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9,
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Flag missing roads, update restaurants' opening hours, and more Sharing
ik No
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By David Nield | November 1, 2018 OOQO .
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Controlin App 0
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Weather,
s il s Tx;::lrﬁre Interactive
Air Quality Re-Center Steet View
Airports, Malls, i
Indoor Maps e Airports, Malls MNo No Acasthie e

Navigation

Music Integration

Yes

Yes

Yes

Uber, Lyt

No

Yes

No

No

Via OpenTable

No

No

CarPlay

Fiyover

Yes

Google Maps vs. Apple Maps vs. Waze vs. MapQuest

No

Yes

Yes

None

No

Yes

Yes

No

Yes

No

Android Auto,
CarPlay

None

Yes

Yes

Yes

None

No

Yes

No

z

None

No

https://smartphones.gadgethacks.com/how-to/best-navigation-apps-
google-maps-vs-apple-maps-vs-waze-vs-mapquest-0194591/
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Spatial (Autologisitc) Regression
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DeepDive with Spatial Data ...

Crime rates in Minnesota

Crimes
. [N
City C|[R
Minneapolis| 1 [0.7 Q
St. Paul ? 10.7 Y
Eagan ? 10.7
Rochester | ? [0.7 Q
Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3+—Cities XY —are—within 80-miles
P3: The closer Y&X the higher Y crime rate
Rule: P1&P2&P3 =» Y has high crime rate

St. Paul —05- B+
Eagan -85~ O
Rochester -5~ —6—

| ——
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Inference
Rules

Result
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Ebola infection rates in Liberia

Infections
[ I
County [I | S
Montserradq 1 |0.6 Q
Margibi ? 10.6 I,
Bong ? 10.6
Gbarpolu | 2 |06 &
Sanitation ’f_
Pl: County X has high Ebola infection rate

P2: Counties X&Y have same sanitation level
P3. Cuuutico X F—are Withiﬁ 150 milcs
P3: The closer Y&X the higher Y infect rate

He

= haoxh 4~ n_ rat+~
TT T g T rCCTtIroO—Tat

= Y has high infection rate

Rule: P1&P2&P3

~/
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From DeepDive to Sya: A Spatially-Aware
Knowledge-Based Construction System

-1 & |

Supervision Inference
Rules Rules
Schema
Declaration Language 4 Inference )
. ,
Spatial Data Spatial Gibbs
Extraction Types, Sampling-based
Rules Functions and Scores
—_— Predicates _. Inference
N J w
Compiled Rulesl Read / )\ E _
Unstructured /7~ _ ™\ Update N —’
Input Data Grounding Output
—_—> Knowledge
i : Base
N Spatial Factor Spatial FﬁCtor Spatial Factor
SUpS;\é':on Graph Grap > Graph Bulk-
—_— Constructor Loader
\_ v N /

|. Sabek, M. Musleh, and M. F. Mokbel. “A Demonstration of Sya: A Spatial Probabilistic Knowledge Base
Construction System”. In SIGMOD 2017




From DeepDive to Sya: A Spatially-Aware
Knowledge-Based Construction System

% Built on a Spatial
Supervision Inference -
Rules l l Rules version of Markov
Schema e \#oglc Networks
Declaration Language Inference
—_—
Extraction Concliques-
Rules based sampling
—
A
\__/
Compiled Rulesl Read / -
Unstructured /~ _ ™\ Update S—’
Input Data Grounding Output
—_—> Knowledge
el st il  Spaial Factor ase
Supervision a7 e e Graph Graph Bulk-
Data FRO:@%& ; i Pu_geum, PO.neighbourhood) ) L O a d e r

\_ v N\ _/

|. Sabek, M. Musleh, and M. F. Mokbel. “A Demonstration of Sya: A Spatial Probabilistic Knowledge Base
Construction System”. In SIGMOD 2017




