
The Case for Learned In-Memory Joins
Ibrahim Sabek

MIT CSAIL

sabek@mit.edu

Tim Kraska

MIT CSAIL

kraska@mit.edu

ABSTRACT
In-memory join is an essential operator in anydatabase engine. It has

been extensively investigated in the database literature. In this paper,

we studywhether exploiting the CDF-based learnedmodels to boost

the join performance is practical. To the best of our knowledge, we

are the first to fill this gap. We investigate the usage of CDF-based

models and learned indexes (e.g., Recursive Model Index (RMI) and

RadixSpline) in the three join categories; indexed nested loop join

(INLJ), sort-based joins (SJ) and hash-based joins (HJ). Our study

shows that there is roomto improve theperformanceof the three join

categories through our proposed optimized learned variants. Our

experimental analysis showed that these optimized learned variants

outperform the state-of-the-art techniques in many scenarios and

with different datasets.

PVLDBReference Format:
Ibrahim Sabek and Tim Kraska.

The Case for Learned In-Memory Joins. PVLDB, 16(1): XXX-XXX, 2023.

doi:XX.XX/XXX.XX

1 INTRODUCTION
The recent advancement of hardware, with increasingmainmemory

capacities and providing a large number of cores, has led to the emer-

gence of in-memory database systems (e.g., Umbra [47], HyPer [22],

Quickstep[50], MonetDB [20]), and a lot of research efforts in devel-

oping highly-optimized in-memory variants of the core database

operators (e.g., [66]). As a fundamental operation, in-memory join

has been extensively investigated in the database literature during

the last few decades (e.g., [2, 5, 8, 10, 17, 19, 31, 61]). Many recent

studies (e.g., [5, 57]) have shown that the design, as well as the imple-

mentation details, have a substantial impact on the join performance

on modern hardware.

Meanwhile, during the recent years, machine learning started

to have a profound impact on automating the core database func-

tionality and design decisions. There has been growing interest in

exploiting learned models, such as CDF-based models [28, 29] and

RecursiveModel Indexes (RMI) [28], to enhanceor replace traditional

data structuresandalgorithms, suchas indexing[14, 16, 25, 28, 46, 49],

sorting [29, 30], and hashing [27, 55]. These learned data structures

and algorithms can outperform their traditional counterparts as

they explicitly capture trends in the underlying data and instance-

optimize the performance. For example, in a recent benchmarking

study [41], it has been shown that learned index structures (e.g.,

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/

to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright

is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

RMI [28], RadixSpline [25]), which employ CDF-based learned mod-

els, can outperform traditional indexes on practical workloads.

Along this line of research, one idea the authors of [28] introduced

is using CDF-based learned models to improve the performance of

in-memory join algorithms. However, this idea was neither thor-

oughly investigated nor supported with experimental evidence by

the authors. Surprisingly, though, we are not aware of a thorough

study examining the performance of learned join variants against

traditional ones. We aim to remedy that here.

In this paper, we study, in detail, whether exploiting the CDF-

based learned models to boost the performance of in-memory joins

is a beneficial idea or not. In particular, we investigate the perfor-

mance of three main join categories; indexed nested loop join (INLJ),

e.g., [17, 19], hash-based joins (HJ), e.g., [8, 10, 31, 61], and sort-based

joins (SJ), e.g., [2, 5], while modifying or replacing their different

phases (e.g., indexing, sorting, joining) with CDF-based and RMI-

based variants. In our study,we explore all the possible opportunities

for integrating the learned models with traditional joins. Our paper

has the following main contributions:

Investigating Alternatives of Using LearnedModels for Joins.
Although the learned model ideas have been introduced in previous

works, none of them has been studied in the context of join process-

ing. Therefore, for each join category, we first discuss the straightfor-

ward alternatives of directly integrating learnedmodelswith the join

phases. For example, in INLJ, RMI can be used to replace the built in-

dex on the indexed relation. In SJ, the LearnedSort algorithm [29] can

be used to replace the sorting phase. InHJ, a CDF-basedmodel can be

used to replace the hash function that is used to build the hash table.

While investigating the different alternatives, we found an interest-

ing observation: using learned models "as-is" in replacing phases of

different join algorithms is sub-optimal. For example, directly using

RMI instead of a traditional index in INLJ leads to poor performance

(i.e., high overall latency) as RMI requires significant overhead to

correct itsmispredictions. Another example is using the LearnedSort

algorithm [29] as a black-box replacement for the sorting algorithms

used in the state-of-the-art SJ techniques, such as MPSM [2] and

MWAY [61]. This, unfortunately, leads to repeating unnecessary

work and hence increases the overhead of the SJ algorithm.

Optimized Learned Join Variants. To overcome the performance

limitations of using learned models as black boxes, we introduce

optimized variants of the learned join algorithms in the three join

categories, which lead to several performance improvements. In par-

ticular, we introduced five INLJ, three HJ, and six SJ learned variants

that exploit different optimizations including hierarchical buffer-

ing, prefetching-optimized inter-task parallelism (e.g., AMAC [26]),

software write-combine buffers (SWWC), non-temporal streaming,

NUMA-awareness, and work sharing.

Extensive Experimental Evaluation. To achieve a deeper under-
standing of the practicality of using learned models with joins, we

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

conducted a detailed evaluation study for both learned and non-

learned variants in the three join categories, using different real

(SOSD [41]) and synthetic datasets
1
. In particular, we compare 14

optimized learned join variants against seven INLJ baselines (three

off-shelf learned (RMI [28], RadixSpline [25], ALEX [14]), two tree-

based (Cache-Sensitive Search Trees [19], Adaptive Radix Trie [33]),

and two hash-based (bucket chaining and Cuckoo hash) indexes),

two SJ baselines (MPSM [2], MWAY [5]), and two HJ baselines (non-

partitioned [61], partitioned [57]). Our study also provides a deeper

analysis for the joins under different dataset sizes, skewness, tuple

sizes, duplicates ratio, parallelism, strategies for shuffling data be-

tween NUMA nodes, and via different performance counters (e.g.,

cache misses and branch misses).

2 BACKGROUND
CDFModels. According to statistics, the Cumulative Distribution
Function (CDF) of an input key 𝑥 is the proportion of keys less than
𝑥 in a sorted array𝐴. Given a sample of keys, we can build a model

that estimates the CDF of the distribution fromwhich these keys are

sampled. We refer to this model as learned CDF model.
For input keys with challenging distributions (i.e., complex CDF),

a learned model typically consists of a set of submodels, where each
submodel (e.g., linear regression) estimates a part of the CDF. These

submodels are trained hierarchically across different 𝐾 layers, as

shown later. To predict the CDF of a key, the root submodel yields an

initial CDF estimate. Based on this estimate, a submodel is chosen in

the next layer for refining such estimate. This process is continued

iterativelyuntil thefinal estimateof the leaf submodel in the last layer

is obtained. Assuming that each layer 𝑖 has𝑀𝑖 submodels, where

0≤ 𝑖 ≤𝐾 , and the 𝑗-th submodel at the 𝑖-th layer is 𝑓
𝑗
𝑖
(the first layer

has a single root submodel 𝑓 0
0
), theCDF estimate 𝑓𝑖 (𝑥) of key𝑥 at any

non-root layer 𝑖 (i.e., 0< 𝑖 <𝐾) can be recursively defined as follows:

𝑓𝑖 (𝑥)= 𝑓 ⌊𝑀𝑖 .𝑓𝑖 (𝑥−1)/𝑁 ⌋
𝑖

(𝑥) (1)

where𝑁 is the total size of the keys sample used to build the CDF

model, and the estimate at the root layer 𝑓0 (𝑥) is 𝑓 0
0
(𝑥). The final

CDF prediction of 𝑥 using the model is𝐶𝐷𝐹𝑝𝑟𝑒𝑑 (𝑥)= 𝑓𝐾−1 (𝑥).
Algorithm 1 shows how to train a learnedCDFmodel using a sam-

ple of keys 𝑆 . We start by training the root submodel using all keys

in the sample after sorting it (Line 5). Then, the keys are assigned

to the next layer submodels based on the root submodel’s estimates

using Equation 1 (Lines 7-9). We proceed by training the submodels

of the next layer on the keys that were assigned to them. This pro-

cess is repeated for each layer until the last layer has been trained.

Note that we build each submodel using a simple linear regression

(i.e., no complex neural networks). Similar to [28], all submodels are

end-to-end trained by minimizing a loss function. Let (𝑥,𝑦) ∈𝑇 be

the training set, where each item in this set is a pair of a sample key𝑥

and its actual CDF value𝑦 after sorting the sample. The parameters

of submodels in all layers are adjusted to minimize the squared error∑
(𝑥,𝑦) ∈𝑇 (𝐶𝐷𝐹𝑝𝑟𝑒𝑑 (𝑥)−𝑦)2. Finally, error bounds can be computed

on trained leaf submodels (Line 10), if the learned CDFmodel will

be used to build a learned index as shown later.

CDF-based Partitioning. CDF can be used to perform logical parti-

tioning of input keys (e.g., [28, 29]) as follows: given an input key 𝑥 ,

1
Similar to previous studies [7, 8, 57], we focus only on equi-join SELECT queries.

Algorithm 1 Function TrainCDFModel (KeysSample 𝑆 , Layer-

sNum𝐾 , Output 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠 , Output 𝑒𝑟𝑟𝑜𝑟𝐵𝑜𝑢𝑛𝑑𝑠)

1: 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠𝐾𝑒𝑦𝑠← Initialize2DKeysArray ()

2: 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠𝐾𝑒𝑦𝑠 [0,0] ← Sort (𝑆)

3: for 𝑖← 0 to𝐾 −1 do serially
4: for 𝑗← 0 to𝑀𝑖 −1 do in parallel /*𝑀𝑖 is the number of submodels at layer 𝑖 */

5: 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠 [𝑖, 𝑗] ← BuildSubmodel (𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠𝐾𝑒𝑦𝑠 [𝑖, 𝑗])
6: If 𝑖<𝐾 −1 then
7: for all 𝑥 in 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠𝐾𝑒𝑦𝑠 [𝑖, 𝑗] do in parallel
8: 𝑝←GetNextSubmodel (𝑥 , 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠 [𝑖, 𝑗],𝑀𝑖+1 , |𝑆 |) /*Eq 1*/
9: 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠𝐾𝑒𝑦𝑠 [𝑖+1,𝑝] ←AddKey (𝑥)

10: 𝑒𝑟𝑟𝑜𝑟𝐵𝑜𝑢𝑛𝑑𝑠← CalcErrorBoundsForLeafSubmodels (𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙𝑠)

the partition index of each key 𝑥 is determined as𝐶𝐷𝐹𝑝𝑟𝑒𝑑 (𝑥)∗ |𝑃 |,
where |𝑃 | is the number of partitions. Such CDF-based partitioning

can be done in a single pass over the data. Although keys are not

sorted within each output partition, the partitions are still relatively

sorted. The same CDF can be used to recursively partition the keys

within each partition by just scaling up the number of partitions |𝑃 |.
Learned Indexes. Learned indexes [28] exploit the CDFmodel to

predict the position of the lookup key in the sorted input keys. In

this study, we explore the following three representative learned

indexes; RMI [28], RadixSpline [25] and ALEX [14]
2
:

RMI is a read-only learned index that builds a CDFmodel using the

whole input keys, not a sample, and rarely has more than two layers

(i.e., levels) when the input keys fit into memory. Since the RMI is

built using an approximated CDFmodel, the final prediction at the

leaf level could be inaccurate yet error-bounded. Therefore, RMI

keeps min and max error bounds for each leaf-level submodel to

perform a local search within these bounds (e.g., binary search) and

obtain the exact position of the key.

