Araneola: A Scalable Reliable Multicast System for Dynamidenvironments

Roie Melamed
CS Department, Technion
mroi@cs.technion.ac.il

Abstract

We present Araneola*, a scalable reliable application-
level multicast system for highly dynamic wide-area envi-
ronments. Araneola supports multi-point to multi-point re-
liable communication in a fully distributed manner while
incurring constant load on each node. For a tunable pa-
rameter £ > 3, Araneola constructs and dynamically main-
tains an overlay structure in which each node's degree is
either k£ or k 4 1, and roughly 90% of the nodes have de-
gree k. Empirical evaluation showsthat Araneola’soverlay
structure achieves three important mathematical properties
of k-regular random graphs (i.e., random graphs in which
each node has exactly & neighbors) with NV nodes: (i) itsdi-
ameter grows logarithmically with V; (ii) it is generally k-
connected; and (iii) it remains highly connected following
random removal of linear-size subsets of edges or nodes.
The overlay is constructed at a very low cost: each join,
leave, or failureis handled locally, and entails the sending
of only about 3k messagesin total.

Given this overlay, Araneola disseminates multicast
messages by gossiping over the overlay's links. \We show
that compared to a standard gossip-based multicast proto-
col, Araneola achieves substantial improvements in load,
reliability, and latency. Finally, we present an extension
to Araneola in which the basic overlay is enhanced with
additional links chosen according to geographic proximity
and available bandwidth. e show that this approach re-
duces the number of physical hops messages traverse with-
out hurting the overlay’s robustness.

1. Introduction

Idit Keidar
EE Department, Technion

have shown that users typically frequently join and leave
multicast sessions [1]; such behavior is calthdrn. A ma-

jor design goal for our work is therefore coping efficiently
with churn. Specifically, we address the following chal-
lenges: (i) providing high reliability despite considelab
message loss and failure rates while incurring constadt loa
on each node; (ii) incorporating joining nodes and remov-
ing leaving (or failing) ones with a lowonstant overhead;
and (iii) providing an undisrupted service to nodes that are
up despite high churn rates.

We present Araneola, a scalable reliable application level
multicast (ALM) system for dynamic wide-area environ-
ments. Reliability is achieved by constructing a richly-
connected overlay and disseminating pertinent informatio
on multiple paths in this overlay. The number of paths in the
overlay can be tuned according to the expected failure and
loss rates. Araneolais designed to incur small constadt loa
on each node. To this end, it builds an overlay in which
each node’s degree is bounded by a small constant. This
approach has three advantages: (i) all nodes, including low
bandwidth ones, are capable of participating in the overlay
(ii) the load on all nodes is similar, so no user is required
to contribute more bandwidth than its fair share; and (iii)
nodes have ample remaining bandwidth for connecting to
nearby nodes, as we explain below.

Our search for a constant degree overlay leads us to con-
sider k-regular random graphs. Infaregular graph, each
node’s degree i%. A k-regular random graph with N
nodes is a graph chosen uniformly at random from the set of
k-regular graphs witlv nodes. Fok > 3, ak-regular ran-
dom graph is almost always a good expander [8], which im-
plies that (i) its diameter grows logarithmically wiii [25];
and (i) it remains connected after random failures of a lin-
ear subset of its nodes and/or edges [9]. In addition, such
a graph is generallg-connected, i.e., at leaktnodes need

Our goal is to provide a scalable multi-point to multi- to be removed in order to cause a partition f25)e strive
point reliable multicast service for very large groups in to construct and maintain an overlay that resemblés a
wide-area networks. A protocol deployed in such a setting regular random graph: Araneola’s basic overlay converges
must be able to withstand frequent node failures as well asto a graph in which each node has a degree of either

non-negligible message loss rates [20]. Moreover, studies

*Araneola means “little spider” in Latin.

2The probability that &-regular random graph is nétconnected is
bounded byO(N2—%).

k+ 1 and no two neighboring nodes have a degree-ofl. presence of message loss and node joins and leaves, but it
Empirically, we show that Araneola’s overlay achieves the also induces a high load, as many duplicate messages are
desired properties above, namely logarithmic diaméter, sent[7].
connectivity, and high robustness. Overlay-based ALM systems usually disseminate mes-
We construct and maintain the overlay at a very low con- sages on a tree structure [10, 5, 23]. With tree-based multi-
stant overhead; each join or leave (or failure) incurs sandi cast, no duplicate messages are sent. However, in the pres-
roughly abou3k messages in &-degree overlay, regard- ence of churn, the tree structure will frequently become par
less of the number of nodes. Remarkably, in dynamic set-titioned, causing a significant portion of the multicast mes
tings, the cost of handling a single join or leave operation sages to be lost. Therefore, in order to achieve reliability
decreases as the churn rate increases. This is in contrast to such protocols need to detect message loss and recover from

virtually all existing structured peer-to-peer overlaysth it. This can cause recovered messages to be significantly de-
which the overhead for handling joins grows logarithmi- layed; can induce substantial overhead, especially ifffed
cally with N. are frequent; and can inhibit scalability. A second prob-

The low maintenance cost is achieved due to the factslem with tree-based multicast is uneven load distribution:
that: (i) each join, leave, or failure is handled locallydan as recently argued in [4], inner nodes in the tree carry the
(i) the selection of random neighbors uses partial member-burden for the multicast, whereas leaf nodes do not share
ship views maintained by a distributed low cost membership the load. Two recent projects, SplitStream [4] and Bul-
service similar to the ones in [7, 23]. The overhead of the let [14], address this issue and build a balanced multicast
membership service is independent of the number of nodesnfrastructure; however these two systems are intended for
and of the churn rate. single-source multimedia transfer and do not strive to pro-

Having built a basid:/k+1-degree overlay, we next ex- vide multi-point to multi-point communication or full rel
tend it by adding links between geographically-close nodes bility of message delivery as we do.