Knowledge-Base Construction with Sya

Crime rates in Minnesota

Crimes
. [N
City C|[R
Minneapolis| 1 [0.7 Ei
St. Paul ? 10.7 Y
Eagan ? 10.7
Rochester | ? [0.7 Q
Education
Pl: City X has high crime rate
P2: Cities X&Y have same education level
P3+—Cities XY —are—within 80-miles
P3: The closer Y&X the higher Y crime rate
Rule: P1&P2&P3 =» Y has high crime rate

v
Sya

St. Paul —05- B+ 0.9
Eagan -85~ O 0.7
Rochester -5~ —6— 0.3

| ——
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Ebola infection rates in Liberia

Infections
County [I | S
ta Montserradd 1 [0.6 Ei
Margibi ? 10.6 |
Bong ? 10.6
Gbarpolu ? 10.6 zi f
Sanitation
Pl: County X has high Ebola infection rate
P2: Counties X&Y have same sanitation level
P3+—Counties X&Y—are—witthin—+56—mites
Inference| E3: The closer Y&X the higher Y infect rate
Rules —Rule:—PIP2—=> Y hashigh infection rate
Rule: P1&P2&P3 =» Y has high infection rate
Result
Margibi 854 -65% 0.76
Bong 052 645 0.53
Gbarpolu 663 866 022 - 2F pIX
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Spatially-Aware ML-based Image Analysis

B Sparse object detection in images (e.g., OCR)

B Using Quadtree to improve the performance of Convolutional
Neural Networks (CNN) for sparse datasets (e.g., handwriting)
O Traditional CNNs are optimized for dense datasets

O —)[Convolution]

2 3 () L R G G
Input Image
Wz P g

Fully
—)[ Poollng/ Connected
Upsampling Layer

v

Model Output

10 | 11 | 1a |15 | L:jof1]2]3][a]s]6]7]. [13]14]15]

2 3 22| 23 V
8 9 28 | 29 . .

= [ ol Rectified
=T .. [0+ 23] [w[w[n]z]=]-] Linear Unit
42143 |1 46 |47 | 658 | 69 | 62 | 63

P. Jayaraman, J. Mei, J. Cai et al. “Quadtree Convolutional Neural Networks”. In ECCV 2018




Spatially-Aware ML-based Event Detection

B Predicting a sequence of spatiotemporal tweet counts

Traditional modeling uses Long Short-Term Memory (LSTM) Recurrent

Neural Networks (RNN) - focuses only on temporal aspect
B Combining the spatial convolution with LSTM networks

Input Convolutional
Features LSTM

]

\

Rectified
Linear Unit

J

e

e

SRRRRRRRN

ey o N

hy{1.Ce 41

H. Wei, H. Zhou, J. Sankaranarayanan, S. Sengupta, and H. Samet. “Residual Convolutional LSTM for

Tweet Count Prediction”. In WWW 2018




Spatially-Aware ML-based Recommender System

B Analyze user behavior to recommend interesting items

Ratings ngﬁ %Imon] Built Model
GE ol li) atl Recommender
ITering t J o Q '

i+ S annne Touery
e ... . ’m - 1 2 4 1 3

< '. 2 Factorized Matrices O

5 V.V,

B Spatio-temporal Collaborative Filtering
 Exploiting spatial and temporal correlations across users/items

Spatial Regularization for Users
| B (R—=PQT) 3+ P13+ 11 Q I3) HX,., W™ | o™ —p |12]
(2,7) (i) _ () 112
Spatial Regularization for Items <_._+|Z%" eIl g | |

| Z. Lu, D. Agarwal, and I. Dhilllon. “A Spatiotemporal Approach to Collaborative Filtering”. In RecSys 2009 ‘



Machine Learning meets Big Spatial Data
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ML for Map Making (Topology)

B Automatic construction of road maps from images
O Incremental route building (point by point)
O Using Convolution Neural Networks (CNN) to search next point

T 2] (3 ' 'v-. - ? I . , (S
- \‘ a1
! 4
7 '
2] [ i -
Segmentation S ’ RoadTracer

F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden and D. DeWitt.
“RoadTracer: Automatic Extraction of Road Networks from Aerial Images” In CVPR 2018




ML for Map Making (Topology)