RadixSpline is another read-only learned variant consisting of a

linear spline to approximate the CDF and a radix lookup table that in-

dexes resulting spline points. Compared to RMI, RadixSpline can be

built in a single passwith constant cost per key. Lookups first consult

the radix table, which indexes 𝑟 -bit prefixes of spline points and is

used to narrow the search range over the spline points. Then binary

search is usedon thenarrowed range to identify the two spline points

surrounding the lookup key. Finally, linear interpolation between

the two spline points is used to obtain a prediction.

ALEX is an updatable learned index (i.e., can support updates, inser-

tions, and deletes). It utilizes a B-tree-like data structure with fixed

internal (i.e., non-leaf) nodes and dynamic leaf ones with gapped

arrays to support updates. It recursively partitions the key space

through the tree levels, and a partition is represented by a slot in an

internal node. A submodel in each internal node is used, during both

lookupandupdate queries, to decidewhichpartition akeybelongs to.

ALEX uses model-based insertion when building the index (i.e., plac-

ing a key at the positionwhere themodel predicts that the key should

be) and hence reduces themodel misprediction during lookups. Dur-

ing lookup, it applies exponential search on the gapped array in the

leaf node to correct themodel mispredictions, which are already few.

3 LEARNED INDEXEDNESTED LOOP JOIN
Indexed nested loop join (INLJ) is the most basic type of join. Here,

we assume that one input relation, say𝑅, has an index on the join key.

2
We didn’t include PGM [16] in our study since it has very slow lookups compared

to other learned indexes, as shown in [41]. We also didn’t include LIPP [64] as it is

dominated by ALEX in multi-threaded environments as shown in [63].

2

Then, the algorithm simply scans each key in the second relation,

say 𝑆 , uses the index to fetch the tuples from 𝑅 with the same join

key, and finally performs the join checks.

In this section, we start by describing the default multi-core INLJ

algorithm and its optimized variants (Section 3.1). Then, we propose

different INLJ variants that exploit the learned indexes (Section 3.2).

3.1 Representative Algorithms
The straightforward algorithmfirst chunks the non-indexed relation

𝑆 into equi-sized chunks and assigns them to the different worker

threads. Then, in parallel, each worker iteratively queries the global

index of 𝑅 (which is shared among all workers) with the keys in its

chunk of 𝑆 to return the tuples with the same join key and finally

checks for the joinmatches.However, this algorithm is slow,whether

the index used is hash-based (e.g., [59]) or tree-based (e.g., [19]), due

to its key-at-a-time processing on each worker that can not hide the

cachemisses andwill keep the worker idle while handling eachmiss.

3.1.1 Optimized Hash-based INLJ. To hide the cache misses for

hash-based INLJ, we employ a prefetching-optimized inter-task par-

allelism technique, namelyAsynchronousMemoryAccess Chaining

AMAC[26], during the indexquerying
3
.WithAMAC,whenan index

lookup issues amemory prefetching, the algorithm switches to other

query lookups in the pipeline to keep busy (i.e., avoiding key-at-a-

time processing), and then returns to process the prefetched data

after a while. In our study, we investigate two INLJ variants based on

prefetching-optimized bucket chaining [7] and cuckoo [59] hashing,

referred to as CHAIN-INLJ and CUCKOO-INLJ, respectively.

3.1.2 Optimized Tree-based INLJ. For tree-based INLJ, instead of
the key-at-a-time processing, we adapt an efficient INLJ variant that

exploits hierarchical buffering [17, 67] to improve the temporal local-

ity of the tree index. It temporarily stores the requests for query keys

that will probably be accessed from the same part in the tree (i.e.,

keys that traverse the same nodes across the tree levels) and then

answers them as a batch. This significantly reduces cache misses

and, in turn, increases the join throughput.

Buffers Structure. In particular, the index is viewed as a tree with

multiple sub-trees rooted at the child nodes, and the root of each

node 𝑡 is associated with a fixed-size buffer. We refer to this buffer

as request buffer, where it temporarily stores all keys that will be

traversed using the corresponding child node. Any sub-tree 𝑡 can

be recursively decomposed into smaller sub-trees at its own child

nodes. Figure 1(a) shows an example of nodes at different levels of

an index’s tree, where the root of each sub-tree has a request buffer.

In this example, we show the root’s left sub-tree 𝑡1.1 rooted at its

child node 𝑁1.1, where for example, the sub-tree 𝑡1.1 itself has two

child sub-trees 𝑡2.1 and 𝑡2.2 (with their buffers) rooted at the 𝑁2.1

and 𝑁 2.2 nodes, respectively, and so on.

Buffers In Action. Thebuffers for all sub-trees of the indexed relation

𝑅 are created before the INLJ begins. During the INLJ operation, the

query keys from the non-indexed relation 𝑆 are distributed to the

buffers based on the internal nodes’ traversal until a buffer becomes

full. When a buffer is full, we flush it by distributing the buffered

query keys to its child buffers recursively (e.g., in Figure 1(a), when

3
We selected to use AMAC because it outperforms the other prefetching-optimized

inter-task parallelism techniques in hash probing as shown in [21].

Root

N 1.1

N 2.2N 2.1

1

51

1
19

19

51

Keys

19

900

1

51

752

512

N 3.3N 3.1

t1.1

t2.1 t2.2

511

19

Level 0

Tree Level

 Increases

t3.1

N 3.2

t3.2

(a)

Gapped Keys

 Array

Linear (Root)

Linear 1.2Linear 1.1Actual

Position

Error-bounded Search Range

2 1

Two Exponential

Search Operations

Lookup

Key

(b)

Figure 1: Examples on (a) hierarchical request buffers at some
tree-based index nodes, and (b) 2-levels gapped RMI (GRMI).

the buffer of sub-tree 𝑡1.1 is filled with the query keys 1, 19, and 51,

the node 𝑁 1.1 is then used to distribute these keys to the buffers of

its child sub-trees 𝑡2.1 and 𝑡2.2, and so on).When a query key reaches

the leaf level, the final location of the key is determined. When no

more query keys are issued, the whole buffers are flushed in the

depth-first order similar to [17].We also follow the guidelines in [17]

to set the buffer sizes at the roots of different sub-trees. First, we set

the buffer size at each leaf node as a user-defined parameter. Then,

recursively, we set the buffer size at the root of any sub-tree 𝑡 as the
total sizes of the associated buffers to the non-root nodes in this sub-
tree. By carefully tuning this parameter, the total size of all buffers

needed for an index’s tree will satisfy the analytical bound of the

cache complexity for hierarchical indexes [17].
In our study, we investigate two state-of-the-art tree indexes:

Adaptive Radix Trie (ART) [33] and the Cache-Sensitive Search

(CSS) Trees [19]. We provide two INLJ variants that utilize the hier-

archical buffering optimization with ART and CSS trees, referred to

as ART-INLJ and CSS-INLJ, respectively.

3.2 Learned Index-based Variants
3.2.1 INLJ with Black-Box Learned Indexes. One straightforward
approach is to use a learned index as a drop-in replacement for

traditional indexes, without buffering optimization, in INLJ. To guar-

antee a good accuracy for the learned index, we use the whole keys

of relation 𝑅, not a sample, to build it
4
. In our study, we investi-

gate three INLJ variants that use three different learned indexes;

RMI [28, 41], RadixSpline [25], and ALEX [14], referred to as RMI-

INLJ, RadixSpline-INLJ, and ALEX-INLJ, respectively.

3.2.2 INLJ with Gapped RMI. When using typical RMI [28] with

challenging inputs, the lookup throughput deteriorates as the in-

put data is difficult to learn and the accuracy of built RMI becomes

poor [41]. In this case, the RMI predicts a location that is far away

from the true one, and hence the overhead of searching between

the error bounds becomes significant (i.e., last-mile search). This is

because when an RMI is built for an input relation, it never changes

the positions of the keys in this relation. A crucial insight from

ALEX [14] shows that when using themodel-based insertion to build
the learned index (check Section 2), the search over the indexed keys

later, using the same model used for insertion, will be improved

significantly (i.e., less model misprediction errors). This inspires us

to propose an INLJ variant, referred to as GRMI-INLJ, using a new

read-only index, namely Gapped RMI (GRMI), that combines the

benefits of both RMI and model-based insertion from ALEX. GRMI

4
Using all keys to build the learned index never hurts the INLJ performance since this

is done offline (INLJ assumes the index already exists before).

3

Algorithm 2 Function PRMI-INLJ (AMACInstances 𝑠 , QueryKeys

𝑖𝑛𝑝𝑢𝑡 , QueryKeysNum 𝑁 , Output𝑚𝑎𝑡𝑐ℎ𝑒𝑠)

1: 𝑑𝑜𝑛𝑒← 0 /* Flag to end INLJ computation */

2: 𝑠𝑡𝑎𝑡𝑒← InitializeFSMInstances (𝑠) /* Initialize 𝑠 instances of an FSM*/

3: while𝑑𝑜𝑛𝑒 <𝑠 do
4: 𝑘 = (𝑘 == 𝑠) ? 0 :𝑘

5: switch 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑠𝑡𝑎𝑔𝑒 do
6: caseP: /*Predictusing therootmodel, andprefetchnextmodelparameters */

7: if 𝑖<𝑁 then
8: 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑘𝑒𝑦← LoadKey(𝑖𝑛𝑝𝑢𝑡 , 𝑖)

9: 𝑝𝑟𝑒𝑑← PredictNextLevelModelInd (𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑘𝑒𝑦, 𝑟𝑜𝑜𝑡)
10: 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑠𝑡𝑎𝑔𝑒 = 𝐽 , 𝑖+=1
11: PrefetchModelParams (𝑝𝑟𝑒𝑑 , 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑝𝑎𝑟𝑎𝑚𝑠)
12: elseState 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑠𝑡𝑎𝑔𝑒 =𝐷 , ++𝑑𝑜𝑛𝑒

13: end if
14: case J: /* Perform actual join check */

15: 𝑡𝑢𝑝𝑙𝑒←GetIndexedTuple (𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑘𝑒𝑦, 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑝𝑎𝑟𝑎𝑚𝑠)
16: 𝑚𝑎𝑡𝑐ℎ𝑒𝑠← JoinCheck (𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑝𝑎𝑦𝑙𝑜𝑎𝑑 , 𝑡𝑢𝑝𝑙𝑒.𝑝𝑎𝑦𝑙𝑜𝑎𝑑)
17: 𝑠𝑡𝑎𝑡𝑒 [𝑘] .𝑠𝑡𝑎𝑔𝑒 =𝑃 /* Initiate prefetching for a new key in 𝑃*/

18: endwhile

substantially improves the lookup performance over typical RMI,

specially for datasets with challenging distributions.

GRMI Structure and Building. GRMI consists of a typical RMI and
a gapped array for keys (there is another corresponding array for

payloads). We assume both keys and payloads have fixed sizes. The

gapped array of keys is filled bymodel-based inserts of the input keys

during the index building (described later). The extra space used for

the gaps is distributed among the array elements to ensure that keys

are locatedclose to thepredictedpositionwhenpossible.Thenumber

of allocated gaps per input key is a user-defined parameter that can

be tuned. For efficient lookup, the gapped array is associated with a

bitmap to indicatewhether each location in the array isfilledor is still

a gap. Building aGRMI has two straightforward steps, which happen

offline. First, a typical RMI is constructed for the input keys. Then,

the built RMI is used to model-based insert all keys from scratch in

the gapped array. Figure 1(b) depicts an example of a 2-levels GRMI

with a gapped array for keys (white cells are gaps, i.e., empty).

