
Araneola: A Scalable Reliable Multicast System for DynamicEnvironments

Roie Melamed
CS Department, Technion
mroi@cs.technion.ac.il

Idit Keidar
EE Department, Technion

Abstract

We present Araneola∗, a scalable reliable application-
level multicast system for highly dynamic wide-area envi-
ronments. Araneola supports multi-point to multi-point re-
liable communication in a fully distributed manner while
incurring constant load on each node. For a tunable pa-
rameter k ≥ 3, Araneola constructs and dynamically main-
tains an overlay structure in which each node’s degree is
either k or k + 1, and roughly 90% of the nodes have de-
gree k. Empirical evaluation shows that Araneola’s overlay
structure achieves three important mathematical properties
of k-regular random graphs (i.e., random graphs in which
each node has exactly k neighbors) with N nodes: (i) its di-
ameter grows logarithmically with N ; (ii) it is generally k-
connected; and (iii) it remains highly connected following
random removal of linear-size subsets of edges or nodes.
The overlay is constructed at a very low cost: each join,
leave, or failure is handled locally, and entails the sending
of only about 3k messages in total.

Given this overlay, Araneola disseminates multicast
messages by gossiping over the overlay’s links. We show
that compared to a standard gossip-based multicast proto-
col, Araneola achieves substantial improvements in load,
reliability, and latency. Finally, we present an extension
to Araneola in which the basic overlay is enhanced with
additional links chosen according to geographic proximity
and available bandwidth. We show that this approach re-
duces the number of physical hops messages traverse with-
out hurting the overlay’s robustness.

1. Introduction

Our goal is to provide a scalable multi-point to multi-
point reliable multicast service for very large groups in
wide-area networks. A protocol deployed in such a setting
must be able to withstand frequent node failures as well as
non-negligible message loss rates [20]. Moreover, studies

∗Araneola means “little spider” in Latin.

have shown that users typically frequently join and leave
multicast sessions [1]; such behavior is calledchurn. A ma-
jor design goal for our work is therefore coping efficiently
with churn. Specifically, we address the following chal-
lenges: (i) providing high reliability despite considerable
message loss and failure rates while incurring constant load
on each node; (ii) incorporating joining nodes and remov-
ing leaving (or failing) ones with a lowconstant overhead;
and (iii) providing an undisrupted service to nodes that are
up despite high churn rates.

We present Araneola, a scalable reliable application level
multicast (ALM) system for dynamic wide-area environ-
ments. Reliability is achieved by constructing a richly-
connected overlay and disseminating pertinent information
on multiple paths in this overlay. The number of paths in the
overlay can be tuned according to the expected failure and
loss rates. Araneola is designed to incur small constant load
on each node. To this end, it builds an overlay in which
each node’s degree is bounded by a small constant. This
approach has three advantages: (i) all nodes, including low
bandwidth ones, are capable of participating in the overlay;
(ii) the load on all nodes is similar, so no user is required
to contribute more bandwidth than its fair share; and (iii)
nodes have ample remaining bandwidth for connecting to
nearby nodes, as we explain below.

Our search for a constant degree overlay leads us to con-
siderk-regular random graphs. In ak-regular graph, each
node’s degree isk. A k-regular random graph with N

nodes is a graph chosen uniformly at random from the set of
k-regular graphs withN nodes. Fork ≥ 3, ak-regular ran-
dom graph is almost always a good expander [8], which im-
plies that (i) its diameter grows logarithmically withN [25];
and (ii) it remains connected after random failures of a lin-
ear subset of its nodes and/or edges [9]. In addition, such
a graph is generallyk-connected, i.e., at leastk nodes need
to be removed in order to cause a partition [25]2. We strive
to construct and maintain an overlay that resembles ak-
regular random graph: Araneola’s basic overlay converges
to a graph in which each node has a degree of eitherk or

2The probability that ak-regular random graph is notk-connected is
bounded byO(N2−k).

k +1 and no two neighboring nodes have a degree ofk +1.
Empirically, we show that Araneola’s overlay achieves the
desired properties above, namely logarithmic diameter,k-
connectivity, and high robustness.

We construct and maintain the overlay at a very low con-
stant overhead; each join or leave (or failure) incurs sending
roughly about3k messages in ak-degree overlay, regard-
less of the number of nodes. Remarkably, in dynamic set-
tings, the cost of handling a single join or leave operation
decreases as the churn rate increases. This is in contrast to
virtually all existing structured peer-to-peer overlays,with
which the overhead for handling joins grows logarithmi-
cally with N .

The low maintenance cost is achieved due to the facts
that: (i) each join, leave, or failure is handled locally; and
(ii) the selection of random neighbors uses partial member-
ship views maintained by a distributed low cost membership
service similar to the ones in [7, 23]. The overhead of the
membership service is independent of the number of nodes
and of the churn rate.

Having built a basick/k+1-degree overlay, we next ex-
tend it by adding links between geographically-close nodes.
The low degree of Araneola’s basic structure allows for al-
locating plenty of bandwidth for communication with prox-
imate nodes. We show that with this approach, the links
in Araneola’s overlay traverse substantially fewer physical
hops on average. Moreover, the overlay’s robustness does
not deteriorate.

Given Araneola’s overlay, multicast messages are dis-
seminated through gossip between each pair of neighbors.
Gossiping in Araneola differs from a standard gossip pro-
tocol (e.g., [7, 16]) in that with a standard gossip protocol,
each node choosesdifferent random nodes to gossip with in
each round, whereas in Araneola, each node always gossips
with its neighbors in the overlay. We show that this differ-
ence leads to substantial improvements in load, reliability,
and latency.