B Facebook Al provides “MapWithAl” to improve open-
source mapping (e.g., OpenStreetMaps)
O Weakly supervised learning from satellite Images using CNN
O Apps: FB Marketplace, FB Local, and disaster response service

. . "’v P— \_\.~
\ - \‘\\/

https://mapwith.ai/
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ML for Map Making (Metadata)

B Learning Edge weights per time granularity (e.g., hour)

B Input: Trips (Pickup time/location, Drop off time/location,
[Optional | Path)

(A, F, 15) & W, + W + W, = 15

]

> & R
-+ X equations in = X" equations in Edge weights
.Y unknowns g I5 Y" unknowns Ridge perggranu%rity
’ —>| 38 >»]  Regression cd oht
’ S o : e weights
L7 10K equations in g < 1K equations in AnalyS|S ger hot?r
500K unknowns o 5K unknowns \ Y

|

GranularityT Hour

R. Stanojevic, S. Abbar, M. Mokbel. “W-edge: Weighing the Edges of the Road Network”™. In ACM
SIGSPATIAL 2018



ML for Map Making (Metadata)

B Input: Speed distribution for certain time granularity

A C ot — [10, 15) [[15, 20) [5, 10) [[10, 15)[[15, 20)
e, 03 e, » ) ) e, 04 05 01
= p -
3? €5 10 l§_2|(>’ € 2 [ [ e 01 07 02
02 (m/s) e3 9 ,) 7 e3 04 02 04
5710 15720 D ~e4 9 2 ) e, 02 08 0
F s e 03 05 02 e 03 05 02
eg 02 03 05 gg 02 03 05
Fully
.// Connected
3 € 8*
4 (] e, l' Layer
Adjacency Matrix N |2 Features 2 l,
and 2 :
J Features 1

Incomplete Weights

J. Hu, C. Guo, B. Yang, and C. S. Jensen. “Stochastic Weight Completion for Road Networks using Graph

Convolutional Networks”. In ICDE 2019



ML for Routing

B Using available trajectories to learn a better routing

A good route is determined by different preferences other than
distance (e.g., road condition)

O Similar trajectories can have similar preferences

Road Network _ <Source, Destination>
Region Graph

HIF

DE
D HIF User
ABC / ’ \
—_——— ABC V4

. ] Preferences ] Preferences-based
Clustering : :
J Learning | Routing

W ¢ Learned l
DO Preferences

‘}59?.' Preferences |

ABTT Transfer | o HIE Routes

Trajectories ﬁ
4
/
ABC s
----@G

C. Guo, B. Yang, J. Hu, C. S. Jensen. “Learning to Route with Sparse Trajectory Sets”. In ICDE 2018




Traffic Monitori
& Prediction

Technology Profile ()

Real-time traffic management

or short-term prediction?

hort-term prediction,

decision support systems

and predictive modeling:
all familiar concepts to experts
in transportation, but given the
many real-time adaptive traffic
management systems, do we
really need them?

When it comes to adaptive
traffic management sys
UK market is the world’s
saturated. Most cities and towns
face high levels of congestion on
a daily basis. A well-configured
SCOOT system can handle many

facing such networks.

The best investment an
authority can make to manage
its network and maximize
its physical assets through
technology is an adaptive
system, be it a highway
ATMS (advanced traffic
management system) or a city-
wide adaptive solution. All
carry a high cost/benefit ratio,
though they are generally
restricted (o dealing with
immediate traffic situations.

In the UK, the Transport
Technology Forum suggests that
transport congestion, safety and
emissions add up to a £100bn a
year (USS130bn) problem,

Weare all familiar with the

frustrations of the daily commute.

The problem is magnified when
there is an unplanned incident
in the network, whether a lane
closure, emergency road works,
an accident, or even an ITS
failure (it does happen). With
air-quality policies starting to
influence cities” traffic
management strategies,
congestion rising, and capacity
in the network remaining
largely the same, timely
intervention could well be the
measure of success by which
road users judge operators.

Predicting the future

This is where predictive
decision support systems (DSS)
come in, working together and
enhancing these real-time
systems by looking past the
current situation and assessing,
analyzing and predicting the

Above: Almsun Live helps
with earlier communication
of incidentinformation
Right The Aimsun Live user
control panel features live
feeds and simulations

as traffic signals, ramp meters
and message signs.

