Ibrahim Sabek

Mohamed Mokbel

The Rise of Machine Learning

SmartDataCollective

The Rise of Machine Learning and AI is Improving Lives in 2018

Take a dive into how Machine Learning and AI have impacted the way we live our daily lives.

DZone Al Zone The Rise of Machine Learning

Let's take a look at a brief article that explores machine learning and how the recent surge of data has empowered a field of computer science.

by olu campbell - Aug. 25, 18 - Al Zone - Opinion

IDC forecasts that spending on Machine Learning will grow from \$12 billion in 2017 to \$57.6 billion by 2021. What's more, Machine Learning patents grew at a 34 percent CAGR between 2013 and 2017, making it the third-fastest growing category of all patents granted.

ORG Nanotechnology ~ Physics he rise of machine learning in astronon entember 4, 2018, Particle

SKA will have over 2000 radio dishes and 2 million low-frequency antennas once finisher

hen mapping the universe, it pays to have some smart programming. Experts share how ^{ing is}the investment environment in general, and the context for algorithmic trading more

Forbes

Rise Of The Machines: The Future Of Data Science And Machine Learning

Meghann Chilcott Forbes Councils Forbes Technology Council CommunityVoice ()

POST WRITTEN BY

Meghann Chilcott Jul 30, 2018, 07:00am

Senior Vice President of OrderInsite, delivering executive leadership in innovative pharmacy technology solutions. Connect with me

The Rise of Machine Learning

When smartphones, cars, and other devices learn, businesses and people win.

By Tom Haunert

July/August 2016

Futurists and science fiction writers have created some high expectations over the vears, "Where's my flying car?" has become a classic rhetorical question as people look

\sim	Packt>		Q			
my	Web Developme	ent 🗸	Data 🗸	Mobile 🗸	Programming	g 🗸
-	The rise of r	nachi	ne learr	ning in th	e investme	ent
S STATE	industry					
	By Natasha Mathur - February 15, 2019 - 4:00 a	um 🕑 894 📭 (

The investment industry has evolved dramatically over the last several decades and continues to do so amid increased competition, technological advances, and a challenging economic environment. In this article, we will review several key trends that have shaped

Broadcast The rise of machine learning By Adrian Pennington | 25 September 2017

AI is an increasingly important tool for media companies, helping to automate repetitive tasks and free up staff to focus on delivering quality content.

Much of what is now referred to as Artificial Intelligence (AI) and Machine Learning (ML) is, in reality, just advanced image or metadata analysis. Rather than 'learning' by themselves, machines need to be trained in detail to get good results and will only get better through additional training.

🔀 TechRepublic. SEARCH

Why machine learning will see explosive growth over the next 2 years

By Macy Bayern 🐲 in Artificial Intelligence

er 18, 2018, 7:21 AM PS1 current production of machine learning projects are low, 96% of

es expect them to increase in the next couple years TechRepublic

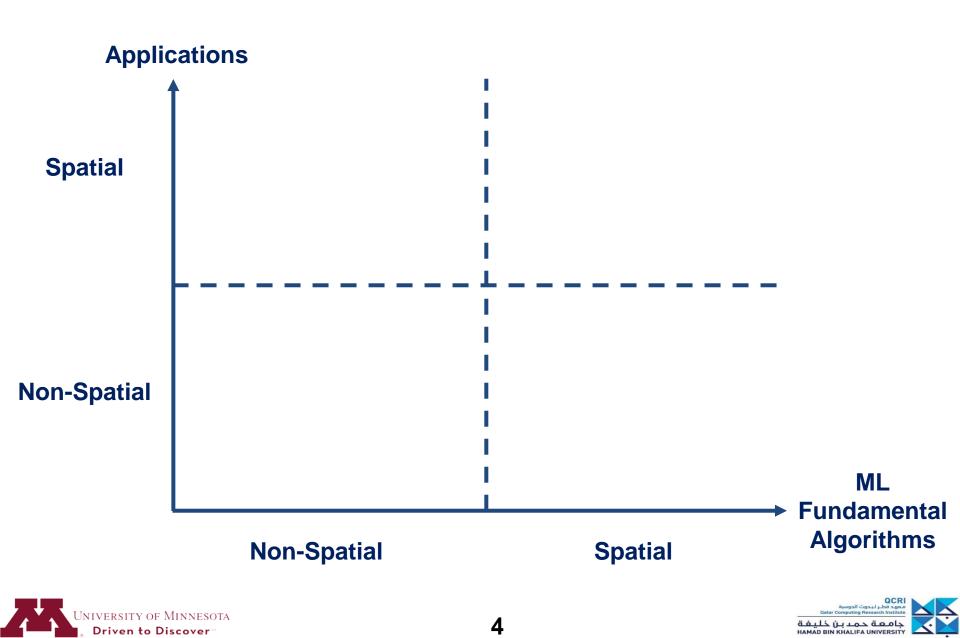
BANKINFO SECURITY® The Rise of Machine Learning in Cybersecurity

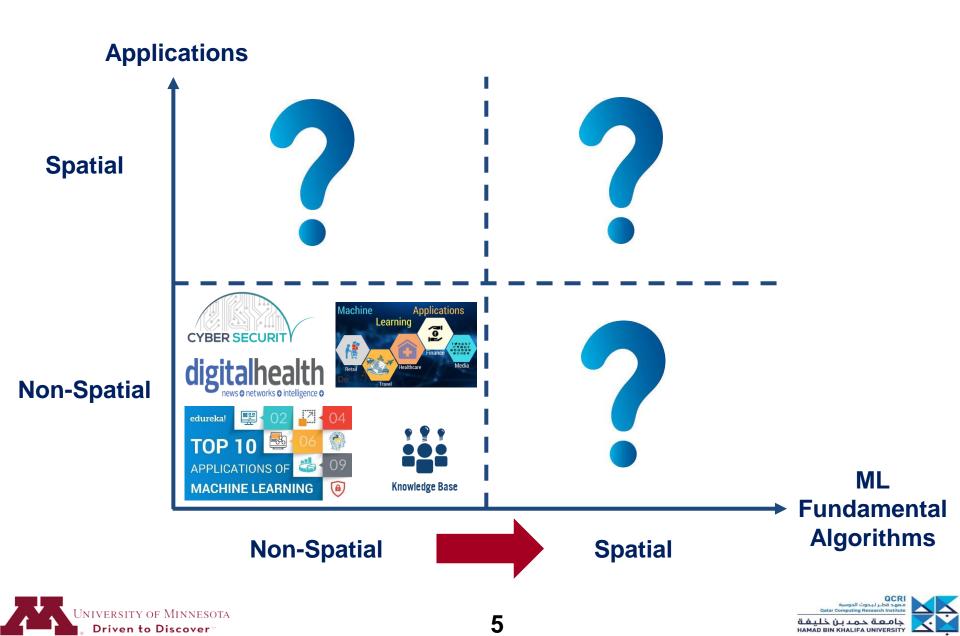
CrowdStrike • August 28, 2018

How the critical capability of machine learning can help prevent today's most sophisticated attacks

"Machine learning is a core, transformative way by which we're rethinking everything we're doing." -Google CEO Sundar Pichai

The Ubiquity of Big Spatial Data



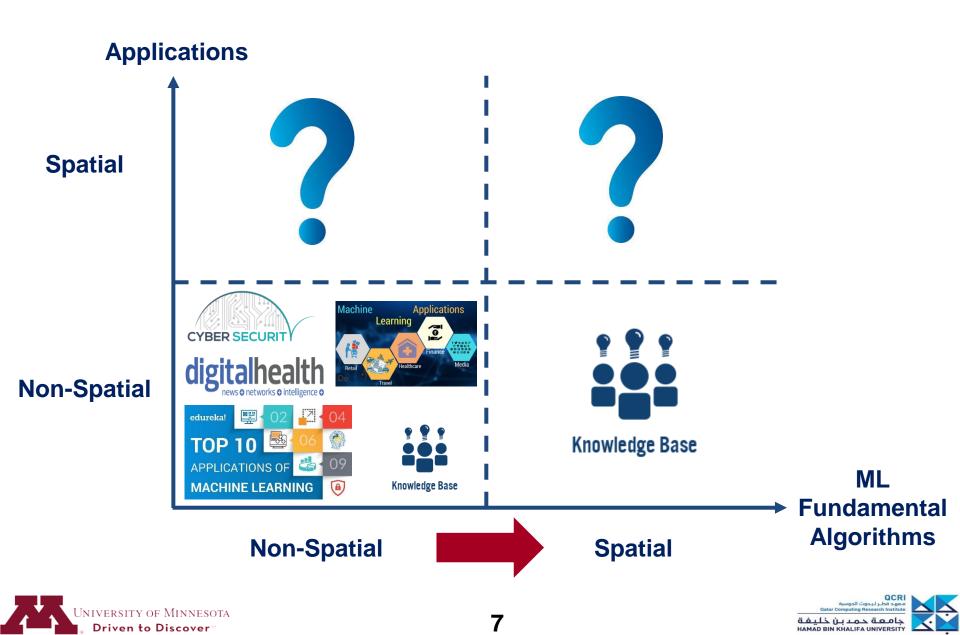


Outline

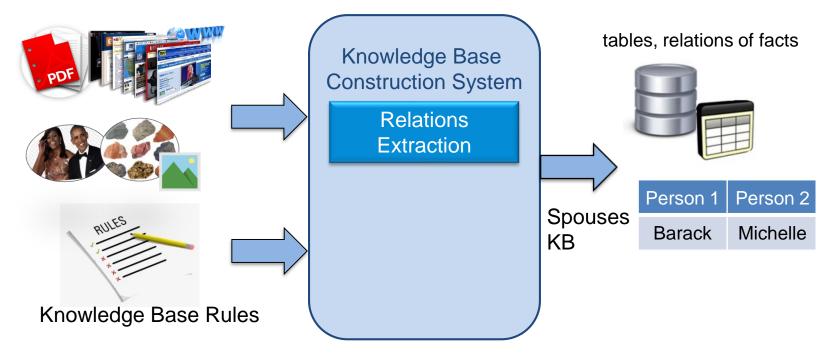
Introduction

Detailed Techniques

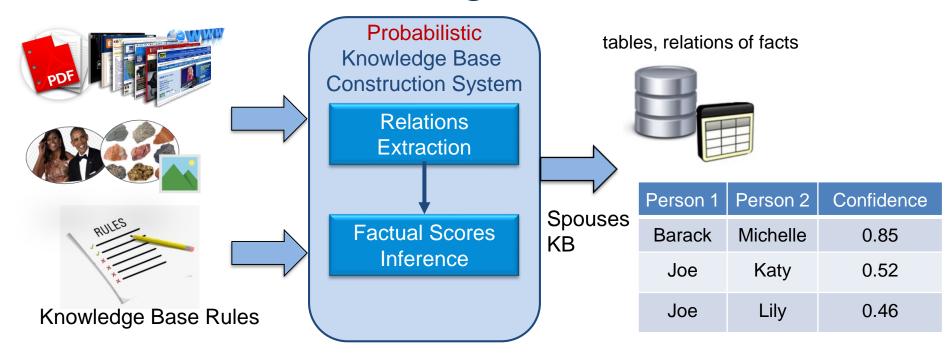
End-to-End Systems



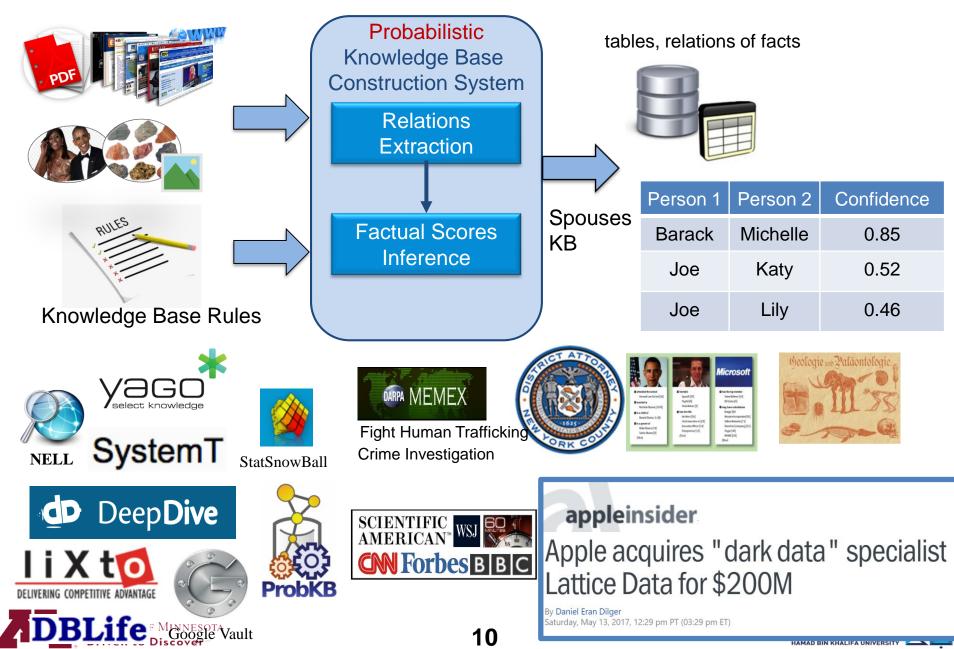
Knowledge Base Construction



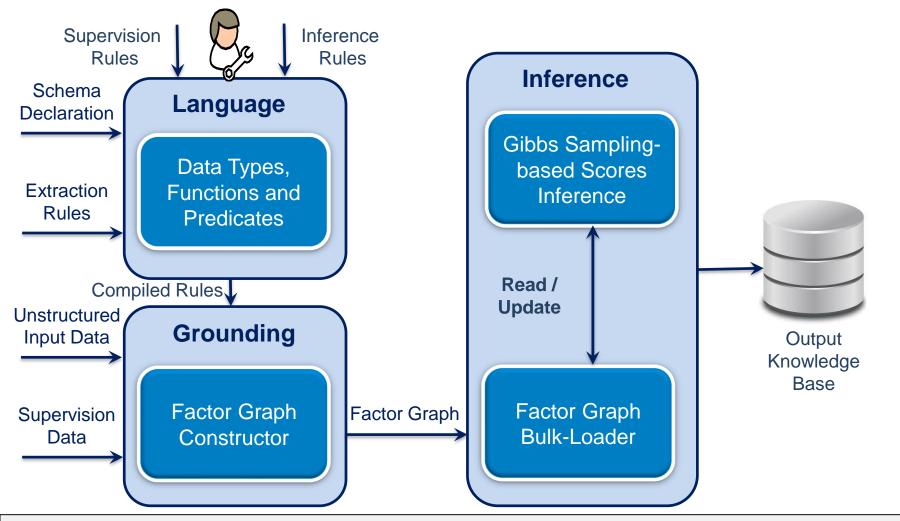
Probabilistic Knowledge Base Construction