GRMI Lookup. Given a key, the RMI is used to predict the location of

that key in the gapped array of keys. Then, if needed, an exponential
search is applied till the actual location is found. If a key is found, we
return the corresponding tuple. Otherwise, we return null. We use

the exponential search to find the key in the neighborhood because,

in GRMI, the key is likely to be very close to the predicted RMI loca-

tion, and in this case, the exponential search can find this key with

less number of comparison checks compared to both sequential and

binary searches. Figure 1(b) presents a lookup example, where red

arrows show the lookup flow. In this example, the RMI prediction

is corrected by two exponential search steps only.

3.2.3 INLJ with Optimized RMI Indexes. Since RMI typically has

2 or 3 levels, it can be easily combined with prefetching-optimized

inter-task parallelism techniques (e.g., AMAC [26]) to improve its

probing throughput as shown in [55]. Therefore, we investigate two

INLJ variants based on AMAC-optimized RMI and GRMI, referred

to as PRMI-INLJ and PGRMI-INLJ, respectively.

Algorithm 2 shows the pseudo code of our proposed PRMI-INLJ

with a 2-level RMI. The core idea is simple: for a key, we map the

INLJ computation into a finite state machine (FSM) with two states,

where the first state (Lines 6 to 13) uses the root model to predict the

index of the second level model, and prefetches its parameters, and

(a) NPJ

R S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
rt

it
io

n
B
u
il
d
 G

lo
b
a
l
H

a
s
h
 T

a
b
le

P
ro

b
e
 G

lo
b
a
l
H

a
s
h
 T

a
b
le

(b) LNPJ

R S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
B
u
il
d
 G

lo
b
a
l
H

a
s
h
 T

a
b
le

P
ro

b
e
 G

lo
b
a
l
H

a
s
h
 T

a
b
le

R Sample S Sample

Shared CDF Model

of R and S11 2 3

Figure 2: Non-partitioned hash join, NPJ, and its learned
variant, LNPJ. Blue steps are learned.

the second state (Lines 14 to 17) performs the actual join check after

retrieving the indexed tuple using the prefetched model parameters.

The algorithm keeps interleaving multiple running instances of the

FSM till it finishes join checks with all input keys.

Similar to the optimized tree-based INLJ (Section 3.1.2), we also

investigate twoother INLJvariants thatutilize thehierarchical buffer-

ing optimization in both RMI and GRMI, referred to as BRMI-INLJ

and BGRMI-INLJ, respectively.

4 LEARNEDHASH-BASED JOIN
In many studies (e.g., [57]), hash-based join (HJ) has been shown to

be themost efficient type of join inmany scenarios. The algorithmas-

sumes the two input relations are not indexed. It simply builds a hash

tableon the joinkeyofonerelation, say𝑅, and thenuses thesecondre-

lation, say 𝑆 , to probe this built hash table to return the final matches.

In this section, we focus on the two main HJ categories: Non-

PartitionedHash Join (NPJ) [31, 61]andPartitionedHash Join (PJ) [57,

61].Westart bybrieflydescribing themulti-corevariants of the repre-

sentative algorithms in each category (Section 4.1). Then,wepropose

different HJ variants that employ CDF-based learned models and

partitioning (Section 4.2).

4.1 Representative Algorithms
4.1.1 Non-Partitioned Hash Join. It is a direct parallel variation of
the canonical hash join [31, 61], referred to as NPJ (Figure 2(a)). Ba-

sically, the algorithm chunks each input relation into equi-sized

chunks and assigns them to several worker threads. Then, it runs in

two phases: build and probe. In the build phase, all workers use the
chunks of the first relation 𝑅 to concurrently build a single global

hash table (with a bucket chain scheme). In the probe phase, after all
workers are done building the hash table, eachworker starts probing

its chunk from the second relation 𝑆 against the built hash table. In

our study, we investigate an NPJ variant with the following opti-

mizations: (1) allocating the hash table among all available NUMA

nodes to better utilize memory bandwidth, (2) using an efficient

compare-and-swap operation (i.e., lock-free synchronization) in the

build phase to avoid concurrent insertions to the same hash table

bucket, and (3) employing AMAC [26] (similar to Section 3.1.1) to

increase the insertion/lookup throughput in the build/probe phase.

4.1.2 Partitioned Hash Join. The key idea is to improve over NPJ

by partitioning the input relations into small pairs of partitions that

can fit into the cache. This will significantly reduce the number of

cache misses when building and probing hash tables.

The state-of-the-art algorithm proposed in [57], referred to as PJ

(Figure 3(a)), first chunks each input relation into equi-sized chunks

4

R S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
L
o
c
a
ll
y
 P

a
r
t
it
io

n
 R

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
L
o
c
a
ll
y
 P

a
r
t
it
io

n
 S

B
u
il
d
 L

o
c
a
l
H

a
s
h
 T

a
b
le

s

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
P
r
o
b
e
 L

o
c
a
l
H

a
s
h
 T

a
b
le

s

R S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
L
o
c
a
ll
y
 P

a
r
t
it
io

n
 R

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
L
o
c
a
ll
y
 P

a
r
t
it
io

n
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-
P
a
r
t
it
io

n
B
u
il
d
 L

o
c
a
l
H

a
s
h
 T

a
b
le

s

P
r
o
b
e
 L

o
c
a
l
H

a
s
h
 T

a
b
le

s

S Sample

Shared CDF Model

of R and SR Sample

(a) PJ

(b) LPJ-PJ

1

Join

1 22 43

Figure 3: Partitioned hash join, PJ, and one of its learned
variants, LPJ-PJ (The learned variant LPJ-P is similar to
LPJ-PJ, yet exploiting the sharedmodel for partitioning only).

and assigns them to several worker threads. Then, it runs two main

phases: partition and join. In the partition phase, a multi-pass radix

partitioning (usually 2 or 3 passes are enough) is applied on each

chunk to locally partition it using a local histogram to avoid an ex-

cessive amount of non-local writes (i.e., writes on remote NUMA

nodes). In the join phase, each worker independently builds a local
hash table from the corresponding local partitions of 𝑅 across the

different workers. Then, these local hash tables are probed with the

corresponding local partitions of 𝑆 . In our study, we investigate a PJ

variant that applies the following optimizations, as shown in [57]:

(1) allocating the partitions for each worker on its local NUMA

node, (2) applying software write-combine buffers (SWWC) and

non-temporal streaming [61] to provide cache-efficient partition-

ing, (3) careful scheduling of the join tasks such that all memory

controllers are utilized simultaneously, and (4) assigning multiple

threads to each large partition to avoid skewness.

4.2 CDF-based Variants
4.2.1 Learned Non-Partitioned Hash Join. In our study, we inves-

tigate an NPJ variant, referred to as LNPJ (Figure 2(b)), that builds

one CDFmodel for both input relations 𝑅 and 𝑆 , and then uses this

model to build the global hash table and probe it (i.e., using themodel

to predict the hash table bucket). The main intuition is that if the

input keys are generated from a certain distribution, then the CDF

of this distribution maps the data uniformly in the range [0,1]. In
this case, the CDF will behave as an order-preserving hash function
in a hash table [56]. To ensure that the model building overhead is

insignificant, we randomly sample and use a small percentage of

keys (e.g., 1%) from both relations to build the model as in Section 2.

4.2.2 Learned Partitioned Hash Join. Similar to LNPJ, we also in-

vestigate two PJ variants that exploit using a shared CDFmodel in

the different PJ phases. The first variant, referred to as LPJ-PJ (Fig-

ure 3(b)), employs thebuiltmodel in both thepartitioningand joining

phases. The second variant, referred to as LPJ-P, uses the built model

for partitioning only. In both variants, we build themodel based on a

small sample from𝑅 and𝑆 as in LNPJ.After themodel is built, we pro-

ceed directly with the partitioning and joining phases of PJ. Assume

that |𝑃 | is the total numberof partitions that shouldbeoutput (similar

to the number of partitions obtained from histograms in PJ), and |𝐵𝑡 |
is the number of hash table buckets per worker 𝑡 . In the partitioning

phase, a key is partitioned by scaling its prediction from the CDF

model to be between 0 and |𝑃 |−1. In the joining phase of LPJ-PJ, a tu-
ple is inserted/probed ina localhash tablebasedonanother re-scaling

for the obtained CDF prediction from the partitioning phase. This

re-scaled prediction is between 0 and |𝑃 |∗ |𝐵𝑡 |−1, and gives the cor-
responding bucket in the hash table to be used for insertion/probing.

5 LEARNED SORT-BASED JOIN
Assuming the two input relations are not indexed, the idea of sort-

based join (SJ) is tofirst sort both relations on the same join key. Then,

thesorted relationsare joinedusinganefficientmerge-joinalgorithm

to find all matching tuples. SJ is an essential join operation for any

database engine. Although its performance is dominated by PJ [61],

it is still beneficial for many scenarios. For example, if the input rela-

tions are already sorted, SJ becomes the best join candidate as it will

skip the sorting phase and directly perform a fast merge-join only.

In this section, we focus on two efficient multi-core algorithms

of SJ, namely MPSM [2] and MWAY [5]. We briefly describe their

details (Section 5.1). Then, we propose different variants of them

that use CDF-based models and partitioning (Section 5.2).

5.1 Representative Algorithms
5.1.1 Massively Parallel Sort-Merge (MPSM). The idea of MPSM [2]

(Figure 4(a)) is to generate sorted runs for the different partitions

of each input relation in parallel. Then, these sorted runs are joined

directly without the need to merge each relation entirely first. The

range-partitioned variant of MPSM is considered a state-of-the-art

SJ algorithm as it is very efficient for NUMA-aware systems.

The algorithm has four steps as follows: (1) each input relation

is chunked into equi-sized chunks among the workers, then (2) the

smallest relation, say𝑅, is "globally" range-partitioned, such that dif-

ferent ranges of𝑅 are assigned to different workers (could be located

on different NUMA nodes). Meanwhile, each chunk of the largest

relation 𝑆 is only locally partitioned into segments using radix parti-

tioning. After that, (3) all partitions of𝑅 and segments of𝑆 are locally

sorted on their own workers (note that, after this step, 𝑅 is globally

sorted, but 𝑆 is partially sorted as it was not range-partitioned be-

fore). Finally, (4) each partition from 𝑅 is directly merge-joined with

all overlapping sorted segments from 𝑆 on all workers. Note that

the partitioning step utilizes both SWWC buffers and non-temporal

streaming to be cache-efficient. Moreover, MPSM provides a 2-step

optimization that sacrifices the partitioning cost a bit to handle skew-

ness efficiently. This optimization first estimates the global CDF of

𝑆 and the global histogram of 𝑅. Then, it exploits such estimates to

determine globally-balanced partitioning bounds using a complexity

approximation that considers both the sort and join costs perworker.

