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ABSTRACT
Because video is becoming more popular and constitutes a major

part of data collection, we have the need to process video selection

queries — selecting videos that contain target objects. However,

a naïve scan of a video corpus without optimization would be ex-

tremely inefficient due to applying complex detectors to irrelevant

videos. This demo presents Paine; a video query system that em-

ploys a novel index mechanism to optimize video selection queries

via commonsense knowledge. Paine samples video frames to build

an inexpensive lossy index, then leverages probabilistic models

based on existing commonsense knowledge sources to capture the

semantic-level correlation among video frames, thereby allowing

Paine to predict the content of unindexed video. These models can

predict which videos are likely to satisfy selection predicates so to

as avoid Paine from processing irrelevant videos. We will demon-

strate a system prototype of Paine for accelerating the processing

of video selection queries, allowing VLDB’23 participants to use

the Paine interface to run queries. Users can compare Paine with

the baseline, the SCAN method.
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1 INTRODUCTION
With the increased availability and popularity of video databases [1,

7, 8], video selection queries have emerged as a growing area of

research interest [2, 3, 5, 6, 9]. These queries are utilized for se-

lecting desired videos that satisfy certain predicates, especially

containing target objects detected by neural networks. This kind of

query can help video search in consumer-facing systems (e.g., social

media platforms, albums in personal smartphones), in analytical

systems for skilled users, and in systems for constructing training

sets (as with self-driving cars). Due to the large size of existing video

databases, it is a common practice to include the LIMIT clause in

selection queries in order to limit the size of the returned video set.
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For example, a user might want to search for 12 videos containing

motorcycles from a large video corpus. In most cases, the objects

contained in videos are unknown but can be extracted by applying

a frame-level object detector. The current state-of-the-art object

detectors are neural networks. A selection query for this purpose

is shown as follows:

SELECT * FROM videoCorpus

WHERE DetectedObject = ''motorcycle ''

LIMIT 12

Here, the DetectedObject field is populated by applying a frame-

level object detector to each image in videoCorpus. A naïve query

processing method for this query is to simply scan the video corpus,

repeatedly applying the object detector and testing the results, until

the result set’s size meets the LIMIT value. However, the significant

number of videos that do not satisfy the predicate and the detector’s

long inference time would lead to extremely slow processing.

Precomputing and indexing the contents of DetectedObject would

allow us to avoid work at query time. Unfortunately, building an in-

dex of the complete video content requires processing every frame

by the object detector and recording all the object information. Ap-

plying the object detector at ingest time or retrospectively does not

make a big difference: the quantity of work is enormous in either

case. For online media platforms like YouTube, over 500 hours of

videos are uploaded every minute [10]. Take the state-of-the-art

model YOLOv7 [13] as an example, the processing rate is only 56

FPS when achieving 55.9% Average Precision. To reduce the index

cost, a straightforward option is to sample fewer frames for pro-

cessing; unfortunately, this means objects that only appear in a

small fraction of frames are likely to be missed. Existing techniques

cannot achieve a high index quality with a limited index budget.

The difference detector method [6] prevents the object detector

from processing visually similar frames at index time, but it only

works when the video is very static. The specialized neural model

method [2, 6] trades the generality and accuracy of a detector for

fast inference so that more frames can be processed, but these

two features are important for a high-quality index. Furthermore,

BlazeIt [5] can use a specialized neural model to compute the prob-

ability of each object existing in videos as the index so as to give

precedence to videos with a high probability at query time. Unfor-

tunately, the weakness of specialized neural models still exists in

this method.

In this paper, we demonstrate Paine; a video query system that

employs a novel index mechanism to optimize video selection

queries. We find that there is semantic-level correlation in videos; a

human being can predict most of the video contents after observing

just a few frames. Consider the above user who wants to see videos

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


that contain motorcycles as an example. If she were personally surf-

ing a set of videos to find something that contains motorcycles, she

might reasonably skip over a video whose first frame is in a kitchen;

it almost certainly does not contain motorcycles. But she is likely

interested in watching more of a video whose first frame shows cars

on a road, even though she does not yet see a motorcycle, because

cars and motorcycles often go together.

