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ABSTRACT
In this work, we aim to study when learned models are
better hash functions, particular for hash-maps. We use
lightweight piece-wise linear models to replace the hash func-
tions as they have small inference times and are sufficiently
general to capture complex distributions. We analyze the
learned models in terms of: the model inference time and
the number of collisions. Surprisingly, we found that learned
models are not much slower to compute than hash functions
if optimized correctly. However, it turns out that learned
models can only reduce the number of collisions (i.e., the
number of times different keys have the same hash value)
if the model is able to over-fit to the data; otherwise, it
can not be better than a typical hash function. Hence, how
much better a learned model is in avoiding collisions highly
depends on the data and the ability of the model to over-
fit. To evaluate the effectiveness of learned models, we used
them as hash functions in the bucket chaining and Cuckoo
hash tables. For bucket chaining hash table, we found that
learned models can achieve 30% smaller sizes and 10% lower
probe latency. For Cuckoo hash tables, in some datasets,
learned models can achieve a small lookup time benefit. In
summary, we found that learned models can indeed outper-
form hash functions but only for certain data distributions
and with a limited margin.
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1. INTRODUCTION
Hashing is a fundamental operation in computer science

and commonly used in databases [15]. They are mainly used
to accelerate point queries, perform joins and grouping, etc.
(e.g., [3, 7]). In hash tables, a key is mapped to a location
in constant time (i.e., O(1)). Compared to the traditional
tree-structured main-memory indexes, hash tables have been
proven to be much faster for point queries. Meanwhile, a
lot of data structures and algorithms are recently being en-
hanced by learned models (e.g., [11, 12]). These learned
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structures can outperform their traditional counterparts on
practical workloads. One idea the authors of [11] introduced
is using learned models instead of hash functions, and was
supported that by some empirical evidence. In this paper,
we aim to study, in more details, when learned models are
better than hash functions, particular for applications like
hash-maps. We primarily consider piece-wise linear models
in our analysis as they have small inference times and are
sufficiently general to capture complex distributions.

Our study investigates the performance of learned models
in terms of: the number of collisions, and the computation
time. A collision between two keys occurs when they have
the same hash value. Some hash functions are extremely
fast to compute, yet, they might suffer from a considerable
collision rate in some scenarios (e.g., Multiply-shift [5]). In
general, there are known theoretical lower bounds on the
number of collisions achieved by hash functions. We ob-
served that learned models might be able to do better than
these lower bounds and outperform hash functions. In par-
ticular, it turns out that the amount of collisions for learned
models is dependent on the data distribution.

Regarding computation time, we empirically found that
learned models are slower to compute than most hash func-
tions due to the cache miss overhead from randomly access-
ing the model’s parameters. However, with the help of vec-
torization and prefetching-optimized inter-task parallelism
(e.g., AMAC [10]), the learned models computation time
can come quite close to its hashing counterpart (around 2
ns difference using models with moderate size).

To show the effect of using learned models within hashing
applications, we built bucket chaining and Cuckoo hash ta-
bles using two efficient models, namely RMI [11] and RadixS-
pline [9], instead of hash functions. Typically, in Cuckoo
hashing, a single hash function is used to extract two hash
sequences. In our experiments, we computed one hash se-
quence using the learned model and the other using the hash
function. We empirically evaluate the performance of these
altered hash tables with various real-world and synthetic
datasets. For bucket chaining, we found that learned models
can achieve 30% smaller hash tables and 10% lower probe la-
tency. For Cuckoo hashing, in some datasets, learned models
can increase the ratio of keys stored in their primary loca-
tions (primary key ratio) by around 10% and a small lookup
time benefit in the probe phase.