5.1.2 Multi-Way Sort-Merge (MWAY). It is another state-of-the-art
SJ that has the following four steps (Figure 4(b)): (1) each input rela-

tion is chunked into equi-sized chunks among the different worker

5

R S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
L
o
c
a
ll
y
 P

a
rt

it
io

n
 a

n
d
 S

o
rt

 R

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
L
o
c
a
ll
y
 P

a
rt

it
io

n
 a

n
d
 S

o
rt

 S

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
M

u
lt
i-

w
a
y
 M

e
rg

e
 R

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
M

u
lt
i-

w
a
y
 M

e
rg

e
 S

One-to-One

Merge Join

(c) LMPSM-2M

1

S

C
h
u
n
k
 R

C
h
u
n
k
 S

One-to-Many

Merge Join

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
G

lo
b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
 R

L
o
c
a
ll
y
 S

o
rt

 R

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
L
o
c
a
ll
y
 S

o
rt

 S

R

(a) MPSM (b) MWAY

 (d) LGSJ-2M

S

C
h
u
n
k
 R

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
G

lo
b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
 R

L
o
c
a
ll
y
 S

o
rt

 R

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
L
o
c
a
ll
y
 S

o
rt

 S

R

A CDF Model

of R
A CDF Model

of S

S SampleR Sample

One-to-Many

Merge Join

C
h
u
n
k
 R

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
G

lo
b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
 R

L
o
c
a
ll
y
 S

o
rt

 R

R

A CDF Model

of R

R Sample

S

C
h
u
n
k
 S

G
lo

b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
G

lo
b
a
ll
y
 R

a
n
g
e
-P

a
rt

it
io

n
 S

L
o
c
a
ll
y
 S

o
rt

 S

S SampleA CDF Model

of S

One-to-Many

Merge Join

3321 4 1 2 3 3 2 14

1 2 3 3 2 1413321 4

Figure 4: The upper part shows two original sort-based joins: MPSM andMWAY (The learned variants, MPSM-LS andMWAY-LS,
are similar toMPSM andMWAY, respectively, yet replacing the traditional sorting step with Learned Sorting [29]). The below
part shows two learned variants: LMPSM-2M and LGSJ-2M (The LMPSM-1M and LGSJ-1M variants are similar to LMPSM-2M
and LGSJ-2M, respectively, yet using a shared CDF-basedmodel for both relations instead of two separatemodels).

threads, where each chunk is further locally-partitioned into few

segments using efficient radix partitioning (similar to the PJ’s par-

titioning step in Section 4.1.2, yet locally and with one pass only),

then, (2) in parallel, all segments of each partition from 𝑅 and 𝑆 are

locally sorted on their own workers. After that, (3) all segments of

each relation are merged such that different ranges of the merged

relation are assigned to different workers. Finally, (4) each parti-

tion from the merged 𝑅 is locally merge-joined with exactly one

corresponding partition from the merged 𝑆 that is located on the

same worker. MWAY comes with three optimizations. First, both

sorting and merging steps are implemented with SIMD bitonic sort-

ing and merge networks, respectively [5]. Second, a cache-efficient

"multi-way merging" technique [5] is utilized to reduce the memory

bandwidth bottlenecks. Third, to handle skewness in the merging

step, MWAY breaks down any enormous merge task into multiple

smaller tasks and inserts them into a NUMA-local task queue shared

by the workers in the same NUMA node.

5.2 CDF-based Variants
5.2.1 MPSM and MWAY with Black-Box LearnedSort. These are
straightforward variants from both MPSM and MWAY, where we

directly use aCDF-based sorting, such as LearnedSort [29], as a black-

box replacement for the sorting steps used in the original algorithms.

We refer to these variants as MPSM-LS andMWAY-LS, respectively.

5.2.2 Learned MPSMwith OneModel Per Relation. Similar to the

idea of LPJ-PJ in Section 4.2.2, where we re-use the same CDFmodel

of each relation to perform both partitioning and joining phases,

we investigate a variant of MPSM, referred to as LMPSM-2M (Fig-

ure 4(c)), that builds two CDFmodels for both relations and re-uses

them to implement the range partitioning and sorting steps ofMPSM.

Similar to MPSM, the CDF-based partitioning is combined with

both SWWC buffers and non-temporal streaming. Also, note that

the built CDF model, for each relation, itself is cache-resident since

it is shared among all workers that typically use it almost at the same

time. This leads to almost no cachemisses when accessing themodel

during partitioning and the overall process becomes highly efficient.

5.2.3 Learned SJ with Globally-Sorting Two Relations. Recent stud-
ies [5, 57] have shown that locally-sorting relation chunks and then

multi-way merging them across different workers, as in MWAY, is

more efficient than firstly range-partitioning the chunks across dif-

ferent workers and then locally-sorting each partition, as in MPSM.

This is because typical range-partitioning is costly. However, with

having cache-efficient CDF-based range-partitioning and sorting

steps (as in LMPSM-2M), it might be interesting to study a SJ variant,

referred to as LGSJ-2M (Figure 4(d)), which globally range-partitions

and sorts both input relations before directly joining them.

Basically, LGSJ-2M applies the range-partitioning and sorting

steps of LMPSM-2M on each input relation using a separate CDF-

based model built for this relation. Then, in the join phase, LGSJ-2M

performs a join between each sorted partition from the smallest

relation, say 𝑅, and all its overlapping sorted partitions from 𝑆 . The

join operation, which we refer to as Chunked-Join, is performed in

two sub-steps: First, for any partition in 𝑅, we identify the start and

the end positions of its overlapping partitions in 𝑆 . To do that, we

query theCDFmodel of𝑆 with the values of the first and the last keys

of this partition from 𝑅 to return the corresponding first and last

overlapping partitions from 𝑆 , namely 𝑓𝑆 and 𝑙𝑆 , respectively. Then,

we merge-join any partition from 𝑅 with each partition in 𝑆 belongs

to the corresponding overlapping range [𝑓𝑆 ,𝑙𝑆] (i.e., including 𝑓𝑆 and
𝑙𝑆) to find the final matching tuples.

5.2.4 LMPSM-2M and LGSJ-2M with One Shared Model for Both Re-
lations. Wepush the ideaof sharingwork further and investigate two

6

Baseline Description

Non-learned INLJ Baselines (Section 3.1)

CHAIN-INLJ Using bucket chaining hash index

CUCKOO-INLJ Using Cuckoo hash [48] index

ART-INLJ Using Adaptive Radix Trie (ART) [33] index

CSS-INLJ Using Cache-Sensitive Search (CSS) Trees [19] index

Learned INLJ Baselines (Section 3.2)

RMI-INLJ Using Recursive Model Index (RMI) [28]

RadixSpline-INLJ Using RadixSpline [25] index

ALEX-INLJ Using updatable learned index, ALEX [14]

GRMI-INLJ Using the proposed gapped RMI (GRMI) index

BRMI-INLJ Using buffer-optimized RMI index

BGRMI-INLJ Using buffer-optimized GRMI index

PRMI-INLJ Using AMAC-optimized RMI index

PGRMI-INLJ Using AMAC-optimized GRMI index

Non-learned HJ Baselines (Section 4.1)

NPJ Non-partitioned hash join [61]

PJ Optimized partitioned hash join [57]

Learned HJ Baselines (Section 4.2)

LNPJ NPJ with one joint CDFmodel, for both

relations, in the building and probing phases

LPJ-P PJ with one joint CDFmodel, for both

relations, in the partitioning phase

LPJ-PJ PJ with one joint CDFmodel, for both relations,

in the partitioning and joining phases

Non-learned SJ Baselines (Section 5.1)

MPSM Massively Parallel Sort-Merge [2]

MWAY Multi-Way Sort-Merge [5]

Learned SJ Baselines (Section 5.2)

MPSM-LS MPSMwith LearnedSort [29] in the sorting step

MWAY-LS MWAYwith LearnedSort [29] in the sorting step

LMPSM-2M MPSMwith two CDFmodels, for both

relations, to partition and sort them

LGSJ-2M Using two CDFmodels, for both relations, to

globally partition, sort, and one-to-many join them

LMPSM-1M MPSMwith one joint CDFmodel, for both

relations, in the partitioning and sorting steps

LGSJ-1M Using one joint CDFmodel, for both relations, to

globally partition, sort, and one-to-many join them

Table 1: In-memory join baselines in our study.

variants fromLMPSM-2MandLGSJ-2M, referred to themas LMPSM-

1M and LGSJ-1M, which build one shared CDFmodel for both rela-

tions, instead of two separatemodels, and reuse thismodel across the

different algorithm steps of LMPSM-2M and LGSJ-2M, respectively.

6 EXPERIMENTAL EVALUATION
In this section, we experimentally study all learned and non-learned

variants of INLJ, HJ, and SJ algorithms in our study (Table 1). Sec-

tion 6.1 describes the experimental setup, datasets, hardware, and

metrics used. Section 6.2 analyzes the performance of the three join

categories under different dataset types, sizes, and skewness. Sec-

tion 6.3 provides a deeper analysis for the joins under different work-

load characteristics, tuple sizes, duplicates, parallelism, strategies for

shuffling data between NUMA nodes, and via different performance

counters (e.g., cache and branch misses). Section 6.4 investigates the

effect of tuning some specific parameters of the learned indexes on

the performance of learned INLJ variants.

6.1 Experimental Setup
Baselines.We used all the different INLJ, HJ, and SJ algorithms dis-

cussed in previous sections in our experiments. In INLJ, we used the

entire input relation to build each learned index offline as described

in Section 3.2.1, and hence its accuracy becomes high. Similarly, for

hash-based indexes, we build each index by inserting every key. The

implementations of RMI, RadixSpline and ALEX are obtained from

their open-source repositories [3, 52, 53]. TheRMIhyper-parameters

are tuned following the guidelines in [37]. RadixSpline is manually

tuned by varying the error tolerance of the underlyingmodels. ALEX

is configured according to the guidelines in its paper [14]. For tra-

ditional indexes, the implementations of tree-structured ones are

provided by their original authors, while the Cuckoo hash index is

adapted from its standard implementation that is used in [59]. In

SJ, we adapted a variation of MWAY, from its original open-source

implementation in [44], that can work with state-of-the-art sorting

algorithms (e.g., QuickSort)
5
. However, for MPSM, we provided a

best-effort implementation of the original algorithm [2] on our own

(unfortunately, the original code is not available to the public). In HJ,

we used the reference implementations of non-partitioned and parti-

tioned hash joins from [44]. For all HJ and SJ baselines, we followed

the guidelines in a recent study [57] to optimize their performance

as well as adapted them to work with variable payload sizes.

Workloads and Datasets. Just like previous studies (e.g., [7, 8, 57]),
our study only focuses on equi-join queries like "SELECT count(*)
FROM Rel1 R, Rel2 S WHERE R.k = S.k".We also use a <key, payload>

pair as a tuple. Particularly, we followed [8] in fixing the key size

(always 8-byte) and varying the payload one
6
. Only in the case of

INLJ, the payload is fixed to 8 bytes to be compatible with traditional

indexes (e.g., ART and CSS) that store only a data pointer on the

actual record.We generate the tuples in each input relation based on

real and synthetic datasets. For real datasets, we use three datasets

from the SOSD benchmark [41], where each one is a list of unsigned

64-bit integer keys and we generate a random payload, of a specific

size, for each key. The real datasets are:

• face: 200 million randomly sampled Facebook user IDs.

• osm: 800 million cell IDs from Open Street Map.

• wiki: 200 million timestamps of edits fromWikipedia.

For synthetic datasets, unless otherwise stated, we generate three

datasets with different data distributions. Each dataset has four size

variants (innumberof tuples): 16, 32, 128, and640million tuples (each

tuple has similar sizes as in real datasets). All of them are randomly

shuffled. The synthetic datasets are:

• seq_h: sequential IDs with 10% random deletes (holes).