Paine leverages an inexpensive but lossy index and common-

sense knowledge to prioritize promising predicate-related videos. It

consists of three stages. In the offlineModel Preparation stage, Paine
can build two kinds of probabilistic models to infer the missing ob-

jects from the lossy index — one is a derived conditional probability

formula from knowledge graphs [12], and the other is a regression

model learned from videos based on the pre-trained BERTmodel [4].

In the Indexing stage, for any arriving video, frames are sampled

and processed by the object detector to create an inexpensive index.

This processing rate is adjustable according to the index time bud-

get. In the Query Processing stage, when a selection query arrives,

based on the lossy index and a commonsense knowledge-integrated

probabilistic model, Paine predicts the existence probability of the

target object and ranks videos in descending order of this proba-

bility. Videos that are likely to satisfy predicates can be processed

first, thereby avoiding unnecessary processing of irrelevant videos,

while ensuring 100% accuracy.

We demonstrate a system prototype of Paine, showing how

this new index mechanism performs for video selection queries

on YouTube videos, which are typical and important workloads.

In this use case, users can specify the target object and the LIMIT

value in the query. This demonstration shows the query runtime

with two different versions of the index mechanism: one built using

knowledge graphs, the other using commonsense knowledge from

videos. To reveal how different probabilistic models reduce the

processing time, it displays the processed relevant and irrelevant

videos that are directly affected by different optimization methods.

In addition, users can compare Paine with a SCAN method that

uses the same lossy index as Paine.

2 PAINE ARCHITECTURE
Figure 1 depicts the three-stage architecture of Paine. This system

allows interaction with non-technical users: users provide video

selection queries by specifying the target objects and the LIMIT

values; Paine selects the satisfying videos from a video corpus

through fast processing and returns them to users. We introduce

these three stages in Section 2.1-2.3.

2.1 Indexing Stage
Complex neural network models can compute good-quality de-

tection results for the non-lossy index, but per-frame processing

would take quite a long time. In the Indexing stage in Paine, an in-

expensive lossy index is built. A fraction of frames in each arriving

video are processed by an object detector (YOLO9000 [11] in Paine)

to construct incomplete object lists; these object lists mapped to

videos as key-value pairs compose the index. The processing frame

rate for the index is adjustable according to varying index time

budgets; by default, the rate is 1 out of 30 frames in Paine.

Algorithm 1: Query processing

Input: Video corpus V , object detector 𝐷 , target objects O, LIMIT

number 𝑘 , probabilistic model𝑀 , Index I
1 P =𝑀(I, O);

2 Sort V in the reverse order of P;

3 repeat
4 𝑉𝑠𝑒𝑙𝑒𝑐𝑡 = V .getNext();

5 if O ⊆ 𝐼𝑉𝑠𝑒𝑙𝑒𝑐𝑡 then
6 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑠𝑒𝑙𝑒𝑐𝑡 );

7 continue;

8 end
9 if O ⊆ 𝐷 (𝑉𝑠𝑒𝑙𝑒𝑐𝑡 ) then
10 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 .append(𝑉𝑠𝑒𝑙𝑒𝑐𝑡 );

11 end
12 until |𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡 | == 𝑘 or V .hasNext() == False;

Output: 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑒𝑡

2.2 Query Processing Stage
When a new query arrives, the system enters the Query Processing
stage. Algorithm 1 describes this procedure. In line 1, the system

computes the probability of observing the target object with a

probabilistic model (Section 2.3), conditioned on the fact we have

observed the objects that are present in the lossy index. In line 2,

videos in the corpus are sorted in descending order of this proba-

bility. If the target objects happened to be directly observed during

indexing, that video is added to the result set directly in lines 5-8.

Videos that are not yet in the result set are then processed in the

computed order in lines 9-11. We apply the object detector to each

frame in the video to determine unambiguously whether the video

contains the target object. Videos that do contain the target object

are added to the result set until the set’s size has reached the LIMIT

number or all the videos have been explored. A high-quality proba-

bilistic model will mean processing fewer videos before returning

the result set, yielding less processing time.