Atthe heart of the DSS is the
Aimsun Live modeling package,
configured and integrated into
the system by the SANDAG

traffic

TECHNOLOGYINTERNATIONAL

Need Long-term
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ML for Traffic Prediction: Residual Networks

B Using convolution-based residual networks to handle both
spatial and temporal dependencies

O Inputs are divided into time spans, then each span is processed with a
residual network, and finally all outputs are fused together

Traffic Maps

””i [Convolution] [Convolution] [Convolution]

dddd v v - ;_ ,;l
| [ Retunit | [ ReLUnit | ReL Unit ig’l?" =
(i : : : |/ L.
“*Mﬁ [COﬂVOlUtion] [COﬂVOlUtion] [ConVC)lUtiOn] Conv =’(;onv 4 Convs ='r';anh

v 2
o | [ ReLunit | [ ReLunit | | ReLunit |
vy ili“’”f}& | ;[ Fusion k | igjﬂ Traffic

Predictions

J. Zhang, Y. Zheng, and D. Qi. “Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows
Prediction”. In AAAI 2017




ML for Traffic Prediction: DCRNN

B Modeling the traffic prediction as a graph problem

O Traffic sensors are nodes, and edge weights denote spatial proximity
among these nodes - capturing spatial correlation

B Employing Diffusion Convolutional RNN (DCRNN)
O Diffusion processes for inflow and outflow traffic flows

Diffusion Diffusion
Traffic Sensors
Graph Graph CRNN
_ ConstructorJ Model
Traffic Sensors Prediction
Data O @, O O Q O Outputs
Inflow ® O . $ O
Diffusion 00 1o A |
Process = =~ O O outflow
) x.. —> Diffusion
Process

Graph Signal Filter

Y. Li, R. Yu, C. Shahabi, and Y. Liu. “Diffusion Convolutional Recurrent Neural Network: Data-Driven
Traffic Forecasting”. In ICLR 2018




ML for Traffic Prediction: GCNN

B Using Graph Convolutional Neural Network (GCNN)

L A novel road network embedded convolution method to learn
meaningful spatial and speed features

I

> -
h Fa ¢ Adjacent Road .
XI
-
Fo| |I's I, .
Previous 5
CHI § Predication at Yeralb
T [-1 »

¥ N

8:00am~8:20am
. 38.6 .__.

40| I35.7
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Z.Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhao. “LC-RNN: A Deep Learning Model for Traffic Speed
Prediction”. In IJCAI 2018




ML for Traffic Prediction: Reinforcement Learning

B Real-time Traffic Lights Control via Reinforcement Learning
O Using non-spatial signals (e.g., waiting time) to update the model

1:1 t2 1:3

Traffic . . .
Input

('YX \l'

Final Model
Deep
Q-Network . Model Updater]
Intermediate
. . Model
Traffic Training 6o

Feedback (e.g., Queue Length, Waiting Time)

H. Wei, G. Zheng, H. Yao, and Z. Li. “IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic
Light Control”. In ACM SIGKDD 2018



ML for Qutdoor Localization

B Localizing people using their phones and without GPS
O Fingerprinting using Received Signal Strength from cell towers
O Having offline (training) and online (tracking) phases

Fingerprint Localization
Collector Model Trainer

\ ~<Lat, Lang, CID, RSS>

Localization Model

I A . .
) ) D Joint Probability

Distribution over
<CID, RSS> Grid Locations

RSS Grid
Collector Estimator

Estimated Location

A. Shokry, M. Torki, M. Youssef. “DeepLoc: A Ubiquitous Accurate and Low-overhead Outdoor Cellular
Localization System”. In ACM SIGSPATIAL 2018



ML for Air Quality Forecasting

B Prediction at a certain location and within a time period
O Traditional approach uses a hybrid regression model to separately deal

with spatial and temporal correlations

O Using joint spatiotemporal-aware CNN is more efficient
» Defining more “important” geo-context features than distance