• unif : uniform distribution, with min = 0 and max = 1, multi-

plied by the size, and rounded to the nearest integer.

• lognorm: lognormal distributionwith `=0 and𝜎 =1 that has

an extreme skew (80% of the keys are concentrated in 1% of

the key range), multiplied by the dataset size, and rounded

to the nearest integer.

Hardware and Implementation.Unlessotherwisementioned,we

use an Arch Linux machine with 256 GB of RAM and an Intel(R)

Xeon(R) Gold 6230 CPU@ 2.10GHz with Skylake microarchitecture

(SKX) and L3 cache of 55MiB. It has 2 NUMA nodes, each with 40

CPUs. Implementations are in C++ and compiled with GCC (11.1.0).

Metrics.Weuse the join throughput as the defaultmetric.We define

it as in [57] to be the ratio of the sum of the relation sizes (in number

of tuples) and the total runtime
|𝑅 |+|𝑆 |
|𝑟𝑢𝑛𝑡𝑖𝑚𝑒 | .

5
Since we target (realistic) large join keys and payloads, we can not use the bitonic

sorting in [44] that exploit SIMD registers as they are limited to 512-bit data types.

6
The payload size could be larger than 8 bytes in many scenarios. For example, in

row-oriented DBMSs (e.g., PostgreSQL [51], MySQL [45]), the payload stores the actual

record (i.e., multiple attributes) and hence becomes very large. Even in column-oriented

DBMSs (e.g., MonetDB [20], Vertica [62]), when performingmulti-attribute join queries,

the payload might become significantly large when stitching multiple columns in it

using early materialization techniques [1] during the query processing.

7

Default Settings. Unless otherwise stated, all reported numbers

are producedwith running 32 threads. For any INLJ variant based on

GRMI, we use 4 gaps per key. To fairly compare such variants with

hash-based INLJ, we build the hash indexes tomatch the gaps setting

by (1) using a bucket size of 4 in the block chaining index (CHAIN-

INLJ), and (2) creating a 2-table Cuckoo hash index (CUCKOO-INLJ),

where the size of these tables are 4 times the size of the input relation

(i.e., load factor 25%). For buffer-optimized tree-based INLJ, we set

the buffer size at the leaf nodes to 200. For AMAC-optimized INLJ,

we set the number of FSM instances (check Section 3.2.3) to be 32. For

anyHJ or SJ variant that uses radix partitioning,we set the number of

partitions to be either 2
12
(when using seq_h, unif andwiki datasets),

and 2
14

(when using lognorm, face and osm datasets). When building

CDFmodels in HJ and SJ, we use only 1% random sample of the keys

in the input relations. For datasets, we remove all duplicate keys

in most of our experiments to make sure that some baselines (e.g.,

ART-INLJ) work properly (a separate experiment for the effect of

duplicates exists). In addition, most of our results are reported for

tuple sizes of 16 and 128 bytes (i.e., payloads of 8 and 120 bytes).

6.2 INLJ, SJ, andHJ Evaluation Results
Real and Synthetic Datasets. Figure 5 shows the join throughput
of all baselines in the three join categories (each row represents a

category) when the size of each tuple is 16 bytes.

For INLJ, clearly, BGRMI-INLJ and PGRMI-INLJ outperform all

other INLJ competitors in all real and synthetic datasets, except

seq_h. This is attributed to the effect of building the gapped RMI

using "model-based" insertion and employing either the buffering or

the AMAC optimization during key lookups. Regardless of the RMI

prediction accuracy for any dataset, each key is located very close

to the position where it is expected to be found, and by using the

exponential search, the key is typically found after 1 or 2 search steps

(using binary search in RMI-INLJ takes at least 4 search steps). We

also observed that the overhead of maintaining the FSM instances

needed by AMAC is a bit higher than maintaining the buffers, and

hence PGRMI-INLJ is slightlyworse than BGRMI-INLJ. BGRMI-INLJ

is also better than GRMI-INLJ in almost all cases with a through-

put improvement between 5% and 25%. RadixSpline-INLJ shows a

slightly better performance than BGRMI-INLJwith the seq_h dataset
due to themodel over-fitting in the sequential cases [55]. In contrast,

RadixSpline-INLJ has a very poor performance with lognorm and

osm datasets. This is expected as these datasets are more skewed

than others and lead to building large sparse radix tables in RadixS-

pline [25]. Therefore, the learned model becomes less effective in

balancing keys that will be queried in the join operation. Similarly,

ALEX-INLJ suffers from the extra overhead of its B-tree-like struc-

ture.Thismatches the results reportedbyouronline leaderboard [60]

for benchmarking learned indexes: all updatable learned indexes are

significantly slower. Unlike ALEX, the proposed GRMI variants only

injected ALEX’s ideas of model-based insertion and exponential

search into RMI (without internal nodes).

For HJ and SJ, as expected for small tuple sizes (e.g., 16 bytes), the

optimized variant of PJ dominates all other baselineswhen using uni-

form and dense datasets such as seq_h, unif andwiki. In this case, ap-
plyingonepass of logical partitioning inPJ (checkSection4.1.2), com-

bined with SWWC buffers and non-temporal streaming, is enough

to have "balanced" cache-fit partitions across different workers (i.e.,

no need for CDF to balance the partitions). This is highly efficient

compared to (1) the excessive non-local writes on remote NUMA

nodeswhen building the hash table in bothNPJ and LNPJ, and (2) the

expensive sorting step in the different SJ variants. However, such

performance gain of PJ over other algorithms significantly decreases

by having highly skewed datasets such as lognorm, face, and osm.

In these datasets, most tuples fall within a specific range, but there

is a small number of outlier tuples causing most of the output radix

partitions in PJ to be nearly useless. On the other hand, employing

the CDF-based partitioning as in LPJ-PJ and LPJ-P, even based on a

small sample,will significantly balance the loads amongworkers and

hence reduces the join bottleneck. For example, LPJ-P has at least

25% better throughput than PJ in both osm and lognorm datasets.

As shown in Figure 5, all learned SJ variants have higher through-

puts compared to MWAY and MPSM due to employing the CDF-

based sorting which is efficient than traditional state-of-the-art sort-

ing algorithms when having 64-bit keys or larger [29]. However,

we interestingly observe that LGSJ-2M, LGSJ-1M, LMPSM-2M and

LMPSM-1M are slightly better than MPSM-LS andMWAY-LS. This

is mainly because the later algorithms run the LearnedSort as a

black box on different workers independently. Hence, the overhead

of allocating/de-allocating the internal data structures in Learned-

Sort (e.g., over-allocated and spill buckets [29]) is repeated many

times as well, which in turn degrades the overall join throughput.

In contrast, the former algorithms build one CDF-based model for

each input relation and reuse it through the partitioning, sorting,

and joining steps, which saves any redundant work and increases

the join throughput. Another observation is that among SJ variants

that reuse models, LGSJ-2M and LGSJ-1M are better than LMPSM-

2M and LMPSM-1M in all datasets because LGSJ variants perform

Chunked-join, in which the partitions on each worker are joined

only with the overlapping partitions on "specific" workers that are

determined using the models (check Section 5.2.3). This is unlike

LMPSM variants that join the partitions on each worker with the

overlapping partitions from "all" other workers and hence suffer

from heavy remote NUMA nodes accesses.

Figure 6 shows the join throughput of all HJ and SJ baselineswhen

the tuple size becomes 128 bytes (larger than the 64-byte cacheline).

Increasing the tuple size results in increasing the number of cache

misses in the partitioning phase of any PJ variant (i.e., less number

of tuples can be compacted in the cacheline of SWWC), and hence its

throughput starts to decrease significantly, compared to the results

in Figure 5. On the other hand, NPJ shows better throughput than PJ

when increasing the tuple size, especially if the relation used to build

the hash table, say𝑅, is either not highly skewed (e.g., unif andwiki)
or relatively small (e.g., in lognorm, |𝑅 | is 32M). This is aligned with

results from recent studies (e.g., [15, 36]). Interestingly, when the in-

put relations have predictable gaps between keys such as seq_h, unif ,
andwiki, we observe that LNPJ provides better throughput than NPJ
(throughput improvement ranges between 6% and 50%). As shown

in [55, 56], the CDF models can over-fit to the original data distribu-

tion of these datasets and hence result in less number of collisions

compared to traditionalhashing,whichwould still havearound36.7%

regardless of the data distribution (based on the birthday paradox).

This is because the predictability of gaps allows for building accurate

learned models, using small samples, that act as a hash function

8

0

150

300

450

600

seq_h
 (640Mx640M)

unif
 (640Mx640M)

lognorm
 (32Mx640M)

face
 (200Mx200M)

osm
 (800Mx800M)

wiki
 (200Mx200M)

0

80

160

240

320

Th
ro

ug
hp

ut
 (M

illi
on

 tu
pl

es
/s

ec
)

0

80

160

240

320

CSS-INLJ
ART-INLJ
CHAIN-INLJ
CUCKOO-INLJ
RMI-INLJ
GRMI-INLJ
BRMI-INLJ
BGRMI-INLJ
PRMI-INLJ
PGRMI-INLJ
RadixSpline-INLJ
ALEX-INLJ

NPJ
PJ
LNPJ
LPJ-PJ
LPJ-P

MPSM
MPSM-LS
MWAY
MWAY-LS
LMPSM-2M
LGSJ-2M
LMPSM-1M
LGSJ-1M

Figure 5: Performance of the three join categories for real and synthetic datasets (with 8 bytes payload).

0

30

60

90

120

Th
ro

ug
hp

ut
 (M

illi
on

 tu
pl

es
/s

ec
)

seq_h
 (640Mx640M)

unif
 (640Mx640M)

lognorm
 (32Mx640M)

face
 (200Mx200M)

osm
 (800Mx800M)

wiki
 (200Mx200M)

0

30

60

90

120

NPJ
PJ
LNPJ
LPJ-PJ
LPJ-P

MPSM
MPSM-LS
MWAY
MWAY-LS
LMPSM-2M
LGSJ-2M
LMPSM-1M
LGSJ-1M

Figure 6: Performance of HJ and SJ categories for real and synthetic datasets (with 120 bytes payload).

with less number of collisions compared to traditional hashing (e.g.,

Murmur [4]). Having fewer collisions results in fewer cache misses

and hence a better join throughput. We also see the same behavior

between LPJ-PJ and LPJ-P, where LPJ-PJ provides slightly better per-

formance than LPJ-P. In LPJ-PJ, the CDFmodel is used in the joining

phase to build and probe local hash tables, where the model over-

fittingcanreduce thenumberofcollisionsaswell.Thatbeingsaid, the

improvement gain of LPJ-PJ over LPJ-P is limited since the built hash

table for each partition in PJ already fits in the cache, and reducing its

number of collisions will not significantly reduce the cache misses.

For SJ, all baselines exhibit similar behavior in all datasets as in

Figure 5, except in lognorm, where the learned variants of MPSM

outperform others. In general, the MPSM algorithm is beneficial

when the relation 𝑆 is significantly larger than 𝑅, which is the case

in lognorm (|𝑅 |=32M, |𝑆 |=640M), as it avoids the global partitioning/-

sorting for 𝑆 . By combining MPSMwith the CDF-based partitioning

and sorting, the join throughput becomes even better.