2.3 Model Preparation Stage
The probabilistic model is constructed in the offline Model Prepara-
tion stage to support fast processing. It predicts the probability that

a video contains object 𝑋 , given that we know object 𝑌 exists in

the video. We have two different methods for building this model.

2.3.1 Knowledge Graph Model.
Knowledge graphs can describe the relationship between objects,

represented by nodes and edges. Paine utilizes ConceptNet Num-

berbatch [12], a set of word embeddings learned from a knowledge

graph ConceptNet. The cosine similarity betweenword embeddings

can be computed for measuring word similarity. When two objects

are in the same domain, they are semantically similar and tend to

appear in the same video, e.g., a motorcycle and a car. Therefore,

for a single target object O and an observed object list 𝐼𝑖 containing

only one object in the index, we take the cosine similarity as the

conditional probability estimation:

𝑃 (O |𝐼𝑖 ) B max ( 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) · 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝐼𝑖 )
∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (O) ∥ · ∥𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝐼𝑖 ) ∥

, 0) . (1)

When there are multiple distinct objects in an observed object

list 𝐼𝑖 , denoted as 𝐼𝑂 (𝑖,1) , 𝐼𝑂 (𝑖,2) , ..., 𝐼𝑂 (𝑖,𝑚) , Paine estimates the
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Figure 1: The three-stage architecture of Paine system.
conditional probability 𝑃 (O|𝐼𝑖 ) from the probability conditioned

on each object 𝐼𝑂 (𝑖, 𝑗 ) :

𝑃 (O |𝐼𝑖 ) ≈ 1 − (1 − 𝑃 (O |𝐼𝑂 (𝑖,1) ) ) (1 − 𝑃 (O |𝐼𝑂 (𝑖,2) ) ) · · ·
(1 − 𝑃 (O |𝐼𝑂 (𝑖,𝑚) ) )

(2)

Here the pairwise existence probability 𝑃 (O|𝐼𝑂 (𝑖, 𝑗 ) ) is estimated

as Equation (1).

When there are multiple target objects in the predicate, Paine

reuses Equation (2) and roughly estimates 𝑃 (O|𝐼𝑂 (𝑖, 𝑗 ) ) by the prod-
uct of pairwise existence probability of each target object condi-

tioned on 𝐼𝑂 (𝑖, 𝑗 ) .

2.3.2 Video-Derived Model.
The system can compute object observation probabilities from a

set of lists each of which contains objects observed in the same

video. These lists can be obtained by running a detector over a

set of videos, e.g., videos from the same source as the queried

videos. Objects frequently coexist in these videos tend to coexist in

the queried videos. If such videos are available, this video-specific

commonsense knowledge is likely to be more beneficial than the

above knowledge graphs.

Paine directly learns a neural network model based on observed

object statistics derived from processing a collection of video. The

input of this model is a set of observed objects and target objects

concatenated together. Deduplicated observed objects are arranged

in the time order. The output of this model is a numeric value indi-

cating how likely this video contains target objects. Paine keeps

the outputs between 0 and 1 as the probability estimation. This

model consists of the pre-trained uncased BERT (Bidirectional En-

coder Representations from Transformers) base model [4] and a

regression layer to be fine-tuned by training data.

During the training procedure, this model is trained with all

the potential single target objects since the desired object is not

pre-defined in this stage. For each object list in the observed object

statistics, Paine sets each item in this list as the target object in turn,

and treats the remaining items as the observed objects, making the

training data with label 1; it randomly assigns a new object as the

target object and uses the whole object list as the observed list,

making the training data with label 0. When more observed object

statistics are gained from the Query Processing stage, Paine further

updates this model.

3 DEMO SCENARIO
In this section, we demonstrate a prototype system of Paine on

YouTube videos in diverse domains. They comprise a typical and

important workload — other applications as listed in Section 1 may

also use YouTube-style videos.