2. BACKGROUND
Hash Functions and Tables. Murmur [15] and XXH3 [4]
are among the most widely-used hash functions, which have
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good balance between computation time and collision rates.
They are implemented with arithmetic (e.g., multiply, add)
and logical (e.g., shift, XOR) operations. However, XXH3
is specifically designed for streaming data. AquaHash [16]
is another popular hash function that leverages Advanced
Encryption Standard (AES) instructions [1]. In general,
hashing schemes for handling collisions are categorized into
two main categories: chaining and open addressing. Bucket
chaining [3] is a standard hash table implementation that
follows the chaining scheme. It contains a set of n buck-
ets, where each bucket has a pre-allocated array of s entries.
On an insert, once a collision occurs, the item is inserted in
the current available entry in its corresponding bucket. If
the current bucket is already filled up, a new one is created,
pre-allocated and chained to it. For open addressing scheme,
Cuckoo hash table [14] has become the recent state-of-the-
art. Every item has two possible locations: its primary and
its secondary bucket. When inserting an item and its pri-
mary bucket is full, it gets placed into its secondary bucket.
If the secondary bucket is also full, a random item is kicked
from the bucket and is placed into its alternative location
(balanced kicking). In contrast, biased kicking [8] prefers
kicking items that reside in their secondary buckets. The
idea behind this is to increase the ratio of items in their
primary buckets (primary ratio) and hence improve perfor-
mance for positive lookups. Typically, Cuckoo hashing is
implemented with two independent hash functions.
Learned Models. Recently, the idea of using learned mod-
els to predict the location of keys in datasets has gained a
great attention in the database community [11]. RMI [11]
was the first proposed index that uses multi-stage learned
models. In RMI, the root model gives an initial prediction
of the CDF for a specific key. Then, this prediction is re-
cursively refined by more accurate models in the subsequent
stages. Interestingly, the authors of [11] also discussed the
idea of using CDF-based learned models as order-preserving
hash functions, which is the main scope of this paper. An in-
teresting index that followed RMI, namely RadixSpline [9],
employs a radix table to quickly find the two spline points
that approximate the CDF for a specific key. Then, linear
interpolation between the retrieved spline points is used to
locate the key. In this paper, we only focus on piece-wise lin-
ear models that are built using a set of line segments, where
each segment is represented by a slope and an intercept.
Both RMI and RadixSpline can be considered as piece-wise
linear models, which are just trained/created differently.

3. ANALYSIS OF LEARNED MODELS

3.1 Can Learned Models Cause Less Colli-
sions than Traditional Hash Functions?

In this section, we first characterize collisions and then
use this to identify/analyze factors affecting collisions for
learned models and hash functions. This analysis helps us
to characterize situations where learned models outperform
hash functions.
Notation. We consider the task of mapping N keys to N
locations for ease of analysis. x0, x1, ... is the sorted array of
N keys (xi <= xi+1) and y0, y1, .., where yi ∈ [0, N − 1], is
the corresponding sorted array of output values ( yj = f(xi))
where f is a learned model or hash function) such that yi <=
yi+1. Note that xi does not necessarily relate to yi, xi’s and
yi’s are just sorted versions of the original input keys and

output locations. For learned models, yi’s are continuous
values and the precise output location is the closest integer
to yi’s. The sorted output values generate a set of gaps

g1, g2, ... such that yi =
(∑i

t=1 gt
)

+ y0. These gaps form

a distribution G with a probability density function (PDF)
fG. The discussion and analysis in the rest of this section
support the following points:

• Collisions are dependent on the gaps between consec-
utive sorted output values (gi’s).
• For piece-wise linear models, the number of collisions is

dependent on the key distribution, specifically the gaps
between consecutive sorted keys (xi − xi−1). Higher
variation in the distribution of gaps between keys leads
to more collisions. Having more linear models im-
proves the accuracy but may not reduce the collisions.

• Collisions for a good hash function are independent of
the input key distribution (The distribution of xi’s).

Characterizing Collisions. If two keys are mapped to
the same location, then there is a collision. The key insight
regarding collisions is that the collisions depend on the gaps
between consecutive output values (yi − yi−1). If the gap
between two consecutive output values is greater than one
(yi − yi−1 ≥ 1), then they would definitely be placed in
separate locations. On the other hand, if the the gap is
smaller than one (yi − yi−1 ≤ 1), they may be mapped to
the same location depending on the location boundary. In
addition, the smaller the gap value the more the probability
of the keys falling in the same location.