6.3 Detailed Analysis and Evaluation
In this section, we showmore detailed analysis and evaluation for

the most efficient baselines in the three join categories, based on the

results in Section 6.2, while changing different workload character-

istics and environment settings. Unless otherwise stated, we show

the analysis of HJ and SJ with datasets of 128-byte tuples, where the

learned variants outperform non-learned ones in many cases Note

that we analyze INLJ with typical 16-byte tuples.

Dataset Sizes. Figure 7(a) shows the performance of different algo-

rithms while scaling up the number of tuples to be joined. In this

figure, we report the throughput for joining four variants of the

seq_h dataset: 32Mx32M, 16Mx16M, 128Mx128M, and 640Mx640M.

For INLJ, all learned variants can smoothly scale to larger dataset

sizes with small performance degradation. In case of RMI-INLJ, the

"last-mile" search step will suffer from algorithmic slowdown as it

applies binary search, and such slowdown becomes even less in the

BGRMI-INLJ as it employs an exponential search instead. Moreover,

both tree structures, ART-INLJ and CSS-INLJ, become significantly

worse than BGRMI-INLJ at large datasets because traversing the

9

16 32 128 640
R (or S) M tups (logscale)

100

275

450

625

800

(a) Dataset Size
 INLJ (seq_h, 16B tuple)

16 32 128 640

50

100

150

200

250
SJ and HJ (seq_h, 128B tuple)

10 3 10 2 10 1 100

Tuples Ratio (R/S) (logscale)

0

875

1750

2625

3500

(b) Datasets Ratio
 INLJ (osm, 16B tuple)

102 103

0

125

250

375

500
SJ and HJ (osm, 128B tuple)

1.510.50.25
Lognorm Stddev

0

200

400

600

800

(c) Dataset Skewness
 INLJ (lognorm, 16B tuple)

1.510.50.25
0

40

80

120

160
SJ and HJ (lognrom, 128B tuple)

1 20 50 80
Duplicates Percentage (%)

50

175

300

425

550

Th
ro

ug
hp

ut
 (M

illi
on

 tu
pl

es
/s

ec
)

(d) Duplicates
 INLJ (seq_h, 16B tuple)

1 20 50 80
0

20

40

60

80
SJ and HJ (seq_h, 128B tuple)

4 16 32 64
Threads

0

250

500

750

1000

(e) Parallelism
 INLJ (seq_h, 16B tuple)

4 16 32 64
0

45

90

135

180
SJ and HJ (seq_h, 128B tuple)

Naive Ring
0

150

300

450

600

PJ

PJ

LP
J-P

J LP
J-P

J

M
PS

M

M
PS

M

M
W

AY

M
W

AYLG
SJ

-2
M

LG
SJ

-2
M

(f) Shuffling Strategy
 SJ and HJ (osm, 16B tuple)

4KB 2MB
0

150

300

450

600

PJ PJLP
J-P

J

LP
J-P

J

M
PS

M

M
PS

M

M
W

AY

M
W

AY

LG
SJ

-2
M

LG
SJ

-2
M

(g) Page Size
 SJ and HJ (face, 16B tuple)

16 32 64 128
Tuple size in bytes (logscale)

0

100

200

300

400

(h) Tuple Size
 SJ and HJ (seq_h, 640Mx640M)

face osm
200

375

550

725

900

1
ga

p

1
ga

p2
ga

ps

2
ga

ps

3
ga

ps

3
ga

ps

4
ga

ps

4
ga

ps

(i) RMI Gaps
 BGRMI-INLJ (16B tuple)

50 100 200 300
Buffer Size (tups)

100

225

350

475

600

(j) Requests Buffer
 INLJ (seq_h, 16B tuple)

50 100 200 300
Index/Model Size (MB)

100

350

600

850

1100

(k) Throughput-Size Tradeoff
 INLJ (seq_h, 16B tuple)

CSS-INLJ
ART-INLJ
CHAIN-INLJ
RMI-INLJ
RadixSpline-INLJ
BGRMI-INLJ

NPJ
LNPJ
LPJ-PJ
MWAY
LMPSM-2M
LGSJ-2M
MPSM
MPSM-LS
PJ
LGSJ-1M

Figure 7: Ablation study for the performance of different baselines from the three join categories.

tree becomes more costly compared to the exponential search. For

HJ and SJ, all algorithms keep the same relative performance gains

regardless of the sizes of input datasets.

Datasets Ratio. Figure 7(b) shows the performance of different al-

gorithms while joining input datasets of different sizes (note that we

focus on NPJ andMPSM variants as they are the best when inputs

significantly differ in sizes). In this experiment, we fix the size of one

input relation 𝑆 , which is the osm dataset with 800M tuples, while

varying the number of tuples of the second input relation 𝑅 as a

ratio from 𝑆 . We generate four variants of the relation 𝑅 with the

following number of tuples: 0.8M (0.1%), 8M (1%), 80M (10%), and

800M (100%). In case of INLJ, we index relation 𝑅 to study the effect

of changing the index size on the join performance.

Clearly, the throughputs of BGRMI-INLJ and RMI-INLJ at small

datasets ratio, including 0.001 and 0.01, are significantly better than

the throughputs of other algorithms, specially CHAIN-INLJ and

CSS-INLJ (at least 2X better). The main reason for that is the ex-

tremely small size of learned indexes at these ratios (compared to

the tree structures and hash tables), which can completely fit into

the cache. The performance gap between all INLJ techniques signif-

icantly decreases at larger dataset ratios, including 0.1 and 1, where

the rate of cache misses during index lookups becomes higher. We

can also observe that bothHJ and SJ baselines follow a similar perfor-

mance trend as in INLJ ones, where learned NPJ and MPSM variants

significantly outperform others at small dataset ratios.

Data Skewness. In this experiment, we study the robustness of

different algorithms while changing the skewness degree of in-

put datasets. Figure 7(c) shows the throughput for joining lognorm

datasets, where one input relation is fixed and the other one is var-

ied according to the skewness degree (i.e., 𝜎). As a fixed relation,

we use the lognorm dataset, with 32M tuples, that was generated

using the default parameters mentioned in the experimental setup

(Section 6.1). For the varied relation, we generate four new lognorm
datasets, each containing 640M tuples, yet, with different 𝜎 values:

0.25, 0.5, 1, and 1.5.We index the varied relationwhen using the INLJ

algorithms (note that, for HJ and SJ, we still focus on NPJ andMPSM

variants as they are the best performers with the lognorm dataset).

As shown in the figure, all algorithms show similar performance

at 𝜎 values of 1 and 1.5. However, the difference in performance

becomes significant at 𝜎 values of 0.5 and 0.25 (i.e., highly skewed

datasets). For INLJ, all learned variants are less susceptible to chang-

ing the skewness degree, except RadixSpline-INLJ. This is due to the

ability of learned models to balance keys over the index array and

avoid generating large clusters of keys. However, in RadixSpline-

INLJ, increasing the skewness degree (i.e., decreasing the 𝜎 value)

will increase the sparsity of the generated radix tables in RadixS-

pline [25], and hence leads to large clusters of keys and less join

throughput. Conversely, the throughputs of CSS-INLJ and CHAIN-

INLJ are significantly decreased by increasing the skewness degree

due to the increased tree depth and bucket chains, respectively.

For HJ and SJ, NPJ andMPSM are the most affected algorithms by

increasing the skewness. MPSM can easily result in unbalanced par-

titions among different worker threads, which increases the overall

algorithm latency due to its range partitioning technique. Similarly,

increasing the skewness will lead NPJ to have extremely unbalanced

buckets. In contrast, learned MPSM and NPJ variants are almost not

affected due to the balancing coming from employing the models.

10

Duplicates.Here,we study theperformanceof the algorithmswhile

changing the ratio of duplicate keys in input datasets (i.e., covering

1-to-𝑚 and 𝑛-to-𝑚 joins). In this experiment, given a percentage

of duplicates 𝑥%, we replace 𝑥% of the unique keys in each 640M

seq_h dataset with repeated keys. To support joining duplicates in
the RMI-based INLJ variants, we perform a range scan between the

error boundaries provided by RMI around the predicted location,

similar to [41]. As shown in Figure 7(d), the number of duplicates

affects the join throughput of (1) INLJ variants that employ RMI and

(2) HJ variants that use CDF models for hashing. This is because the

learnedmodels predict the same position/partition to the key, which

increases the number of collisions. However, such collisions are less

critical in learnedSJ variants, suchasLGSJ-2MandLGSJ-1M,because

they are used for coarse-grained partitioning, not hashing. Although

their performance is still degraded with increasing the number of

duplicates, they remain better than non-learned algorithms.

Parallelism. Figure 7(e) shows the performance of different algo-

rithms while scaling up the number of threads from 4 to 64. In this

experiment, we report the throughput for joining the 640Mx640M

variant of the seq_h dataset. Overall, all algorithms scale well when

increasing the number of threads, although only the learned INLJ

variants achieve slightly higher throughput than non-learned INLJ

ones. Themain explanation for this good performance is that learned

INLJ variants usually incur fewer cache misses (Check the perfor-

mance counters results in Figure 8) because they use learned models

that have small sizes and can nicely fit in the cache. Since threads

will be latency bound waiting for access to RAM, then threading

in typical INLJ algorithms will be more affected by latency than

learned variants, and degrades its performance. This observation is

confirmed by a recent benchmarking study for learned indexes [41].

Data Shuffling. In this experiment, we study how equipping theHJ

and SJ algorithmswithNUMAawareness can affect the join through-

put. A recent study [35] showed that the implementation details of

data shuffling across different NUMA nodes can substantially im-

pact the interconnect bandwidth and hence the overall performance.

Since data shuffling (which mainly occurs in partitioning, sorting,

and joining steps) is an essential operation in any join algorithm,

optimizing the shuffling strategy is expected to improve the join

throughput. Here, we experiment with two data shuffling strategies:

(1) Naive shuffling (the default strategy in all algorithms), which

does not consider the NUMA characteristics and lets each thread

pull/write data generated by all other threads without any optimiza-

tion, and (2) Ring shuffling, which executes the shuffling operation

on multiple steps, as described in [35], to reduce the NUMA inter-

connect contention. Figure 7(f) shows how the join throughputs of

the different algorithms change under these two shuffling strate-

gies while using the osm dataset with 16-byte tuples. As expected,

all algorithms benefit from the "Ring" shuffling strategy, where the

improvement ratios of join throughput range between 17% and 45%.