Geo-Context

Features Graph
Extractor

Geo-Context

Feature | Constructor

Vectors

Air Monitoring . [y

Observations ls| 04

ly

3] 01
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Diffusion

CRNN

l5 0.5

0.3

0.2

0.1

Model

~
(
®,

\

© Similarity-based Weights Graph Signal

o QOO

Filter

Prediction

Output

Y. Lin, N. Mago, Y. Gao, Y. Li, Y. Chiang, C. Shahabi, and J. L. Ambite. “Exploiting Spatiotemporal Patterns
for Accurate Air Quality Forecasting Using Deep Learning”. In ACM SIGSPATIAL 2018



ML for Geospatial Object Detection

B Detecting geospatial objects (e.g., buildings) from images
O Challenging as directions are not parallel to the orthogonal axes

O Existing techniques detect the Minimum Orthogonal Bounding
Rectangles (MOBR) of objects only (e.g., YOLO Framework)

B Main idea is to extract features from rotated images
No need for new training data with different rotations

Rotation-Vector Multi-layer YOLO Regional
Augmentation Convolution Convolution

Detected Objects

Y. Xie, R. Bhojwani, S. Shekhar, and J. Knight. “An Unsupervised Augmentation Framework for Deep
Learning Based Geospatial Object Detection: A Summary of Results”. In ACM SIGSPATIAL 2018



Machine Learning meets Big Spatial Data

Spatial

Outdoors Spatial Objec = "
Localization Detection orecasting

Sp

atial Sampling
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CYBER SECURIT - I @ . ®
digitalhealth 1 e
N O n 'S p atl a.l Iglnsggnetworgﬁlgenceo o I Kn nwledge Base
e Qe ”
292 I
= I U ML
Knowledge Base .
| Event Detection
» Fundamental
Algorithms

Non-Spatial

UNIVERSITY OF MINNESOTA
. Driven to Discover

47

Spatial

QCRI

auugall igayl . hié agao
...............................
HAMAD BIN KHALIFA UNIVERSITY

RIPX
X hd




Spatial (Autologisitc) Regression

B Find whether a spatial phenomenon exists or not, based on neighbor

values and features (=0 =1)  Gu=tx=1)
17 2 1 I3 4
Weather Prediction Birds Migration 0 1 1 1
) . G st 15 le I7 Is
Features 1 1 ol 4| Phenomenon
lg 110 111 112 Value
1 1 0 0/
113 l14 115 I16 4
( 1] \?| o] o
: % \ (x1\= 1, x2=0)
3 .
: o Missing val
Crimes Distribution =sihg vaiue Features _
Land Cover Neighbor
l Pr(z;=1|X,2Zx,) values
02 Pr(z,,,_ow Zn,) '\

J lt 4‘@216@\[ “k

Regression Parameters

Learning regression parameters for 80K
M Mixses| cells takes more than one day ® mwww gs
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Markov Logic Networks (MLN)

m Towards Data Science

INDUSTRIES

HOME DATASCIENCE MACHINE LEARNING ROG VING JALIZATION Al

CONTRIBUTE

Making Deep Learning User-Friendly,
Possible? = i

£90  Eric Fevilleaubois (Follow )

I need a more

USER-FRIENDLY | LAESD A

\ Ccomputer. SMARTER 2018): DesH

machine le
discoveries,
academics
are struggl
machine le
real business problems. In
short, the gap for most

machine learning doesn’t
It's clear that machin ning

work, but that they

B MLN is an end-to-end ML solutlon
O Covers wide range of ML problems

L Thousands of lines of ML code can be
done in few MLN formulas

Rules as ML
formulas

Markov Logic

Rule weights
Network (MLN) |

>

Mo,

July 3,2018

Can Markov Logic Take Machine Learning to the Next Level?
Alex Woodie

Advances in machine learning, including deep
learning, have propelled artificial intelligence (Al) into
the public conscience and forced executives to create
new business plans based on data. However, the

~ STATES TIPS&TACTICS VOICES FEATURES VIDEO  ITBLOC FOrbes Billionaires Innovation
——