The gap values are constrained by the condition that the
sum of all the gaps should be less than (N − 1)1, and thus,
the mean gap value turns out to be less than or equal to
one (E[G] ≤ 1). Ideally, we would want all the gaps to be
exactly equal to one as this leads to zero collisions and also
satisfies the constraint. Qualitatively speaking, any increase
in the variance of gap distribution G leads to an increase in
the number of gaps below value one and thus, a subsequent
increase in the number of collisions.
Collisions for Linear Models. The output distribution
for linear models is dependent on the input distribution.
Linear operations scale and offset the input values to obtain
the output. For sorted input values (x0, x1, x2, ..), a simple
linear model (y = m ∗ x + b) will just scale the gaps of the
input (gi = yi+1 − yi = (xi+1 − xi) ∗ m). For piece-wise
linear models, the gap distribution of the output values G
is a scaled version of the input. The scaling will be such
that the mean of G is less than equal to one (E[G] ≤ 1). If
the input gap distribution has higher variance, this would
be propagated to G, leading to more collisions.

Next, we qualitatively argue why more models do not nec-
essarily reduce the number of collisions. Suppose the input
data was generated using a gap distribution H with corre-
sponding PDF fH . Piece-wise linear models would simply
scale different ranges of the input and thus, the correspond-
ing output gap distribution would just be a scaled version
of fH . Increasing the number of models does not alter the
gap distribution of the output values and thus, the number
of collisions stays the same. In an extreme case, when the
number of models is close to the number of keys, then the
collisions would be low but the space overhead would make
the structure practically unusable.

1Sum of gaps is:
∑N−1

t=1 (yt − yt−1) = yN−1 − y0 ≤ N − 1
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Figure 1: Gap distribution and its effect on collisions

Here, we visualize the gap distribution of the output val-
ues for various datasets and the corresponding proportion
of empty slots. We used piece-wise linear models for vari-
ous datasets and obtained the output y′is (CDF) values for
them. In Figure 1, we show the PDF of the gap distribution
and the proportion of empty slots for three real datasets
from [13] and a synthetic uniform one. Clearly, the gap
distribution is much more predictable for wiki than for uni-
form, fb and osm. wiki has a gap distribution concentrated
more towards one and so ends up having the least number
of empty slots. osm tends to have a lot of gaps concentrated
towards zero and ends up with the most empty slots. We
provide a formal analysis for the collisions and its relation
with gaps distribution in Appendix A.
Collisions for Hash Functions. In case of a good hash
function (e.g., Murmur), the output values will be uniformly
distributed in the range [0, N − 1] irrespective of the input
distribution. Therefore, the gap distribution of the output
values is a fixed distribution which corresponds to the uni-
form case in Figure 1.
Summary. If the input keys are generated from a distri-
bution, then the CDF of the distribution maps the data
uniformly randomly in the range [0, 1]. Hence, the CDF will
behave as an order-preserving hash function in a hash table.
A learned model that approximates this underlying distri-
bution would only be as effective as a hash function in terms
of collisions. If the data is generated in an incremental time
series fashion (x0, x1 = x0 + g0, x2 = x1 + g1, ....), the pre-
dictability of the gaps determines the amount of collisions.
In certain cases, like the wiki distribution, a learned model
can lead to fewer collisions. Auto generated IDs with some
deletions are the other common case where learned models
can beat hash functions.

3.2 Can Learned Models be Computationally
as Fast as Traditional Hash Functions?

In this section, we first present the computation bottle-
neck of using learned models as hash functions. Then, we
discuss the opportunity of alleviating such bottleneck by
using vectorization (i.e., Single Instruction Multiple Data
(SIMD) instructions) and prefetching-optimized inter-task
parallelism techniques (e.g., AMAC [10]).
Cache Misses Overhead. The computation of traditional
hash functions is fast. It usually includes the execution of
arithmetic, logical, and shifting operations (e.g., Multiply-
shift [5], and Murmur [15]). In contrast, using learned mod-
els, like RMI, as a hash function incurs higher latency. This
is because, although the inference computation of these mod-
els (which is basically the hashing computation in our case)