Probabilistic Knowledge Base Construction



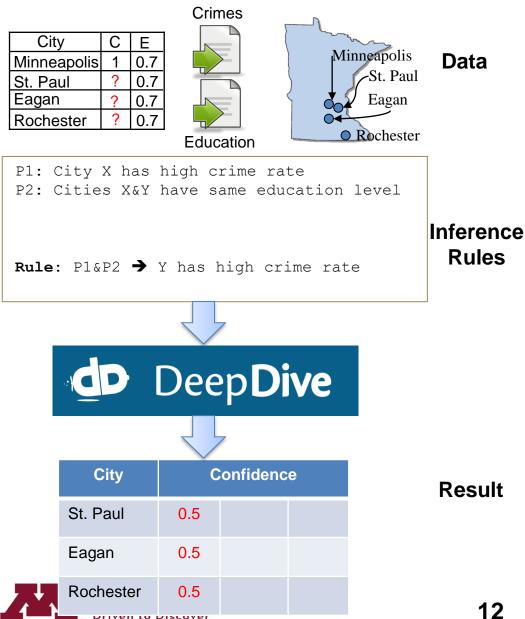
DeepDive: ML-based Knowledge-Based Construction Built on scalable implementation of Markov Logic Networks



C. Zhang, C. Ré, M. Cafarella, J. Shin, F. Wang, S. Wu. "*DeepDive: Declarative Knowledge Base Construction*" In **Communications of ACM** 60(5): 93-102 (2017)

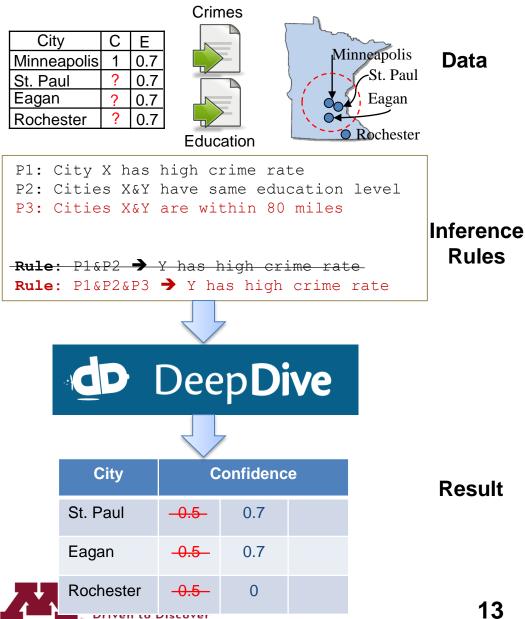
F. Niu, C. Ré, A. Doan, J. Shavlik. "*Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS*" In **PVLDB** 4(6): 373-384 (2011)

Crime rates in Minnesota

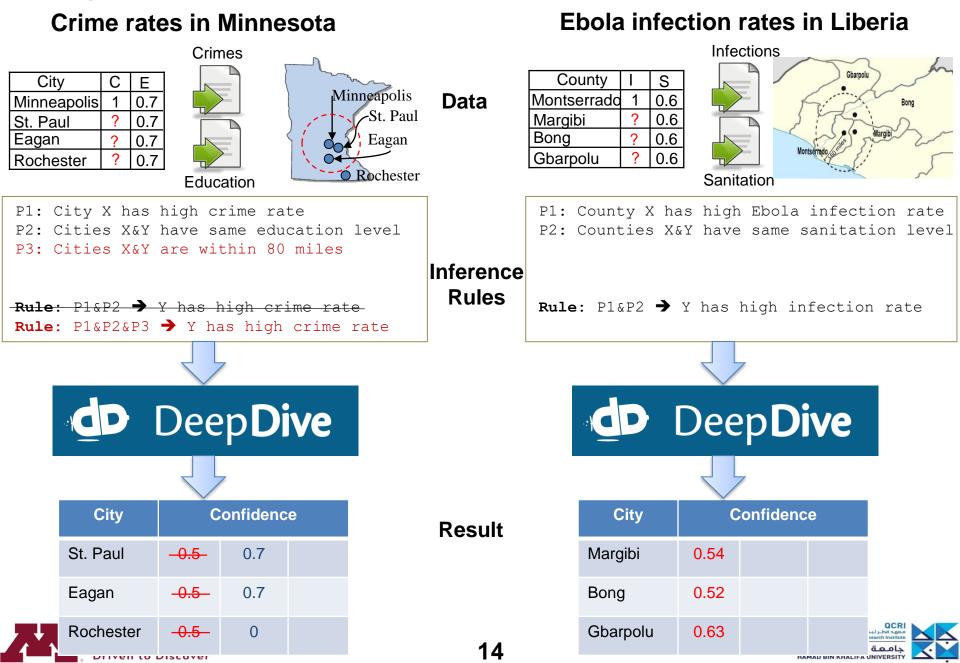


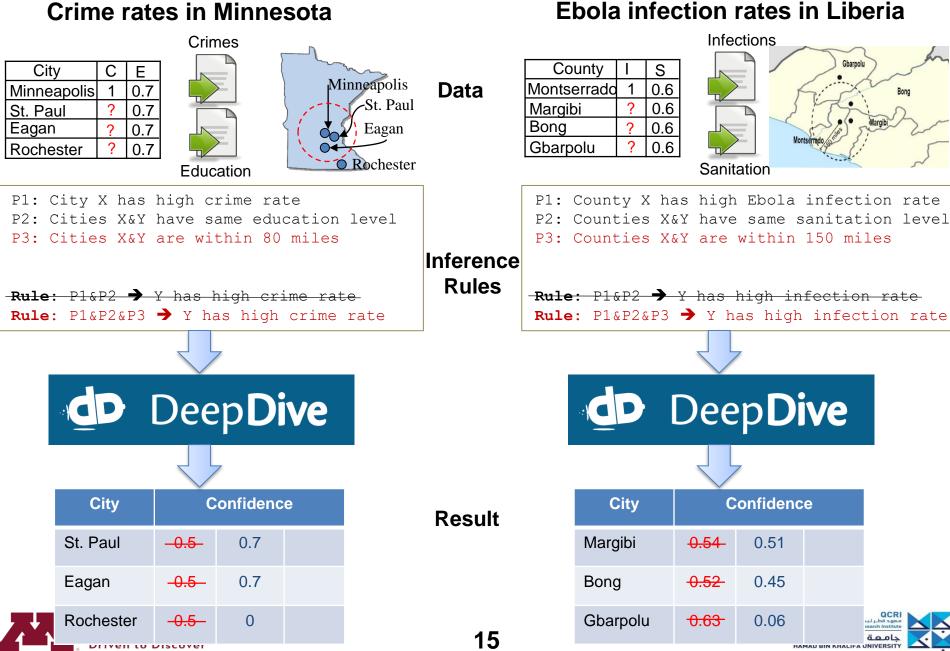
جامعة حمدين خليفة HAMAD BIN KHALIFA UNIVERSI

Crime rates in Minnesota

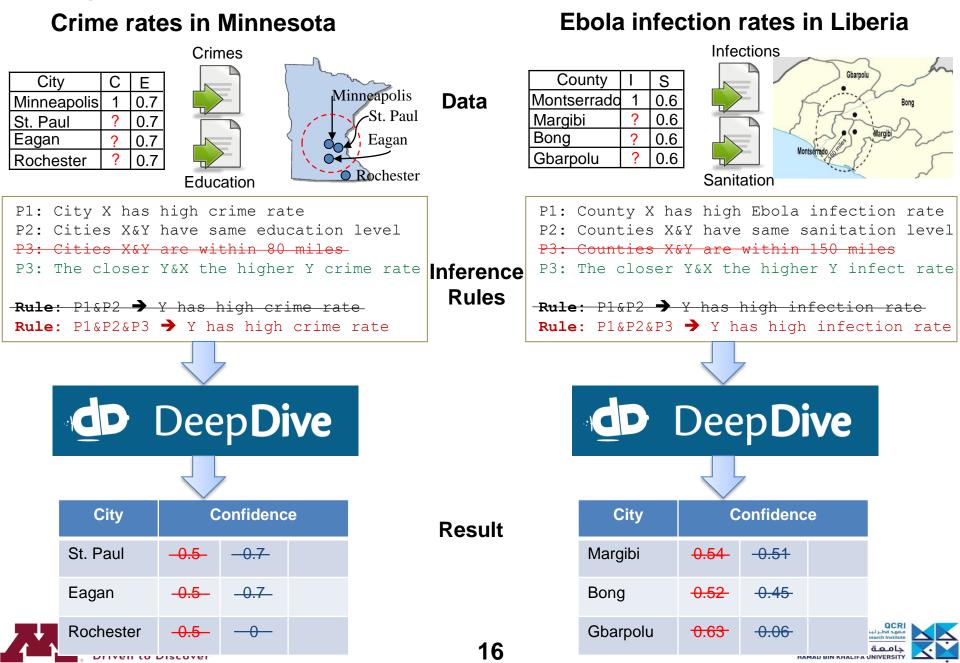


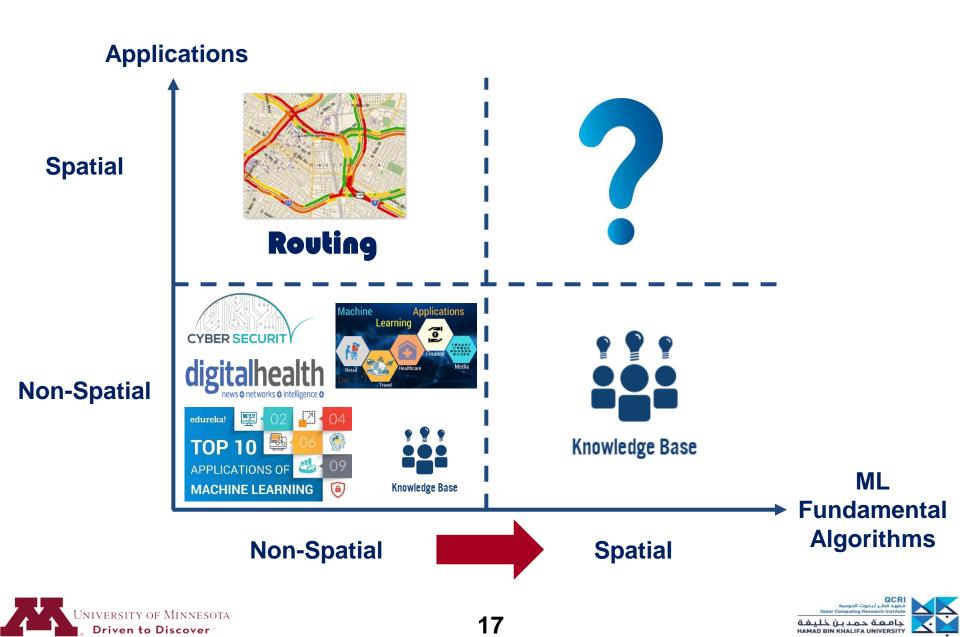
جامعة حمدين خليفة HAMAD BIN KHALIFA UNIVERSI