Need experts and highly-trained scientists,
specially for deep learning

companies isn't that Gart predicts that by 2078, 45 percent of the fastest-growing companies will have fewer
employees than instances of smart machines

small- and medium-sized business czn adopl? T
struggle to actually use it. and things can fromthe hu

Leadership
53,950 views | Jan 1, 2018, 08:33pm

Why Do Developers Find It Hard
ghaine Learning?

earning, and Internet of Things

the most critical skill of current times.
ation of ML, is becoming pervasive.
uned databases, Al and ML are found

everywhere. Industry analysts often refer to Al-driven automation as the

job killer. Almost every domain and industry vertical are getting impacted

by AI and ML. Platform companies with massive investments in AT
) competitive adval

ge. but Is it something that
the data are often opaque

research are shipping new tools and frameworks at a rapid pace.

s (automated email replies that write “llove you' to a

Jmﬂ Alchemy - Open Source Al

' HOUSTON, TEXAS, USA 2018
ACM SIGMOD/PODS International Conference on Management of Data
June 10 - June 15, 2018  Houston, TX, USA
SIGMOD 2018: Keynote Talks

Machine Learning for Data Management: Problems and Solutions

Scalable RDBMS-based
MLN System

dD DeepDive

o MEMEX

e
s 1oloClean
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From MLN to Spatial MLN

Spatial Spatial Spatial Bayesian
Regression Classification Networks

[ Language ‘ Spatial DDLog E ]

SMLN Rules

Spatial
MLN

l Constructed Graph

Spatial Gibbs
Inference Sampling

== X
Auugall Gigayld 3 hé agoo
‘\- \v : -- ok T J - r\ \J‘\v ‘:,.()”1 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn =
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S patl a,l Reg reSS | O n Rules as MLN Markov Logic | Rule weights)

formulas Network (MLN)
as SMLN Problem

Regression - _
_ Rule weights =
Pr(zi=1|X2x;) _ SMLN Rules
log - crr 2y = _Eduation . SfMLN ' o SMLN >
m ransformation ' Regression
23_1 Bjz UZkeNi k g Parameters

SMLN Rules

SMLN Rules

>

Transformation

[Z1 7 Xy, 3]
[Z, " 25, 1]
[Z, " Z5, ]
[Z, " X1, B4
[Z," Z4, 1]
[Z, " Zs, n]
[Z5 7 Xy, (4]
[Z3" Z4, 1]

|. Sabek, M. Musleh, and M. F. Mokbel. “TurboReg: A Framework for Scaling Up Spatial Logistic
Regression Models”. In SIGSPATIAL 2018



Bayesian Modeling

B Analyzing spatial data for prediction, estimating
parameters, and capturing correlations

O Traditional assumption is Gaussian processes
 Estimating parameters is a bottleneck in case of big data

Y ﬂ"‘ € —> ~ ]\fov"'mal(O,kx

Nx1 Vector of Outcomes px1 Vector Nxp Matrix NxN Covariance Matrix
of Slopes of Features

B Using Bayesian inference, the joint posterior distribution
can be estimated in a closed form

p(B,0%|y) = p(a*|y)p(Blo?,y)
4

~ InverseGamma(co?,c) ~ Normal(8|Mm,o? M)

[ — e
Need to calculate ¢, M, m efficiently on a large scale

25 DI
UNIVERSITY OF MINNESOTA - T -
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Quadtree-based Bayesian Modeling

B Main Idea: exploiting likelihood decomposition

 Replacing the joint posterior distribution with a composite one
that assumes independence across partitions

y=pX+e¢

mo, Mo €= Yo = 5X0+€0//0/ //1/ /?)1 = BX1 + €1 m—> my, M

mg,MQ@yQZ/@XQ‘}_EQ / / 93:5X3+€3—)m3,M3

L2l L3/

m =3 x_o (mx — (1= %)Cs)

Calculate C based on m and M
» using a closed form

_ K—1;q—
M=t =37 (M, P (1- %)Hﬁ)