The low degree of Araneola’s basic structure allows for al- Recently, several peer-to-peer overlays with logarithmic
locating plenty of bandwidth for communication with prox- diameters and a bounded node degrees have been suggested,
imate nodes. We show that with this approach, the links e.g., emulating the Butterfly [17], de Bruijn graphs [11],

in Araneola’s overlay traverse substantially fewer phgisic Small Worlds graphs [13], or random expander graphs with
hops on average. Moreover, the overlay’s robustness doeslegrees 8 [15]. However, none of these systems can guar-
not deteriorate. antee, with high probability, a lower cost th&hlog N)

Given Araneola’s overlay, multicast messages are dis-messages and time for handling joins, since a joining node
seminated through gossip between each pair of neighborsmust search and locate its (random or hashed) joining lo-
Gossiping in Araneola differs from a standard gossip pro- cation prior to joining the system. Chawathe et al. [6]
tocol (e.g., [7, 16]) in that with a standard gossip protpcol have argued that this logarithmic cost inhibits the scélabi
each node choosédgfferent random nodes to gossip with in ity of such systems assuming the churn rates measured in
each round, whereas in Araneola, each node always gossip&nutella and Napster [22].
with its neighbors in the overlay. We show that this differ- Like our extension of Araneola, several overlay struc-
ence leads to substantial improvements in load, religpilit tures, e.g., [18, 23], reduce message delivery latency
and latency. and communication costs by incorporating links between

This paper proceeds as follows: Section 2 discussesnearby nodes in addition to the random links required for
related work. Section 3 presents Araneola’s design andachieving a good overlay. In comparison with [18, 23], Ara-
pseudo code, and Section 4 empirically evaluates Araneolaneola achieves a smaller average degree than [18, 23] and
Section 5 presents and evaluates the extension that exploitbetter load balancing than [23].
network proximity. Section 6 concludes the paper.

3. Araneola’s Design
2. Related Work

Araneola builds an overlay structure for each multicast

In recent years, two leading approaches for support-group. Since each group is handled independently, we
ing scalable ALM in dynamic failure-prone networks have presentthe protocol for a single group, and omit the group’s
emerged: gossip-based (or epidemic) multicast protocolsname. All Araneola nodes run the same code. The code
(e.g., [3, 7]) and dynamic overlay networks (e.g., [10, has two main components: one constructs and maintains
5]). With gossip-based protocols, each node periodically the overlay, and the second implements the multicast ser-

chooses other random nodes to propagate the informatiorvice. The multicast service is very simple: once the over-
to. Gossip-based multicast generally achieves good loaday is constructed, each Araneola node gossips about recent

balancing, high reliability, and undisrupted service ie th message identifiers with its neighbors, and requests missin

messages from them. Due to space limitations, we do notfor connect_timeout. It is expected that during this period
describe this service in this paper; the details are destrib enough new connections will be formed, although since
in the full paper [19]. some of the chosen nodes may be faulty or overloaded, there
When joining the overlay, a node randomly selects sev- may be a need to attempt more connections after the timer
eral other nodes to connect to. This requires each node texpires. The connect task can be awaken by other tasks be-
know some other nodes’ identities. To this end, we imple- fore the timer expires (line 27).
ment a scalable randomized membership protocol similar A node that receives a CONNECT request (linea@)
to [7, 23], where membership information is gossiped over ceptsit, by calling addconnection, provided that its degree
the overlay’s links. Each node maintains a small set of nodejs smaller than H, and otherwiseridirects the request, as
identities, called anembership view, which evolves over will be explained shortly. The procedure addnnection
time. Periodically, the membership protocol piggybacks adds the sender to neighbors (line 21) and responds with a
a small amount of information on gossip messages. SUChCONNECT.OK. Upon receiving the CONNECDOK (line
views have been shown to become uniformly distributed 14), the requester registers the new connection, unless its
over time [7, 23]. Experimentally, we observe that it suf- degree has already reached H, in which case it sends a
fices to piggyback membership information infrequently, LEAVE message (line 18). A LEAVE message causes its
e.g., once a minute. When a new node joins Araneola forreceiver to remove its connection with the sender (lines 19—
the first time, it can ask another node for its membership 20) . Redirecting is done by sending a REDIRECT message
view, and use that as its initial view. We do not detail the to the requester, naming the sender’s lowest degree neigh-
membership protocol in this paper; the interested reader ishor (line 11). This causes the requester to send a new CON-
referred to [7]. NECT request to the named neighbor (line 13). CONNECT
Araneola’s data structures are presented in Fig. 1.and CONNECTOK messages carry the sender’s current
The setneighbors holds the node’s current neighbors degree for initializing thelegreein theneighborsdata struc-
in the overlay, with their respective degrees. The de- ture. In addition, every node periodically sends its degpee
gree of a node is the size of its neighbors set, i.e., its neighbors, in order to keep the neighbors data structure
Ineighbors|. last_connect to_time records the latest time a yp-to-date (this is not shown in the code).
CONNECT.TO message was handled, as explained below. A node that voluntarily leaves the system sends a
The parameter L determines the graph's target dedrke (| EavE message to all its neighbors. Unexpected node fail-
and H defines the maximum allowed node degree. A num- a5 are detected using a simple heartbeat failure detector
ber of timeout values are defined in order to control the fre- (not shown in the code). When a node detects a neighbor as

quency at which different events occur. faulty, it removes the connection with this neighbor.

