
Sya: Enabling Spatial Awareness inside
Probabilistic Knowledge Base Construction

Ibrahim Sabek
Department of Computer Science and Engineering

University of Minnesota, Minnesota, USA
sabek@cs.umn.edu

Mohamed F. Mokbel∗
Qatar Computing Research Institute

Hamad bin Khalifa University, Doha, Qatar
mmokbel@hbku.edu.qa

Abstract—This paper presents Sya; the first spatial probabilis-
tic knowledge base construction system, based on Markov Logic
Networks (MLN). Sya injects the awareness of spatial relation-
ships inside the MLN grounding and inference phases, which
are the pillars of the knowledge base construction process, and
hence results in a better knowledge base output. In particular,
Sya generates a probabilistic model that captures both logical and
spatial correlations among knowledge base relations. Sya provides
a simple spatial high-level language, a spatial variation of factor
graph, a spatial rules-query translator, and a spatially-equipped
statistical inference technique to infer the factual scores of
relations. In addition, Sya provides an optimization that ensures
scalable grounding and inference for large-scale knowledge bases.
Experimental evidence, based on building two real knowledge
bases with spatial nature, shows that Sya can achieve 70% higher
F1-score on average over the state-of-the-art DeepDive system,
while achieving at least 20% reduction in the execution times.

I. INTRODUCTION

Knowledge base construction has been an active area of
research over the last two decades with several system pro-
totypes coming from academia (e.g., [4], [6]) and industry
(e.g., [7], [12], [26]), along with many important applications,
e.g., web search [18], digital libraries [11], and health care [8].
The goal of knowledge base construction is to extract factual
structured data (i.e., knowledge base) from unstructured data
sources, e.g., Wikipedia, semantic web, and business logs.
Examples of such facts include “Alice is a spouse of Bob”
or “John has Ebola”. Most recently, the idea of probabilistic
(instead of factual) knowledge bases has been proposed, where
each extracted relation is associated with a probability of how
the system is confident that this relation is factual (e.g., see [9],
[10], [25], [36]). An example of such probabilistic relations is
“Alice is a spouse of Bob with 80% probability”.

Recently, Markov Logic Networks (MLN) [34] have been
a standard tool for building probabilistic knowledge base
construction systems. Examples of such systems include Deep-
Dive [36], ProbKB [9], and Archimedes [10]. In these MLN-
based systems, users express the knowledge base construction
logic using a set of first-order logic rules [16]. Then, such rules
are processed on two steps: 1) grounding, which evaluates
the rules to construct a ground factor graph [43] that encodes

∗Also affiliated with University of Minnesota, MN, USA.
1This work is partially supported by the National Science Foundation, USA,

under Grants IIS-1525953 and CNS-1512877.

(c) Liberia Counties Map

DeepDive

+ Spatial
Sya

1 1

0.51 0.76

0.45 0.53

0.06 0.22

Sanitation

Level

Montserrado

Margibi

Bong

County

0.6

Gbarpolu

0.6

0.6

0.6

Ebola

Infection Rate

1

?

?

?

Margibi

Bong

Gbarpolu

Montserrado

Infection Rate Range

Montserrado

Margibi

Bong

County

[0.6, 1]

DeepDive

1

Gbarpolu

[0.6, 1] 0.54

[0.4, 0.6[0.52

[0.2, 0.4[0.63

(a) Input to Knowledge Base System (b) Output from Knowledge Base System

Fig. 1. Factual Scores of EbolaKB Using DeepDive and Sya.

the probability distribution of all extracted knowledge base
relations; and 2) inference, which estimates the marginal dis-
tribution (i.e., factual score) for each relation. Unfortunately,
current MLN-based knowledge base construction systems do
not fully utilize or acknowledge the importance of the spatial
information associated with various entities in extracted re-
lations. This immediately results in knowledge base relations
with less accurate factual scores. To better illustrate this issue,
we provide a real-example from epidemiology.

Example. We used DeepDive [36], a popular MLN-based
knowledge base construction system, to build a knowledge
base about Ebola infected counties in Liberia. First, we did
feed DeepDive system with data about sanitation levels [30]
in various counties in Liberia, namely EbolaKB. Figure 1(a)
shows a table of such information for four counties in Liberia,
namely, Montserrado, Margibi, Bong, and Gbarpolu. One of
these counties, Montserrado, was declared by United Nations
to have a high infection rate, hence marked as 1 (i.e., evidence)
in the second column of the table. The objective is to use
DeepDive to find out the marginal probabilities (i.e., factual
scores) that the other three counties would have high infection
rate as well or not (marked as question marks in the table).
Hence, we defined the following inference rule R with two
predicates P1 and P2 in DeepDive:

P1: County X has high Ebola infection rate.

P2: Counties X and Y have same sanitation level.

R: If P1 & P2, then Y has high infection rate.

Given that the Montserrado county has a high Ebola infection
rate, and it is on the same sanitation level as Margibi, Bong,
and Gbarpolu counties, the inference in DeepDive used the
input evidence data to report that Margibi, Bong, and Gbarpolu
have high infection rates with factual scores 0.54, 0.52, and
0.63, respectively (second column in Figure 1(b)). Contrasting
these factual scores with the ground truth of infection rate
ranges of these four counties that are provided by the World
Health Organization [44] (first column in Figure 1(b)), we
consider the factual score of any county is correctly inferred
if it is within the corresponding ground truth infection rate
range. Then, by calculating the F1-score (i.e., the harmonic
mean of precision and recall) of correctly inferred counties,
DeepDive reported a low score of 0.39. This is mainly due to
the fact that the rule did not acknowledge the spatial proximity
of counties and its effect on the high infection rates. To remedy
this issue within DeepDive, we added one more predicate (P3)
and redefined the rule R to be:

P3: Counties X and Y are within 150 mi distance.

R: If P1 & P2 & P3, then Y has high infection rate.

With the new predicate, and feeding DeepDive with the
locations of all the four counties per the map in Figure 1(c),
DeepDive was able to adapt the factual scores of high Ebola in-
fection rates in Margibi and Bong to be 0.51 and 0.45, respec-
tively, as they are both within 150 miles from Montserrado,
while reducing the factual score of Gbarpolu to be 0.06 as it is
not within 150 miles from Montserrado. This example shows
that the location information could significantly change the
factual score in DeepDive. However, it also shows the obvious
limitation of DeepDive when dealing with spatial predicates
(e.g., P3). In particular, DeepDive treats any predicate as
a boolean function, which yields either true or false (i.e.,
satisfied or not). So, although one can define spatial predicates
in DeepDive (e.g., P3), internally DeepDive and its inference
engine do not do anything special for spatial predicates. Due
to this limitation, DeepDive has missed on the following two
major issues: (1) Margibi county is significantly closer to
Montserrado than Bong (Figure 1(c)), so, the factual score of
Margibi should be significantly higher than Bong. However,
DeepDive gives almost similar scores to both counties as
they both satisfy P3. (2) Gbarpolu is only 160 miles from
Montserrado, so, it should still have a good probability to be
similar to Montserrado. However, DeepDive gives it a score
that is close to 0 as it does not satisfy P3.

One interesting approach to simulate the spatial awareness
in DeepDive is to generate rules that define the distance as
a step function. For example, instead of having one rule R
corresponding to the predicate P3, we can define a rule for
each distance range (e.g., 10 < distance < 20, 20 ≤ distance
< 30, etc). However, as shown in Section VI, this comes
with tremendous latency in the grounding step which makes
it impractical to build knowledge bases.

Approach. In this paper, we present Sya; the first spatial
MLN-based knowledge base construction system. Sya embeds
the awareness of spatial relationships inside the grounding and
inference phases of the knowledge base construction. In par-
ticular, Sya automatically generates a probabilistic model [43]
that captures both logical and spatial correlations among its
variables. Then, this model is used along with an efficient
spatially-equipped statistical inference technique to infer the
factual scores of knowledge base relations. In the above
example, one can use Sya to redefine predicate P3 to be:

P3: The closer County Y to X, the higher its Ebola

infection rate.

With running this predicate, Sya was able to report the
factual scores of Margibi, Bong, and Gbarpolu counties to
be 0.76, 0.53, and 0.22, respectively. Given our ground truth
knowledge, this result reports F1-score of 0.85, which is more
accurate than what we get from DeepDive.