This paper proceeds as follows: Section 2 discusses
related work. Section 3 presents Araneola’s design and
pseudo code, and Section 4 empirically evaluates Araneola.
Section 5 presents and evaluates the extension that exploits
network proximity. Section 6 concludes the paper.

2. Related Work

In recent years, two leading approaches for support-
ing scalable ALM in dynamic failure-prone networks have
emerged: gossip-based (or epidemic) multicast protocols
(e.g., [3, 7]) and dynamic overlay networks (e.g., [10,
5]). With gossip-based protocols, each node periodically
chooses other random nodes to propagate the information
to. Gossip-based multicast generally achieves good load
balancing, high reliability, and undisrupted service in the

presence of message loss and node joins and leaves, but it
also induces a high load, as many duplicate messages are
sent [7].

Overlay-based ALM systems usually disseminate mes-
sages on a tree structure [10, 5, 23]. With tree-based multi-
cast, no duplicate messages are sent. However, in the pres-
ence of churn, the tree structure will frequently become par-
titioned, causing a significant portion of the multicast mes-
sages to be lost. Therefore, in order to achieve reliability,
such protocols need to detect message loss and recover from
it. This can cause recovered messages to be significantly de-
layed; can induce substantial overhead, especially if failures
are frequent; and can inhibit scalability. A second prob-
lem with tree-based multicast is uneven load distribution:
as recently argued in [4], inner nodes in the tree carry the
burden for the multicast, whereas leaf nodes do not share
the load. Two recent projects, SplitStream [4] and Bul-
let [14], address this issue and build a balanced multicast
infrastructure; however these two systems are intended for
single-source multimedia transfer and do not strive to pro-
vide multi-point to multi-point communication or full relia-
bility of message delivery as we do.

Recently, several peer-to-peer overlays with logarithmic
diameters and a bounded node degrees have been suggested,
e.g., emulating the Butterfly [17], de Bruijn graphs [11],
Small Worlds graphs [13], or random expander graphs with
degrees≥ 8 [15]. However, none of these systems can guar-
antee, with high probability, a lower cost thanO(log N)
messages and time for handling joins, since a joining node
must search and locate its (random or hashed) joining lo-
cation prior to joining the system. Chawathe et al. [6]
have argued that this logarithmic cost inhibits the scalabil-
ity of such systems assuming the churn rates measured in
Gnutella and Napster [22].

Like our extension of Araneola, several overlay struc-
tures, e.g., [18, 23], reduce message delivery latency
and communication costs by incorporating links between
nearby nodes in addition to the random links required for
achieving a good overlay. In comparison with [18, 23], Ara-
neola achieves a smaller average degree than [18, 23] and
better load balancing than [23].

3. Araneola’s Design

Araneola builds an overlay structure for each multicast
group. Since each group is handled independently, we
present the protocol for a single group, and omit the group’s
name. All Araneola nodes run the same code. The code
has two main components: one constructs and maintains
the overlay, and the second implements the multicast ser-
vice. The multicast service is very simple: once the over-
lay is constructed, each Araneola node gossips about recent
message identifiers with its neighbors, and requests missing

messages from them. Due to space limitations, we do not
describe this service in this paper; the details are described
in the full paper [19].

When joining the overlay, a node randomly selects sev-
eral other nodes to connect to. This requires each node to
know some other nodes’ identities. To this end, we imple-
ment a scalable randomized membership protocol similar
to [7, 23], where membership information is gossiped over
the overlay’s links. Each node maintains a small set of node
identities, called amembership view, which evolves over
time. Periodically, the membership protocol piggybacks
a small amount of information on gossip messages. Such
views have been shown to become uniformly distributed
over time [7, 23]. Experimentally, we observe that it suf-
fices to piggyback membership information infrequently,
e.g., once a minute. When a new node joins Araneola for
the first time, it can ask another node for its membership
view, and use that as its initial view. We do not detail the
membership protocol in this paper; the interested reader is
referred to [7].

Araneola’s data structures are presented in Fig. 1.
The set neighbors holds the node’s current neighbors
in the overlay, with their respective degrees. The de-
gree of a node is the size of its neighbors set, i.e.,
|neighbors|. last connect to time records the latest time a
CONNECT TO message was handled, as explained below.
The parameter L determines the graph’s target degree (k),
and H defines the maximum allowed node degree. A num-
ber of timeout values are defined in order to control the fre-
quency at which different events occur.

Data structures:
id – this node’s identifier.
neighbors – set of triples〈id,degree〉, initially ∅.
last connect to time – a time.
Constants:
L – target number of neighbors.
H – upper bound on the number of neighbors.
Timeouts: connecttimeout, disconnecttimeout, connectto timeout.

Figure 1. Araneola’s data structures and constant defi-
nitions.

Three tasks participate in the construction and mainte-
nance of the overlay: (i) theconnect task (see Fig. 2) adds
new connections when a node’s degree is below L; (ii) the
disconnect task (see Fig. 3) tries to reduce the node’s degree
if it is above L, without causing any node’s degree to drop
below L; and (iii) thefailure detector detects failures and
recovers from them.