Data structures: There are two rules for removing connectioriule 1

id — this node’s identifier. o andRule 2 (See Fig. 3). Rule 1 removes the connection

l“:;?';gﬁ:;t Stgtt?rigf"ﬁ;gédegre‘% initially 0. between a pair of nodes that both have degrees higher than

Constants: ' L. Specifically, if a noden’s degree isL + i, thenn at-

L — target number of neighbors. tempts to remove of its neighbors. The neighbors with

H — upper bound on the number of neighbors. _ the highest degrees are candidates for removal; they are in-

Timeouts: connectimeout, d|sconnecume0ut, connecto_timeout. Serted into the SeIandS (line 5) Nodes Wlth degreeSL
Figure 1. Araneola’s data structures and constant defi- are then deleted froreands (line 8). If n has a highgr id
nitions. than a node in cands, thenn sends a DISCONNECT mes-

Three tasks participate in the construction and mainte-sage toc (line 10). Upon receiving this message (line 16),
nance of the overlay: (i) theonnect task (see Fig. 2) adds if ¢'s degree is still higher than L, it removes the connection
new connections when a node’s degree is below L; (i) the With n, and sends a DISCONNECDK message. Upon
disconnect task (see Fig. 3) tries to reduce the node’s degree receipt of a DISCONNECTOK (line 20), n» removes the
if it is above L, without causing any node’s degree to drop connection withc. Note that Rule 1 never reduces a node’s
below L; and (i) thefailure detector detects failures and ~ degree to be below L.
recovers from them. With Rule 1, it is still possible for a node to have degree

When a node’s degree is below L, the connect task pe-H while all of its neighbors have degree L. Rule 2 is only
riodically attempts to set up as many new connections asinvoked at a node when all ofn’s neighbors’ degrees are
it is missing to randomly chosen nodes (lines 1-6). The <L. With Rule 2, noden chooses its two neighbors with
target nodes are chosen at random from the local memberthe highest and lowest degredsand!, resp. (lines 12—
ship view. For each attempted connection, the node sends 43). If n's degree is at leagtdegree + 2, thenn tries to
CONNECT request (line 5). At bootstrap time, the node causeh to shift one of its connections fromto [. But be-
issues CONNECT requests to L nodes, and then sleepgore removingh’s connection withn, we ensure that is

Connect task

1. loop forever

2. gap «— L — |neighbors|

3. for (i =0;i < gap;i+ +)

4. n « random node

5. send(CONNECT, |neighbors|) ton
6 sleep (connectimeout)

Event handles:
7. uponreceive(CONNECT, d) from n do
8. if (|neighbors| < H) then

9. add.connection 4, d,true)
10. else
11. send(REDIRECT,lowest degree neighbdo n

12. uponreceive(REDIRECT,n’) from n do
13. send(CONNECT, |neighbors|) ton’

14. uponreceive(CONNECT.OK, d) from n do
15. if (jneighbors| < H) then

16. add connection 4, d,false)
17. else
18. send(LEAVE) ton

19. uponreceive(LEAVE) from n do
20. removeconnectiong)

Procedures:

Procedure add.connection (nodeéd n, int d, booleanack)
21. neighbors «— neighbors |J {n,d}

22. if (ack = true)then

23. send(CONNECT.OK, |neighbors|) ton

Procedureremoveconnection (node)
24. removen from neighbors

25. removen from all heard_from lists
26. if (|lneighbors| < L) then

27. wake up connect task

Figure 2. Overlay construction: the connect task.

willing to accepth’s connection. Therefore; contacts!
(rather thamh) and asks it to try to connect fgq and to ask
h to remove its connection with. To this end,n sends
a (CONNECT.TO,h) message té. If upon receiving this
messagé’s degree is stilkL, and! has not handled another
CONNECT.TO requestin the last conneirt_timeout (lines
23-24), theri sends a CHANGECONNECTION message
to h. The recipient}, connects td (line 29) and sends a
DISCONNECT message to (line 30). This can increase
I's degree, but not to become higher thanll, sincel han-
dles at most one CONNECTO request at a time, and only
if its degree<L. Moreover, note that if’'s degree will be-
come higher than L, and’s degree will remain above L,
then Rule 1 will eventually redudés degree back to L.

In the full paper [19], we prove the following:

Proposition 1. If from some point onward no nodes join,
leave, or are detected as faulty, then each node’'s degree is
eventually either L or L+1, and at most 50% of the nodes
have degree L+1.

Disconnect task:

1. loop forever
2 sleep (disconnedimeout)
3. i« |neighbors|—L
4 if (¢ > 0) then
/* Rule1*/

5 cands «— set ofi neighbors with highest degrees
6 foreachc € cands
7. if (c.degree <L) then
8. cands <« cands\ {c}
9. else if(c.id < id) then
10. send(DISCONNECT} to ¢

/* Rule2*/
11. if (cands = 0) then
12. h «— neighbor with highest degree
13. | «— neighbor with lowest degree
14. if (lneighbors| > l.degree + 2) then
15. send(CONNECT.TO,h) to

Event handlers:

16. uponreceive(DISCONNECT) from n do
17. if (|neighbors| > L) then

18. send(DISCONNECT.OK) ton

19. removeconnectiong)

20. uponreceive(DISCONNECTOK) from n do
21. removeconnectiong)

22. uponreceive(CONNECT.TO, n’) from n do
23. if(|neighbors| <L A

24. clock — last_connect_to_time > connectto_timeout)then
25. send(CHANGE_CONNECTION|neighbors|,n) ton’
26. last_connect_to_time«—clock

27. uponreceive(CHANGE_.CONNECTIONd, n’) from n do
28. if (|neighbors| < H) then

29. add connection 4, d,true)

30. send(DISCONNECT) to n/

Figure 3. Reducing node degrees.