Challenges. Sya faces two main challenges in the grounding
and inference phases, respectively. The grounding challenge
is due to considering spatial correlations between all pairs of
random variables associated with knowledge base relations.
In case these variables are categorical with a large number
of domain values h, the generated spatial correlations among
each pair of variables will be of quadratic size in the number
of domain values (i.e., O(h2)). This can cause combinatorial
explosion problems during the grounding operation [43], and
later, the inference can become intractable. Thus, a pruning
strategy is needed to ground only spatial correlations that will
be effective in the inference phase. The inference challenge
is the slow convergence to accurate factual scores in the
presence of having spatial correlations among variables. In
general, existing MLN-based systems require approximate
inference techniques such as Gibbs sampling [46] to efficiently
handle large probabilistic models. However, standard Gibbs
sampling techniques depend on sequential updates of variables
during sampling, which results in a significant latency over-
head before convergence in case of having spatially-correlated
variables as shown in [24]. Thus, a new efficient variation of
Gibbs sampling is needed to handle these spatial correlations.

Contributions. Our technical contributions in this paper can
be summarized as follows:
• We define Sya architecture, which can be used to extend

any existing MLN-based knowledge base construction
system and make it support spatial awareness (Section II).

• We extend a popular datalog-like language, namely
DDlog [36], with spatial constructs that allow users to
easily express their spatial semantics (Section III).

• We introduce a new spatial variation of the factor
graph [43], namely Spatial Factor Graph, that is equipped
with support for spatial correlations among variables. We
also provide an optimization to heuristically prune inactive
spatial correlations during grounding. This allows us to
have a quality-scalability trade-off in Sya (Section IV).

• We introduce a new variant of Gibbs Sampling, namely
Spatial Gibbs Sampling, that exploits the Conclique [23]

Domain Expert

Inference

Rules

Grounding

Spatial Queries

Processing Support

Input

Data

Evidence

Data

Language
Spatial Data Types,

Predicates and

 UDFs

Schema

Declaration

In-memory Spatial

Factor Graph Index

Inference

Spatial Gibbs

Sampling Algorithm

Output Knowledge Bases

Query

Casual User

Answer

Read / Update

Compiled

Rules

Spatial Factor

 Graph Load / Update

Search / Return

Visualization and

Querying APIs

Fig. 2. Sya System Architecture.

concept from spatial statistics to efficiently sample from
spatially-correlated variables. The proposed algorithm is
extremely fast and has theoretical guarantees of conver-
gence as shown in [24] (Section V).

• We perform an extensive evaluation of Sya with Deep-
Dive [36] through building two real knowledge bases about
the water quality in Texas [39], namely GWDB, and the
air pollution in New York city [32], namely NYCCAS.
The results show that Sya can achieve 120% and 70%
higher F1-scores over DeepDive when building GWDB
and NYCCAS, respectively, with at least 20% reduction
in the execution time (Section VI).

II. SYA ARCHITECTURE

Figure 2 gives the high-level system architecture of Sya.
A domain expert would feed Sya with a set of inference
rules, along with input and evidence data. A casual user can
either use standard querying or visualization APIs to access the
produced knowledge base relations with their factual scores.
Internally, Sya is composed of three main modules, language,
grounding, and inference, described briefly below:
Language module. This module extends a high-level declar-
ative language, namely DDlog [36], with spatial data types
(e.g., Point and Polygon), spatial predicates (e.g., Distance and
Overlaps) and spatial UDFs (e.g., spatial objects extraction).
This module allows domain experts to express the spatial
semantics in the syntax of defining (1) the schema of database
relations used, and (2) rules for extracting relations, and corre-
lating them (i.e., inference rules). Once submitting the DDlog
program, this modules checks the syntax correctness and the
validity of used spatial constructs, compiles the program, and
forwards it to the grounding module. Details of the language
extensions are described in Section III.
Grounding module. This module receives the set of compiled
rules from the Language module. Then, it evaluates the rules
as spatial SQL queries (e.g., spatial join) against input (e.g.,
text and database relations) and evidence data. The output
is a spatial variation of the factor graph [43] representing
the knowledge base, and is stored in a relational database
with spatial data support (e.g., PostGIS and MySQL Spatial).
Details of this module are described in Section IV.

#Schema Declaration

S1: County (id bigint, location point, hasLowSanitation bool).

@spatial(exp)

S2: HasEbola? (id bigint, location point).

#Derivation Rule

D1: HasEbola(C1, L1) = NULL :- County(C1, L1, -).

#Inference Rule

R1: @weight (0.35)

HasEbola(C1, L1) => HasEbola(C2, L2) :- County(C1, L1, -), County(C2, L2, S2)

 [distance(L1, L2) < 150, within(liberia_geom, L1), S2 = true].

Fig. 3. Example on building EbolaKB using Sya Language.

Inference module. This module is triggered when it is re-
quired to estimate the factual scores (i.e., marginal probabil-
ities) of knowledge base relations (i.e., variables in a factor
graph). The module builds an in-memory pyramid index [3],
referred to as In-memory Spatial Factor Graph Index, that
partitions the spatial factor graph variables and correlations
into a set of concliques [23], i.e., groups of non-neighboring
spatial variables. Then, a novel Gibbs Sampling algorithm,
referred to as Spatial Gibbs Sampling, is applied on the
variables and correlations within each conclique to infer the
factual scores of their corresponding relations. In case there
is an update in the spatial factor graph, the in-memory index
is updated through bulk insertion and deletion, and then the
sampler is invoked on the concliques of the updated variables
only. Details of this module are described in Section V.

III. THE LANGUAGE MODULE

Users of MLN-based knowledge base construction systems
can use either native first-order clauses [16] (e.g., as in
ProbKB [9], and Archimedes [10]) or high-level datalog-like
languages (e.g., as in DeepDive [36] and SpannerLog [29])
to define the rules of constructing knowledge bases in a
declarative manner. However, datalog-like languages have an
advantage over native first-order rules in the integration with
RDBMS engines and the ease of translating the rules syntax
into equivalent SQL queries (details are in Section IV). In Sya,
instead of providing a completely new language, we choose
to extend the DDlog [36] language, a popular datalog-like
language for encoding MLN probability distributions, with
spatial data types, parameters, predicates, and user-defined
functions (UDFs) to help users express the spatial semantics
when building knowledge bases. Such extensions conform to
the Open Geospatial Consortium (OGC) standard [33].
Relations and Rules in DDlog. DDlog allows its users to
declare typical database relations to input/output data during
the grounding and inference operations. It also supports a
special type of variable relations, ended with a question mark
in its declaration, to specify random variables. For example,
the following statement declares a variable relation Y ?(s)
based on a typical input relation Data(s).

Y ?(s) : −Data(s)

The statement defines a different binary random variable
(taking either True or False) in Y ?(s) for each assignment

to s in Data(s). Given variable relations, DDlog provides the
ability to define inference rules that express the correlation
among random variables in these relations. For example, the
following weighted inference rule defines one logical bitwise-
AND correlation for each entry in the output of equi-join
between the variable relations X and Y on attribute s.

@weight(0.7) X(r, s) ∧ Y (s) : −Z(r, s)[r = ”a”]

The predicate X(r, s) ∧ Y (s) is the head of the rule, and
Z(r, s) is the body atom. The body of the rule might contain
a condition predicate, e.g. [r = ”a”] which filters the entries
of relations based on the values that attribute r can take.
The @weight parameter determines the confidence in the
inference rule. Higher weights indicate higher confidence.

We describe the provided extensions by Sya in DDlog
relations and rules using the example program in Figure 3,
which builds the EbolaKB knowledge base in Section I.
Spatial Data Types. Sya adds four spatial data types, namely,
point, rectangle, polygon, and linestring, to the
schema declaration of relations in DDlog. For example, in
Figure 3, each of the statements S1 and S2, which declare
the input relation County and the variable relation HasEbola,
respectively, has one spatial attribute of type point.
Spatial Variables and Correlation Specification. Sya al-
lows its users to indicate which variables that we should
consider their spatial attributes when inferring the factual
scores of the knowledge base relations. A user can define
the @spatial(w) parameter on the schema declaration
of a variable relation to state that all instantiated variables
in such relation should consider spatial correlations among
themselves. Note that it is not allowed to annotate a variable
relation with @spatial(w), unless it has a spatial attribute
(e.g., HasEbola in Statement S2 in Figure 3). The w input in
@spatial(w) specifies the type of spatial weighing function
used during the grounding and inference steps (details are in
Section IV and V). This function could be either user-defined
in the DDlog program or built-in in Sya. For example, the type
exp in @spatial(exp) specifies an exponential distance
weighing [2] function that is already implemented in Sya.
Spatial Predicates. Sya extends the body of DDlog rules
with spatial predicates (e.g., overlaps, within, and
distance) and functions (e.g., union and buffer) to sup-
port the evaluation of spatial queries in the grounding module
(details are in Section IV). Spatial predicates can be composed.
For example, the inference rule R1 in Figure 3, which indicates
how neighboring Ebola infected counties affect each other, is
composed of two spatial predicates distance and within
that measure the distance between infected counties (using
latitude and longitudes coordinates), and check whether they
are located in Liberia or not, respectively.
Spatial User-defined Functions (UDFs). DDlog is powered
with the ability to provide UDFs to specify feature extraction
tasks that rely on integration with external tools (e.g., NLP pre-
processing libraries). For spatial information, automatically
extracting spatial entities (e.g., places) and relations from