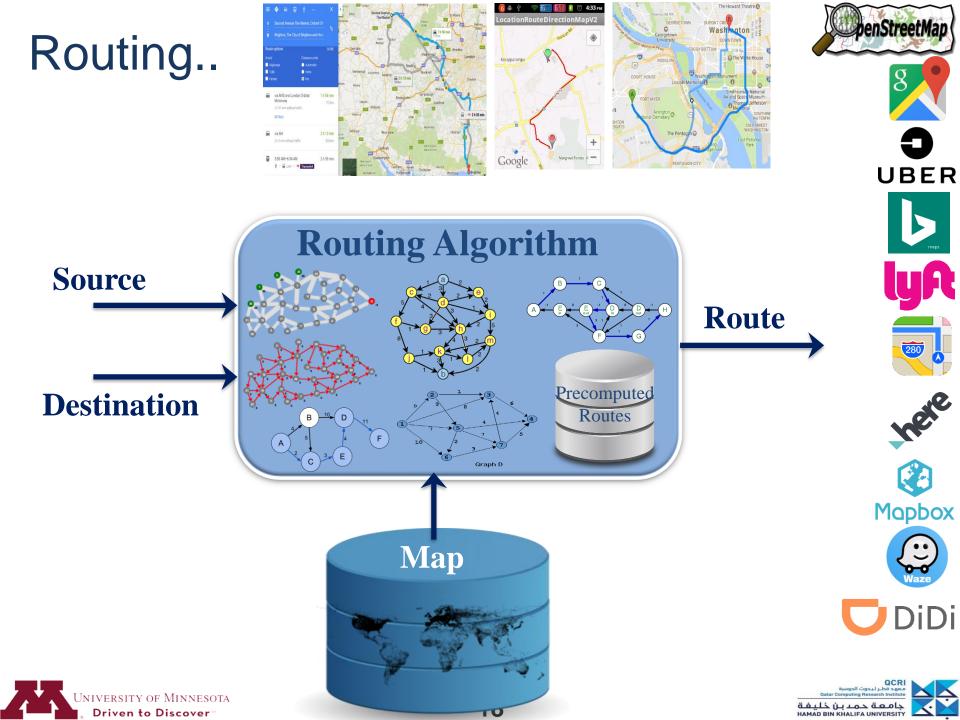


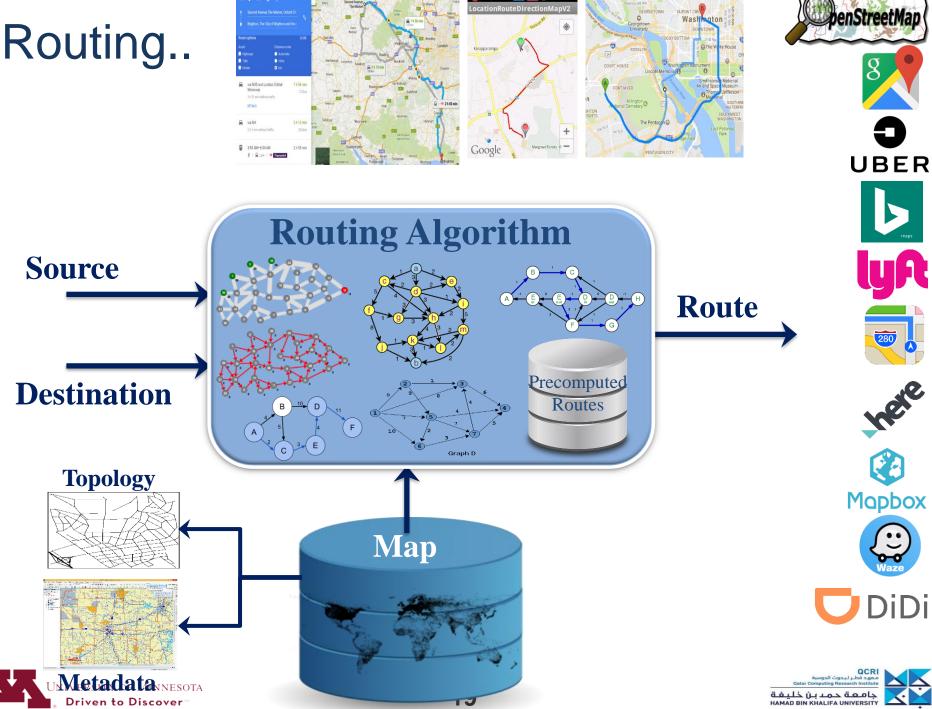


Ebola infection rates in Liberia









The Howard Theatre 🔕

J MUSIC ∩ SHOWS & PODCASTS Q SEARCH 🖌 ARTS & LIFE

TECHNOLOG

Google Maps Leads About 100 Drivers Into A 'Muddy Mess' In Colorado

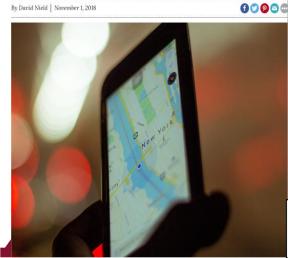
une 27. 2019 · 11:35 AM ET

MERRIT KENNEDY

POPULAR SCIENCE Google and Apple Maps have plenty of errors. Here's how to fix them.

Flag missing roads, update restaurants' opening hours, and more.

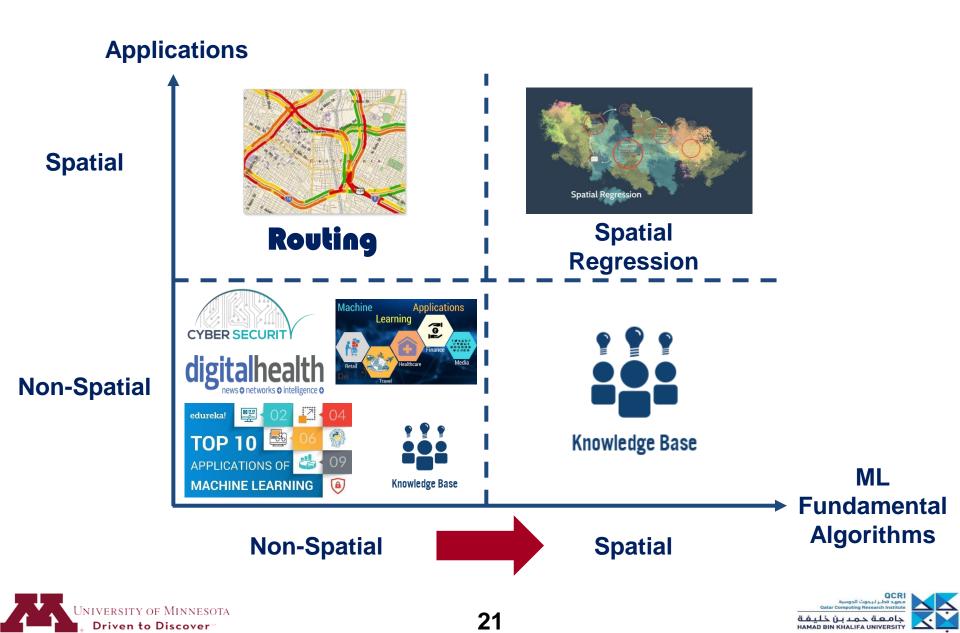
By David Nield | November 1, 2018



Google Maps vs. Apple Maps vs. Waze vs. MapQuest

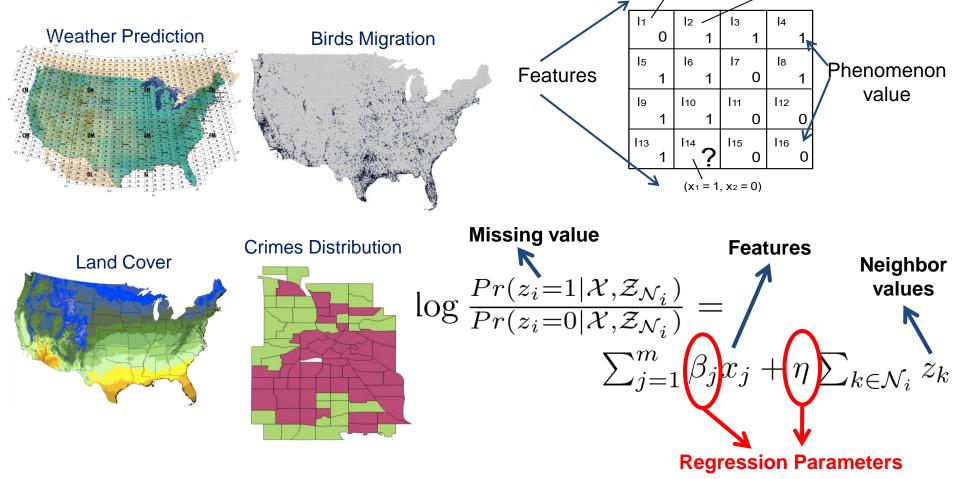
Best Maps & Navigation Apps for Mobile					Navigation Features Alternate Dautes Accidents, Alt. Assiduate Daute					Offline				
gadget HACKS	Google Maps	Apple Maps	Waze	MapQuest	Traffic Data	Alternate Routes, Accidents, Road Work, Speed Traps	Alternate Routes, Accidents, Road Work	Routes, Road Work, Potholes, Police, Speed Traps	Accidents, Road Work, Traffic Cameras	Navigation	Yes	Yes	No	No
General					Traffic Data Source	In-House, User Curated	In-House, Third- Party	In-House, User Curated	Third-Party, User Curated	Works With Screen Off	Yes	Yes	Yes	Yes
Platform	Android, iOS, macOS, Windows	iOS, macOS	Android, iOS, Windows	Android, iOS, macOS, Windows	High Traffic Warnings	Yes	Yes	No	No	App Features Dark Mode	Yes	Yes	Yes	Yes
Map Features														
Countries & Terriories Mapped	266	181	72	252	Speed Limits	Yes	Yes	Yes	Yes	Ride Share Integration	Uber, Lyft, Lime,	Uber, Lyft	None	None
Countries & Territories with Driving Directions	256	101	72	252	Lane Guidance	Yes	Yes	Yes	Yes	Picture In Picture	Yes (Android Only)	No	No	No
Street View	Yes	No	No	No	Add Toll & HOV Passes	No	No	Yes	No	Lock Screen Navigation	Yes	Yes	Yes	Yes
Overlays	Satellite, Terrain, Transit, Traffic,	Satellite, Transit	None	Satellite	Avoid Tolls & Highways	Yes	Yes	Yes	Yes	Show Festivals & Protests	No	No	Yes	No
3D View	Bicycling 3D Structures	3D Renderings	No	No	Choose Different Routes	Yes	Yes	Yes	Yes	Personalized Recommendations	Yes	No	No	No
Live Location					Add Pit Stops	Unlimited	1	1	Unlimited	Book Dinner Reservations	Via OpenTable	Via OpenTable	No	No
Sharing	Yes	Yes	No	No	Show Gas Prices	Yes	Yes	Yes	Yes	Report Traffic Issues	No	No	Yes	No
Location History	Yes	Yes	Yes	Yes	Hands-Free Control in App	Yes	Yes	Yes	No	Post Reviews	Yes	No	No	No
Cultural Hotspot Indicators	Yes	No	No	No	Directions Using Other Modes of Transport	Transit, Biking, Walking, Ride Share	Transit, Walking, Ride Share	Motorcycles, Taxis	Biking, Walking	Car Support	Android Auto, CarPlay	CarPlay	Android Auto, CarPlay	No
Weather Data	None	Weather, Temperature, Air Quality	None	Weather, Temperature	Re-Center	Yes	Yes	Yes	Yes	AR Features	Interactive Street View	Flyover	None	None
Indoor Maps	Airports, Malls, Museums	Airports, Malls	No	No	Accessible Navigation	Yes	Yes	No	No	Widgets	Yes	Yes	Yes	No
Offline Maps	Yes	Yes	No	No	Save Parking Spot	Yes	Yes	No	No	Music Integration	Yes	Yes	Yes	No
						_					_			

https://smartphones.gadgethacks.com/how-to/best-navigation-appsgoogle-maps-vs-apple-maps-vs-waze-vs-mapquest-0194591/



Spatial (Autologisitc) Regression

Find whether a spatial phenomenon exists or not, based on neighbor values and features
(x1 = 0, x2 = 1)
(x1 = 1, x2 = 1)