4. Evaluation

We have implemented Araneola in Java using UDP/IP.
In this section, we evaluate Araneola on a single LAN in
Netbed [24]. In the next section, where we consider net-
work proximity, we evaluate Araneola also on a WAN. We
run multiple Araneola nodes per machine, and therefore
need to space the gossip rounds sufficiently so as to allow
all the nodes running on the same machine to complete their
gossip operation during a round. Thus, we chose a fairly
large round duration of seconds. When there is only one
node per machine, the round duration can be an order of
magnitude smaller. Thdisconnect_timeout is set to30 sec-
onds, and theonnect_timeout is 20 seconds. We begin our
study, in Section 4.1, by evaluating Araneola’s scalabilit
and performance in a static setting. In Section 4.2 we study
Araneola’s fault-tolerance. In Section 4.3, we considghhi
churn.

4.1. Static Evaluation The results are summarized in Tabf The first column
shows the percentage of nodes whose degree is Lg).e.,
In our static evaluation, all the nodes are created simulta-The_ remaining nodes’ degrees are-L In _aII Of_ our ex-
periments, Araneola converges to a state in which over 90%

neously, and remain up throughout the experiment. In each
round, a single data message is injected into the system,Of the nodes have degree L. The exact percentage of nodes

each time from a different machine. A total2ifo datames- ~ With degree L does not seem relatedo The next col-
sages are sent in each experiment. Each experiment (witt}!™" presents the smallest and largest measured diameters

a given number of nodes and choice of parameter settingsfOr every valude_ Oﬂl\lf‘ In cases where the samT dlametler
was run at least times, for a total of several dozens. wasmeasuredina experiments, we present only onevaiue.
The diameter gives a measure for tharst case latency (in

the absence of failures and message loss), whereas the av-
4.1.1 The impactof L erage latency depends on the average distance between two
nodes in the overlay. This average is presented in the fol-
Araneola’s parameter L is very significant: it affects Ara- |owing column, and it increases gradually with Finally,
neola’s load, latency, and robustness. Fig. 4 shows the ime measure the overlay’s connectivity. In over 90% of our
pact of this parameter on message propagation rates in rungxperiments, the overlay -connected, i.e., there are at
with 8000 nodes (on 00 Netbed machines) and values of L |east5 disjoint paths between every pair of nodes. In the
ranging from3 to 10. Each curve in the figure depicts the few cases where the connectivity was less thahere were
CDF of the average number of nodes that receive a messaggt mostt nodes with a connectivity of, whereas the rest of
by each hop count for a given value of L. As expected, the the nodes had a connectivity 5f The average number of

message latency decreases as L increases. node-disjoint paths between every pair of nodes is predente
In most of the experiments below, we set Li0 We in the last column. It does not vary wifl.
chose this value because it provides a good balance between
the desired properties: each node sends a given message %nodes | avg avg
identifier only4 times, and the latency to reach all nodes is ous—-dedree=5 | dmeter | distance | #pahs
reasonable? rounds with1000 nodes and with 10, 000. 1000 914 7 469 5.01
Moreover, as we shall see below, it yields a highly robust ig‘o’g 9?245 758 gég g-gi
overlay and achieves 100% reliability at churn rates exceed 5000 90.47 89 593 501
ing those measured on the MBone [1]. We choose H to be 8000 90.33 9 6.12 5.01
L+5 because we have observed that this choice achieves 10090 | 9036 2 — —
low overhead. Figure 5. Scalability of Araneola’s overlay.
RSB SE Fig. 6 depicts the message propagation rates measured
| for values of N ranging from500 to 10,000. As N in-
4] creases, messages take longer to propagate, but the slow-
L el] down is gradual. The average hop-countin each experiment
% /j] is very close to the average distance in that experiment’s

a0

overlay (see Table 5, 3rd column).

|
v 4

s0F

244

201

[l el el el el o
W

PO®ONOUOD®

o

ft

Figure 4. CDF: average % of nodes that receive a message
for different degree Araneola overlays, 8000 nodes.

04

percentage of nodes

-<- 500
—— 1000

4.1.2 Overlay properties and scalability o Lo
%) a 4000
y —e— 6000

In order to understand Araneola’s scalability, we vafy A
the group size, fron500 nodes (onl0 Netbed machines) A
to 10,000 nodes (onl25 Netbed machines). L and H are
set to5 and 10, resp. At the end of each experiment, we
take a snapshot of the overlay structure, and then analyze
its properties offline. We measure node degrees as well 85 sye gid not analyze the average distance and connectivitjhéoex-
the overlay’s diameter, average distance, and conneggctivit periments withV = 10, 000.

-0- 8000
—+— 10000

4 6 7 8
#rounds

Figure 6. Message propagation rates for different group
sizes, L=5.