When a node’s degree is below L, the connect task pe-
riodically attempts to set up as many new connections as
it is missing to randomly chosen nodes (lines 1–6). The
target nodes are chosen at random from the local member-
ship view. For each attempted connection, the node sends a
CONNECT request (line 5). At bootstrap time, the node
issues CONNECT requests to L nodes, and then sleeps

for connect timeout. It is expected that during this period
enough new connections will be formed, although since
some of the chosen nodes may be faulty or overloaded, there
may be a need to attempt more connections after the timer
expires. The connect task can be awaken by other tasks be-
fore the timer expires (line 27).

A node that receives a CONNECT request (line 7)ac-
cepts it, by calling addconnection, provided that its degree
is smaller than H, and otherwise itredirects the request, as
will be explained shortly. The procedure addconnection
adds the sender to neighbors (line 21) and responds with a
CONNECT OK. Upon receiving the CONNECTOK (line
14), the requester registers the new connection, unless its
degree has already reached H, in which case it sends a
LEAVE message (line 18). A LEAVE message causes its
receiver to remove its connection with the sender (lines 19–
20) . Redirecting is done by sending a REDIRECT message
to the requester, naming the sender’s lowest degree neigh-
bor (line 11). This causes the requester to send a new CON-
NECT request to the named neighbor (line 13). CONNECT
and CONNECTOK messages carry the sender’s current
degree for initializing thedegree in theneighbors data struc-
ture. In addition, every node periodically sends its degreeto
its neighbors, in order to keep the neighbors data structure
up-to-date (this is not shown in the code).

A node that voluntarily leaves the system sends a
LEAVE message to all its neighbors. Unexpected node fail-
ures are detected using a simple heartbeat failure detector
(not shown in the code). When a node detects a neighbor as
faulty, it removes the connection with this neighbor.

There are two rules for removing connections:Rule 1
and Rule 2 (See Fig. 3). Rule 1 removes the connection
between a pair of nodes that both have degrees higher than
L. Specifically, if a noden’s degree isL + i, thenn at-
tempts to removei of its neighbors. Thei neighbors with
the highest degrees are candidates for removal; they are in-
serted into the setcands (line 5). Nodes with degrees≤L
are then deleted fromcands (line 8). If n has a higher id
than a nodec in cands, thenn sends a DISCONNECT mes-
sage toc (line 10). Upon receiving this message (line 16),
if c’s degree is still higher than L, it removes the connection
with n, and sends a DISCONNECTOK message. Upon
receipt of a DISCONNECTOK (line 20), n removes the
connection withc. Note that Rule 1 never reduces a node’s
degree to be below L.

With Rule 1, it is still possible for a node to have degree
H while all of its neighbors have degree L. Rule 2 is only
invoked at a noden when all ofn’s neighbors’ degrees are
≤L. With Rule 2, noden chooses its two neighbors with
the highest and lowest degrees,h and l, resp. (lines 12–
13). If n’s degree is at leastl.degree + 2, thenn tries to
causeh to shift one of its connections fromn to l. But be-
fore removingh’s connection withn, we ensure thatl is

Connect task:

1. loop forever
2. gap← L − |neighbors|
3. for (i = 0; i < gap; i + +)
4. n← random node
5. send〈CONNECT, |neighbors|〉 to n

6. sleep (connecttimeout)

Event handles:
7. upon receive〈CONNECT, d〉 from n do
8. if (|neighbors| < H) then
9. addconnection (n, d,true)
10. else
11. send〈REDIRECT,lowest degree neighbor〉 to n

12. uponreceive〈REDIRECT,n′〉 from n do
13. send〈CONNECT, |neighbors|〉 to n′

14. uponreceive〈CONNECT OK, d〉 from n do
15. if (|neighbors| < H) then
16. addconnection (n, d,false)
17. else
18. send〈LEAVE〉 to n

19. uponreceive〈LEAVE〉 from n do
20. removeconnection(n)

Procedures:
Procedureadd connection (nodeid n, int d, booleanack)
21. neighbors← neighbors

�
{n, d}

22. if (ack = true) then
23. send〈CONNECT OK, |neighbors|〉 to n

Procedureremoveconnection (noden)
24. removen from neighbors
25. removen from all heard from lists
26. if (|neighbors| < L) then
27. wake up connect task

Figure 2. Overlay construction: the connect task.

willing to accepth’s connection. Therefore,n contactsl
(rather thanh) and asks it to try to connect toh, and to ask
h to remove its connection withn. To this end,n sends
a 〈CONNECT TO,h〉 message tol. If upon receiving this
messagel’s degree is still≤L, andl has not handled another
CONNECT TO request in the last connectto timeout (lines
23–24), thenl sends a CHANGECONNECTION message
to h. The recipient,h, connects tol (line 29) and sends a
DISCONNECT message ton (line 30). This can increase
l’s degree, but not to become higher than L+1, sincel han-
dles at most one CONNECTTO request at a time, and only
if its degree≤L. Moreover, note that ifl’s degree will be-
come higher than L, andn’s degree will remain above L,
then Rule 1 will eventually reducel’s degree back to L.

In the full paper [19], we prove the following:

Proposition 1. If from some point onward no nodes join,
leave, or are detected as faulty, then each node’s degree is
eventually either L or L+1, and at most 50% of the nodes
have degree L+1.