Learning regression parameters for 80K cells takes more than one day ⊗

UNIVERSITY OF MINNES

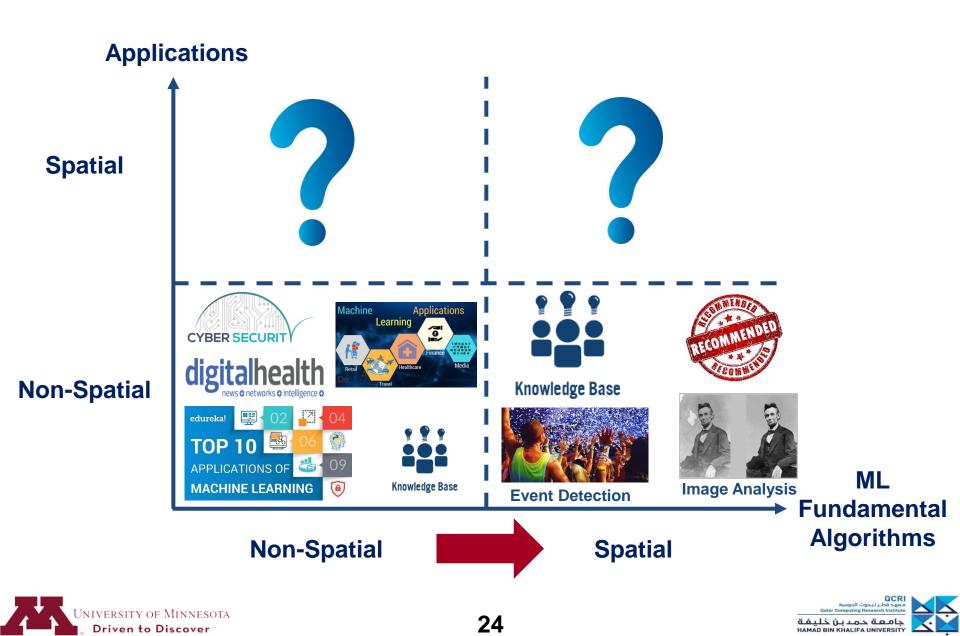
Driven to Discover

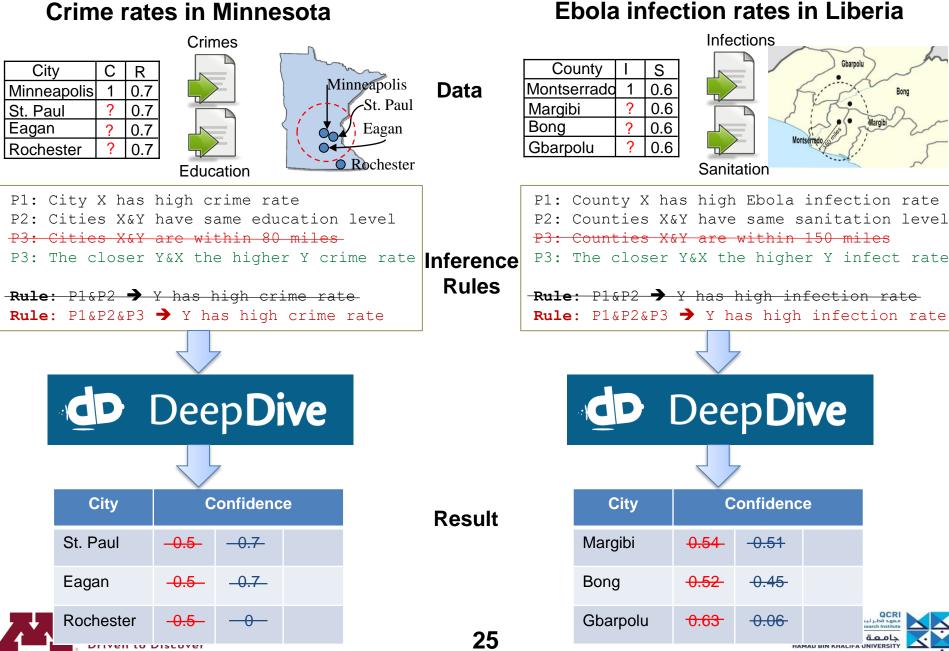
Outline

Introduction

Detailed Techniques

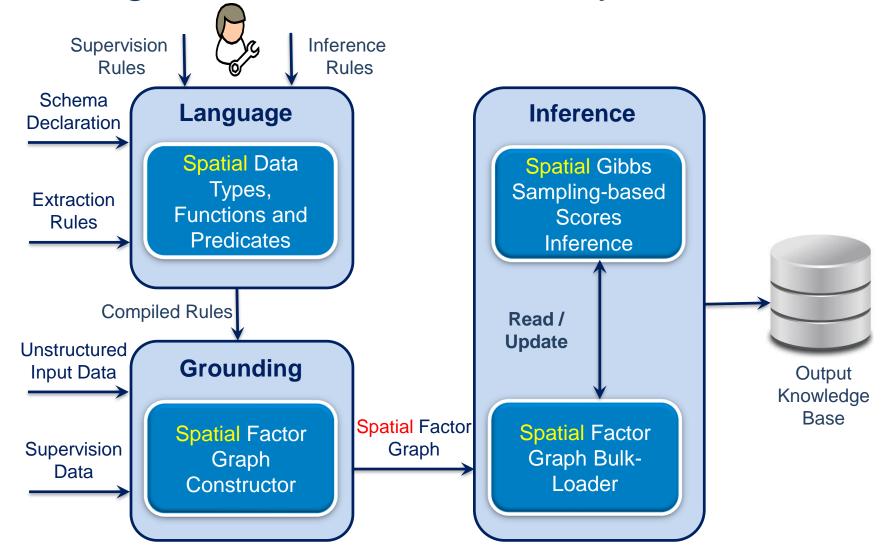
End-to-End Systems





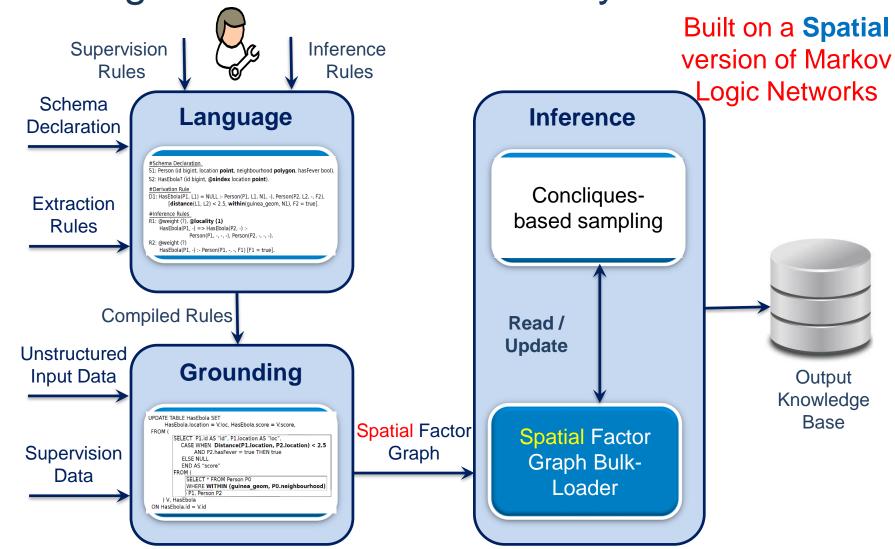
Ebola infection rates in Liberia

From DeepDive to Sya: A Spatially-Aware Knowledge-Based Construction System



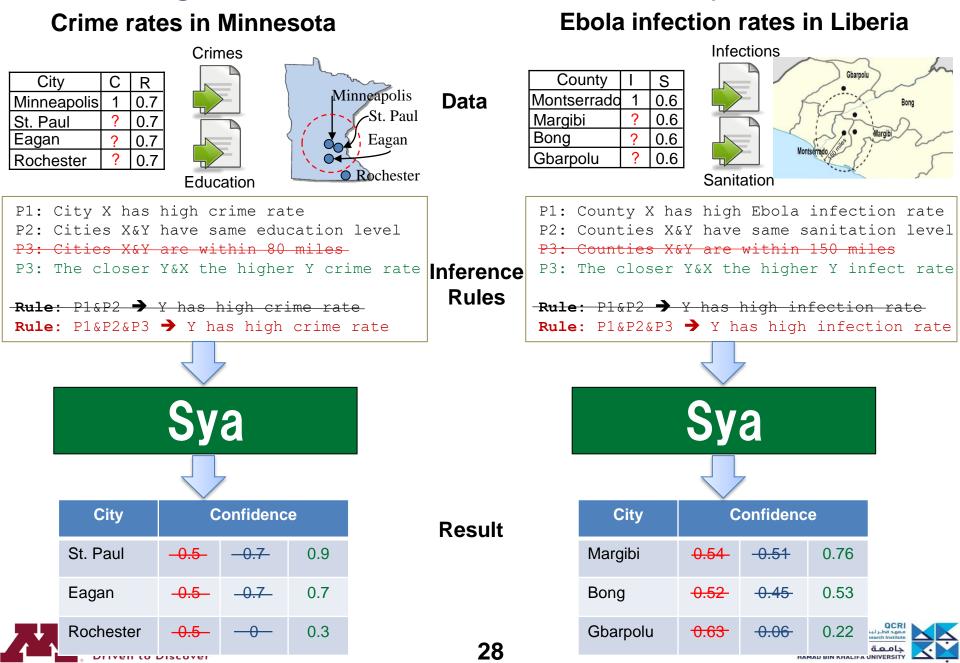
I. Sabek, M. Musleh, and M. F. Mokbel. "A Demonstration of Sya: A Spatial Probabilistic Knowledge Base Construction System". In SIGMOD 2017

From DeepDive to Sya: A Spatially-Aware Knowledge-Based Construction System



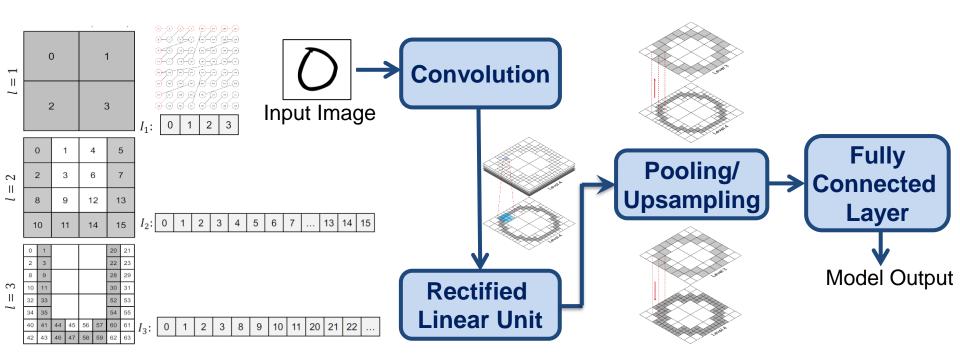
I. Sabek, M. Musleh, and M. F. Mokbel. "A Demonstration of Sya: A Spatial Probabilistic Knowledge Base Construction System". In SIGMOD 2017

Knowledge-Base Construction with Sya



Spatially-Aware ML-based Image Analysis

- Sparse object detection in images (e.g., OCR)
- Using Quadtree to improve the performance of Convolutional Neural Networks (CNN) for sparse datasets (e.g., handwriting)
 - Traditional CNNs are optimized for dense datasets

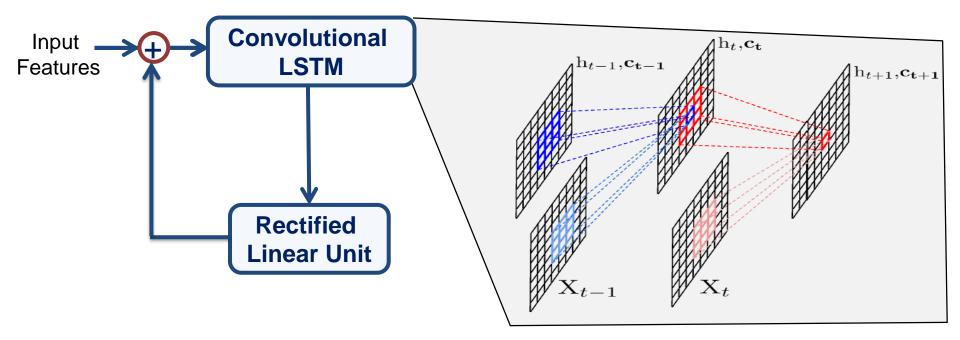


P. Jayaraman, J. Mei, J. Cai et al. "Quadtree Convolutional Neural Networks". In ECCV 2018

Spatially-Aware ML-based Event Detection

Predicting a sequence of spatiotemporal tweet counts

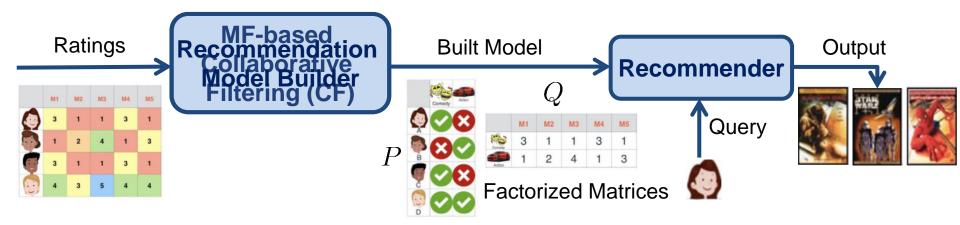
- I Traditional modeling uses Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) → focuses only on temporal aspect
- Combining the spatial convolution with LSTM networks



H. Wei, H. Zhou, J. Sankaranarayanan, S. Sengupta, and H. Samet. "*Residual Convolutional LSTM for Tweet Count Prediction*". In **WWW 2018**