4.1.3 Comparison with gossip protocol overlay’s robustness with an offline analysis of the overlay
. snapshot obtained at the end of static experiments\ith

we now compare Aran_eola to a st:?mdard_gossm prOtO'and2000 nodes. To study communication failures, we re-
C.OI [16] implemented using Araneola’s gossip-based mul- move random subsets of edges from the overlay graph and
ticast module. The gossip protacol takes a paramaer analyze the resulting graphs. This allows us to predict Ara-

its fan-out. Where an Araneola node sends gossip MeSheola’s reliability and latency in the presence of message

sages to its neighbors, the gossip protocol .sends 90SSiRyss. Similarly, we study Araneola’s resistance to node fai
messages té' randomly selected nodes from its member- ures by removing random subsets of nodes

ship view. Whereas Araneola sends each message identifier])
downstream only, in the gossip protocol each node sends W& model node and edge failures iaslependent and
each message identifier to all the chosen targets. Thus, gog_dentlcally distributed (I1D). For node failures the IID as-

sip protocol instantiated with a fan-out Bfsends informa- sumption has no significance since the overlay structure is
tion as many times as Araneola with-LF + 1 random. Moreover, Bhagwan et al. have found that host

We experiment with 000 nodes or20 Netbed machines. failures are i.ndeec_i independent [2].. Fo_r edge fa_ilures, the
In each experimenti00 messages are sent. Fig. 7 com- [ID assumption falls_to capture a situation in whlt_:h some
pares the average message propagation rates of Araneof3cdes have_ poorer links _than pthers. _The analy3|s of non-
with L= 5 and6 to those of the gossip protocol with the IID edge failure patterns is an interesting subject for fatu
corresponding fan-outs — 4 and5. Evidently, Arane- WOrk-
ola propagates information much more effectively than the ~ We first analyze the impact of edge removals on the over-
gossip protocol. Initially, the propagation rates are simi lay with L= 5andN = 1000. This overlay hag547 edges.
lar, but after abou6 rounds, Araneola continues to effec- For each percentage< 50 of the edges, we remové dif-
tively propagate the message, while the gossip protocol ta-ferent random subsets consistingp8b of the edges from
pers off. Araneola succeeds in disseminating all the mes-the overlay graph. The overlay becomes partitioned for the
sages to 100% of the nodesimounds with L= 5, and in first time in one of the ten experiments removing 1 %)
6 rounds with I= 6. In contrast, the gossip protocol only ~of the edges, and then in one of the experiments removing
reaches 95.91% of the nodes on average Witk- 4, and ~ 15% (380). In both cases, a single node became discon-
97.69% withF = 5. Indeed, according to previous stud- nected from the rest. Fig. 8(a) shows how the removal of
ies [12], a fan-out ofi4 is required for a gossip protocol Up to 19% of the edges affects the overlay’s characteristics
with 1000 nodes. This is due to the fact that with a gossip For eactp in this range, the overlay is partitioned in at most
protocol only the out-degree (fan-out) is balanced, wiiee t ~ 0ne out of ten experiments in whigi% of the edges are
in-degree (fan-in) may be unbalanced. In contrast, Arane-removed. We observe that the average diameter increases
ola’s in-degrees and out-degrees are balanced as all finks i from 7 to about8 when5-10% of the edges are removed,
the overlay are bi-directional. As more nodes have a givenand to9 when 15% of the edges are removed. The average
message, the gossip protocol is more likely to “waste” its distance increases more gradually, suggesting that messag
gossip on nodes that already have the message than Arandoss has a very moderate effect on the average latency. The

ola, and therefore is less effective at spreading the inderm average number of disjoint paths also decreases gradually
tion to additional nodes. with the failure rate. The bottom curve illustrates the av-

erage connectivity. The bars around each data point show
the maximum and minimum connectivity observed in ex-
periments with thig; when the minimum goes does @
there was a partition in one of tH® experiments. We next
experiment with I= 4 and N = 1000. The overlay is less
robust in this case— it partitions in more than 10% of the
cases whenever > 11%. Fig. 8(b) shows the overlay’s

— Avane 5 7| | degradation when up to 11% of the edges are removed.

—— Araneola L=6 (F=5) |

B owl g 1 We next examine how many of the nodes are still con-

— nected to each other, i.e., what is the size of the largest con
nected component in the graph. Fig. 8(c) depicts the aver-
age size of the largest connected component after random
4.2. Fault-tolerance and graceful degradation edge removals for & 4, 5,6 with N = 1000 and for L= 5

with N = 2000. We can clearly see that the overlay’s re-

We now study the fault-tolerance and robustness of thesilience to the removal of a given percentage of its edges
Araneola overlay. We consider two kinds of failures: com- is completely independent of N, as is expected ik-regular
munication link failures and node failures. We study the random graphs[9]: the curves faf = 2000 andN = 1000

% nodes

1 2 B 5
rounds

Figure 7. Araneola versus gossip, 1000 nodes.

8.0
nnnnnn 2a q 8 o diameter
° e diameter -+ - avg distance

-+ - avg distance i L -0~ avg # of paths
- avg # of paths ! 970 P
o —— connectivity

% nodes in the largest component

4 1 18 20 o 2 0 25 30
% edges removed

10 4 6 8
% edges removed % edges removed

(a) Removing edges,+ 5, 1000 nodes. (b) Removing edges, £ 4, 1000 nodes. (c) Removing edges, largest component.

o diameter
-¥ - avg distance
-0- avg # of paths
—— connectivity

o diameter
-¥ - avg distance
-0~ avg # of paths
—— connectivity

N=1000 L=6

— N=1000 L=5
- - N=2000 L=5
-— N=1000 L=4

% non-removed nodes in the largest component

o 2 6 10 12 14 1 o 1 2 3 5 6 7 El 5 2 25
% nodes removed % nodes removed % nodes removed

(d) Removing nodes, & 5, 1000 nodes. (e) Removing nodes,+ 4, 1000 nodes. (f) Removing nodes, largest component.