Disconnect task:

1. loop forever
2. sleep (disconnecttimeout)
3. i← |neighbors|− L
4. if (i > 0) then

/* Rule 1 */
5. cands← set ofi neighbors with highest degrees
6. foreachc ∈ cands

7. if (c.degree ≤ L) then
8. cands← cands\ {c}
9. else if(c.id < id) then
10. send〈DISCONNECT〉 to c

/* Rule 2 */
11. if (cands = ∅) then
12. h← neighbor with highest degree
13. l← neighbor with lowest degree
14. if (|neighbors| ≥ l.degree + 2) then
15. send〈CONNECT TO,h〉 to l

Event handlers:
16. uponreceive〈DISCONNECT〉 from n do
17. if (|neighbors| > L) then
18. send〈DISCONNECTOK〉 to n

19. removeconnection(n)

20. uponreceive〈DISCONNECTOK〉 from n do
21. removeconnection(n)

22. uponreceive〈CONNECT TO,n′〉 from n do
23. if (|neighbors| ≤ L ∧
24. clock − last connect to time > connectto timeout)then
25. send〈CHANGE CONNECTION,|neighbors|, n〉 to n′

26. last connect to time←clock

27. uponreceive〈CHANGE CONNECTION,d, n′〉 from n do
28. if (|neighbors| < H) then
29. add connection (n, d,true)
30. send〈DISCONNECT〉 to n′

Figure 3. Reducing node degrees.

4. Evaluation

We have implemented Araneola in Java using UDP/IP.
In this section, we evaluate Araneola on a single LAN in
Netbed [24]. In the next section, where we consider net-
work proximity, we evaluate Araneola also on a WAN. We
run multiple Araneola nodes per machine, and therefore
need to space the gossip rounds sufficiently so as to allow
all the nodes running on the same machine to complete their
gossip operation during a round. Thus, we chose a fairly
large round duration of5 seconds. When there is only one
node per machine, the round duration can be an order of
magnitude smaller. Thedisconnect timeout is set to30 sec-
onds, and theconnect timeout is 20 seconds. We begin our
study, in Section 4.1, by evaluating Araneola’s scalability
and performance in a static setting. In Section 4.2 we study
Araneola’s fault-tolerance. In Section 4.3, we consider high
churn.

4.1. Static Evaluation

In our static evaluation, all the nodes are created simulta-
neously, and remain up throughout the experiment. In each
round, a single data message is injected into the system,
each time from a different machine. A total of200 data mes-
sages are sent in each experiment. Each experiment (with
a given number of nodes and choice of parameter settings)
was run at least4 times, for a total of several dozens.

4.1.1 The impact of L

Araneola’s parameter L is very significant: it affects Ara-
neola’s load, latency, and robustness. Fig. 4 shows the im-
pact of this parameter on message propagation rates in runs
with 8000 nodes (on100 Netbed machines) and values of L
ranging from3 to 10. Each curve in the figure depicts the
CDF of the average number of nodes that receive a message
by each hop count for a given value of L. As expected, the
message latency decreases as L increases.

In most of the experiments below, we set L to5. We
chose this value because it provides a good balance between
the desired properties: each node sends a given message
identifier only4 times, and the latency to reach all nodes is
reasonable:7 rounds with1000 nodes and9 with 10, 000.
Moreover, as we shall see below, it yields a highly robust
overlay and achieves 100% reliability at churn rates exceed-
ing those measured on the MBone [1]. We choose H to be
L+5 because we have observed that this choice achieves
low overhead.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

rounds

L=3
L=4
L=5
L=6
L=7
L=8
L=9
L=10

Figure 4. CDF: average % of nodes that receive a message
for different degree Araneola overlays, 8000 nodes.

4.1.2 Overlay properties and scalability

In order to understand Araneola’s scalability, we varyN ,
the group size, from500 nodes (on10 Netbed machines)
to 10, 000 nodes (on125 Netbed machines). L and H are
set to5 and10, resp. At the end of each experiment, we
take a snapshot of the overlay structure, and then analyze
its properties offline. We measure node degrees as well as
the overlay’s diameter, average distance, and connectivity.

The results are summarized in Table 53. The first column
shows the percentage of nodes whose degree is L (i.e.,5).
The remaining nodes’ degrees are L+1. In all of our ex-
periments, Araneola converges to a state in which over 90%
of the nodes have degree L. The exact percentage of nodes
with degree L does not seem related toN . The next col-
umn presents the smallest and largest measured diameters
for every value ofN . In cases where the same diameter
was measured in all experiments, we present only one value.
The diameter gives a measure for theworst case latency (in
the absence of failures and message loss), whereas the av-
erage latency depends on the average distance between two
nodes in the overlay. This average is presented in the fol-
lowing column, and it increases gradually withN . Finally,
we measure the overlay’s connectivity. In over 90% of our
experiments, the overlay is5-connected, i.e., there are at
least5 disjoint paths between every pair of nodes. In the
few cases where the connectivity was less than5, there were
at most4 nodes with a connectivity of4, whereas the rest of
the nodes had a connectivity of5. The average number of
node-disjoint paths between every pair of nodes is presented
in the last column. It does not vary withN .

% nodes avg avg
N degree= 5 diameter distance # paths

500 91.8 6–7 4.18 5.01
1000 91.4 7 4.69 5.01
2000 92 7–8 5.16 5.01
4000 91.45 8 5.63 5.01
6000 90.42 8–9 5.93 5.01
8000 90.33 9 6.12 5.01
10000 90.36 9 — —

Figure 5. Scalability of Araneola’s overlay.

Fig. 6 depicts the message propagation rates measured
for values ofN ranging from500 to 10, 000. As N in-
creases, messages take longer to propagate, but the slow-
down is gradual. The average hop-count in each experiment
is very close to the average distance in that experiment’s
overlay (see Table 5, 3rd column).