Spatially-Aware ML-based Recommender System

Analyze user behavior to recommend interesting items

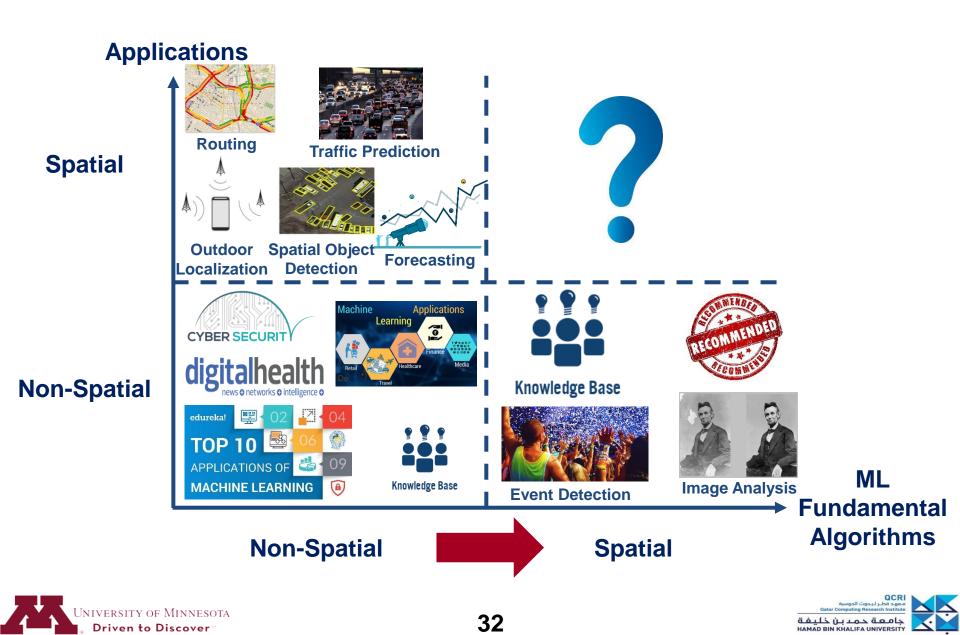


Spatio-temporal Collaborative Filtering

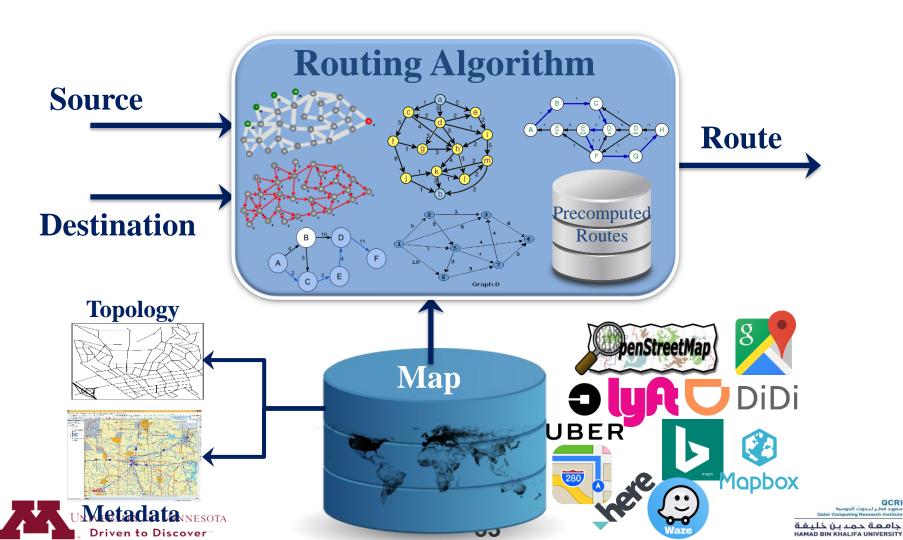
Exploiting spatial and temporal correlations across users/items

Spatial Regularization for Users $\| B \odot (R - PQ^{T}) \|_{F}^{2} + \lambda (\| P \|_{F}^{2} + \| Q \|_{F}^{2}) + \sum_{u,v} W_{p}^{(u,v)} \| p^{(u)} - p^{(v)} \|^{2}$ $+ \sum_{i,j} W_{q}^{(i,j)} \| q^{(i)} - q^{(j)} \|^{2}$ Spatial Regularization for Items

Z. Lu, D. Agarwal, and I. Dhillion. "A Spatiotemporal Approach to Collaborative Filtering". In RecSys 2009

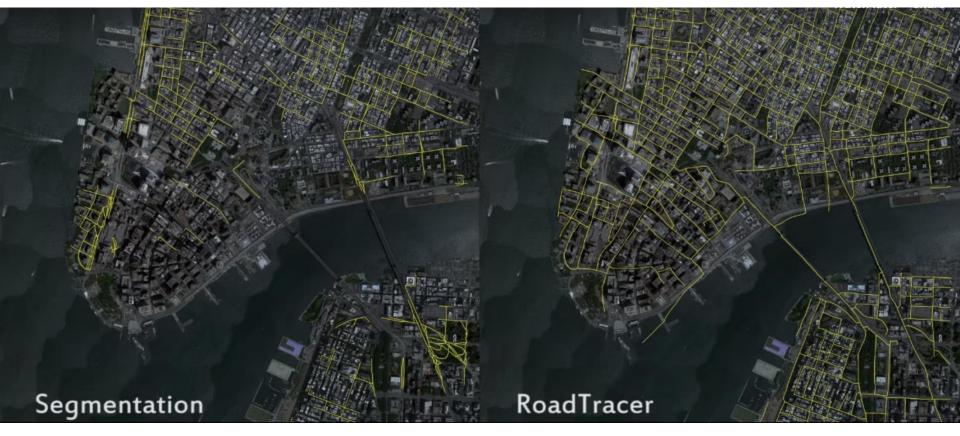


Routing..



ML for Map Making (Topology)

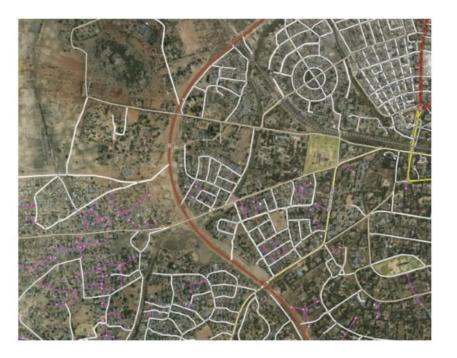
- Automatic construction of road maps from images
 - Incremental route building (point by point)
 - Using Convolution Neural Networks (CNN) to search next point



F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden and D. DeWitt. *"RoadTracer: Automatic Extraction of Road Networks from Aerial Images".* In **CVPR 2018**

ML for Map Making (Topology)

- Facebook AI provides "MapWithAI" to improve opensource mapping (e.g., OpenStreetMaps)
 - Weakly supervised learning from satellite Images using CNN
 - Apps: FB Marketplace, FB Local, and disaster response service



<u>https://mapwith.ai/</u>

ML for Map Making (Metadata)

 Learning Edge weights per time granularity (e.g., hour)
 Input: Trips (Pickup time/location, Drop off time/location, [Optional] Path)

 $(A, F, 15) \rightarrow w_2 + w_5 + w_6 = 15$ (B, H, 28) $\rightarrow w_3 + w_7 + w_8 + w_9 + w_{11} = 28$ (A, I, 19) $\rightarrow w_1 + w_3 + w_7 + w_8 + w_9 = 19$

Dimensionality

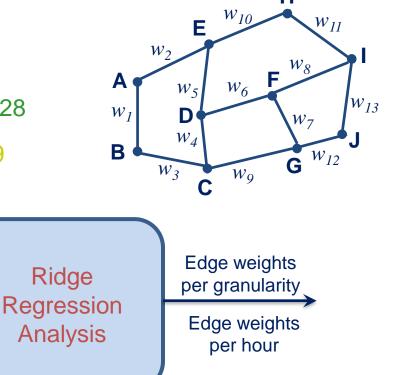
eduction

X equations in

Y unknowns

10K equations in

500K unknowns



R. Stanojevic, S. Abbar, M. Mokbel. "W-edge: Weighing the Edges of the Road Network". In **ACM** SIGSPATIAL 2018

Granularity

Hour

X` equations in

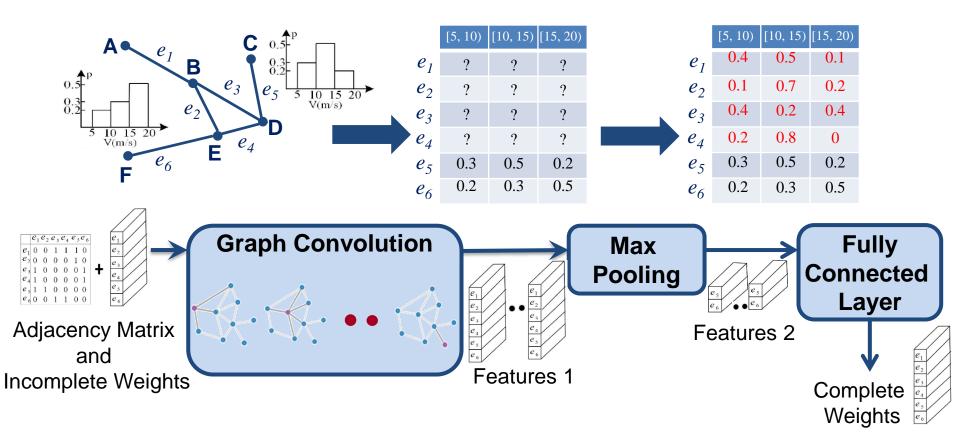
Y` unknowns

1K equations in

5K unknowns

ML for Map Making (Metadata)

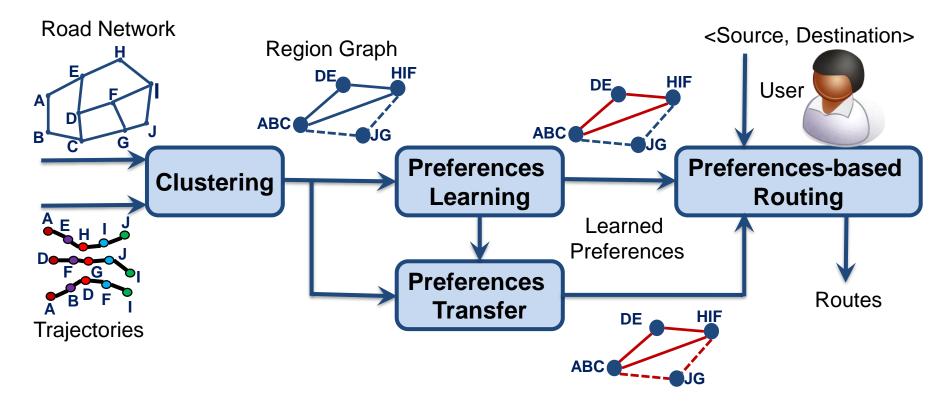
Input: Speed distribution for certain time granularity



J. Hu, C. Guo, B. Yang, and C. S. Jensen. "Stochastic Weight Completion for Road Networks using Graph Convolutional Networks". In ICDE 2019

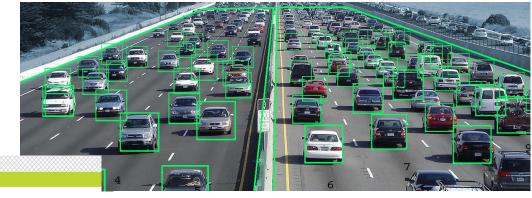
ML for Routing

- Using available trajectories to learn a better routing
 - A good route is determined by different preferences other than distance (e.g., road condition)
 - Similar trajectories can have similar preferences



C. Guo, B. Yang, J. Hu, C. S. Jensen. "Learning to Route with Sparse Trajectory Sets". In ICDE 2018

Traffic Monitoring & Prediction



Technology Profile

Real-time traffic management or short-term prediction?

In the UK, the Transpor

hort-term prediction, decision support systems and predictive modeling: all familiar concepts to experts in transportation, but given the many real-time adaptive traffic management systems, do we really need them?

When it comes to adaptive traffic management systems, the UK market is the world's most saturated. Most cities and towns face high levels of congestion on a daily basis. A well-configured SCOOT system can handle many of the day-to-day challenges facing such networks. The best investment an

authority can make to manage its network and maximize its physical assets through technology is an adaptive system, be it a highway

ATMS (advanced traffic management system) or a citywide adaptive solution. All carry a high cost/benefit ratio, though they are generally restricted to dealing with immediate traffic situations.

Technology Forum suggests that transport congestion, safety and emissions add up to a £100bn a ear (US\$130bn) problem. We are all familiar with the frustrations of the daily commute.

The problem is magnified when there is an unplanned incident in the network, whether a lane closure, emergency road works, an accident, or even an ITS failure (it does happen). With air-quality policies starting to influence cities' traffic management strategies,

congestion rising, and capacit we: Aimsun Live help: intervention could well be the with earlier communication of incident information measure of success by which ight: The Aimsun Live user road users judge operators ontrol panel features live eeds and simulations

Predicting the future This is where predictive

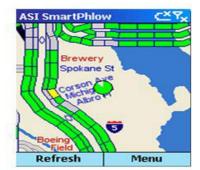
in the network remaining

largely the same timely

decision support systems (DSS) come in, working together and as traffic signals, ramp meters and message signs. enhancing these real-time systems by looking past the current situation and assessing, configured and integrated into analyzing and predicting the the system by the SANDAG

At the heart of the DSS is the Aimsun Live modeling package,

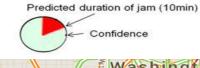
traffic



د قطـر لبحوث الحوب

جامعة حمدين خليفة

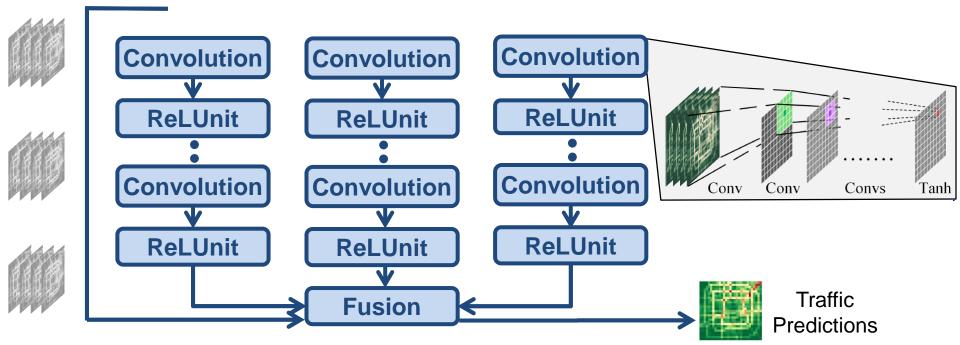
HAMAD BIN KHALIFA UNIVERSIT



Need Long-term Traffic Prediction.!!?