(a) (b)

Figure 2: User Interface of Paine

Step 1: The user will be presented with a system that has indexed

200 YouTube video clips. They are 60-second video clips collected

from the YouTube-8M Segments dataset [1]. Considering the demo

time, we choose this size and length of the video set, but our system

can work for more and longer videos. The index was built by apply-

ing YOLO9000 [11], which can detect over 9000 object categories,

at the rate of one frame per second. This system has also learned a

video-derived probabilistic model from the YouTube-8M Segments

dataset other than the above 200 video clips. The user will be able

to interact with the system by specifying the target object and the

LIMIT value (Figure 2(a)). She can click the button “choose objects

from a drop-down menu” and choose from a pre-selected list of

objects (Figure 2(b) only shows a subset of the target object options).

She can also click “choose novel objects” and enter novel object

names. As shown in Figure 2, the user has chosen parameters that

yield the SQL query example in Section 1.

Step 2: She can run the query and compare the query results and

the query runtime of different optimization methods. This query

can be run in two modes: the SCAN mode and the Paine common-

sense indexing mode. As explained in Section 1, previous works are

not suitable for this scenario, so we did not create other modes. The

SCAN method leverages the same index as Paine, but suffers be-

cause of the index’s lossy nature. SCAN first returns videos where

the target object happened to be observed directly and is listed

explicitly in the index. If these videos are not enough to answer

the query, SCAN will then process videos sequentially until it finds

enough correct answers to satisfy the query. The Paine common-

sense indexing mode adopts the video-derived model. We set a

two-hour timeout for the query processing. The demonstration

system will have precomputed results for target objects so the user

does not have to actually wait for two full hours.

She will see a summary table (the first two rows in Figure 3)

showing the query results and the execution time of these two

modes. In the SCANmode, this motorcycle query cannot be finished

within two hours; only eight videos can be returned to the user. Our

system Paine runs dramatically faster than SCAN. It only takes 20

minutes to select high-quality videos that contain motorcycles.

Step 3: The user can decide to dig into the internal workings of the

above two modes to figure out what factors affect the query run-

time. She will be able to examine the output of line 6 in Algorithm 1

3



Figure 3: Summary table to compare SCAN, Paine with the
video-derived model, and Paine with the knowledge graph
model for the motorcycle selection query

Figure 4: Internal working of Paine with the video-derived
model for the motorcycle selection query

(videos that contain objects that were directly observed and so are

definitely in the index), the output of line 10 in Algorithm 1 (videos

that were not directly observed but found by examining frames

during query processing), and the videos that are examined during

query processing but do not satisfy the predicate. These three cate-

gories are denoted as DIRECTLY OBSERVED, DISCOVERED, and

IRRELEVANT videos. Those satisfying videos that are processed

by the detector during query processing are presented with the

bounding boxes. Figure 4 shows the internal working of the Paine

mode as an example.

In the Painemode, there are seven DIRECTLYOBSERVED videos

(the top part of Figure 4) and five DISCOVERED videos (the middle

part of Figure 4). As shown in the bottom part of Figure 4, the

commonsense knowledge can instruct the query engine to process

only one IRRELEVANT video, explaining the fast processing in step

2. In contrast, in the SCAN mode, there is only one DISCOVERED

video, and tons of IRRELEVANT videos occupy the processing time.

It would take much longer than two hours to finish this query in

the SCAN mode.

Step 4: The user is also allowed to try another commonsense knowl-

edge model in Paine. Our system has prepared a knowledge graph-

based model obtained from ConceptNet Numberbatch [12]. She can

run the selection query with this model and will see a summary

table (Figure 3) comparing it with other optimization methods. It

takes 40 minutes to complete the process, slower than the video-

derived model but much faster than the SCAN method. And she

can also examine the internal working of this method like in step 3.

Figure 5: Summary table for the chair selection query
Same as Figure 4, there are seven DIRECTLY OBSERVED videos

and five DISCOVERED videos, but more IRRELEVANT videos are

processed when using the knowledge graph model.

Step 5: The user can go back to step 1 to try other video selection

queries. For example, she can click the button “choose novel objects”,

and enter “chair” as the target object and 11 as the LIMIT value.

After repeating the above steps, she will see a new summary table

as shown in Figure 5.
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