Page Size. Figure 7(g) shows the effect of changing the page size
from 4KB (the default value in Unix systems) to a larger size of 2MB

(a.k.a huge page) onHJ and SJ algorithmswhile using the face dataset
with 16-byte tuples. Compared to the INLJ algorithms, HJ and SJ

algorithms perform a larger amount of random memory accesses

(especially when having big working sets, i.e., large datasets), which

can be limited by the TLB misses. We can reduce such misses by

seq_h (16B tup) unif (16B tup) face (16B tup) osm (16B tup)

Pred Srch Pred Srch Pred Srch Pred Srch

RMI-INLJ 0.3 2.9 0.5 3.4 0.3 0.4 0.9 1.2

RadixSpline-INLJ 1.3 0 1.7 0 1.9 0 5.1 0

BGRMI-INLJ 0.4 2.4 0.5 0.9 0.3 0.1 0.8 0.4

seq_h (128B tup) face (128B tup)

Smpl Modl Part Build Sort Join Smpl Modl Part Build Sort Join

NPJ 0 0 0 7.6 0 5.1 0 0 0 12.7 0 6.8

PJ 0 0 11.3 8.3 0 5.5 0 0 6.2 3.1 0 2

LNPJ 1.5 4 0 3.9 0 2.6 0.1 0.5 0 3.2 0 2.1

LPJ-PJ 1.6 4.1 6.1 6.7 0 2 0.1 0.3 1.4 2.4 0 0.3

MPSM 0 0 2.5 0 26.4 1.4 0 0 2.1 0 8.1 0.7

MWAY 0 0 5.7 0 40.5 8.7 0 0 3.6 0 13.1 1.1

LGSJ-2M 1.8 4.2 3.8 0 15.2 0.9 0.1 0.4 1.2 0 3.8 0.1

Table 2: Runtime (sec) breakdown for learned INLJ,HJ, and SJ.

utilizing larger page sizes as suggested in [57].As shown in thefigure,

all algorithms benefit from increasing the page size. We can observe

that the improvement ratio in LGSJ-2M is higher than in other al-

gorithms. This is because the overhead of the partitioning phase in

LGSJ-2M is a bit higher, and hence reducing the TLBmisseswill have

a greater impact. We skipped reporting the results using larger page

sizes (e.g., 1GB) because there was no throughput improvement, as

the working set already fits in the TLB when using 2MB pages.

Tuple Size. Figure 7(h) shows the performance of different HJ and

SJ algorithms while changing the tuple size from 16 to 128 bytes. In

this figure, we report the throughput for joining the 640Mx640M

variant of the seq_h dataset. As shown in the figure, by increasing the
payload size, the performance gap between HJ and SJ significantly

decreases. In addition, LNPJ and LGSJ-1M start to show a stable per-

formance when the tuple size exceeds the cacheline (64 bytes), and

outperform all other baselines at a size of 128 (this result matches

with the reported numbers in Figures 5 and 6).

Performance Breakdown. Table 2 shows the runtime breakdown

(in sec) for the different algorithms when joining different datasets.

For synthetic datasets (seq_h and unif), we show the results of join-

ing the 640Mx640Mvariant. For the learned INLJ case,webreakdown

the runtime into RMI prediction (Pred) and final "last-mile" search

(Srch) steps. Since RadixSpline-INLJ does not apply a final search
step (it just uses the RadixSpline prediction as a hash value), we con-

sider its total time as prediction (i.e., "0" search step). For all datasets,

except seq_h, the search step of BGRMI-INLJ is at least 3 times faster

than typical RMI-INLJ, while the prediction time is almost the same.

For the HJ and SJ algorithms, we breakdown the runtime into sam-

pling (Smpl), CDFmodel building (Modl), partitioning (Part), hash
table building (Build), sorting (Sort), merging (Mrge), and finally

hash table probing in HJ or merge-joining in SJ (Join). Clearly, the
sorting step is dominating in each SJ algorithm, and improving it

will significantly boost the SJ performance. On average, LGSJ-2M

has a 3X and 2X faster sorting step compared to MWAY andMPSM,

respectively. Also, the LGSJ-2M joining step is at least 1.5X faster

than its counterparts inMPSM andMWAY. For HJ, the improvement

in the partitioning, building, and joining steps of LNPJ and LPJ-PJ

ranges between 1.2X and 6X compared to their corresponding steps

in NPJ and PJ. In all learned algorithms, building CDFmodels only

represents from 6% to 32% of the total runtime.

Other Performance Counters.To better understand the behavior
of the proposed learned join algorithms, we dig deep into their low-

level performance counters and try to find any correlation between

these counters and the join throughput. Figure 8presents theplotting

11

0 75 150 225 300
0

500

1000

1500

2000
LLC Cache Misses

0 20 40 60 80
0

286
571
857

1143
1429
1714
2000

Branch Misses

0 150 300 450 600
0

185

370

555

740

0 20 40 60 80
0

185

370

555

740

Performance Counter (Millions)

Th
ro

ug
hp

ut
 (M

illi
on

 tu
pl

es
/s

ec
) ART-INLJ

CHAIN-INLJ
RadSpl-INLJ
BGRMI-INLJ

NPJ
PJ
LPJ-PJ
MPSM
MWAY
LGSJ-2M

Figure 8: Cache and branchmisses for exploratory analysis.

of LLC cache and branchmisses (inmillions) for different algorithms,

where each column represents a counter type. For INLJ, we can see

thatmost of the BGRMI-INLJ caseswith high join throughputs occur

at lowcachemisses.This is explainableasmostof suchmisseshappen

in the "last-mile" searchphase (a typical 2-levelsRMIwillhaveatmost

2 cachemisses in its predictionphase, hopefullyonly1miss if the root

sub-model is small enough), and hence improving it by reducing the

number of search steps will definitely reduce the total cache misses.

In contrast, for HJ and SJ, there is a clear correlation between the

counter values of LGSJ-2M and LPJ-PJ and their corresponding join

throughputs. Their throughputs increase by decreasing the number

of cache and branch misses. This is mainly because the CDF-based

partitioning employed in themhas better caching properties. In addi-

tion, the number of comparisons in these algorithms becomes lower,

which in turn, reduces branch misses as well.

6.4 INLJ-Specific Evaluation Results
RMI Gaps. Figure 7(i) shows the effect of increasing the number of

gaps assigned per key in BGRMI-INLJ, while using the face and osm
datasets. As expected, increasing the gaps degree allows for more

space around each key to handle mispredictions efficiently, which

in turn reduces the final search steps and increases the throughput.

However, havingmore gaps will comewith higher space complexity

as well. Thus, this parameter needs to be tuned carefully.

Model/Index Size. Figure 7(j) shows the effect of increasing the

buffer size (Section 3.1.2) on the performance of two INLJ variants:

BGRMI-INLJ (learned) and CSS-INLJ (non-learned). Increasing the

buffer size allows more keys to be answered in batches (reducing

the cache misses) and hence the join throughput becomes higher.

However, after a certain threshold, the throughput degrades as it

makes the index size prohibitively large, and cache misses can not

be avoided (i.e., buffers can not fit in the cache anymore). Figure 7(k)

shows the tradeoffbetween the total index size (including the buffers,

if any) and the join throughput in three INLJ algorithms: BGRMI-

INLJ, RMI-INLJ, and CHAIN-INLJ. Clearly, BGRMI-INLJ has the best

throughput at small sizes, while CHAIN-INLJ becomes better at

larger sizes. This is because having a large enough hash table sig-

nificantly reduces the number of collisions (i.e., fewer cache misses)

while increasing themodel size in BGRMI increases the cachemisses.

Tuple size in R and S

 <= cacheline?
Yes

R (or S) is skewed?

Duplicates in R

(or S) <= 20%?

No

|R| << |S|?Yes No

R (or S) is skewed?

Yes No
R (or S) is skewed?

Yes No

R and S have

 keys with

 predictable gaps?

Yes No

LPJ-PJ

or

LPJ-P

PJ

PJ

NPJ LMPSM-2M

NPJ LGSJ-2M

LNPJ

LGSJ-1MNPJ

Yes
No

Yes No

Yes No

Duplicates in R

(or S) <= 20%?

Yes No
Duplicates in R

(or S) <= 20%?

Figure9: SummarizeddecisiongraphforHJandSJalgorithms.

7 RELATEDWORK
Hash-based Joins (HJ). In general, HJs are categorized into non-

partitioned (e.g., [10, 31, 61]) and partitioned (e.g., [8, 57, 61]) hash

joins. Radix join [6, 11, 38, 39, 61] is the most widely-used parti-

tionedhash join due to its high throughput and cache awareness (e.g.,

avoiding TLBmisses). [61] and [8] added software write-combine

buffers (SWWC) and bloom filter optimizations, respectively, to HJ

implementations. Otherworks optimized the performance of HJs for

NUMA-aware systems (e.g., [31, 57]), hierarchical caching (e.g., [18]),

and special hardware (e.g.,GPU [19], FPGA [13], NVM [58]).

Sort-based Joins (SJ).Numerousparallel algorithmshavebeenpro-

posed to improve the performance of sort-based joins over years [2,

5, 9, 23, 57]. [23] provided the first evaluation study for sort-based

join in a multi-core setting. After that, MPSM [2] was proposed to

significantly improve the performance of sort-based join on NUMA-

aware systems. Multi-Way sort-merge join (referred to as MWAY)

is another state-of-the-art algorithm [5] that improved over [23] by

using wider SIMD instructions and multi-way merging.

Nested Loop Joins (NLJ).NLJshavebeenextensivelystudiedagainst
other join algorithms either on their own (e.g., [12]) or within the

query optimization context (e.g., [32]). Block and indexed nested

loop joins are themost popular variants [17]. Several works revisited

their implementations to improve the performance for hierarchical

caching (e.g., [17]) and modern hardware (e.g., GPU [19]).

Machine Learning for Database. The last few years witnessed a

big rise in exploring machine learning for automating database op-

erations and design decisions [27, 34]. Examples include indexing

(e.g., [14, 16, 25, 28, 46]), queryoptimization (e.g., [42, 43]), cardinality

estimation [24], data partitioning [65], sorting [29], hashing [55, 56],

and scheduling [40, 54].However, to the best of our knowledge, there

is no existingworkonexploringmachine learning for the in-memory

joins. Our proposed study in this paper fills this gap.

8 CONCLUSIONAND LESSONS LEARNED
Here, we summarize the lessons learned by our extensive study. In

case one of the two input relations is indexed, BGRMI-INLJ becomes

the best INLJ option in almost all scenarios, as long as its gapped

arrays and buffer parameters are carefully tuned. For HJ and SJ,

selecting the best alternative depends on many input data charac-

teristics including tuple size, data distribution (keys’ skewness and

distribution of gaps), relations’ sizes, and duplicates percentage. Due

to the lack of space, we summarized our findings in a decision tree

shown in Figure 9. We can see that learned join variants are mostly

effective when tuple sizes are beyond the cacheline, specially when

datasets are skewed and have a small percentage of duplicates. In

12

these cases, CDFmodels can capture data distributions accurately

and provide better performance in partitioning, sorting, and build-

ing/probing hash tables compared to state-of-the-art algorithms.We

believe that our findings can help practitioners to decide more easily

when learned join algorithms become efficient, andwhich algorithm

to use under different circumstances.

REFERENCES
[1] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel R. Madden.

Materialization Strategies in a Column-Oriented DBMS. In Proceedings of the
International Conference on Data Engineering, ICDE, 2007.

[2] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively

Parallel Sort-Merge Joins in Main Memory Multi-Core Database Systems. In

Proceedings of the International Conference on Very Large Data Bases, VLDB, 2012.
[3] ALEX: An Updatable Adaptive Learned Index. https://github.com/microsoft/

ALEX.

[4] Austin Appleby. MurmurHash. https://sites.google.com/site/murmurhash/, 2011.

[5] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-Core,

Main-Memory Joins: Sort vs. Hash Revisited. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, 2013.

[6] Cagri Balkesen, JensTeubner,GustavoAlonso, andM.TamerOzsu. Main-Memory

Hash Joins onModern Processor Architectures. IEEE Transactions on Knowledge
and Data Engineering, TKDE, 27(7):1754–1766, 2015.

[7] Cagri Balkesen, Jens Teubner, GustavoAlonso, andM. TamerÖzsu. Main-memory

hash joins onmulti-core CPUs: Tuning to the underlying hardware. In Proceedings
of the International Conference on Data Engineering, ICDE, pages 362–373, 2013.