ML for Traffic Prediction: Residual Networks

- Using convolution-based residual networks to handle both spatial and temporal dependencies
 - Inputs are divided into time spans, then each span is processed with a residual network, and finally all outputs are fused together

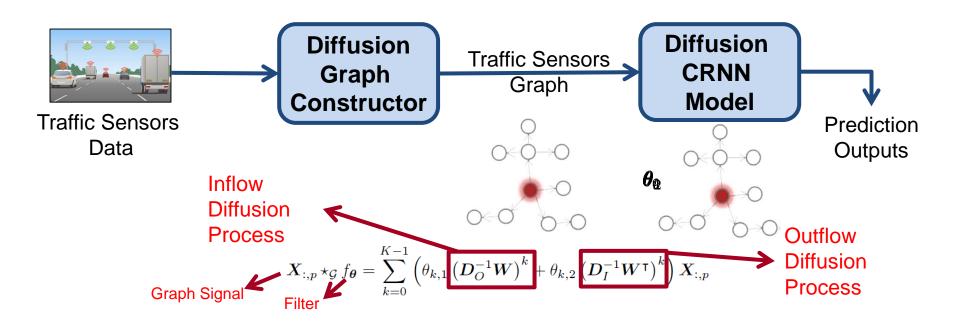


J. Zhang, Y. Zheng, and D. Qi. "Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction". In AAAI 2017

Traffic Maps

ML for Traffic Prediction: DCRNN

- Modeling the traffic prediction as a graph problem
 - ☐ Traffic sensors are nodes, and edge weights denote spatial proximity among these nodes → capturing spatial correlation
 - Employing Diffusion Convolutional RNN (DCRNN)
 - Diffusion processes for *inflow* and *outflow* traffic flows

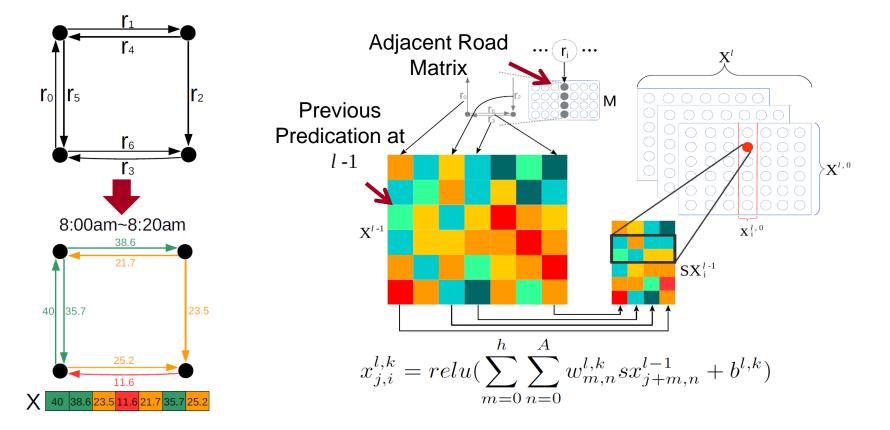


Y. Li, R. Yu, C. Shahabi, and Y. Liu. "*Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting*". In **ICLR 2018**

ML for Traffic Prediction: GCNN

Using Graph Convolutional Neural Network (GCNN)

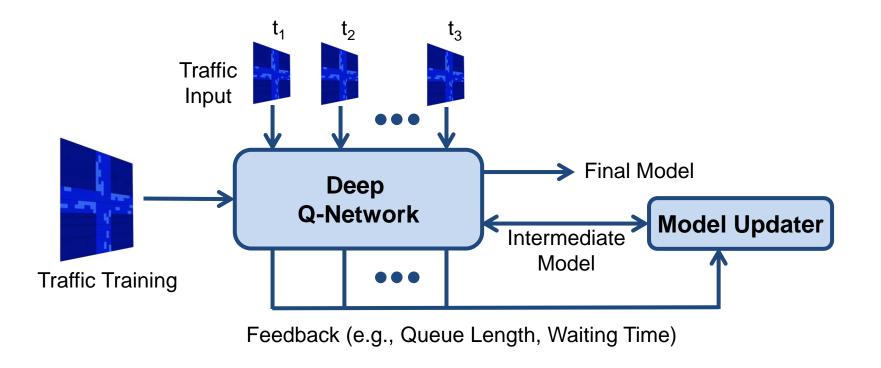
A novel road network embedded convolution method to learn meaningful spatial and speed features



Z. Lv, J. Xu, K. Zheng, H. Yin, P. Zhao, and X. Zhao. "*LC-RNN: A Deep Learning Model for Traffic Speed Prediction*". In **IJCAI 2018**

ML for Traffic Prediction: Reinforcement Learning

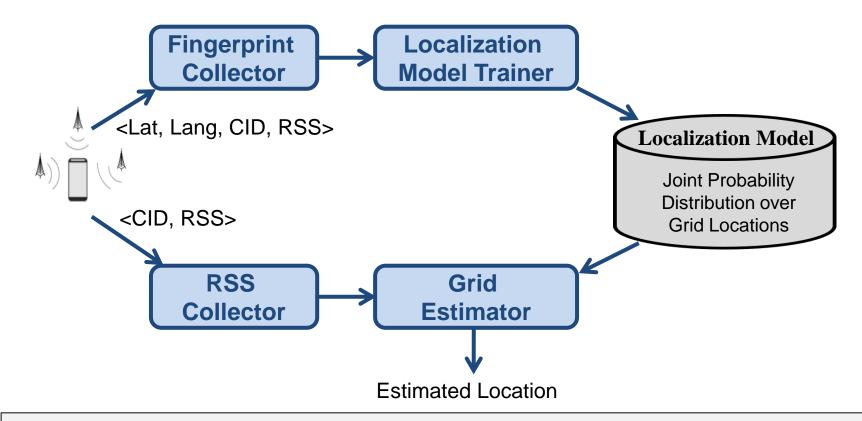
Real-time Traffic Lights Control via Reinforcement Learning
 Using non-spatial signals (e.g., waiting time) to update the model



H. Wei, G. Zheng, H. Yao, and Z. Li. "IntelliLight: A Reinforcement Learning Approach for Intelligent Traffic Light Control". In ACM SIGKDD 2018

ML for Outdoor Localization

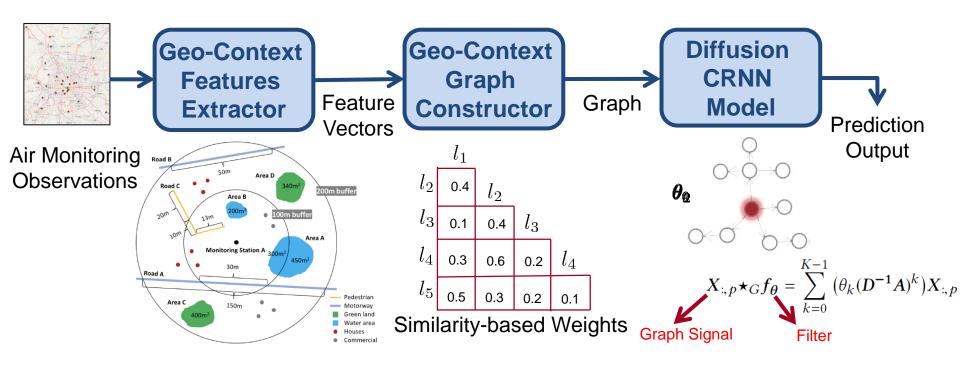
- Localizing people using their phones and without GPS
 - □ Fingerprinting using Received Signal Strength from cell towers
 - Having offline (training) and online (tracking) phases



A. Shokry, M. Torki, M. Youssef. "DeepLoc: A Ubiquitous Accurate and Low-overhead Outdoor Cellular Localization System". In ACM SIGSPATIAL 2018

ML for Air Quality Forecasting

- Prediction at a certain location and within a time period
 - Traditional approach uses a hybrid regression model to separately deal with spatial and temporal correlations
 - Using joint spatiotemporal-aware CNN is more efficient
 - Defining more "important" geo-context features than distance

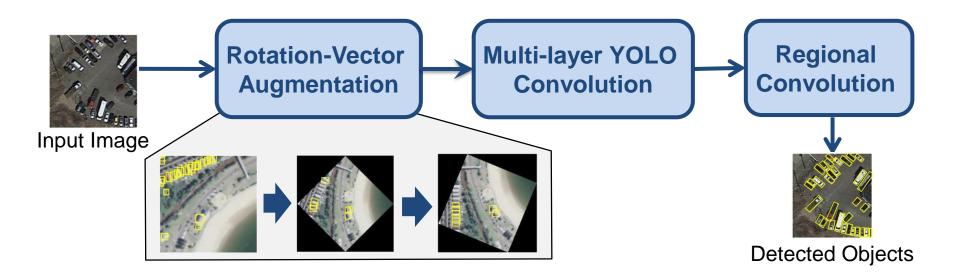


Y. Lin, N. Mago, Y. Gao, Y. Li, Y. Chiang, C. Shahabi, and J. L. Ambite. "*Exploiting Spatiotemporal Patterns for Accurate Air Quality Forecasting Using Deep Learning*". In **ACM SIGSPATIAL 2018**

ML for Geospatial Object Detection

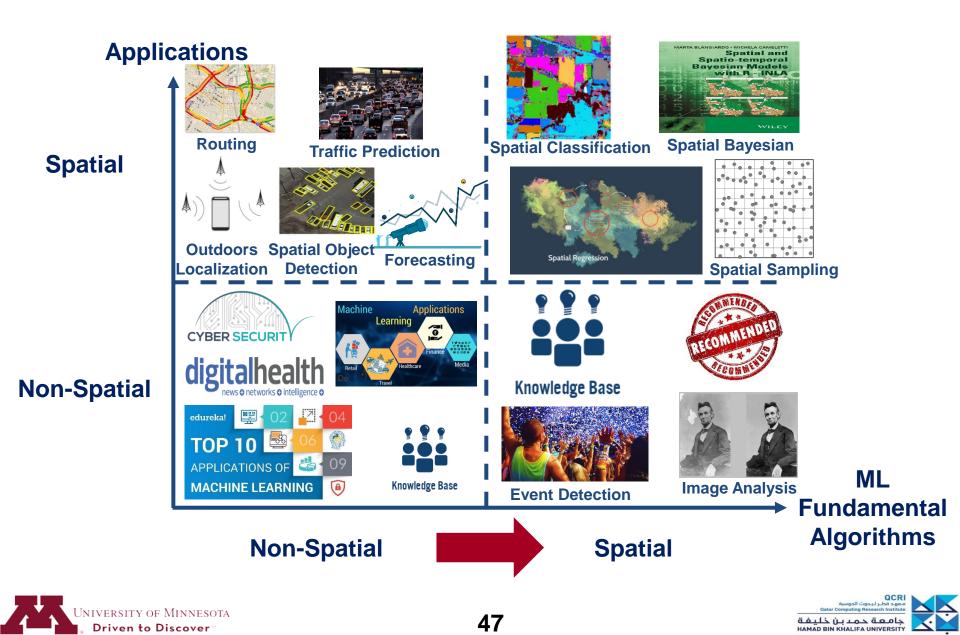
Detecting geospatial objects (e.g., buildings) from images

- Challenging as directions are not parallel to the orthogonal axes
- Existing techniques detect the Minimum Orthogonal Bounding Rectangles (MOBR) of objects only (e.g., YOLO Framework)
- Main idea is to extract features from rotated images
 - No need for new training data with different rotations



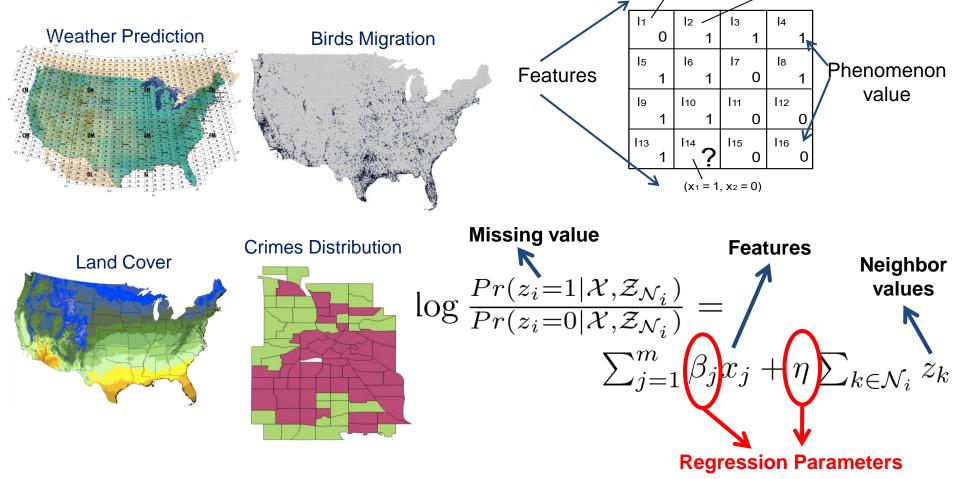
Y. Xie, R. Bhojwani, S. Shekhar, and J. Knight. "An Unsupervised Augmentation Framework for Deep Learning Based Geospatial Object Detection: A Summary of Results". In ACM SIGSPATIAL 2018