Figure 8. Resilience and graceful degradation of Araneola overlay.

(both with L= 5) are barely distinguishable. As expected, with N = 1000 as it does withN'" = 2000. This suggests

the value of L does impact the overlay’s robustness, but thethat Araneola’s resilience to simultaneous failures ofra ce

difference between L5and L=6 is negligible. Remarkably, tain percentage of its nodes is also independent.ofvhen

for L= 5, after the removal of up to 38% of the edges, 99% L= 5, the largest component still includes 99% of the nodes

of the nodes are still connected to each other, and only 1%following the failure of up to 38% of the nodes. When

of the nodes are partitioned from the rest. L= 4, 99% of the nodes are still connected following the
We now turn our attention to node failures. Fig. 8(d) failure of 28% of the nodes. When 50% of the nodes fail,

shows how node removals affect the properties of an overlayth€ largest component with= 5 still includes over 95% of

with 1000 nodes and & 5 when up tal 5% of the nodes are the nodes, and with=+ 4, it includes 87%. As with edge
removed. None of the experiments with up @ removed removals, increasing L fror to 6 achieves onIy.sllghtIy
nodes resulted in partitions. The overlay becomes parti__be_tter ropustne_ss to node removals when there is an unreal-
tioned in two of the ten experiments in which 16%6()) istically high failure percentage.

of the nodes are removed. This suggests that even if 15% of))

the nodes running Araneola fail during the brief time inter- 4-3- Dynamic Evaluation

val that it takes to detect and recover from failures (exgg, 0

minute), Araneola can continue to deliver messages rgliabl 4-3-1 Methodology

to surviving nodes. As with edge removals, the overlay ex- or model for this evaluation is based on studies of user
hibits graceful degradation: the diameter and average pathyehavior in multicast groups on the MBone [1], and in file
length increase very moderately, while the average numbergparing applications [22]. Both of these studies model the
of disjoint paths moderately decreases. When L, the jqin and leave rates of most of the nodes using an exponen-
overlay is half as robust to node failures as wita b. It tial distribution. Moreover, both studies observe that albm
becomes partitioned in two of the ten runs with 8% of the qrtjon of the nodes have substantially longer life timesith
nodes removed. Fig. 8(e) shows the overlay's degradation,ihers. However, these studies greatly differ in the mean
when up t07.5% nodes are removed. life times they measure: the mean life time measured on the
In fig. 8(f), we examine the size of the largest con- MBone is generally very short, e.d.,minutes in a typical
nected component that survives following node failures, fo multicast session, whereas the average measured life time
L= 4,5,6 with N = 1000 and for L= 5 with N = 2000. in a file sharing application is roughly one hour.
Again, the overlay’s resilience shows exactly the sameaitren ~ We designate a small subset (roughly 7%) of the nodes

as perseverant. Perseverant nodes are created at the be-
ginning of the experiment and remain active throughout)
the experiment. Subsequently, every mindteadditional
(non-perseverant) nodes are awaken, until all nodles0(

or 2000) are up. Each non-perseverant awaken node join
the multicast group (becomestive) with probability 0.5.
Otherwise, the node remainsctive. This gradual joining
is modeled after the Berkeley session in [1]. Throughout
the experiment, each non-perseverant node once a minute
flips a coin with probability\ in order to decide whether to
change its state from active to inactive and vice versa. We
experiment with values of ranging from0.01 (yielding a
mean life time ofl00 minutes) t00.15 (giving a mean life
time of 6.7 minutes). As a baseline, we also experimen
with A = 0, in which case nodes do not change their states.
There are roughly 000 nodes alive at the end of each ex-
perimentwithV. = 2000, (and resp.500 whenN = 1000),
regardless o\, since the join rate is equal to the leave rate.

—— N=1000
-v - N=2000

control messages

o 0.02 0.04 012 014 0.16

0join/lea\ol:;srate ()\0)1
Figure 9. Average cost per join/leave with increasing churn
rates for different group sizes, L=5.

+ hamic experiments, each message is received by 100% of
the nodes that were up during its transmission. Moreover,
messages are delivered witte same latency as in static

runs. We illustrate this in Fig. 10 forV. = 1000; similar
results were obtained with- = 2000.

4.3.2 Join/Leave overhead

We now measure the cost of constructing and maintaining o
the overlay in terms of the average number of control mes-
sages received by each node, where a control message is
any message other than DATA or GOSSIP. In the full pa-
per [19], we also analyze the expected number of control
messages incurred by a single join or leave operation when i
the system is stable. Fig. 9 shows the overhead measured for o
different values ofA with N = 1000 and N = 2000. Re-
markably, the overheatkcreases as the rate of such events
increases, the only exception occurring wheimcreases
from 0 to 0.01. Note that whem\ = 0, no leave events oc-
cur. The measured average cost per join operation in this
case isl5.6, which is very similar to the expected overhead
calculated in [19]. The overhead decreases as the churn rate We now preset an extension to Araneola that exploits
rises because when many join and leave events occur confetwork proximity by incorporating additional links be-
currently, their costs can be amortized. E.g., a join eventtween nearby nodes. This extension runs in parallel with
may increase a node’s degree while a leave event s reducin@nd independently of the basic overlay construction and
it, eliminating the need for correcting the overlay. Furthe ~Maintenance code presented in Section 3. The extension
more, we observe that the overhead does not increase witi$ode has two components: (i) a mechanism for locating
N. This is especially impressive given that the overhead Nearby nodes; and (i) a conneutarby task. The first

for handling joins in structured overlays based on DHTs in- Component discovers nearby nodes and stores them in a set
creases logarithmically with the number of nodes. namednearby_cand. The second component uses this set.