is completely based on arithmetic operations (e.g., add, mul-
tiply, max), there is an additional overhead in accessing the
model parameters (e.g., intercepts and slopes) that will be
used during the computation. This overhead significantly
increases if the model size becomes large as its parameters
will not completely fit in the cache, and randomly accessing
them from the memory will incur many cache misses.
Performance Gain via SIMD. Interestingly, vectorizing
the computation in learned models is more efficient than
vectorizing some hash functions as long as the model param-
eters are kept in the cache. To backup this claim, we micro-
benchmarked the throughput of hashing 128 million 64-bit
integer keys using a single-threaded AVX512 SIMD imple-
mentation for both Murmur [2] and 2-levels RMI model [11],
running on a machine with Intel(R) Xeon(R) processors
(Skylake architecture). We made sure that all models’ pa-
rameters are fully cached by building an RMI with a total of
5 linear models only (1 root model, and 4 models in the sec-
ond level). Our results showed that the hashing throughputs
for vectorized RMI and vectorized Murmur are 1000 and 800
million keys/sec, respectively. This is expected because, with
ignoring the effect of parameters’ cache misses, the inference
computation (i.e., hashing) in RMI heavily relies on fast
comparison (e.g., min/max) and fused instructions2 (e.g.,
fmadd), each has a throughput of 2 instructions/cycle [6].
On the other hand, 60% of the total instructions needed in
the Murmur computation have a throughput of 1 instruc-
tion/cycle or less, such as logical shift (1 instruction/cycle)
and multiplication (0.66 instruction/cycle).
Performance Gain via AMAC. As previously mentioned,
the superiority of vectorized learned models quickly dimin-
ishes when we have large models, which is a typical case in
real settings. In this case, the model parameters are fre-
quently accessed from memory and not from cache. Even
if some of the requested parameters from a vectorized in-
struction hit in cache, the instruction cannot proceed until
cache misses of the other parameters in the vector are re-
solved. Obviously, direct software prefetching is not a feasi-
ble solution to this issue, and will completely stall the per-
formance, because the model parameters require immediate
memory access. Therefore, we propose to hide the cache
misses latency by combining the vectorized learned models
with a widely-used prefetching-optimized inter-task paral-
lelism technique, namely AMAC [10]. This helps in mak-
ing the overall latency of vectorized learned models very
close to traditional hash functions as shown in our evalu-
ation (Section 4). Appendix B shows our proposed batch-
oriented hash function that combines the benefits of SIMD
and AMAC with learned models.

4. EVALUATION
For the experiments, we use three real datasets from [13],

namely wiki, osm, and fb, in addition to three variations
of a synthetic sequential dataset with different x% elements
removed randomly (x={0, 1, 10}). Each real or synthetic
dataset has around 200 million 64-bit keys. We de-duplicate
the real datasets before using them. We use AquaHash [16],
XXH3 [4] and Murmur [2] with fast modulo reduction3 as

2Intel(R) Xeon(R) Gold 6230 processor has two physical
AVX512 FMA units.
3Modulo reduction is based on efficient integer division
(https://libdivide.com).

3



n/
a 10

0
10
3
10
5

10
1
10
3
10
5
10
7

Model count

0.0

2.5

5.0
K
ey
s
p
er

se
co
n
d ×108

AquaHash
Murmur

XXH3
RadixSpline

RMI

(a) Median keys per second

seq

ga
p 1

%

ga
p 1

0% wi
ki fb os

m

Dataset

0%

33%

66%

100%

E
m
p
ty

sl
ot
s RadixSpline

Murmur

(b) Empty slots (percent)

Figure 2: Throughput and collisions comparisons.

Model

Count

Non-Vect.

Murmur (ns)

Vect.

Murmur (ns)

Non-Vect.

RMI (ns)

Vect.

RMI (ns)

10 2.4 1.9 10 4
103 2.4 1.9 13 4
105 2.4 1.9 25 8
107 2.4 1.9 112 22

Table 1: Run time of vectorized RMI and Murmur.

traditional hash functions and two efficient learned models:
RMI [11] and RadixSpline [9].
Run Time. Figure 2(a) shows the median throughput for
hashing the sequential dataset with 10% removed elements
using traditional hash functions and non-vectorized learned
models, while varying the count of line segments used in each
model. As expected, traditional functions are much better
than non-vectorized learned models, even with small sizes.
The throughput of learned models decreases significantly for
large sizes due to the increased number of cache misses when
accessing the model parameters. Table 1 shows the perfor-
mance of AMAC-based vectorized versions of both RMI and
Murmur hashing for the same dataset. As shown, with 103