V1 V2 V3 V4

F1 F2 F3 F4 F5 F6

V1: HasEbola(Montserrado)

V2: HasEbola(Margibi)

V3: HasEbola(Bong)
V4: HasEbola(Gbarpolu)

F1: HasEbola(Montserrado) => HasEbola(Margibi)
F2: HasEbola(Montserrado) => HasEbola(Bong)
F3: HasEbola(Margibi) => HasEbola(Montserrado)
F4: HasEbola(Margibi) => HasEbola(Bong)
F5: HasEbola(Bong) => HasEbola(Montserrado)
F6: HasEbola(Bong) => HasEbola(Margibi)
F7: HasEbola(Bong) => HasEbola(Gbarpolu)
F8: HasEbola(Gbarpolu) => HasEbola(Bong)

F7 F8

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

F9: �(HasEbola(Montserrado), HasEbola(Margibi))
F10: �(HasEbola(Montserrado), HasEbola(Bong))

F12: �(HasEbola(Margibi), HasEbola(Bong))

F14: �(HasEbola(Bong), HasEbola(Gbarpolu))

F11: �(HasEbola(Montserrado), HasEbola(Gbarpolu))

F13: �(HasEbola(Margibi), HasEbola(Gbarpolu))

V1 V2 V3 V4

F1 F2 F3 F4 F5 F6 F7 F8

0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35

F14F13F12F11

(e) Spatial Factor Graph of EbolaKB

(d) Original Factor Graph of EbolaKB

0.71 0.58 0.34 0.7 0.31 0.47

(a) Ground Atoms of HasEbola in EbolaKB

(b) Ground Factors of Rule R1 in EbolaKB

(c) Spatial Factors Defined over HasEbola in EbolaKB

Fig. 4. Example on Sya Grounding for EbolaKB.

unstructured data can be challenging for end users. Therefore,
Sya provides ready-to-use UDFs for spatial named entity
recognition (NER), and objects extraction from unstructured
text based on the GeoTxt library2.

IV. THE GROUNDING MODULE

The knowledge base construction rules represented by either
native first-order clauses or datalog-like languages (as shown
in Section III) can be viewed as a template for constructing
the probabilistic knowledge base model, which encodes how
knowledge base relations are linked to each other, and how
their factual scores are correlated. This model is typically rep-
resented by a data structure, called factor graph [43]. A factor
graph is a bipartite graph φ = {V,F} that has two sets of
nodes: (1) a set of random variables V = {v1, v2, ..., vm}, and
(2) a set of factors (a.k.a correlations) F = {f1, f2, ..., fn},
where each factor fi is a function fi(Vi) over a random
vector Vi ⊂ V indicating the correlation among the random
variables in Vi. Factors F together specify a joint probability
distribution over all the random variables V in these factors.
Ground Factor Graph. The process of constructing the
probabilistic knowledge base model as a factor graph is
called grounding, and the output factor graph is referred to
as a ground factor graph. In this process, we generate a
random variable v ∈ V for each possible knowledge base
relation and store it in a variable relation (e.g., HasEbola in
Figure 3). The generated random variables are called ground
atoms. Figure 4(a) shows an example of ground atoms in
the EbolaKB example. We also generate a weighted factor
f ∈ F for each possible grounding of an inference rule
(e.g., rule R1 in Figure 3) that satisfies the predicates and
conditions in the body of this rule. The generated factors
are called ground factors. Figure 4(b) shows an example of
ground factors of rule R1 in the EbolaKB example that satisfy
the distance and within predicates. Figure 4(d) depicts
an example ground factor graph based on ground atoms and
factors from Figures 4(a) and 4(b), respectively. Each factor
is represented by a square, and has edges with its variables

2https://github.com/geovista/GeoTxt

represented by circles. All factors are associated with the same
confidence (i.e., weight) coming from the inference rule.

The joint probability distribution of a ground factor graph
can be defined as follows:

P (V = v) =
1

Z

∏
fi∈F

fi(Vi) =
1

Z
exp

(∑
fi∈F

wfinfi(v)
)

(1)

where nfi is the number of true groundings of factor fi in
variables assignment v, wfi is the weight of fi, and Z is the
partition function, i.e., normalization constant. Note that the
distribution in Equation 1 represents the marginal inference,
which is commonly used in the knowledge base literature.

In this section, we describe how Sya extends the ground
factor graph to support spatially-correlated ground atoms (Sec-
tion IV-A). In addition, we discuss the database support in
Sya for constructing the factor graph in an efficient manner
(Section IV-B). Finally, we provide an optimization to prevent
the combinatorial explosion that could happen during the
grounding of spatial factor graph (Section IV-C).

A. Spatial Factor Graph

In MLN-based applications, the correlations between vari-
ables, which are knowledge base relations in our case, are cap-
tured in the factor graph using logical factors such as bitwise-
OR and imply. However, in the case of having variables
representing spatial phenomena (e.g., epidemiology), logical
correlations are not enough to obtain accurate inference scores
for these variables. In fact, ground atoms from the same type
of spatial variable tend to have high spatial correlation among
each other (e.g., HasEbola(Margibi) and HasEbola(Bong)).
This is one of the fundamental properties of spatial analysis,
where “everything is related to everything else, but nearby
things are more related than distant things”. We refer to these
ground atoms as spatial ground atoms.

A main limitation in using existing inference rules to capture
the spatial correlations between spatial ground atoms is that
there is no efficient way to represent the weight of the rule
as a function of distance between atoms. Existing MLN-based
knowledge base systems provide only two options to specify
weights in inference rules. The first option is to fix weights as
constants (e.g., the inference rule R1 in Figure 3). However, in
this option, we need to have a separate inference rule for each
possible distinct value of distance, which is impractical. For
instance, in the EbolaKB example, we would need to define a
new inference rule R2 similar to R1, but, with weight of 0.5
if the distance between two counties is less than 100, and so
on. The second option is to learn distinct weights for different
distance values based on training data. However, this option
requires enough training data available for all possible distance
values, which is impractical as well.

In Sya, we introduce a new type of factors, called spa-
tial factors, to capture the spatial correlations among spatial
ground atoms. Such factors are generated for each possible
pair of ground atoms from the same type of spatial variable
and assigned proper weights based on the relative distance

among atoms. We first provide a definition for spatial factors
over ground atoms coming from binary spatial variables, then
we extend this definition for the case of categorical variables.

Definition 1: Given two spatial ground atoms vj and vk of
a binary spatial variable, and a spatial weight wd(vj ,vk) based
on the distance d(vj , vk) between vj and vk, a spatial factor
ρj,k over vj and vk is a multi-valued function, where

ρj,k =

{
ewd(vj,vk) vj = vk

e−wd(vj,vk) otherwise
(2)

As shown in Equation 2, spatial factors favor similar values
of close ground atoms (i.e., spatial clustering), where each
factor specifies a unique weight based on the distance between
involved atoms. Generally, spatial correlations can be defined
on more than two grounds. However, we focus only on binary
correlations. The extension to high-order cases is intuitive as
well, but, out of scope of this paper.

We propose the spatial factor ρj,k in an exponential form to
easily extend the probability distribution P (V = v) in Equa-
tion 1 by directly adding the spatial weight wd(vj ,vk) as a new
potential function to the existing ones (i.e.,

∑
fi∈F wfinfi(v)).

Formally, given a set of spatial factors ρ, we extend the factor
graph φ = {V,F} to be a spatial factor graph G = {V, β},
which has the same set of random variables V , and a combined
set of non-spatial and spatial factors β = F ∪ ρ. As a result,
the equivalent probability distribution P (V = v) to the spatial
factor graph G becomes:

P (V = v) =
1

Z
exp

(∑
fi∈F

wfinfi(v)

+
∑
ρj,k∈ρ

wd(vj ,vk)(1vj=vk − 1vj 6=vk)
) (3)

where 1vj=vk and 1vj 6=vk are indicator functions. Fig-
ure 4(e) depicts an example spatial factor graph for EbolaKB
after adding the spatial factors defined over HasEbola atoms.