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 o

f n
od

es

#rounds

500
1000
2000
4000
6000
8000
10000

Figure 6. Message propagation rates for different group
sizes, L=5.

3We did not analyze the average distance and connectivity forthe ex-
periments withN = 10, 000.

4.1.3 Comparison with gossip protocol

We now compare Araneola to a standard gossip proto-
col [16] implemented using Araneola’s gossip-based mul-
ticast module. The gossip protocol takes a parameterF ,
its fan-out. Where an Araneola node sends gossip mes-
sages to its neighbors, the gossip protocol sends gossip
messages toF randomly selected nodes from its member-
ship view. Whereas Araneola sends each message identifier
downstream only, in the gossip protocol each node sends
each message identifier to all the chosen targets. Thus, gos-
sip protocol instantiated with a fan-out ofF sends informa-
tion as many times as Araneola with L= F + 1.

We experiment with1000 nodes on20 Netbed machines.
In each experiment,400 messages are sent. Fig. 7 com-
pares the average message propagation rates of Araneola
with L= 5 and6 to those of the gossip protocol with the
corresponding fan-outsF = 4 and5. Evidently, Arane-
ola propagates information much more effectively than the
gossip protocol. Initially, the propagation rates are simi-
lar, but after about6 rounds, Araneola continues to effec-
tively propagate the message, while the gossip protocol ta-
pers off. Araneola succeeds in disseminating all the mes-
sages to 100% of the nodes in7 rounds with L= 5, and in
6 rounds with L= 6. In contrast, the gossip protocol only
reaches 95.91% of the nodes on average withF = 4, and
97.69% withF = 5. Indeed, according to previous stud-
ies [12], a fan-out of14 is required for a gossip protocol
with 1000 nodes. This is due to the fact that with a gossip
protocol only the out-degree (fan-out) is balanced, while the
in-degree (fan-in) may be unbalanced. In contrast, Arane-
ola’s in-degrees and out-degrees are balanced as all links in
the overlay are bi-directional. As more nodes have a given
message, the gossip protocol is more likely to “waste” its
gossip on nodes that already have the message than Arane-
ola, and therefore is less effective at spreading the informa-
tion to additional nodes.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

%
 n

od
es

rounds

Araneola L=5 (F=4)
Araneola L=6 (F=5)
Gossip F=4
Gossip F=5

Figure 7. Araneola versus gossip, 1000 nodes.

4.2. Fault-tolerance and graceful degradation

We now study the fault-tolerance and robustness of the
Araneola overlay. We consider two kinds of failures: com-
munication link failures and node failures. We study the

overlay’s robustness with an offline analysis of the overlay
snapshot obtained at the end of static experiments with1000
and2000 nodes. To study communication failures, we re-
move random subsets of edges from the overlay graph and
analyze the resulting graphs. This allows us to predict Ara-
neola’s reliability and latency in the presence of message
loss. Similarly, we study Araneola’s resistance to node fail-
ures by removing random subsets of nodes.

We model node and edge failures asindependent and
identically distributed (IID). For node failures the IID as-
sumption has no significance since the overlay structure is
random. Moreover, Bhagwan et al. have found that host
failures are indeed independent [2]. For edge failures, the
IID assumption fails to capture a situation in which some
nodes have poorer links than others. The analysis of non-
IID edge failure patterns is an interesting subject for future
work.

We first analyze the impact of edge removals on the over-
lay with L= 5 andN = 1000. This overlay has2547 edges.
For each percentagep ≤ 50 of the edges, we remove10 dif-
ferent random subsets consisting ofp% of the edges from
the overlay graph. The overlay becomes partitioned for the
first time in one of the ten experiments removing 11% (280)
of the edges, and then in one of the experiments removing
15% (380). In both cases, a single node became discon-
nected from the rest. Fig. 8(a) shows how the removal of
up to 19% of the edges affects the overlay’s characteristics.
For eachp in this range, the overlay is partitioned in at most
one out of ten experiments in whichp% of the edges are
removed. We observe that the average diameter increases
from 7 to about8 when5–10% of the edges are removed,
and to9 when 15% of the edges are removed. The average
distance increases more gradually, suggesting that message
loss has a very moderate effect on the average latency. The
average number of disjoint paths also decreases gradually
with the failure rate. The bottom curve illustrates the av-
erage connectivity. The bars around each data point show
the maximum and minimum connectivity observed in ex-
periments with thisp; when the minimum goes does to0,
there was a partition in one of the10 experiments. We next
experiment with L= 4 andN = 1000. The overlay is less
robust in this case— it partitions in more than 10% of the
cases wheneverp > 11%. Fig. 8(b) shows the overlay’s
degradation when up to 11% of the edges are removed.

We next examine how many of the nodes are still con-
nected to each other, i.e., what is the size of the largest con-
nected component in the graph. Fig. 8(c) depicts the aver-
age size of the largest connected component after random
edge removals for L= 4, 5, 6 with N = 1000 and for L= 5
with N = 2000. We can clearly see that the overlay’s re-
silience to the removal of a given percentage of its edges
is completely independent of N , as is expected ink-regular
random graphs [9]: the curves forN = 2000 andN = 1000

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

11

% edges removed

diameter
avg distance
avg # of paths
connectivity

(a) Removing edges, L= 5, 1000 nodes.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

11

% edges removed

diameter
avg distance
avg # of paths
connectivity

(b) Removing edges, L= 4, 1000 nodes.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

%
 n

od
es

 in
 th

e
la

rg
es

t c
om

po
ne

nt

% edges removed

N=1000 L=6
N=1000 L=5
N=2000 L=5
N=1000 L=4

(c) Removing edges, largest component.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

% nodes removed

diameter
avg distance
avg # of paths
connectivity

(d) Removing nodes, L= 5, 1000 nodes.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

% nodes removed

diameter
avg distance
avg # of paths
connectivity

(e) Removing nodes, L= 4, 1000 nodes.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

%
 n

on
−

re
m

ov
ed

 n
od

es
 in

 th
e

la
rg

es
t c

om
po

ne
nt

% nodes removed

N=1000 L=6
N=1000 L=5
N=2000 L=5
N=1000 L=4

(f) Removing nodes, largest component.