models, the performance gap between non-vectorized RMI
and Murmur is substantial (around 10 ns), however, using
the AMAC-based vectorization reduces this gap to be 2 ns
only. Note that, at very large models (e.g., 107), RMI be-
comes much slower than Murmur, even with vectorization.
Collisions. Figure 2(b) shows the amount of collisions for
RadixSpline against Murmur hashing on various datasets.
RMI is omitted as it has similar results to RadixSpline.
Here, we mapped N elements into N slots and report the
proportion of empty slots. The dashed line is the theoreti-
cally expected value for true uniform random hash functions.
As shown, for many datasets, learned models indeed have
less empty slots than hash functions (i.e., less collisions).
However, for fb and osm datasets, the models make the col-
lisions worse. This confirms our analysis in Section 3.1.
Bucket Chaining Hash Tables. Bucket chaining hash ta-
bles deal with collisions by creating linked lists for the keys
mapped to the same location. When retrieving a key, we
traverse the linked list until we find the key. With increased
collisions, the space needed for the chained hash tables in-
creases. Figure 3(a) shows the effect of using different hash
functions and RadixSpline as a representative learned model
when building bucket chaining hash tables with different
payload and bucket sizes. We observe that RadixSpline can
lead to less probe times for all of the datasets, except fb and
osm ones. Moreover, larger payloads lead to larger cache
miss penalties, and hence with increasing payload sizes, hash
functions take slightly more time than learned models.
Cuckoo Hash Tables. Having a high primary key ratio
reduces the unnecessary lookups, as one avoids going to the
second location, and hence improves the probe time. We
show the effect of replacing one of the used multiple hash
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Figure 3: (a) Bucket chaining hash table probe
times for varying payload sizes and slots per bucket.
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Figure 4: Probe times comparison between Cuckoo
and bucket chaining hashing.

functions by a learned model. We use a Cuckoo Hash with
2 hash functions, load factor of 1, bucket size of 8, and two
kicking strategies; balanced and biased [8]. As shown in
Figure 3(b), using any two traditional hash functions con-
sistently achieves primary key ratios of 62% and 83%, for
biased and balanced kicking, respectively, which are close
to theoretically optimal. However, we observe that using
learned models, e.g., RadixSpline, along with both kick-
ing strategies can lead to better primary key ratio for all
datasets, except fb and osm. With biased kicking, learned
models get a much better primary key ratio which leads to
lower cache misses and thus a slightly better probe time.
Combined Probe Times. Figure 4 shows the probe times
achieved by employing each of RadixSpline and Murmur
hashing inside both bucket chaining and Cuckoo hash tables
on various datasets. We used bucket size of 4 for both tables.
Also, biased kicking is used for constructing the Cuckoo ta-
ble. As shown, for all datasets except fb and osm, bucket
chaining with RadixSpline is the best strategy. Cuckoo ta-
bles are generally slower than their chained counterparts.
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APPENDIX
A. COLLISION ANALYSIS

If we assume that gi’s are generated from an independent and
identically distributed (iid) variable with probability density func-
tion fG(x), then the expected number of empty slots e, after map-
ping keys to their hash outputs, is given by the formula below:

E[e] = N ·
∫ 1

0
(1 − x) · fG(x)dx

This equation was derived using the fact that if the gap value
x is less than one, then with probability x, a location boundary
would fall between the two consecutive values. This is because the
location boundaries are separated by unit values and the proba-
bility of a random boundary falling in a gap of size x is x. The
probability that no boundaries fall in a gap of size x is (1 − x)
and (1−x) ∗ fG(x)dx represents the proportion collisions for gap
values from [x, x + dx]. This quantity is then integrated from 0
to 1, as consecutive keys with gaps beyond one don’t collide.

B. ALGORITHM FOR HASHING VIA LEARNED
MODELS

Algorithm 1 shows the pseudo code of our proposed batch-
oriented hash function that combines AMAC with vectorized learned
models. The core idea is sample: for a vector of keys, we map the
hashing computation generated by 2-levels learned model into an
FSM with two states, where the first state (Lines 6 to 16) uses
the root model to predict the index of the second level model, and
prefetches its parameters, and the second state (Lines 17 to 19)
performs the actual hashing using the prefetched model parame-
ters. The algorithm keeps interleaving multiple running instances
of the FSM till it finishes hashing all input keys. The logic in each
state is completely implemented with SIMD instructions.
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