In Sya, there is no need to define inference rules for spatial
factors. These factors are automatically generated for variables
that are annotated with the @spatial(w) keyword in their
schema declaration, where the input w determines how to
calculate the weight wd(vj ,vk). For example, the type exp
in @spatial(exp) defined over statement S2 in Figure 3
indicates that wd(vj ,vk) should be calculated using exponential
distance weighing [2] function. Figure 4(c) shows an example
of grounding the spatial factors (highlighted with gray) that
are defined over HasEbola variables.
Spatial Factors for Categorical Variables. In case of hav-
ing knowledge base relations represented with a categorical
variable (i.e., a variable with h possible domain values),
the grounding process generates h instances of the ground
atom corresponding to each knowledge base relation, where
each instance indicates whether one possible domain value is
selected or not [36]. As a result, we adapt the spatial factor

function in Equation 2 to be defined over a pair of instances
from two spatial ground atoms as follows:

Definition 2: Given two spatial ground atoms vj and vk of a
categorical spatial variable with h domain values, and a spatial
weight wd(vj ,vk) based on the distance d(vj , vk) between vj
and vk, a spatial factor ρj,k(tj , tk) over the instance of vj for
domain value tj , namely vj(tj), and the instance of vk for
domain value tk, namely vk(tk), is a multi-valued function,
where

ρj,k(tj , tk) =

ewd(vj,vk) vj(tj) = vk(tk) = 1, tj = tk

e−wd(vj,vk) vj(tj) = vk(tk) = 1, tj 6= tk

1 otherwise
(4)

Similar to Equation 2, Equation 4 favors similar domain
values of close ground atoms. In case the value of either vj(tj)
or vk(tk) is 0, we refer to ρj,k(tj , tk) as an inactive spatial
factor, because the factor value will be 1 and will not have any
effect on the joint probability distribution. Note that the joint
probability distribution can be extended in the categorical case
similar to Equation 3. Since we have h instances for each of
the two ground atoms vj and vk, we end up with h2 spatial
factors between vj and vk. This results in a combinatorial
explosion problem during the execution of grounding. More
details on this issue are in Section IV-C.

B. Rules Translation and Execution

Existing MLN-based knowledge base construction systems
(e.g., [9], [36]) efficiently construct the factor graph by eval-
uating its corresponding inference rules as SQL queries to
exploit the DBMS scalability and efficiency. As a result, Sya
provides a spatial rules-queries translator and a database driver
to evaluate the spatial extensions to these rules (shown in
Section III) as spatial SQL queries as well.
Spatial Rules-Queries Translator. Typically, the inference
rules are translated into a set of inner and outer join queries
with simple predicates to check (e.g., equality and range
checks). Sya extends this translation process with support for
two spatial queries; spatial join and range query. In case of
having a rule with a spatial predicate, e.g., distance, Sya
reroutes its translation into these spatial queries rather than the
original join queries. Moreover, Sya provides two effective
optimizations: (1) It supports creating on-fly spatial indices
(e.g., R-tree [20] and GIST [21]) on relations with spatial
attributes, making the evaluation of complex predicates (e.g.,
overlap) is efficient. (2) It provides a simple heuristic query
optimizer that re-orders the execution of nested spatial queries
that come from rules with multiple spatial predicates. Figure 5
shows an example of translating the inference rule R1 from
Figure 3, which has two spatial predicates distance and
within that are translated into a spatial join and range query,
respectively. Note that, although the distance predicate
comes before the within one in the rule, Sya re-orders their
translated queries to have the range query runs before the
spatial join to reduce the number of tuples to be joined.

Spatial Join

INSERT INTO R1_Factors (var1, var2, type, weight)

(

 SELECT C1.id AS “var1”, C2.id AS “var2”, "imply", 0.35

 FROM (

 SELECT * FROM County C0

 WHERE WITHIN (liberia_geom, C0.location)

) C1, County C2

 WHERE DISTANCE (C1.location, C2.location) < 150

 AND C2.hasLowSanitation = true

)

Range

Query

Fig. 5. Example on Rules Translation in Sya.

Integration with Spatial Databases. Sya fully integrates with
scalable spatial database engines, e.g., PostGIS, and MySQL
Spatial to execute the translated queries. Such engines sup-
port both spatial and non-spatial queries. Thus, SQL queries
corresponding to rules with non-spatial predicates can still
be executed on them. In addition, Sya provides an abstract
database driver that supports defining the spatial storage,
functions and query capabilities needed to ground spatial
factor graphs. Such abstract can be extended by users to run
their spatial database engine choice inside Sya.

C. Scaling Up the Grounding of Spatial Factor Graph

The number of spatial factors ρ can easily explode when
dealing with categorical variables that have large domains
(i.e., the number of domain values h is large) (details are
in Section IV-A). This can significantly affect the scalability
of the knowledge base construction process. As a result, we
introduce an optimization for pruning the spatial factors that
are more likely to be inactive based on co-occurrence statistics
of their corresponding domain values in the input evidence
data. Basically, for each pair of domain values (i, j) of a spatial
categorical variable v, if these values co-occur with certain
probabilities that exceed a pre-defined threshold T in the
evidence input data, then we generate a spatial factor k(i, j)
over this pair of values. In case not passing the threshold T ,
we ignore all spatial factors defined over this pair of values
as they are considered inactive. Using Bayesian analysis, we
estimate the co-occurrence probabilities of (i, j) in two parts:
P (i|j) and P (j|i), where

P (i|j) = no. of i and j appear together in evidence data
no. of j appers in evidence data

and, similarly,

P (j|i) = no. of i and j appear together in evidence data
no. of i appers in evidence data

Note that the threshold T should be tuned by Sya users. We
discuss the effect of T on the performance of Sya, and show
its scalability-quality trade-off in Section VI.

V. THE INFERENCE MODULE

The main objective of the inference step is to estimate the
marginal probabilities of variables (i.e., ground atoms) in the
factor graph. In our case, such probabilities are considered
the output factual scores of the knowledge base relations. To

Concliques Index

Locality 0

Locality 1

Locality 2

C0

C1 C2

C3 C4

C5 C6 C7

C8 C9

C10 C11 C12 C13

C14 C15 C16 C17

V1 V2 V3 V4

V9

F1 F2 F3 F4 F5 F6

F7 F8 F9 F10

V5

V2 V3 V4

V9

F4 F5 F6

F9 F10

V5

V1 V2 V4

F1 F2 F3 F4

F7 F8

Q1

Q2

Q3

Q4

C5, C10, C12

C6, C11, C13

C7, C8, C14,

C16

C9, C15, C17

Fig. 6. Example on In-memory Pyramid Index of Spatial Factor Graph.

perform this step in MLN-based knowledge base construction
systems, approximate inference via Gibbs sampling is com-
monly used [10], [28], [46], [47]. However, using existing
variations of Gibbs sampling to infer from the spatial factor
graph (i.e., factor graph with spatial factors) is inefficient, be-
cause the sampling nature in these algorithms relies on single-
site, or sequential, updates within the same inference epoch.
This, in turn, raises the need for a large number of iterations
(i.e., slow convergence) to obtain an acceptable output when
there are some variables that are spatially-correlated as shown
in [23]. In this section, we provide a new Gibbs sampling
algorithm, namely Spatial Gibbs Sampling, that overcomes
this limitation by employing efficient spatial statistics and in-
memory access techniques to guarantee the rapid convergence
in case of having spatially-correlated variables.
Main Idea. State-of-the-art parallelized Gibbs sampling algo-
rithms [46], [47] randomly partition the variables into a set
of buckets and then sample these buckets in parallel. Even
though these algorithms will finish the sampling iterations
faster than the sequential ones, they may not converge to an
acceptable solution as spatially-dependent variables might run
in parallel (i.e., independent of each other). This will force the
sampler to run additional inference epochs to converge, and
hence incur a significant latency overhead. Another solution
is to use block-based Gibbs sampling (e.g., [42]). However,
this solution requires joint sampling at each block, which is
computationally-inefficient as well.