Generally speaking, Araneola can use a variety of mech-
anisms for locating nearby nodes. Our implementation does
this as follows: at bootstrap time, each nedeeasures the
The second challenge we address is providing an undis-network-level hop-count distances to the nodes in its local
rupted service in the presence of churn. For each messageiew using the UNIX tracepath utility, and inserts them to
m, we definenodes that are up during m’s transmission thenearby_cand setin an ascending order of their network-

-8 - avg time to reach all nodes
—0- avg time to reach at least 99% of the nodes
—— avg latency

L L L L
0.02 0.04 012 014 016

QJs)ginlleaggarate ()\D)1
Figure 10. Average latencies in the presence of increasing
churn rates, 1000 nodes, L=5.

5 Exploiting Network Proximity

4.3.3 Undisrupted service

to be nodes that have joined at le&8trounds beforen’s
transmission, and did not leave at led8trounds after the
transmission. We chosE2 as a very gross over-estimate.

level hop-count distances from
The connechearby task closely resembles the con-
nect task presented in Section 3, except that no re-

In fact, nodes can normally begin to receive messages reli-duction rules are applied and no REDIRECT messages

ably immediately upon requesting to join. In all of our dy-

are sent. Specifically, there are three control mes-

sages: CONNECINEARBY, CONNECT.OK_NEARBY, short links and the average number of physical hops that
and LEAVENEARBY, which correspond to CONNECT, each link traverses is reduced.
CONNECT.OK, and LEAVE. In addition, both L and H are

R . <L,NB> % of links on % of shortlinks | avg hop count
replaced by the parameter NB, which is the maximum num- the same maching
ber of nearby neighbors the node is willing to be connected <3.3> 34.43 15.27 5.21
. . <6,0> 4.97 6.93 8.69
to, and theneighbors set is replaced by theearby_cand 2065 7193 34 T
set, which holds the node’s current nearby neighbors. Note <3,5> 51.18 12.25 3.82
<5,3> 35.6 10.46 5.54

that every node can set its own NB parameter to reflect its
_av_allable bandwidth. Each C?ONNECNEARBY request Figure 11. Hop-count statistics with different selections
is issued to the closest nodennarby_cand, rather than to of <LNB>.

a random node from the local view. ’

We evaluate this mechanism over the Internet, running Having verified that the mechanism achieves its goal, we
500 nodes oveR5 Planet Lab [21] physical machines, with Nextcheckits impact on the overlay’s robustness. We repeat
no two machines at the same site. In all the experimentsthe experiments of Section 4.2, i.e., we remove random sub-
presented in this section, all the nodes are created simulsets of edges and nodes from the overlay graphs and mea-
taneously, and remain up throughout the experiment. Al- Sure the sizes of the largest remaining components. The
though in principal, each node can choose its own NB pa-top two curves in Fig. 12 and Fig. 13 are for experiments
rameter, in our experiments, we use the same value of NBWith <5,3> and <3,5>. These curves are indistinguish-
for all nodes. We denote an experiment in which each nodeable. Slightly below these are the curves for experiments

chooses L random neighbors and NB nearby neighbors agvith <6,0> and <3,3>, which are also conjoined. The
<L,NB>. bottom curve in both figures is for experiments with,6>.

It is known that in order to achieve the good proper- Remarkably, the robustness of an overlay with,3> is al-

ties of k-regular graphs, each node should choose at leas{"OSt |dent|ca_l o that V_V'th<.3’5>’ "?‘”d t_he robustnes_s of
three random neighbor [25]. Thus, we run experiments in an overlay W'th<6'0> IS \(|rtually identical to that with

which each node chooses three random neighbors and thre.e<3'3>.' .We believe that th|s stems.from the fac_t that 'Fhere
nearby neighbors{3,3>). We contrast these experiments Is sufficient randomness in the choice of links since: (i) the
against experiments’ in Which each node chooses six randes imearb_cand are chosen from the randomized local
dom neighbors<6,0>), and against experiments in which view; and (i) each node is connected to at leasandom

each node chooses six nearby neighbe®,6>). In addi- neighbors.
tion, we run experiments in which the each node’s degree is S .
roughly eight £3,5>, and<5,3>). Note that all the over- e

lays we experiment with have a low degree compared to
those used in previous systems [4, 14, 23]. For each se-
lection of <L,NB>, we run three experiments. In all our
experiments, more thad¥% of the nodes end up with NB
nearby neighbors, and more th&6% of the nodes have
exactly L random neighbors; the overall average node de-
grees in experiments witk 3,3>, <6,0>, and<0,6> are BEEEEE

almost identical as are those of experiments witB,5> % edges removed
and<5,3>. Figure 12. Removing edges, largest component, 500 nodes.