R. Guhaniyogi, and S. Banerjee. “Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive

Spatial Datasets”. In Journal of Technometric 2018



Spatial Classification

H [nput O

 Training images labeled with
pre-defined spatial classes

d  Unknown image

Training Images

Output

d The same input image, yet,
labeled with one or more of
the spatial classes

Input Image

Spatial

_,[

Classification

]<—

y

Output Image
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Scalable ML-based Spatial Classification )

B Existing ML approaches nput Image

are not scalable for high
resolution images [ Super Plxel
Generatlon

B Employing the concept
of super pixel to simplify
computation

Multi- plxel Features
Generation

Training Images

- Super Pixel Graph
Building

Output Image

Y

Label Generation ]

M. Sethi, Y. Yan, A. Rangarajan, R. R. Vatsavai, and S. Ranka. “Scalable Machine Learning Approaches
for Neighborhood Classification Using Very High Resolution Remote Sensing Imagery”. In SIGKDD 2015



Ensemble Learning Spatial Classification

B Efficient classification over heterogonous spatial data

O Class ambiguity: same feature values belong to different
classes in different locations

B Learn ensembles on spatial neighborhoods in parallel
L Global models have higher error rates and are much slower

2111
20211
1)1]3]3]2]2(2]1 1 2 3 4 xvalue
1[1]313]/3]2]2]2 Class ambiguity is 0
11]2)2]3[3(2]|2
11]2)2]2[3(3]|2 ‘ Zoﬁ% @ |
2]2]2[3]3
‘2 2]2]3 -@
Input feature Training labels All ground truth Model 1 Zonal predictionl
Zone 2
Count
- ne
Zone 2 1 2 3 4 xvalue
Class ambiguity is 0
Class amblgmty 0.3 Global model Prediction (errors in bold) Model 2 Zonal prediction2

Z.Jiang, Y. Li, S. Shekhar, L. Rampi, and J. Knight. “Spatial Ensemble Learning for Heterogeneous
Geographic Data with Class Ambiguity: A Summary of Results”. In SIGSPATIAL 2017




Spatial Sampling

B Collecting representative samples in a 2-D framework
O Could have a second-phase to reduce errors in initial samples

e ° o 5.‘. o. ° o ®/e/ejeo 000000 b |y o ....r..
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.o. ¢ o .... R .'.1 .'. e e e e|e|eeeee|e .“-!.. .E‘.b"o
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Random Stratified Random Systematic Systematic Unaligned

B Spatial sampling is more challenging with “big” data
d Can be easily dragged to “biased” sampling
O Exploiting ML to learn more “accurate” spatial samples

g 2 | .4
Apngai g s it gmts
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ML-based Incremental Spatial Sampling

B No need to wait for the whole sampling to be done
O Iterative sampling iterations with feedback from users

B The main idea is “level sampling”
d Embedding samples into indexing structures (e.g., R-tree)
O Lazy exploration for efficient processing

» Visiting the children of any cell only after its sample buffer
IS exhausted (either consumed or rejected)

RS-Tree

Query/Task

Index Input
Builder Data

...............

~ Output "~
Update T l Read
Feedback

>{ Sampler ]

Acceptance Ratio

L. Wang, R. Christensen, F. Li, and K. Yi. “Spatial Online Sampling and Aggregation”. In VLDB 2015



Deep Learning-based Spatial Sampling

B Exploiting deep learning to learn spatial samples
O Training: a deep network is trained to preserve the original shape

 Testing: generated samples are matched with the input to
estimate the error for feedback

C
Training ....

coee Sampling Samplmg Loss
e % Deep Network o o Objectlve Function

Training 2D Object Samples Tralnlng
(e.g., image)

Match with Input

< o
o bud [ | A
Testing %o Sampling :‘: ° Evaluation]
o © o '
- Deep Network .:.‘ .. ® Metric
Input Object