In Sya, we devised an approach that combines in-memory
spatial partitioning technique, namely pyramid index [3],
with a well-known spatial statistics concept, namely con-
cliques [23], to heuristically partition the spatial factor graph
into a set of spatially-independent partitions. We refer to
this way of partitioning as concliques-based partitioning. The
resulting partitions can be sampled in parallel to each other
using standard Gibbs sampling. It is theoretically proven that
concliques-based partitioning makes Gibbs sampler converge
faster than traditional random partitioning [24]. First, we give
the details of the pyramid index and concliques concepts.
Then, we provide an algorithm that exploits such concepts
to provide our proposed spatial Gibbs sampling algorithm.
In-memory Spatial Factor Graph Index. Sya employs an
in-memory partial pyramid index [3] to spatially partition the
spatial factor graph. The pyramid index decomposes the whole

space into L locality levels (i.e., pyramid levels), where the
space in level l is partitioned into 4l grid cells. In each cell, Sya
stores a pointer-based index to the spatial ground atoms - along
with their connected factors - that have locations contained
in the cell’s spatial region. A spatial ground atom v may
contribute to up to L− 1 pointer-based indices: one per each
locality level starting from level 1 to the lowest maintained
grid cell containing the v’s location. The root level (Cell 0)
of the pyramid has no spatial relationships between atoms. In
addition, a factor node can be duplicated if it is connected to
more than one atom at different cells.

Since the pyramid index is a hierarchical space partitioning
technique, it guarantees to completely cover any given space
and allows Sya users to control the size of neighbourhood. A
locality level l acts like a “zoom” level (e.g., city block, entire
city). Another advantage of the pyramid index is its ability to
store data in non-leaf cells (i.e., cells that are not at the lowest
pyramid level), which helps in storing the spatial factor graph
efficiently at the different pyramid levels. Figure 6 shows an
example pyramid index of a spatial factor graph. The index is
assumed to have 3 levels only, where there are empty cells due
to not having variables contained in these cells. We show the
partitioning details of partial factor graph in cells C1, C6 and
C8. Note that the partial graph at C1 is divided into two sub
graphs at C6 and C8 because C6 and C8 are children of C1.
Also, factor node F4 is replicated in both C6 and C8 because
it is connected to V2 and V4 which are at different cells.

Initially, to build the pyramid, all spatial ground atoms are
used to build a complete pyramid of height L, such that all
cells in all L levels are present and contain a partial graph.
The initial height L is chosen according to the level of locality
desired. Once the initial build is done, a merging step is
called to scan all cells starting from the lowest level and
merge quadrants (i.e., four cells with a common parent) into
their parent if three of these quadrants are empty. Once an
incremental update is received, Sya performs a sequence of
splitting and merging operations over the pyramid cells, if
necessary. A cell is split only if it is over a capacity threshold
and splitting its contents spans at least two children cells.
Concliques-based Partitioning. A conclique is defined as a
set of locations such that no two locations in this set are neigh-
bours [23]. For example, the cells of locality level 2 in Figure 6
can be divided into four concliques: Q1 = {C5, C10, C12},
Q2 = {C6, C11, C13}, Q3 = {C7, C8, C14, C16} and Q4 =
{C9, C15, C17}. The main idea behind defining concliques
is ensuring the neighbouring independence between variables
in the same conclique set, and hence these variables can be
sampled in parallel. Assume there is a spatial factor graph
defined over the whole cells in the locality level 2 of Figure 6.
The sampling process over these cells can be done using
four iterations. The first iteration handles conclique Q1 by
initiating three threads to process C5, C10 and C12 in parallel.
In each thread, we sample the variables of its associated cell
sequentially using standard Gibbs sampling. After sampling
cells in Q1 is done, the second, third and fourth iterations can
be done sequentially to handle Q2, Q3 and Q4, respectively.

Algorithm 1 Function SPATIALGIBBSSAMPLING (Spatial-
FactorGraph G, Instances K, Epochs E)
1: C ← Null /* Sampling Counters */
2: for all v ∈ V do in parallel
3: C[v] ← 0
4: e ← E

K /* No. of Epochs Per Instance*/
5: P ← BUILDPYRAMIDINDEXOFSPATIALFACTORGRAPH (G)
6: Q ← BUILDCONCLIQUESOFPYRAMIDINDEX (P)
7: L ← No. of Levels in P
8: while e 6= 0 do
9: for all k ∈ {1, 2, ..., K} do in parallel

10: for all l ∈ {2, 3, ..., L− 1} do serially
11: T ← GETNONEMPTYCELLS (P , l)
12: U ← GETMINCONCLIQUESCOVER (Q, l, T)
13: for all u ∈ U do serially
14: for all t ∈ T ∩ u do in parallel
15: Ck[Vt] ← RUNSTANDARDGIBBSSAMPLER (Vt, G, Ck)

16: C ←

K∑
k=1

Ck

K , e−−
17: end while
18: for all v ∈ V do in parallel
19: v.Prob ← CALCMARGINALPROBABILITY (C, v)

Algorithm. Algorithm 1 depicts the pseudo code for the
spatial Gibbs sampler that takes the following three inputs: the
spatial factor graph G, the number of running instances K that
can run in parallel, and the number of inference iterations E.
The algorithm keeps track of the current counts of sampled
values in each variable v ∈ V through variable C, initialized
by zeros. The algorithm then starts by computing the number
of inference epochs that can be handled per each running
instance and stores it in variable e. Note that e represents
the actual number of inference epochs that run sequentially
because different inference instances execute in parallel. Each
of these inference instances then starts to process one inference
epoch in parallel (i.e., K inference epochs are running simul-
taneously). Then, the algorithm builds (1) a pyramid index of
the input spatial factor graph, referenced by variable P , and
(2) an index of concliques for each level in the pyramid index,
referenced by variable Q (Lines 5 and 6).

In each inference epoch (Lines 10 to 15), the algorithm
first traverses each pyramid level l, and gets the minimum set
of concliques U that cover the partial spatial factor graphs
in this level l (Lines 11 to 12). For example, the locality
level 2 in Figure 6 has two partial graphs at C6 and C8

cells. Then, the algorithm will return Q2 and Q3 as minimum
set of covering concliques. After that, for each conclique
u ∈ U , the algorithm processes the non-empty cells (i.e.,
that have partial graphs), associated with u in parallel. In
the running example, the algorithm starts with conclique Q2,
which has only cell C6 to process. After finishing Q2, the
algorithm processes Q3 which has only cell C8. At each
cell t, the algorithm sequentially samples all variables in
t using a standard Gibbs sampler. In our experiments, we
used the variation of Gibbs sampling inside DeepDive [36]
as it is computationally-efficient, easy-to-implement, and can
support incremental inference. Note that by traversing different
pyramid levels, the algorithm might sample the same variable
multiple times (i.e., it happens that one variable is connected
with two factors at different locality levels). However, this
situation will not harm the validity of results as shown in

System No. Rels No. Rules No. Vars No. Factors
GWDB 1 11 104K 39.5M
NYCCAS 1 4 34K 233K

TABLE I
STATISTICS OF KBS USED IN EXPERIMENTS.

block-based Gibbs sampling algorithms [42]. In addition, it
will not significantly increase the latency overhead compared
to the huge performance gain achieved from processing the
cells in each conclique in parallel.

After all inference instances finish their current inference
epoch, we set the values of C with the average of obtained
counts of samples from these instances (Line 16) and then
proceed to another inference epoch with the new counts. We
repeat this process e times, and then use the final counts of
samples to calculate and update the marginal probability of
each variable as in [43](Lines 18 and 19).
Complexity. The complexity of Algorithm 1 can be estimated
as O(L|V|+L+(EK)(43)(1− (14)

L+1)|V|2) where O(L|V|) is
the cost of building the pyramid index (Line 5), O(L) is the
cost of building the concliques in all pyramid levels (Line 6),
and O((EK)(43)(1 − (14)

L+1)|V|2) is the cost of applying the
Spatial Gibbs Sampling steps (Lines 8 to 19). The complexity
can be approximated to be O(L|V| + (EK)|V|2). Since the
value of V is significantly larger than L, the complexity can
be further approximated to be O((EK)|V|2).

VI. EXPERIMENTS

In this section, we experimentally evaluate the quality and
scalability of Sya, based on a real system implementation [35]
inside DeepDive [36]. We choose DeepDive as it is one of
the most popular probabilistic knowledge base construction
systems, with many success stories in vital applications (e.g.,
fighting human trafficking). In addition, DeepDive provides
an open-source implementation for both the grounding and
inference phases3. We compare the performance of Sya with
DeepDive while building two real knowledge bases. We also
extensively investigate the quality and convergence of Sya
under different system parameters.

A. Experimental Setup

Datasets. In our experiments, we have built two knowledge
base systems, namely GWDB and NYCCAS, using both Sya
and DeepDive. Table I illustrates the different statistics of these
systems including the number of input database relations (No.
of Rels), the number of inference rules (No. Rules) used to
build the knowledge bases, the number of variables (No. Vars)
and factors (No. Factors) in the generated factor graphs.