Machine Learning meets Big Spatial Data



Spatial (Autologisitc) Regression

Find whether a spatial phenomenon exists or not, based on neighbor values and features
(x1 = 0, x2 = 1)
(x1 = 1, x2 = 1)

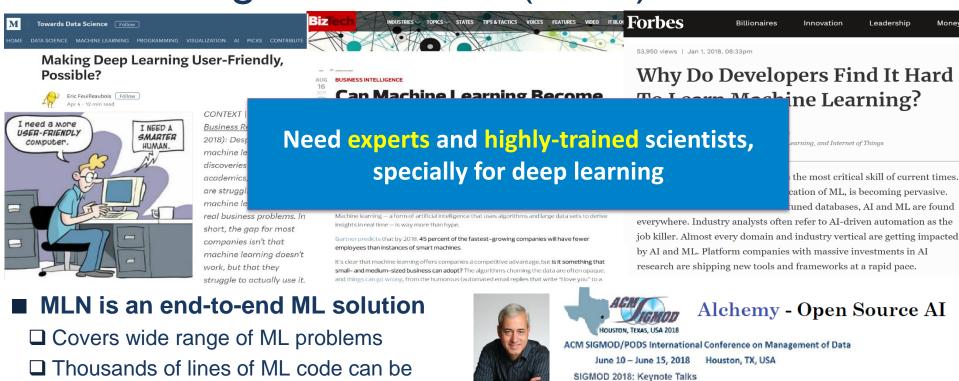


Learning regression parameters for 80K cells takes more than one day ⊗

UNIVERSITY OF MINNES

Driven to Discover

Markov Logic Networks (MLN)



done in few MLN formulas

July 3, 2018

Can Markov Logic Take Machine Learning to the Next Level?

Alex Woodie

Advances in machine learning, including deep learning, have propelled artificial intelligence (AI) into the public conscience and forced executives to create new business plans based on data. However, the

Rule weights

DARPA MEMEX

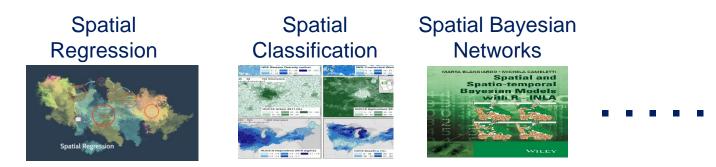
Machine Learning for Data Management: Problems and Solutions

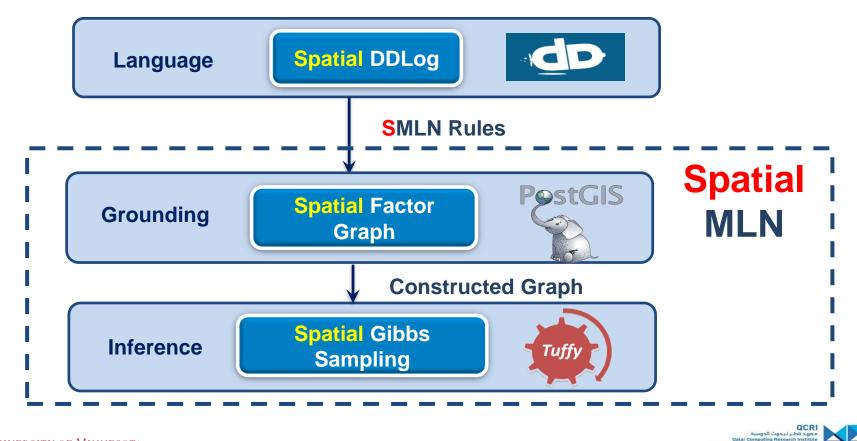
Scalable RDBMS-based

MLN System

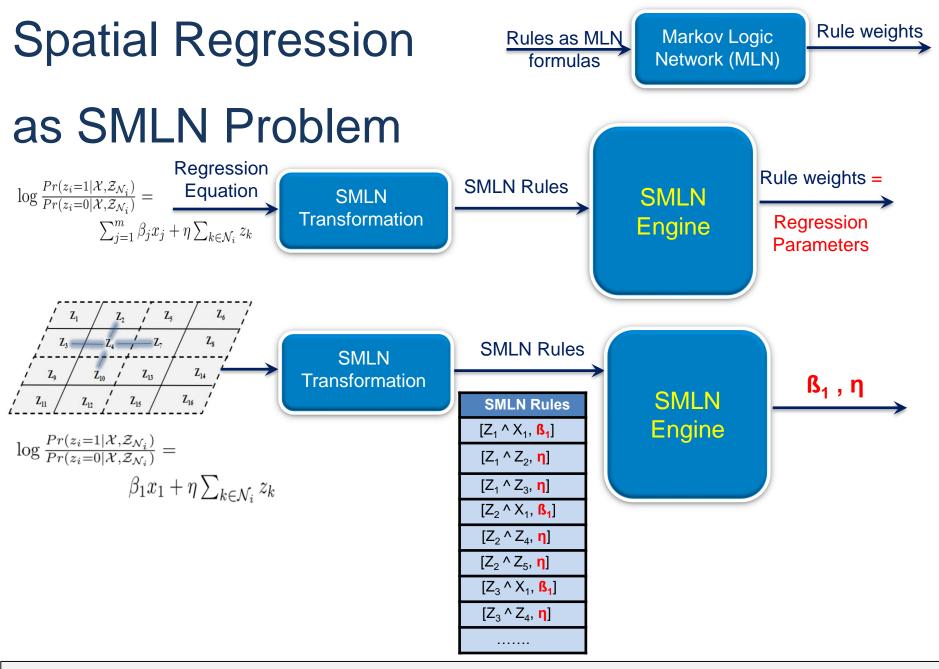
Deep**Dive**

From MLN to Spatial MLN





جامعة حمد بن خليفة HAMAD BIN KHALIFA UNIVERSITY



I. Sabek, M. Musleh, and M. F. Mokbel. "*TurboReg: A Framework for Scaling Up Spatial Logistic Regression Models*". In **SIGSPATIAL 2018**

Bayesian Modeling

- Analyzing spatial data for prediction, estimating parameters, and capturing correlations
 - Traditional assumption is Gaussian processes
 - Estimating parameters is a bottleneck in case of big data

$$y = \beta X + \epsilon \longrightarrow \sim Normal(0, \sigma^2 \rho)$$
Nx1 Vector of Outcomes px1 Vector of Slopes of Features Nxp Matrix of Features

Using Bayesian inference, the joint posterior distribution can be estimated in a closed form

$$\begin{split} p(\beta,\sigma^2|y) &= p(\sigma^2|y) p(\beta|\sigma^2,y) \\ &\swarrow \\ \sim InverseGamma(\sigma^2,c) &\sim Normal(\beta|Mm,\sigma^2M) \end{split}$$

Need to calculate c, M, m efficiently on a large scale

Quadtree-based Bayesian Modeling

- Main Idea: exploiting likelihood decomposition
 - Replacing the joint posterior distribution with a composite one that assumes independence across partitions

 $Q \mathbf{V} \perp c$

$$y = \beta X + \epsilon$$

$$m_0, M_0 \longleftarrow y_0 = \beta X_0 + \epsilon_0 \stackrel{0}{} \stackrel{1}{} y_1 = \beta X_1 + \epsilon_1 \longrightarrow m_1, M_1$$

$$m_2, M_2 \longleftarrow y_2 = \beta X_2 + \epsilon_2 \stackrel{2}{} \stackrel{3}{} \stackrel{3}{} y_3 = \beta X_3 + \epsilon_3 \longrightarrow m_3, M_3$$

$$m = \sum_{k=0}^{K-1} (m_k - (1 - \frac{1}{K})C_\beta)$$

$$M^{-1} = \sum_{k=0}^{K-1} (M_k^{-1} - (1 - \frac{1}{K})H_\beta)$$
Calculate C based on *m* and *M* using a closed form

R. Guhaniyogi, and S. Banerjee. "*Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive Spatial Datasets*". In Journal of Technometric 2018

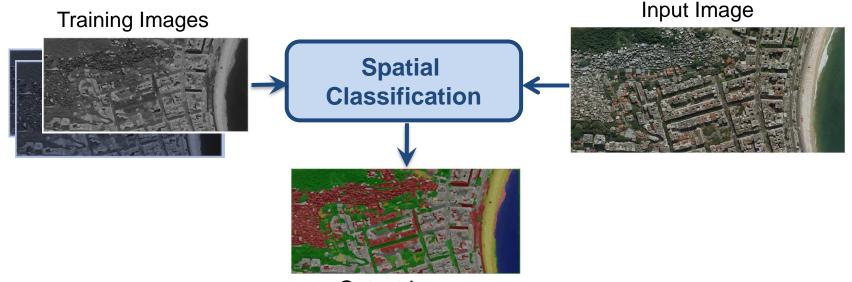
Spatial Classification

Input

- Training images labeled with pre-defined spatial classes
- Unknown image

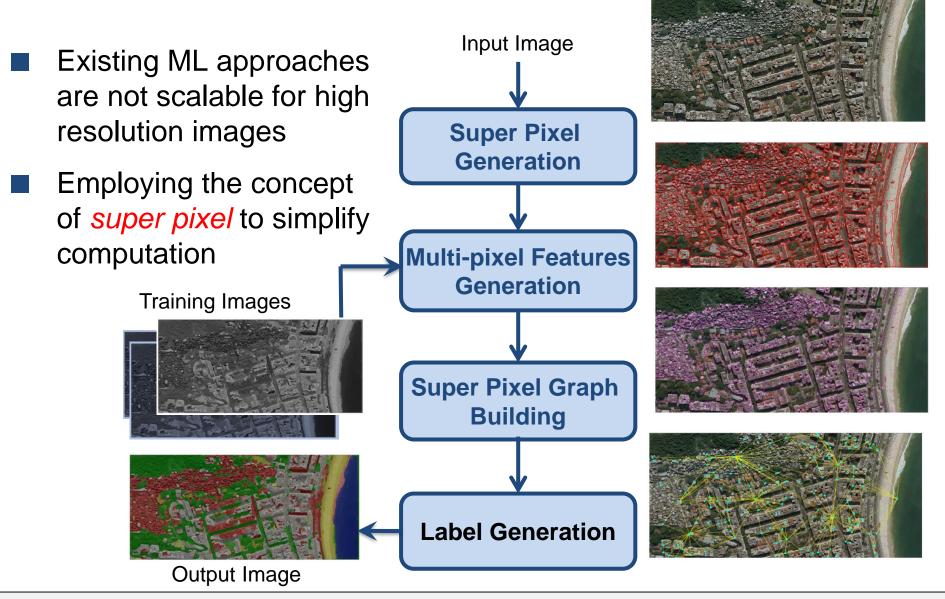
Output

The same input image, yet, labeled with one or more of the spatial classes



Output Image

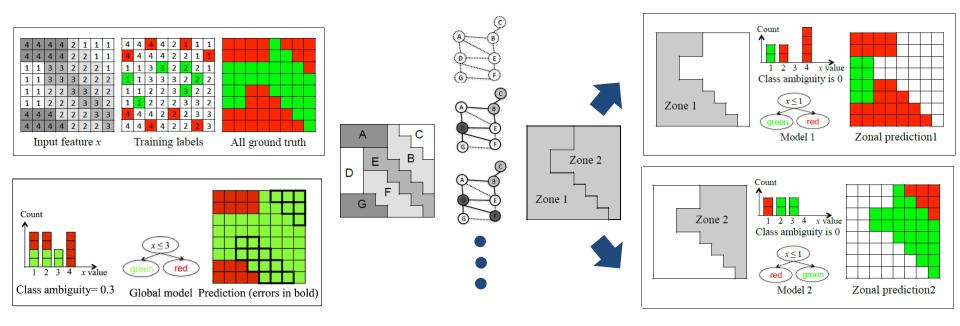
Scalable ML-based Spatial Classification



M. Sethi, Y. Yan, A. Rangarajan, R. R. Vatsavai, and S. Ranka. "Scalable Machine Learning Approaches for Neighborhood Classification Using Very High Resolution Remote Sensing Imagery". In **SIGKDD 2015**

Ensemble Learning Spatial Classification

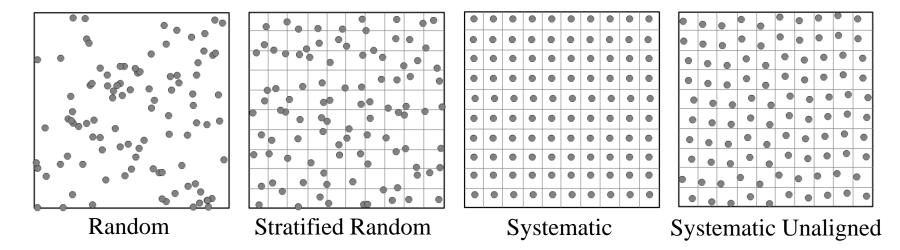
- Efficient classification over heterogonous spatial data
 - Class ambiguity: same feature values belong to different classes in different locations
 - Learn ensembles on spatial neighborhoods in parallel
 - Global models have higher error rates and are much slower