Initial Samples  Final Samples

O. Dovrat, I. Lang, and S. Avidan. “Learning to Sample”. In CVPR 2019




Machine Learning meets Big Spatial Data

Spatial

Outdoors Spatial Objec = "
Localization Detection orecasting

S.paiial S.ampling
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Outline

B End-to-End Systems
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Spark-based Spatial ML Systems Sci\z

park

B Integrating Spark MLib with spatially-equipped spark core
and RDD operations

Spatial ML Operation 3 l
(e.g., Hotspot Detection) Scala Language

Spatial ML Plan i

[ Spark MLib

Data Processing Operations l,

]
]
B
J

"
geomesa Spatial RDDs $

[ Spatial RDD Ge@Spark

Partitioning
1Y |
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. Driven to Discover 62 iAMAD DN KHALSEA U NFVERE Y K“




PySAL: Python Spatial Analysis Library

: Visualization
B Open source cross-platform library for _ _
, , Spatial Analytic
geospatial data science on vector data Functions
0 . ) .
Spat!al clusters., hot-spots, Iar.ld outllers. Spatial Modeling
1 Spatial regression and statistical modeling Functions

 Spatial econometrics
1 Exploratory spatio-temporal data analysis

Numpy, Scipy

Python

S. J. Rey, and L. Anselin. “PySAL: A Python Library of Spatial Analytical Methods”. In Review of Regional
Studies 37, 5-27 2007 https://pysal.org/




Flash: Scalable Spatial Data Analysis Using
Markov Logic Networks

B Based on the design and deployment of Spatial
Awareness in Probabilistic Graphical Models
[ Spatial Markov Random Fields (SMRF)
 Spatial Hidden Markov Models (SHMM)
1 Spatial Bayesian Networks (SBN)

Public Health Monitoring

/
|
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| =
%
3

'IiIH.
:

|
i
I

|. Sabek, M. Musleh, and M. F. Mokbel. “Flash in Action: Scalable Spatial Data Analysis Using Markov
Logic Networks”. In VLDB 2019




GeoDA: An Introduction to Spatial Data Analysis

B Exploratory spatial data analysis tool
d Enriched visualization tools

d Including spatial clustering, outliers i“;pplhy'p contextualize the
detection, spatial regression

B Latest versions are open source
The Averages Chart aggregates
(OpenGeODa‘) trends acriss time an:gspagce.
Cross-platform
d  Support cloud-based computation

» Designed to support datasets with =
more than 170000 observations " Y —
efficiently B . (e

The latest version of GeoDa

integrates with CartoDB.

L. Anselin, I. Syabri, and Y. Kho. “GeoDa: An Introduction to Spatial Data Analysis”. In Journal of
Geographical Analysis 2006 http://geodacenter.github.io/




ESRI ArcGIS GeoAl & GeoAnalytics

Sample Training Data

=

= 7 GeoAl tools integrated with Tensor ArcGIS
| - flow for deep learning, classification,
- clustering, regression, etc. _ o
s GeoAnalytics Distributed
Server for scalability

ML Operation Big Spatial Data

{

f ArcGIS Core
p—

~ Detect Objects

Add Imagery Source

¥

Export Training Data
XD ning Call the model from

JENVEIS
SoIAeuy099)
sonAjeuyoss |

SonAeuy099)

JEVVELS
SoIAeuy099)

ArcGIS Pro  Python Function

Train CNN
F S - : L o i | D E AI‘CG IS
TensorFlow BN Terminal(s)

esri.com/en-us/arcgis/products/arcgis-geoanalytics-server ‘



IBM PAIRS GeoScope

B A cloud-based service for geospatial analytics and

machine learning modeling L,

~ ”
ML Operation < ‘ IBM PAIRS ’
¢ Geoscope

ML-based Clients h

B Performing data curation
| ArcGIS ‘ VINWN: no . .
[ Enabling complex queries

‘1' to be performed in real time
e IBM Pairs Core ™\  Success stories in weather
prediction
Complex Queries Integration Big
: Spatial
. . : < Igata
Big Spatial Data Analytics and
Management
- _/

L. J. Klein, F. J. Marianno, C. Albrecht, M. Freitag, S. Lu, N. Hinds, X. Shao, S. Rodriguez, and H. F.
Hamann. “PAIRS: A Scalable Geo-spatial Data Analytics Platform”. In IEEE Big Data 2015




Machine Learning meets Big Spatial Data
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