The GWDB system builds a knowledge base about the water
quality in Texas. The input to this system is the Texas Ground
Water Database (GWDB) relation [39], which is collected by
Texas Water Development Board (TWDB) about 9831 water
wells. It contains information about each well such as location,
depth and the concentration of different elements such as

3https://github.com/HazyResearch/deepdive

Sya Syntax

Well (id bigint, location point, arsenic_ratio double).

@spatial(exp)

IsSafe? (id bigint, location point).

@weight(0.7)

R1: IsSafe(W1, L1) => IsSafe(W2, L2) :- Well(W1, L1, R1), Well(W2, L2, R2)

 [distance(L1, L2) < 50, R1 < 0.2, R2 < 0.2].

DeepDive Syntax

Well (id bigint, loc_x double, loc_y double, arsenic_ratio double).

Distance (id1 bigint, id2 bigint, dist double).

function calc_distance over (id1 bigint, loc_x1 double, loc_y1 double,

 id2 bigint, loc_x2 double, loc_y2 double)

 returns rows like Distance

 implementation "udf/calc_distance.py" handles tsj lines.

Distance+= calc_distance (W1, L1_x, L1_y, W2, L2_x, L2_y):-

 Well(W1, L1_x, L1_y, -), Well(W2, L2_x, L2_y, -).

IsSafe? (id bigint, loc_x double, loc_y double).

@weight(0.7)

R1: IsSafe(W1, L1_x, L1_y) => IsSafe(W2, L2_x, L2_y) :-

 Well(W1, L1_x, L1_y, R1), Well(W2, L2_x, L2_y, R2), Distance(W1, W2, D)

 [D < 50, R1 < 0.2, R2 < 0.2].

Fig. 7. Example on a Rule for the GWDB KB in Sya and DeepDive.

fluoride and arsenic. We developed a program that consists
of 11 inference rules that infers the risk of drinking from each
well. For example, a certain well is considered dangerous if
the arsenic concentration exceeded a certain threshold defined
by the Environment Protection Agency and its location is near
from another risky well.

The NYCCAS system builds a knowledge base about the air
pollution concentrations in the New York city. The input data
is mainly a raster database relation maintained by the depart-
ment of Health and Mental Hygiene (DOHMH) [32] about
the annual predicated concentrations for specific elements in
the air. Unlike the GWDB system, we developed a smaller
program which has 4 inference rules only that relate different
guidelines from the Environment Protection Agency about the
air pollution with the observations from raster data. Note that
the factor graph statistics for NYCCAS are relatively small
compared to GWDB, and both have one input relation only.

In both systems, ground truth information (i.e., evidence
data) is available for all extracted knowledge base relations.
In addition, each variable has binary domain values. We will
increase the number of domain values only when we study the
effect of the pruning threshold T .
Rules. To have a fair comparison when building these knowl-
edge bases, we submitted two equivalent DDlog programs to
both Sya and DeepDive. Figure 7 shows an example on an
inference rule R1 used to develop the GWDB knowledge base
in both Sya and DeepDive. This rule indicates that the closer
a well to another safe well that has low arsenic level, the
higher probability this well becomes safe. As shown in the
figure, we used our spatial extensions of DDlog to express
the spatial semantics in Sya rules. In case of DeepDive, we
provided an equivalent user-defined function implementation
to the basic spatial functions. In the shown example, we de-
fined the calc_distance function that calculates distances
between all possible pairs of wells. All calculated distances are
materialized to be used along with the inference rule.
Evaluation Metrics. In all experiments, to measure the scala-

 0.2

 0.4

 0.6

 0.8

 1

GWDB NYCCAS

Q
u

a
li
ty

 (
P

re
c
is

io
n

)

Dataset

DeepDive
SYA

(a) Dataset vs. Precision

 0.2

 0.4

 0.6

 0.8

 1

GWDB NYCCAS

Q
u

a
li
ty

 (
R

e
c
a
ll
)

Dataset

DeepDive
SYA

(b) Dataset vs. Recall

Fig. 8. Comparison with DeepDive (Precision and Recall)

bility, we use the running times of the grounding and inference
phases. To measure the quality of factual scores, we use the
following three metrics: 1) Precision (Prec): the number of
predicted factual scores that match the ground truth within 0.1
error (i.e., correctly inferred scores), over the total number of
factual scores to be predicted. 2) Recall (Rec): the number
of correctly inferred scores (calculated similar to Prec), over
the total number of factual scores that should be predicated
correctly according to the evidence data. 3) F1-score: the
harmonic mean of precision and recall, which is calculated
as 2(Prec ∗Rec)/(Prec+Recall).
Environment. Both systems are implemented in C++. We run
all experiments on a single machine with Ubuntu Linux 14.04.
Each machine has 8 quad-core 3.00 GHz processors, 64GB
RAM, and 4TB hard disk. We use PostgreSQL, and its spatial
extension PostGIS, to execute SQL queries.
Parameters. Unless otherwise mentioned, we set the number
of inference epochs to 1000, the input of the @spatial
parameter (Section III) to the exponential distance weighing
function [2], and the pruning threshold T to 0.5. In Sya, we
built a pyramid index for both Texas state and New York city.
In each index, the number of pyramid levels L is 8, and the
locality level l is the lowest pyramid level (i.e., 8).

B. Experimental Results

1) Comparison with DeepDive using Different Datasets:
Figure 8(a) shows the precision results obtained by Sya and
DeepDive while building the GWDB and NYCCAS knowl-
edge bases. Due to the probabilistic nature of the sampling
algorithms, we run all inference rules for both systems 5
times, and after each run, we report the quality of the system
measured by the precision. Then, we average the obtained
scores for each system (we follow the same approach in all
precision and recall experiments in the paper). As shown
in the figure, Sya outperforms DeepDive significantly with
relative precision improvements of more than 53% in both
datasets. The main reason behind the impressive performance
of Sya is that the factual scores, in each of the two knowledge
bases, have spatial correlations among each other, which is a
common property in all spatial applications. These correlations
were properly utilized inside Sya using the spatial factors, and
hence results in more accurate factual scores. We also notice
that the variance between the precision values of Sya in both
datasets is significantly smaller than DeepDive. This verifies
our hypothesis that dealing with spatial predicates as a boolean

 0.2

 0.4

 0.6

 0.8

 1

GWDB NYCCAS

Q
u

a
li
ty

 (
F

1
-S

c
o

re
)

Dataset

DeepDive
SYA

(a) Dataset vs. F1-Score

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
eepD

ive

SYA
D
eepD

ive

SYA

T
im

e
 i
n

 s
e
c
.

Dataset

Grounding
Inference

NYCCASGWDB

(b) Dataset vs. Exec. Time

Fig. 9. Comparison with DeepDive (F1-Score and Execution Time)

function, as in DeepDive, leads to inaccurate results. Recall the
EbolaKB example in the introduction, when Gbarpolu county
was only 10 miles more than the cut-off threshold, and yet, it
got a score that is close to 0.

Figure 8(b) shows the recall results obtained by Sya and
DeepDive while building the GWDB and NYCCAS knowl-
edge bases. For the GWDB dataset, we still have the same
conclusion that Sya is better than DeepDive. In this case, the
improvement ratio is around 60%. For the NYCCAS dataset,
we notice that Sya still has higher recall output, yet, with a
small improvement ratio of 9%. This is because the NYCCAS
dataset has a significant amount of its evidence data entries that
follow random assignments. This limits the recall of Sya and
makes it close to DeepDive.

Figure 9(a) shows the F1-score for both Sya and DeepDive
while building the GWDB and NYCCAS knowledge bases.
For the two knowledge bases, Sya were able to significantly
increase the F1-score compared to DeepDive. Specifically,
Sya has an F1-score improvement of 120% and 27% over
DeepDive in GWDB and NYCCAS, respectively. We can
conclude from the results of the three quality metrics that the
effect of considering the spatial correlations while inferring the
factual scores is huge and can significantly boost the quality
of the knowledge base outputs.

Figure 9(b) shows the grounding and inference times for
both Sya and DeepDive while building the GWDB and NY-
CCAS knowledge bases. As seen in the figure, the grounding
time of Sya is at maximum 15% higher than DeepDive in both
datasets due to the additional overhead of generating spatial
factors. We also observe that Sya has at least 30% reduction
in the inference time in both datasets. The main reason behind
this performance gain is applying the concliques-based parti-
tioning in the spatial Gibbs sampling algorithm (Section V),
which enables the parallel sampling for all variables within the
same conclique. Note that the grounding and inference times
of both systems are significantly low in NYCCAS compared to
GWDB because of the small size of the factor graph, however,
Sya still has the same improvement ratio.