Figure 8. Resilience and graceful degradation of Araneola’s overlay.

(both with L= 5) are barely distinguishable. As expected,
the value of L does impact the overlay’s robustness, but the
difference between L=5 and L=6 is negligible. Remarkably,
for L= 5, after the removal of up to 38% of the edges, 99%
of the nodes are still connected to each other, and only 1%
of the nodes are partitioned from the rest.

We now turn our attention to node failures. Fig. 8(d)
shows how node removals affect the properties of an overlay
with 1000 nodes and L= 5 when up to15% of the nodes are
removed. None of the experiments with up to15% removed
nodes resulted in partitions. The overlay becomes parti-
tioned in two of the ten experiments in which 16% (160)
of the nodes are removed. This suggests that even if 15% of
the nodes running Araneola fail during the brief time inter-
val that it takes to detect and recover from failures (e.g., one
minute), Araneola can continue to deliver messages reliably
to surviving nodes. As with edge removals, the overlay ex-
hibits graceful degradation: the diameter and average path
length increase very moderately, while the average number
of disjoint paths moderately decreases. When L= 4, the
overlay is half as robust to node failures as with L= 5. It
becomes partitioned in two of the ten runs with 8% of the
nodes removed. Fig. 8(e) shows the overlay’s degradation
when up to7.5% nodes are removed.

In fig. 8(f), we examine the size of the largest con-
nected component that survives following node failures, for
L= 4, 5, 6 with N = 1000 and for L= 5 with N = 2000.
Again, the overlay’s resilience shows exactly the same trend

with N = 1000 as it does withN = 2000. This suggests
that Araneola’s resilience to simultaneous failures of a cer-
tain percentage of its nodes is also independent ofN . When
L= 5, the largest component still includes 99% of the nodes
following the failure of up to 38% of the nodes. When
L= 4, 99% of the nodes are still connected following the
failure of 28% of the nodes. When 50% of the nodes fail,
the largest component with L= 5 still includes over 95% of
the nodes, and with L= 4, it includes 87%. As with edge
removals, increasing L from5 to 6 achieves only slightly
better robustness to node removals when there is an unreal-
istically high failure percentage.

4.3. Dynamic Evaluation

4.3.1 Methodology

Our model for this evaluation is based on studies of user
behavior in multicast groups on the MBone [1], and in file
sharing applications [22]. Both of these studies model the
join and leave rates of most of the nodes using an exponen-
tial distribution. Moreover, both studies observe that a small
portion of the nodes have substantially longer life times than
others. However, these studies greatly differ in the mean
life times they measure: the mean life time measured on the
MBone is generally very short, e.g.,7 minutes in a typical
multicast session, whereas the average measured life time
in a file sharing application is roughly one hour.

We designate a small subset (roughly 7%) of the nodes

as perseverant. Perseverant nodes are created at the be-
ginning of the experiment and remain active throughout
the experiment. Subsequently, every minute,50 additional
(non-perseverant) nodes are awaken, until all nodes (1000
or 2000) are up. Each non-perseverant awaken node join
the multicast group (becomesactive) with probability0.5.
Otherwise, the node remainsinactive. This gradual joining
is modeled after the Berkeley session in [1]. Throughout
the experiment, each non-perseverant node once a minute
flips a coin with probabilityλ in order to decide whether to
change its state from active to inactive and vice versa. We
experiment with values ofλ ranging from0.01 (yielding a
mean life time of100 minutes) to0.15 (giving a mean life
time of 6.7 minutes). As a baseline, we also experiment
with λ = 0, in which case nodes do not change their states.
There are roughly1000 nodes alive at the end of each ex-
periment withN = 2000, (and resp.,500 whenN = 1000),
regardless ofλ, since the join rate is equal to the leave rate.

4.3.2 Join/Leave overhead

We now measure the cost of constructing and maintaining
the overlay in terms of the average number of control mes-
sages received by each node, where a control message is
any message other than DATA or GOSSIP. In the full pa-
per [19], we also analyze the expected number of control
messages incurred by a single join or leave operation when
the system is stable. Fig. 9 shows the overhead measured for
different values ofλ with N = 1000 andN = 2000. Re-
markably, the overheaddecreases as the rate of such events
increases, the only exception occurring whenλ increases
from 0 to 0.01. Note that whenλ = 0, no leave events oc-
cur. The measured average cost per join operation in this
case is15.6, which is very similar to the expected overhead
calculated in [19]. The overhead decreases as the churn rate
rises because when many join and leave events occur con-
currently, their costs can be amortized. E.g., a join event
may increase a node’s degree while a leave event is reducing
it, eliminating the need for correcting the overlay. Further-
more, we observe that the overhead does not increase with
N . This is especially impressive given that the overhead
for handling joins in structured overlays based on DHTs in-
creases logarithmically with the number of nodes.