% nodes

We quantify the effectiveness of our approach by mea-
suring the average number of physical hops that links in the A RS
extended overlay traverse. This metric is significant bseau i]
a smaller hop-count distance implies reduced communica-
tion latencies as well as less stress on physical links. The
results are summarized in Table 11. The first column shows
the percentage of links between two nodes running on the
same machine. The second column shows the percentage
of short links with a hop-count distance ®f These are In-
ternet2 links between machines deployed at different sites

% non-removed nodes in the largest component

Attt

0 15 20 25 30 35 a0 5 50

0

belonging to the same enterprise. Finally, the third column % nodes removed

shows the average hop-count in the overlay. Clearly, as NB Figure 13. Removing nodes, largest component, 500 nodes.

is increased at the expense of L, there are more local and The curves for experiments with0,6> show why it is

important to choose random nodes as neighbors: in all these [4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
experiments, the overlay is partitioned even before we re- A. Rowstron, and A. Singh. Splitstream: High-bandwidth
move any edge or node. Moreover, as the percentage of re- multicast in a cooperative environment. 39SP, 2003.
moved edges or nodes increases, the robustness of the over{3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron
lay deteriorates much quicker than when random edges are SCRIBE: a large-scale and decentralized applicationtHleve
used multicast infrastructureJSAC, 2002.

lude f h . in thi . h [6] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
We conclude from the experiments in this section that S. Shenker. Making gnutella-like p2p systems scalable. In

it is preferable for each node to have three random neigh- SIGCOMM, 2003.

bors, and to allocate the rest of its available bandwidth for [7] p.T. Eugster, R. Guerraoui, S. B. Handurukande, A. M-Ker

communication with nearby nodes. marrec, and P. Kouznetsov. Lightweight probabilistic lroa
cast. InDSN, 2001.

[8] J. Friedman. On the second eigenvalue and random walks in
random d-regular graphs. Combinatorica, vol. 11, 1991.

[9] A. Goerdt. The giant component threshold for random regu

6 Conclusions

We have presented Araneola, a scalable reliable multi- lar graphs with edge fault¥heoretical Comput. Sci., 259(1-
point to multi-point application-level multicast syster f 2):307-321, 2001.
dynamic environments. We have evaluated Araneola over[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek
both a LAN and a WAN, and have shown that Araneola is and H. W. O. Jr. Overcast: reliable multicasting with an

overlay network. 1MOSDI, 2000.
[11] F. Kaashoek and D. Karger. Koorde: A simple degree-
optimal hash table. IlPTPS, 2003.
A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Prob-

highly scalable. The only aspect of Araneola that varies
with the number of nodes is message latency, which in-
creases logarithmically with the group size, whereas Arane [12]

0Ia’§ load, reliability, resil.ience to message loss, reste _ abilistic reliable dissemination in large-scale systems.
to simultaneous node failures, and overhead for handling IEEE Transactions on Parallel and Distributed Systems,
join and leave events are all independent of the group size. 14(3):248-258, March 2003.

Araneola can deliver messages with high reliability and [13] J.Kleinberg. The small-world phenomenon: An algarith

bounded latency in the presence of sizable message loss perspective. I'STOC, 2000.

rates, simultaneous failures of a certain percentage of the[14] D- Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. &l

nodes, and high churn. The failure rates that Araneola can P'g‘)gﬂn%"('gh data dissemination using an overlay mesh.
: ; n , .

Wlths.tand depend on "’.‘ tunable pgrameter. As, the.' .fall.ure [15] C. Law and K. Siu. Distributed construction of random ex

rate increases beyond its expectation, Araneola’s réitiabi pander networks. Iimfocom, 2003.

degrades gracefully. We have also shown how to extend[1g] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus de-

Araneola to exploit available bandwidth for communication terministically constrained flooding on small networks. In

with nearby nodes. Such an approach substantially reduces DISC, 2000.

the communication costs and message latency without hurt-[17] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalabl
ing the overlay’s robustness. and dynamic emulation of the butterfly. RODC, 2002.

[18] L. Massoulie, A.-M. Kermarrec, and A. J. Ganesh. Netwvor

awareness and failure resilience in self-organising ayerl

Acknowled_gements We .thank Ophir Ovadia for his as- networks. INSRDS, 2003.
sistance with implementing part of the code. We thank [19] R. Melamed and I. Keidar. Araneola: A scalable
Dahlia Malkhi for helpful comments. We are grateful to reliable multicast system for dynamic environments.
the Flux research group at the University of Utah, and espe- TR CCIT 474, dept. of EE, Technion, March 2004.
cially Leigh Stoller and Jay Lepreau, for allowing us to use URL http://www.ee.technion.ac.il"idish
their network emulation testbed [24] and assisting us with /Xchange/araneola.ps _
our experiments. [20] V. Paxson. End-to-end Internet packet dynamics.SIB-
COMM, 1997.

[21] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A

References blueprint for introducing disruptive technology into the i

ternet. In Proceedings of HotNets-1, October 2002.

[1] K. C. Almeroth and M. H. Ammar. Collecting and modeling ~ [22] S. Saroiu, K. Gummadi, and S. Gribble. A measurement
the join/leave behavior of multicast group members in the 2 study of peer-to-peer file sharing systemsM@N, 2002.

mbone. INHPDC. 1996. 3] K. Shen. Structure management for scalable overlasicer
[2] R. Bhagwan, S. Savagen, and G. Voelker. Understanding construction. IMNSDI, 2004. .

availability. InIPTPS, 2003. [24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gurupmsa
[3] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An inte-

and Y. Minsky. Bimodal multicastACM Trans. Comput. grated experimental environment for distributed systemds a

Syst., 17(2):41-88, 1999. networks. InOSDI, 2002.

[25] N. Wormald. Models of random regular grapi&irveysin
Combinatorics, 276:239-298, 1999.