2) Comparison with DeepDive using Step Function Rules:
In this experiment, we compare the performance of Sya with
DeepDive while using a step function in DeepDive to generate
a set of inference rules that approximate the spatial effect. For
example, we can use a step function to replace the inference
rule R1 in Figure 7 by the following set of range-based rules:
Rule R1(1) that defines @weight(0.9) for distance range

 0.2

 0.4

 0.6

 0.8

11 110 1.1k 11k

Q
u

a
li
ty

 (
F

1
−

S
c
o

re
)

Number of Step Function Rules

DeepDive
SYA

(a) No. of Rules vs. F1-Score

 0

 2

 4

 6

 8

 10

 12

 14

D
eepD

ive

SYA
D
eepD

ive

SYA
D
eepD

ive

SYA
D
eepD

ive

SYA

T
im

e
 i
n

 H
rs

.

Number of Step Function Rules

Grounding
Inference

11k1.1k11011

(b) No. of Rules vs. Exec. Time

Fig. 10. Comparison with DeepDive using Step Function Rules

 0.2

 0.4

 0.6

 0.8

 1

0.3 0.5 0.7 0.9

Q
u

a
li
ty

 [
0
,
1
]

Pruning Threshold

Precision
Recall

(a) Threshold vs. Quality

 1000

 2000

 3000

 4000

 5000

 6000

0.3 0.5 0.7 0.9

T
im

e
 i
n

 s
e
c
.

Pruning Threshold

Inference
Grounding

(b) Threshold vs. Exec. Time

Fig. 11. Effect of Pruning Threshold on Quality and Execution Time

0 ≤ D < 10, Rule R1(2) that defines @weight(0.8) for
distance range 10 ≤ D < 20, etc. Note that large weights are
associated with small distance values. Figure 10(a) shows the
F1-score for both Sya and DeepDive while varying the number
of generated step function rules in DeepDive from 11 to 11k.
We report the results for the GWDB knowledge base only.
By increasing the number of generated rules, we obtain more
accurate weights to be associated with the inference rules,
and hence achieve better F1-scores. However, as shown in
Figure 10(b), this comes with high latency in the grounding
phase as the number of generated SQL queries becomes large
as well (i.e., one SQL query per rule). For example, generating
11k step function rules, instead of the original 11 rules of
GWDB, requires more than 12 hours in the grounding phase
to obtain 20% less F1-score compared to Sya, which is the
best score achieved by DeepDive in our experiments.

3) Effect of Pruning Threshold: Figure 11(a) shows the
effect of changing the pruning threshold T on the precision
and recall of Sya. In this experiment, we report the results of
the GWDB knowledge base only. However, the same findings
apply on the NYCCAS dataset. We changed the number of
domain values of the generated relations to be 10 instead of 2.
This means that the number of spatial factors between any pair
of relations (i.e., ground atoms) is 100. By ranging the value of
T from 0.3 to 0.9, we obtain a trade-off between the precision
and recall results. When the value of T is small, the range of
allowed domain values is widened, and hence the recall value
becomes higher, and vice versa. For the precision case, by
increasing the value of T , we keep only the spatial factors that
are likely to be effective in capturing the spatial correlation,
and hence the probability of having accurate results becomes
higher. This results in higher precision values.

Figure 11(b) shows the effect of changing the pruning
threshold T on the grounding and inference times of Sya.
Obviously, increasing the value of T results in a less number of

 0.2

 0.4

 0.6

 0.8

 1

100 1000 10k 100k

Q
u

a
li
ty

 (
F

1
-S

c
o

re
)

Number of Epochs

SYA
DeepDive

(a) Epochs vs. F1-Score

 100

1k

10k

100k

100 1000 10k 100k

T
im

e
 i
n

 s
e
c
.
(L

o
g

)

Number of Epochs

SYA
DeepDive

(b) Epochs vs. Inference Time

Fig. 12. Effect of Inference Epochs on F1-Score and Inference Time

 100

1k

2k

 1 5 10 20A
v
g

 T
im

e
/Q

u
e
ry

 i
n

 s
e
c
.
(L

o
g

)

No. of Queries

SYA
DeepDive

(a) Incremental Inference

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

Q
u

a
li
ty

 (
F

1
-S

c
o

re
)

Locality Level

GWDB
NYCCAS

(b) Locality Level vs. Quality

Fig. 13. Effect of Incremental Inference and Locality Level

spatial factors to be processed in both grounding and inference
phases, and hence the total running time drops significantly.
For example, by changing the value of T from 0.3 to 0.9,
the improvement ratio of total running time becomes 96%.
However, this might come with the cost of less recall results
as shown in Figure 11(a).

4) Effect of Number of Inference Epochs: Figure 12(a)
shows the effect of changing the number of inference epochs
on the quality of Sya and DeepDive. We report the results for
the GWDB knowledge base. We change the number of epochs
from 100 to 100k, while observing the F1-score for both
systems. We find that increasing the number of epochs allows
both systems to converge towards more accurate results, until
a threshold. The quality of both systems started to saturate
around 1000. Yet, we find that the difference in quality scores
at 10k and 100k compared to 1000 is higher in DeepDive than
Sya. For Sya, the average difference is 0.01. While it becomes
0.04 in case of DeepDive. Note that Sya is consistently better
than DeepDive regardless the number of epochs.

Figure 12(b) shows the effect of changing the number of
inference epochs on the inference time, reported in a log-
scale, of both Sya and DeepDive. We use the same experiment
setup in Figure 12(a). We can observe that Sya is still faster
than DeepDive in both small and large number of epochs, yet,
both systems are still within the same order of magnitude. The
improvement ratio of Sya over DeepDive ranges from 20% to
31% at maximum. This confirms the inference running time
results in Figure 9(b). We have also tried to re-run the same
experiment with different order of variables in the factor graph.
However, we got very similar numbers. This shows that Gibbs
sampler, in both standard and spatial variants, is still very
practical even though it has no guarantees of convergence.

5) Effect of Incremental Inference and Locality Level:
Figure 13(a) shows the effect of supporting the incremental
inference on the performance of both Sya and DeepDive while

10
−3

0.01

0.1

1

10 100 1k 10k

A
v
g

 K
L

 D
iv

e
rg

e
n

c
e
 (

L
o

g
)

Time in sec. (Log)

Spatial Gibbs Sampling
Basic Gibbs Sampling

(a) GWDB Dataset

10
−4

10
−3

0.01

0.1

1

10 100 1k 10k

A
v
g

 K
L

 D
iv

e
rg

e
n

c
e
 (

L
o

g
)

Time in sec. (Log)

Spatial Gibbs Sampling
Basic Gibbs Sampling

(b) NYCCAS Dataset

Fig. 14. Quality of Spatial Gibbs Sampling with Different Datasets

building the GWDB knowledge base. In this experiment, we
start with applying the inference on the whole factor graph
nodes. Then, we gradually change the values of some nodes
(i.e., query nodes), and calculate the corresponding average
time to finish the inference over these changed nodes. We
vary the number of changed nodes from 1 to 20. As we can
see, the incremental inference in Sya takes 40% less time
than DeepDive to finish the whole queries. Since most of the
changed nodes are spatially-correlated from the application
nature, Sya has a better chance to rapidly converge more than
DeepDive. This is because of the spatial support that Sya
injects in the Gibbs sampling approach.

Figure 13(b) shows the quality of Sya in building GWDB
and NYCCAS knowledge bases while varying the locality
level (i.e., pyramid level) from 1 to 8. In general, both cases
show that the F1-score of Sya increases when it uses more
localized pyramid cells. However, the localization has more
influence on GWDB than NYCCAS. This behaviour further
verifies that just providing precise locality level, while fixing
other parameters, could result in higher quality factual scores.

6) Quality of Spatial Gibbs Sampling: In this experiment,
we directly compare the quality of our proposed spatial
Gibbs sampling with the state-of-the-art Gibbs sampling [46],
[47], that has been used inside DeepDive, while varying the
sampling time from 10 to 10k seconds. For each sampling
algorithm, we measure the quality using the Kullback-Leibler
(KL) divergence [27] between the estimated marginal proba-
bilities using this algorithm and the true marginal probabilities
provided by the ground truth. Figures 14(a) and 14(b) show the
average KL divergence values for both sampling algorithms
while building the GWDB and NYCCAS knowledge bases,
respectively. Our proposed sampling achieves at least 49%
and 41% less divergence values in the GWDB and NYCCAS
cases, respectively, compared to the basic Gibbs sampling.
This confirms the superiority of Sya in the inference quality
results that have been shown in Figure 12(a).