4.3.3 Undisrupted service

The second challenge we address is providing an undis-
rupted service in the presence of churn. For each message
m, we definenodes that are up during m’s transmission
to be nodes that have joined at least12 rounds beforem’s
transmission, and did not leave at least12 rounds after the
transmission. We chose12 as a very gross over-estimate.
In fact, nodes can normally begin to receive messages reli-
ably immediately upon requesting to join. In all of our dy-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
12

13

14

15

16

17

18

19

co
nt

ro
l m

es
sa

ge
s

join/leave rate (λ)

N=1000
N=2000

Figure 9. Average cost per join/leave with increasing churn
rates for different group sizes, L=5.

namic experiments, each message is received by 100% of
the nodes that were up during its transmission. Moreover,
messages are delivered withthe same latency as in static
runs. We illustrate this in Fig. 10 forN = 1000; similar
results were obtained withN = 2000.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5

6

7

ro
un

ds

join/leave rate (λ)

avg time to reach all nodes
avg time to reach at least 99% of the nodes
avg latency

Figure 10. Average latencies in the presence of increasing
churn rates, 1000 nodes, L=5.

5 Exploiting Network Proximity

We now preset an extension to Araneola that exploits
network proximity by incorporating additional links be-
tween nearby nodes. This extension runs in parallel with
and independently of the basic overlay construction and
maintenance code presented in Section 3. The extension
code has two components: (i) a mechanism for locating
nearby nodes; and (ii) a connectnearby task. The first
component discovers nearby nodes and stores them in a set
namednearby cand. The second component uses this set.

Generally speaking, Araneola can use a variety of mech-
anisms for locating nearby nodes. Our implementation does
this as follows: at bootstrap time, each noden measures the
network-level hop-count distances to the nodes in its local
view using the UNIX tracepath utility, and inserts them to
thenearby cand set in an ascending order of their network-
level hop-count distances fromn.

The connectnearby task closely resembles the con-
nect task presented in Section 3, except that no re-
duction rules are applied and no REDIRECT messages
are sent. Specifically, there are three control mes-

sages: CONNECTNEARBY, CONNECTOK NEARBY,
and LEAVE NEARBY, which correspond to CONNECT,
CONNECT OK, and LEAVE. In addition, both L and H are
replaced by the parameter NB, which is the maximum num-
ber of nearby neighbors the node is willing to be connected
to, and theneighbors set is replaced by thenearby cand

set, which holds the node’s current nearby neighbors. Note
that every node can set its own NB parameter to reflect its
available bandwidth. Each CONNECTNEARBY request
is issued to the closest node innearby cand, rather than to
a random node from the local view.

We evaluate this mechanism over the Internet, running
500 nodes over25 Planet Lab [21] physical machines, with
no two machines at the same site. In all the experiments
presented in this section, all the nodes are created simul-
taneously, and remain up throughout the experiment. Al-
though in principal, each node can choose its own NB pa-
rameter, in our experiments, we use the same value of NB
for all nodes. We denote an experiment in which each node
chooses L random neighbors and NB nearby neighbors as
<L,NB>.

It is known that in order to achieve the good proper-
ties of k-regular graphs, each node should choose at least
three random neighbor [25]. Thus, we run experiments in
which each node chooses three random neighbors and three
nearby neighbors (<3,3>). We contrast these experiments
against experiments in which each node chooses six ran-
dom neighbors (<6,0>), and against experiments in which
each node chooses six nearby neighbors (<0,6>). In addi-
tion, we run experiments in which the each node’s degree is
roughly eight (<3,5>, and<5,3>). Note that all the over-
lays we experiment with have a low degree compared to
those used in previous systems [4, 14, 23]. For each se-
lection of <L,NB>, we run three experiments. In all our
experiments, more than97% of the nodes end up with NB
nearby neighbors, and more than90% of the nodes have
exactly L random neighbors; the overall average node de-
grees in experiments with<3,3>, <6,0>, and<0,6> are
almost identical as are those of experiments with<3,5>
and<5,3>.

We quantify the effectiveness of our approach by mea-
suring the average number of physical hops that links in the
extended overlay traverse. This metric is significant because
a smaller hop-count distance implies reduced communica-
tion latencies as well as less stress on physical links. The
results are summarized in Table 11. The first column shows
the percentage of links between two nodes running on the
same machine. The second column shows the percentage
of short links with a hop-count distance of3. These are In-
ternet2 links between machines deployed at different sites
belonging to the same enterprise. Finally, the third column
shows the average hop-count in the overlay. Clearly, as NB
is increased at the expense of L, there are more local and

short links and the average number of physical hops that
each link traverses is reduced.

<L,NB> % of links on % of short links avg hop count
the same machine

<3,3> 34.43 15.27 5.21
<6,0> 4.97 6.93 8.69

<0,6> 74.23 3.4 1.88

<3,5> 51.18 12.25 3.82
<5,3> 35.6 10.46 5.54

Figure 11. Hop-count statistics with different selections
of <L,NB>.

Having verified that the mechanism achieves its goal, we
next check its impact on the overlay’s robustness. We repeat
the experiments of Section 4.2, i.e., we remove random sub-
sets of edges and nodes from the overlay graphs and mea-
sure the sizes of the largest remaining components. The
top two curves in Fig. 12 and Fig. 13 are for experiments
with <5,3> and<3,5>. These curves are indistinguish-
able. Slightly below these are the curves for experiments
with <6,0> and <3,3>, which are also conjoined. The
bottom curve in both figures is for experiments with<0,6>.
Remarkably, the robustness of an overlay with<5,3> is al-
most identical to that with<3,5>, and the robustness of
an overlay with<6,0> is virtually identical to that with
<3,3>. We believe that this stems from the fact that there
is sufficient randomness in the choice of links since: (i) the
nodes innearb cand are chosen from the randomized local
view; and (ii) each node is connected to at least3 random
neighbors.