Z. Jiang, Y. Li, S. Shekhar, L. Rampi, and J. Knight. "Spatial Ensemble Learning for Heterogeneous Geographic Data with Class Ambiguity: A Summary of Results". In SIGSPATIAL 2017

Spatial Sampling

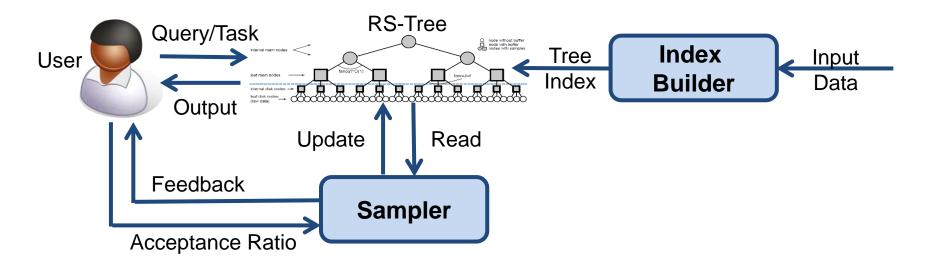
- Collecting representative samples in a 2-D framework
 - Could have a second-phase to reduce errors in initial samples



- Spatial sampling is more challenging with "big" data
 - Can be easily dragged to "biased" sampling
 - Exploiting ML to learn more "accurate" spatial samples

ML-based Incremental Spatial Sampling

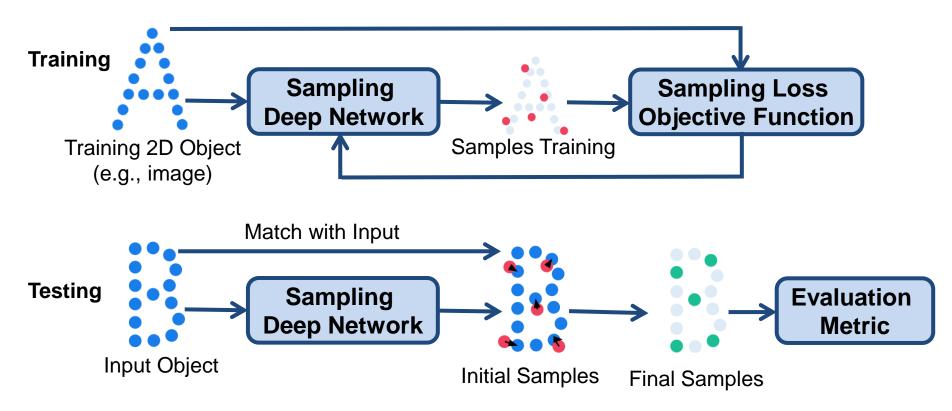
- No need to wait for the whole sampling to be done
 - Iterative sampling iterations with feedback from users
- The main idea is "level sampling"
 - Embedding samples into indexing structures (e.g., R-tree)
 - Lazy exploration for efficient processing
 - Visiting the children of any cell only after its sample buffer is exhausted (either consumed or rejected)



L. Wang, R. Christensen, F. Li, and K. Yi. "Spatial Online Sampling and Aggregation". In VLDB 2015

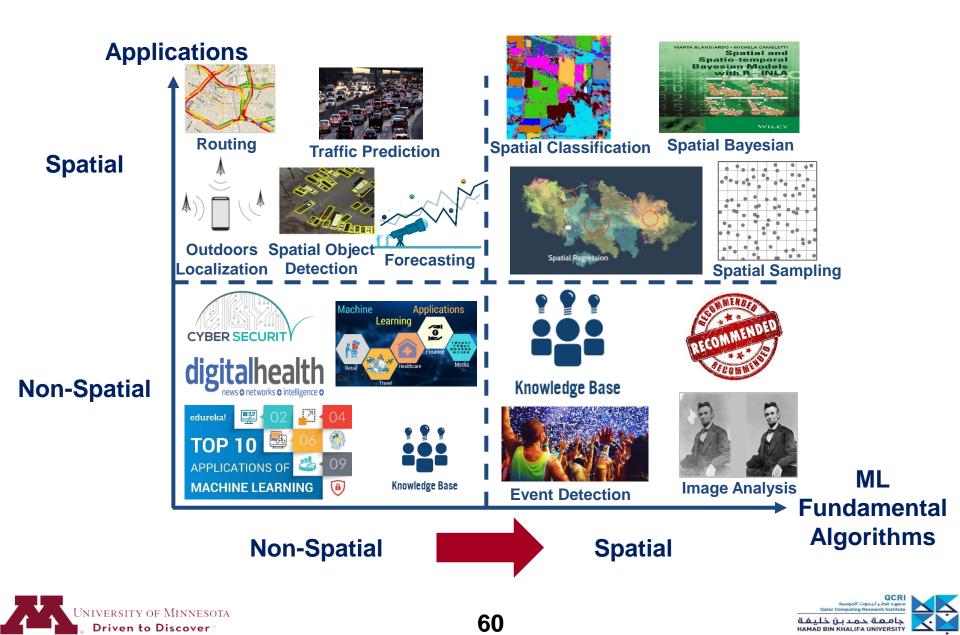
Deep Learning-based Spatial Sampling

- Exploiting deep learning to learn spatial samples
 - Training: a deep network is trained to preserve the original shape
 - Testing: generated samples are matched with the input to estimate the error for feedback



O. Dovrat, I. Lang, and S. Avidan. "Learning to Sample". In CVPR 2019

Machine Learning meets Big Spatial Data



Outline

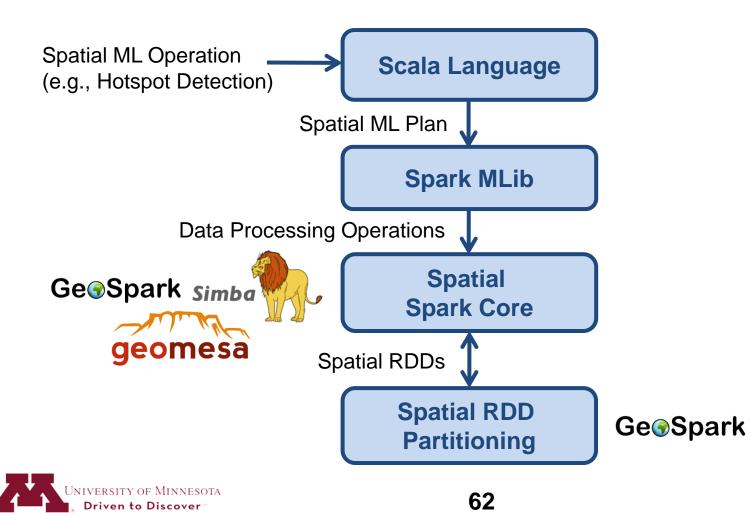
Introduction

End-to-End Systems

Spark-based Spatial ML Systems

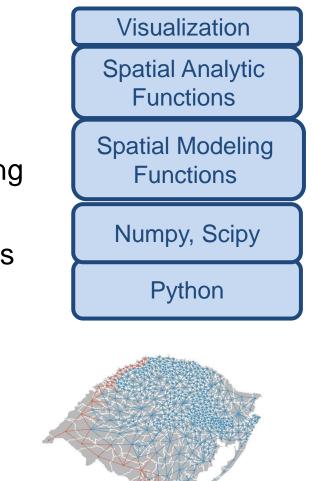
امعة حمدين خليف

Integrating Spark MLib with spatially-equipped spark core and RDD operations

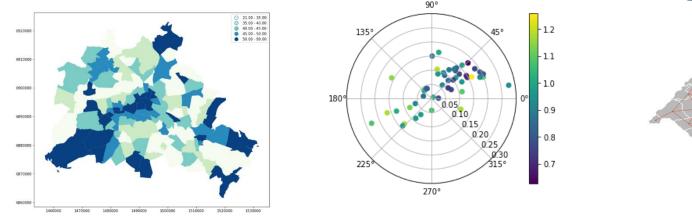


PySAL: Python Spatial Analysis Library

- Open source cross-platform library for geospatial data science on vector data
 - Spatial clusters, hot-spots, and outliers
 - Spatial regression and statistical modeling
 - Spatial econometrics
 - Exploratory spatio-temporal data analysis



S. J. Rey, and L. Anselin. "*PySAL: A Python Library of Spatial Analytical Methods*". In **Review of Regional** Studies 37, 5-27 2007 <u>https://pysal.org/</u>



Flash: Scalable Spatial Data Analysis Using Markov Logic Networks

- Based on the design and deployment of Spatial Awareness in Probabilistic Graphical Models
 - Spatial Markov Random Fields (SMRF)
 - Spatial Hidden Markov Models (SHMM)
 - Spatial Bayesian Networks (SBN)

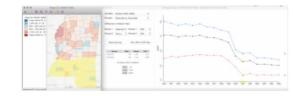
I. Sabek, M. Musleh, and M. F. Mokbel. "Flash in Action: Scalable Spatial Data Analysis Using Markov Logic Networks". In VLDB 2019

GeoDA: An Introduction to Spatial Data Analysis

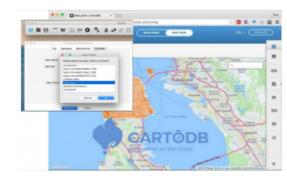
Exploratory spatial data analysis tool

- Enriched visualization tools
- Including spatial clustering, outliers detection, spatial regression
- Latest versions are open source (OpenGeoDa)
- Cross-platform
- Support cloud-based computation
 - Designed to support datasets with more than 170000 observations efficiently

Basemaps help contextualize the main map layer.



The Averages Chart aggregates trends across time and space.



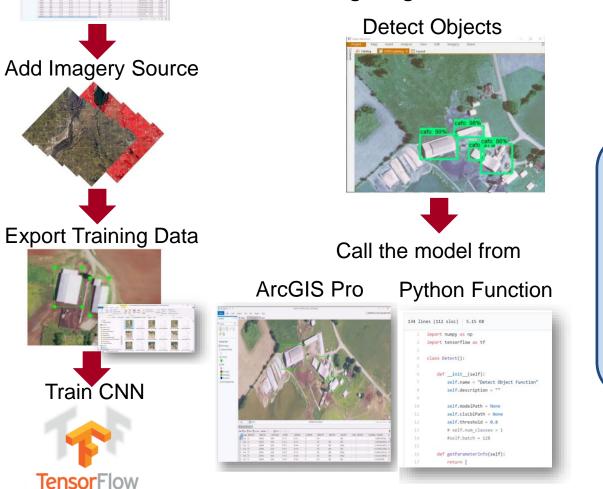
The latest version of GeoDa integrates with CartoDB.

L. Anselin, I. Syabri, and Y. Kho. "GeoDa: An Introduction to Spatial Data Analysis". In Journal of Geographical Analysis 2006 http://geodacenter.github.io/

ESRI ArcGIS GeoAl & GeoAnalytics

Sample Training Data

GeoAl tools integrated with Tensor **ArcGl** flow for deep learning, classification, clustering, regression, etc. GeoAnalytics Distributed



esri.com/en-us/arcgis/products/arcgis-geoanalytics-server

Big Spatial Data

JeoAnaly

TICS

ArcGIS

Terminal(s)

Server

Server for scalability

ArcGIS Core

eoAnalyti

Server

eoAnaly

Server

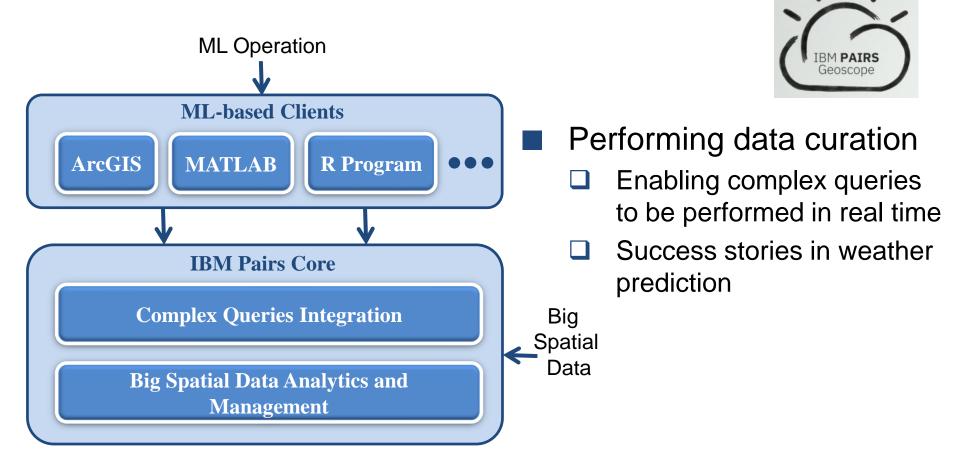
ML Operation

eoAnaly

Server

IBM PAIRS GeoScope

A cloud-based service for geospatial analytics and machine learning modeling



L. J. Klein, F. J. Marianno, C. Albrecht, M. Freitag, S. Lu, N. Hinds, X. Shao, S. Rodriguez, and H. F. Hamann. "*PAIRS: A Scalable Geo-spatial Data Analytics Platform".* In **IEEE Big Data 2015**

Machine Learning meets Big Spatial Data