VII. RELATED WORK

Traditional Knowledge Base Construction Systems. There
is a wide array of knowledge base construction systems that
are capable of extracting structured facts and relations. Such
systems can be broadly categorized into two categories: rule-
based systems (e.g., expert rules [12], [26] and crowdsourcing
rules [4], [7]), and machine learning-based systems (e.g.,
classification [13], [15], maximum-a-posteriori models [25],
[38], Markov Logic Networks (MLN) [9], [10], [36], and deep

learning [45]). We refer to these as “traditional” systems. The
closest of these systems considering spatial attributes are [6]
and [41], which augment facts with their location information
(e.g., “lives at” attribute). However, no traditional system has
exploited the location information between entities or facts
during the construction. Sya, conversely, is the first MLN-
based knowledge base construction system that considers such
relationships to improve the knowledge base quality.
Geo-Knowledge Bases. Recent knowledge base systems have
been proposed to extract facts about spatial entities (e.g., lakes)
from Volunteered Geographic Information (VGI) [17] along
with Semantic Geospatial Web [14] (see [5] for a comprehen-
sive survey). In addition, a recent work has been focusing on
the problem of entity alignment between knowledge bases with
a special focus on spatial entities [40]. However, extracting and
maintaining facts about spatial entities is a vastly different
problem than we study in this paper. In Sya, we extract a
knowledge base of generic facts, yet, we exploit the spatial
information, if any, to improve the output quality.
Inference Techniques. The inference task uses a probabilistic
inference algorithm to compute the factual score (i.e., proba-
bility) associated with generated relations. Existing inference
algorithms in knowledge base construction systems are based
on either Gibbs sampling [46], Markov chain Monte Carlo
(MCMC) [1], [10], [28], [31], belief propagation [37], lifted
inference [19], or specialized Markov Logic Network algo-
rithms [22]. Sya provides a new variant of Gibbs sampling
that adapts Concliques-based partitioning [23].

VIII. CONCLUSIONS

We introduced Sya, a full-fledged system that provides
a native support for exploiting spatial relationships during
the MLN-based knowledge base construction process. We
introduced several extensions and optimization to provide
the efficiency and scalability of the grounding and inference
phases when dealing with spatially-correlated knowledge base
relations. We also studied the trade-off between the infer-
ence quality and runtime of Sya. We also showed that Sya
can significantly outperform the state-of-the-art MLN-based
knowledge base construction systems in terms of accuracy and
efficiency. In addition, Sya can be easily used to extend any
of these systems to make it support spatial awareness.

REFERENCES

[1] Alchemy. https://alchemy.cs.washington.edu/.
[2] L. Anselin, I. Syabri, and Y. Kho. GeoDa: An Introduction to Spatial

Data Analysis. Geographical Analysis, 2006.
[3] W. G. Aref and H. Samet. Efficient Processing of Window Queries in

the Pyramid Data Structure. In PODS, 1990.
[4] S. Auer et al. DBpedia: A Nucleus for a Web of Open Data. In

International Semantic Web Conference, 2007.
[5] A. Ballatore, D. C. Wilson, and M. Bertolotto. A Survey of Volunteered

Open Geo-Knowledge Bases in the Semantic Web. In Quality Issues in
the Management of Web Information. Springer, 2013.

[6] J. Biega, E. Kuzey, and F. M. Suchanek. Inside YAGO2s: A Transparent
Information Extraction Architecture. In WWW, 2013.

[7] K. Bollacker et al. Freebase: A Collaboratively Created Graph Database
for Structuring Human Knowledge. In SIGMOD, 2008.

[8] R. Bose. Knowledge Management-enabled Health Care Management
Systems. Expert Systems with Applications, 2003.

[9] Y. Chen and D. Z. Wang. Knowledge Expansion over Probabilistic
Knowledge Bases. In SIGMOD, 2014.

[10] Y. Chen, X. Zhou, K. Li, and D. Z. Wang. Archimedes: Efficient Query
Processing over Probabilistic Knowledge Bases. SIGMOD Record, 2017.

[11] CiteSeerX. http://citeseerx.ist.psu.edu/.
[12] O. Deshpande, D. Lamba, et al. Building, Maintaining, and Using

Knowledge Bases: A Report from the Trenches. In SIGMOD, 2013.
[13] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and

W. Zhang. From Data Fusion to Knowledge Fusion. In PVLDB, 2014.
[14] M. Egenhofer. Toward the Semantic Geospatial Web. In SIGSPATIAL,

2002.
[15] O. Etzioni et al. Open Information Extraction: The Second Generation.

In International Joint Conference on Artificial Intelligence, 2011.
[16] M. Genesereth and N. Nilsson. Logical Foundations of Artificial

Intelligence. Morgan Kaufmann Publishers, 1987.
[17] M. F. Goodchild. Citizens as Sensors: The World of Volunteered

Geography. GeoJournal, 2007.
[18] Google Knowledge Graph. https://www.google.com/intl/en-419/

insidesearch/features/search/knowledge.html.
[19] E. Gribkoff and D. Suciu. SlimShot: In-database Probabilistic Inference

for Knowledge Bases. In PVLDB, 2016.
[20] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching.

SIGMOD Record, 1984.
[21] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search

Trees for Database Systems. In VLDB, 1995.
[22] S. Jiang, D. Lowd, and D. Dou. Learning to Refine an Automatically

Extracted Knowledge Base Using Markov Logic. In ICDM, 2012.
[23] M. Kaiser, S. Lahiri, and D. Nordman. Goodness of Fit Tests for a Class

of Markov Random Field Models. The Annals of Statistics, 2012.
[24] A. Kaplan. On Advancing MCMC-based Methods for Markovian

Data Structures with Applications to Deep Learning, Simulation, and
Resampling. PhD dissertation, Iowa State University, 2017.

[25] G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum. The YAGO-
NAGA Approach to Knowledge Discovery. SIGMOD Record, 2009.

[26] R. Krishnamurthy et al. SystemT: A System for Declarative Information
Extraction. SIGMOD Record, 2009.

[27] S. Kullback and R. A. Leibler. On Information and Sufficiency. The
Annals of Mathematical Statistics, 1951.

[28] K. Li et al. In-database Batch and Query-time Inference over Proba-
bilistic Graphical Models using UDA-GIST. VLDB Journal, 2017.

[29] Y. Nahshon et al. Incorporating Information Extraction in the Relational
Database Model. In WebDB, 2016.

[30] National Democratic Institute: Sanitation Levels. https://www.ndi.org/
sites/default/files/WASH-WaterAid-Fact-Sheet.pdf, 2019.

[31] F. Niu, C. Ré, et al. Tuffy: Scaling Up Statistical Inference in Markov
Logic Networks Using an RDBMS. In PVLDB, 2011.

[32] NYC OpenData. https://data.cityofnewyork.us/Environment/
NYCCAS-Air-Pollution-Rasters/q68s-8qxv.

[33] Open Geospatial Consortium. http://www.opengeospatial.org/.
[34] M. Richardson and P. M. Domingos. Markov Logic Networks. Machine

Learning, 2006.
[35] I. Sabek et al. A Demonstration of Sya: A Spatial Probabilistic

Knowledge Base Construction System. In SIGMOD, 2018.
[36] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré. Incremental

Knowledge Base Construction Using DeepDive. In PVLDB, 2015.
[37] P. Singla and P. Domingos. Lifted First-order Belief Propagation. In

AAAI, 2008.
[38] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A Self-organizing

Framework for Information Extraction. In WWW, 2009.
[39] Texas Ground Water Database. www.twdb.texas.gov/groundwater/data/.
[40] B. D. Trisedya, J. Qi, and R. Zhang. Entity Alignment between

Knowledge Graphs Using Attribute Embeddings. In AAAI, 2019.
[41] B. D. Trisedya, G. Weikum, J. Qi, and R. Zhang. Neural Relation

Extraction for Knowledge Base Enrichment. In ACL, 2019.
[42] D. Venugopal and V. Gogate. On Lifting the Gibbs Sampling Algorithm.

In NIPS, 2012.
[43] M. Wainwright and M. Jordan. Graphical Models, Exponential Families,

and Variational Inference. Foundations and Trends in ML, 2008.
[44] World Health Organization: Liberia Ebola Data. http://apps.who.int/gho/

data/node.ebola-sitrep.quick-downloads, 2019.
[45] S. Wu et al. Fonduer: Knowledge Base Construction from Richly

Formatted Data. In SIGMOD, 2018.
[46] C. Zhang and C. Ré. Towards High-throughput Gibbs Sampling at Scale:

A Study Across Storage Managers. In SIGMOD, 2013.
[47] C. Zhang and C. Ré. DimmWitted: A Study of Main-memory Statistical

Analytics. In PVLDB, 2014.