0 5 10 15 20 25 30 35 40 45 50
82

84

86

88

90

92

94

96

98

100

%
 n

od
es

% edges removed

(5,3)
(3,5)
(6,0)
(3,3)
(0,6)

Figure 12. Removing edges, largest component, 500 nodes.

0 5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

100

%
 n

on
−

re
m

ov
ed

 n
od

es
 in

 th
e

la
rg

es
t c

om
po

ne
nt

% nodes removed

(5,3)
(3,5)
(6,0)
(3,3)
(0,6)

Figure 13. Removing nodes, largest component, 500 nodes.

The curves for experiments with<0,6> show why it is

important to choose random nodes as neighbors: in all these
experiments, the overlay is partitioned even before we re-
move any edge or node. Moreover, as the percentage of re-
moved edges or nodes increases, the robustness of the over-
lay deteriorates much quicker than when random edges are
used.

We conclude from the experiments in this section that
it is preferable for each node to have three random neigh-
bors, and to allocate the rest of its available bandwidth for
communication with nearby nodes.

6 Conclusions

We have presented Araneola, a scalable reliable multi-
point to multi-point application-level multicast system for
dynamic environments. We have evaluated Araneola over
both a LAN and a WAN, and have shown that Araneola is
highly scalable. The only aspect of Araneola that varies
with the number of nodes is message latency, which in-
creases logarithmically with the group size, whereas Arane-
ola’s load, reliability, resilience to message loss, resilience
to simultaneous node failures, and overhead for handling
join and leave events are all independent of the group size.
Araneola can deliver messages with high reliability and
bounded latency in the presence of sizable message loss
rates, simultaneous failures of a certain percentage of the
nodes, and high churn. The failure rates that Araneola can
withstand depend on a tunable parameter. As the failure
rate increases beyond its expectation, Araneola’s reliability
degrades gracefully. We have also shown how to extend
Araneola to exploit available bandwidth for communication
with nearby nodes. Such an approach substantially reduces
the communication costs and message latency without hurt-
ing the overlay’s robustness.

Acknowledgements We thank Ophir Ovadia for his as-
sistance with implementing part of the code. We thank
Dahlia Malkhi for helpful comments. We are grateful to
the Flux research group at the University of Utah, and espe-
cially Leigh Stoller and Jay Lepreau, for allowing us to use
their network emulation testbed [24] and assisting us with
our experiments.

References

[1] K. C. Almeroth and M. H. Ammar. Collecting and modeling
the join/leave behavior of multicast group members in the
mbone. InHPDC, 1996.

[2] R. Bhagwan, S. Savagen, and G. Voelker. Understanding
availability. In IPTPS, 2003.

[3] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast.ACM Trans. Comput.
Syst., 17(2):41–88, 1999.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in a cooperative environment. InSOSP, 2003.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: a large-scale and decentralized application-level
multicast infrastructure.JSAC, 2002.

[6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like p2p systems scalable. In
SIGCOMM, 2003.

[7] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Ker-
marrec, and P. Kouznetsov. Lightweight probabilistic broad-
cast. InDSN, 2001.

[8] J. Friedman. On the second eigenvalue and random walks in
random d-regular graphs. Combinatorica, vol. 11, 1991.

[9] A. Goerdt. The giant component threshold for random regu-
lar graphs with edge faults.Theoretical Comput. Sci., 259(1-
2):307–321, 2001.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and H. W. O. Jr. Overcast: reliable multicasting with an
overlay network. InOSDI, 2000.

[11] F. Kaashoek and D. Karger. Koorde: A simple degree-
optimal hash table. InIPTPS, 2003.

[12] A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Prob-
abilistic reliable dissemination in large-scale systems.
IEEE Transactions on Parallel and Distributed Systems,
14(3):248–258, March 2003.

[13] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. InSTOC, 2000.

[14] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In SOSP, 2003.

[15] C. Law and K. Siu. Distributed construction of random ex-
pander networks. InInfocom, 2003.

[16] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus de-
terministically constrained flooding on small networks. In
DISC, 2000.

[17] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. InPODC, 2002.

[18] L. Massoulie, A.-M. Kermarrec, and A. J. Ganesh. Network
awareness and failure resilience in self-organising overlay
networks. InSRDS, 2003.

[19] R. Melamed and I. Keidar. Araneola: A scalable
reliable multicast system for dynamic environments.
TR CCIT 474, dept. of EE, Technion, March 2004.
URL http://www.ee.technion.ac.il/˜idish
/Xchange/araneola.ps .

[20] V. Paxson. End-to-end Internet packet dynamics. InSIG-
COMM, 1997.

[21] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the in-
ternet. In Proceedings of HotNets-I, October 2002.

[22] S. Saroiu, K. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. InMCN, 2002.

[23] K. Shen. Structure management for scalable overlay service
construction. InNSDI, 2004.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-
grated experimental environment for distributed systems and
networks. InOSDI, 2002.

[25] N. Wormald. Models of random regular graphs.Surveys in
Combinatorics, 276:239–298, 1999.