[8] Maximilian Bandle, Jana Giceva, and Thomas Neumann. To Partition, or not to

Partition, That is the Join Question in a Real System. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2021.

[9] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten

Hoefler. Distributed Join Algorithms on Thousands of Cores. In Proceedings of
the International Conference on Very Large Data Bases, VLDB, 2017.

[10] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Evaluation of Main

Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2011.

[11] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database Architecture

Optimized for the New Bottleneck: Memory Access. In Proceedings of the
International Conference on Very Large Data Bases, VLDB, 1999.

[12] MingxianChen andZhiZhong. BlockNested Join and SortMerge JoinAlgorithms:

An Empirical Evaluation. InAdvanced Data Mining and Applications, 2014.
[13] Xinyu Chen, Yao Chen, Ronak Bajaj, Jiong He, Bingsheng He,Weng-FaiWong,

and Deming Chen. Is FPGA Useful for Hash Joins? Exploring Hash Joins on

Coupled CPU-FPGAArchitecture. In Proceedings of the International Conference
on Innovative Data Systems Research, CIDR, 2020.

[14] JialinDing,UmarFarooqMinhas, JiaYu,ChiWang, JaeyoungDo,YinanLi,Hantian

Zhang, BadrishChandramouli, JohannesGehrke,DonaldKossmann,David Lomet,

and Tim Kraska. ALEX: An Updatable Adaptive Learned Index. In Proceedings
of the ACM International Conference on Management of Data, SIGMOD, 2020.

[15] Jian Fang, Jinho Lee, H. Peter Hofstee, and Jan Hidders. Analyzing In-Memory

Hash Join: Granularity Matters. In International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and Storage
Architectures, ADMS@VLDB, 2017.

[16] Paolo Ferragina and Giorgio Vinciguerra. The PGM-Index: A Fully-Dynamic

Compressed Learned Index with Provable Worst-Case Bounds. In Proceedings
of the International Conference on Very Large Data Bases, VLDB, 2020.

[17] BingshengHe andQiong Luo. Cache-Oblivious Nested-Loop Joins. In Proceedings
of the International Conference on Information and Knowledge Management, CIKM,

2006.

[18] Bingsheng He and Qiong Luo. Cache-Oblivious Query Processing. In Proceedings
of the International Conference on Innovative Data Systems Research, CIDR, 2007.

[19] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and

Pedro Sander. Relational Joins on Graphics Processors. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2008.

[20] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender,

and Martin L. Kersten. MonetDB: Two Decades of Research in Column-oriented

Database Architectures. IEEE Data Engineering Bulletin, 35(1):40–45, 2012.
[21] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin Levandoski,

and Gor Nishanov. Exploiting Coroutines to Attack the "Killer Nanoseconds". In

Proceedings of the International Conference on Very Large Data Bases, VLDB, 2018.
[22] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP and OLAPMain

Memory Database System Based on Virtual Memory Snapshots. In Proceedings
of the International Conference on Data Engineering, ICDE, 2011.

[23] Changkyu Kim, Tim Kaldewey, VictorW. Lee, Eric Sedlar, Anthony D. Nguyen,

Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort

vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core CPUs. In

Proceedings of the International Conference on Very Large Data Bases, VLDB, 2009.
[24] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and

Alfons Kemper. Learned Cardinalities: Estimating Correlated Joins with Deep

Learning. In Proceedings of the International Conference on Innovative Data
Systems Research, CIDR, 2019.

[25] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. RadixSpline: A Single-Pass Learned Index.

In Proceedings of aiDM@SIGMOD, 2020.
[26] Onur Kocberber et al. Asynchronous Memory Access Chaining. In Proceedings

of the International Conference on Very Large Data Bases, VLDB, 2015.
[27] Tim Kraska. Towards instance-optimized data systems. In Proceedings of the

International Conference on Very Large Data Bases, VLDB, 2021.
[28] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The Case

for Learned Index Structures. In Proceedings of the ACM International Conference
on Management of Data, SIGMOD, page 489–504, 2018.

[29] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. The

Case for a Learned Sorting Algorithm. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD, 2020.

[30] Ani Kristo, Kapil Vaidya, and Tim Kraska. Defeating Duplicates: A Re-design of

the LearnedSort Algorithm. In Proceedings of the AIDBWorkshop @VLDB, 2021.
[31] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons

Kemper. Massively Parallel NUMA-Aware Hash Joins. In In-Memory Data
Management and Analysis, IMDM, 2015.

[32] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. How Good Are Query Optimizers, Really? In Proceedings
of the International Conference on Very Large Data Bases, VLDB, 2015.

[33] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive Radix Tree:

ARTful Indexing for Main-Memory Databases. In Proceedings of the International
Conference on Data Engineering, ICDE, 2013.

[34] GuoliangLi,XuanheZhou, andLeiCao.MachineLearning forDatabases (Tutorial).

In Proceedings of the International Conference on Very Large Data Bases, VLDB, 2021.
[35] Yinan Li, Ippokratis Pandis, ReneMueller, Vijayshankar Raman, andGuy Lohman.

NUMA-aware Algorithms: The Case of Data Shuffling. In Proceedings of the
International Conference on Innovative Data Systems Research, CIDR, 2013.

[36] Feilong Liu and Spyros Blanas. Forecasting the Cost of Processing Multi-Join

Queries via Hashing for Main-Memory Databases. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC, 2015.

[37] Marcel Maltry and Jens Dittrich. A Critical Analysis of Recursive Model Indexes.

In Proceedings of the International Conference on Very Large Data Bases, VLDB, 2022.
[38] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. What Happens During

a Join? Dissecting CPU andMemory Optimization Effects. In Proceedings of the
International Conference on Very Large Data Bases, VLDB, 2000.

[39] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing Main-

memory Join on Modern Hardware. IEEE Transactions on Knowledge and Data
Engineering, TKDE, 14(4):709–730, 2002.

[40] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. Learning Scheduling Algorithms for Data Processing

Clusters. In Proceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM, pages 270 – 288, 2019.

[41] RyanMarcus,AndreasKipf,AlexandervanRenen,Mihail Stoian, SanchitMisra,Al-

fonsKemper, ThomasNeumann, andTimKraska. Benchmarking Learned Indexes.

In Proceedings of the International Conference on Very Large Data Bases, VLDB, 2020.
[42] RyanMarcus, ParimarjanNegi,HongziMao,NesimeTatbul,MohammadAlizadeh,

and Tim Kraska. Bao: Making Learned Query Optimization Practical. In Proceed-
ings of the ACM International Conference on Management of Data, SIGMOD, 2021.

[43] RyanMarcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A Learned Query

Optimizer. In Proceedings of the ACM International Conference on Management
of Data, SIGMOD, 2019.

[44] Multi-Way Sort Merge Join. https://systems.ethz.ch/research/data-processing-

on-modern-hardware/projects/parallel-and-distributed-joins.html.

[45] MySQL. https://www.mysql.com/.

[46] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. Learning

Multi-Dimensional Indexes. In Proceedings of the ACM International Conference
on Management of Data, SIGMOD, 2020.

[47] Thomas Neumann and Michael Freitag. Umbra: A Disk-Based System with

In-Memory Performance. In Proceedings of the International Conference on
Innovative Data Systems Research, CIDR, 2020.

[48] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[49] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,

and Alfons Kemper. The Case for Learned Spatial Indexes. In Proceedings of the
AIDBWorkshop @VLDB, 2020.

[50] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,

Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep: A Data

Platform Based on the Scaling-up Approach. In Proceedings of the International
Conference on Very Large Data Bases, VLDB, 2018.

[51] PostgreSQL. https://www.postgresql.org/, 2019.

13

https://github.com/microsoft/ALEX
https://github.com/microsoft/ALEX
https://sites.google.com/site/murmurhash/
https://systems.ethz.ch/research/data-processing-on-modern-hardware/projects/parallel-and-distributed-joins.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/projects/parallel-and-distributed-joins.html
https://www.mysql.com/
https://www.postgresql.org/

[52] RadixSpline. https://github.com/learnedsystems/RadixSpline.

[53] Recursive Model Indexes. https://github.com/learnedsystems/RMI.

[54] Ibrahim Sabek, Tenzin Samten Ukyab, and Tim Kraska. LSched: A Workload-

Aware Learned Query Scheduler for Analytical Database Systems. In Proceedings
of the ACM International Conference on Management of Data, SIGMOD, 2022.

[55] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, and Tim Kraska.

When Are Learned Models Better Than Hash Functions? In Proceedings of the
AIDBWorkshop @VLDB, 2021.

[56] IbrahimSabek,KapilVaidya,DominikHorn,AndreasKipf,MichaelMitzenmacher,

and Tim Kraska. Can LearnedModels Replace Hash Functions? In Proceedings
of the International Conference on Very Large Data Bases, VLDB, 2023.

[57] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Comparison of

Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2016.

[58] Anil Shanbhag, Nesime Tatbul, David Cohen, and Samuel Madden. Large-Scale

in-Memory Analytics on Intel Optane DC Persistent Memory. In Proceedings of
the International Workshop on Data Management on New Hardware, DaMoN, 2020.

[59] SOSD. https://github.com/learnedsystems/SOSD.

[60] SOSD Leaderboard. https://learnedsystems.github.io/SOSDLeaderboard/

leaderboard/.

[61] Jens Teubner, Gustavo Alonso, Cagri Balkesen, and M. Tamer Ozsu. Main-

Memory Hash Joins onMulti-Core CPUs: Tuning to the Underlying Hardware.

In Proceedings of the International Conference on Data Engineering, ICDE, 2013.
[62] Vertica. https://www.vertica.com/, 2023.

[63] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and

TianzhengWang. Are Updatable Learned Indexes Ready?, 2022.

[64] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao

Xing. Updatable Learned Index with Precise Positions. In Proceedings of the
International Conference on Very Large Data Bases, VLDB, 2021.

[65] Zongheng Yang, Badrish Chandramouli, ChiWang, Johannes Gehrke, Yinan Li,

Umar FarooqMinhas, Per Åke Larson, Donald Kossmann, and Rajeev Acharya.

Qd-Tree: Learning Data Layouts for Big Data Analytics. In Proceedings of the
ACM International Conference on Management of Data, SIGMOD, 2020.

[66] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang.

In-Memory Big Data Management and Processing: A Survey. IEEE Transactions
on Knowledge and Data Engineering, TKDE, 27(7):1920–1948, 2015.

[67] Jingren Zhou and Kenneth A. Ross. Buffering Accesses to Memory-Resident

Index Structures. In Proceedings of the International Conference on Very Large
Data Bases, VLDB, 2003.

14

https://github.com/learnedsystems/RadixSpline
https://github.com/learnedsystems/RMI
https://github.com/learnedsystems/SOSD
https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/
https://learnedsystems.github.io/SOSDLeaderboard/leaderboard/
https://www.vertica.com/

	Abstract
	1 Introduction
	2 Background
	3 Learned Indexed Nested Loop Join
	3.1 Representative Algorithms
	3.2 Learned Index-based Variants

	4 Learned Hash-based Join
	4.1 Representative Algorithms
	4.2 CDF-based Variants

	5 Learned Sort-based Join
	5.1 Representative Algorithms
	5.2 CDF-based Variants

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 INLJ, SJ, and HJ Evaluation Results
	6.3 Detailed Analysis and Evaluation
	6.4 INLJ-Specific Evaluation Results

	7 Related Work
	8 Conclusion and Lessons Learned
	References

