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Abstract

We live in a world of Internet services such as email, social networks,
web searching, and more, which must store increasingly larger volumes of
data. These services must run on cheap infrastructure, hence they must use
distributed storage systems; and they have to provide reliability of data for
long periods as well as availability, hence they must support online recon-
figuration to remove failed nodes and add healthy ones. The knowledge
needed to implement online reconfiguration is subtle and simple techniques
often fail to work well. This tutorial provides an introductory overview of
this topic, including a description of the main technical challenges, as well
as the various approaches that are used to address these challenges.

1 Introduction
Distributed storage systems have become increasingly important in data centers
and other enterprise settings. Such systems comprise a network and several nodes
(machines) that cooperatively store large amounts of information for a large num-
ber of users. By storing data redundantly, for example using replication over
several nodes, the system can tolerate the failure of some of its nodes without
losing data.

While it provides some level of reliability, replication by itself is not sufficient
for safely guarding data over years or decades. This is because, as nodes fail, the
system gradually loses its ability to tolerate further failures, until the point when it
loses all replicas and data is lost. To address this problem, the system needs a way
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to reconfigure its set of replicas, so that failed nodes can be replaced with healthy
ones that restore the level of redundancy that once existed.

More precisely, node reconfiguration, or simply reconfiguration, is the act of
changing the set of nodes that comprise the system. Reconfiguration is a key func-
tionality for reliable distributed storage systems. Examples of its utility include
the following:

• replacing failed nodes with healthy ones;

• upgrading software or hardware, by replacing out-of-date nodes with up-to-
date ones;

• decreasing the number of replicas to free up storage space;

• increasing the number of replicas for recently written non-backed-up data;

• moving nodes within the network or the data center.

In this tutorial, we discuss the key issues in the reconfiguration of distributed
storage systems. For concreteness, we focus the discussion on systems that sup-
port atomic read/write operations and employ majority replication [4] to toler-
ate crash failures. Majority replication is a common technique for implementing
fault-tolerant atomic storage, while being conceptually very simple. By “fault-
tolerant” we mean that the system remains operational most of the time despite
failures; by “atomic” we mean that the system provides linearizability [14], a
strong type of consistency that guarantees that a read returns the most recent ver-
sion of data. With majority replication, each data item is assigned a number n of
replicas, where a majority of them are kept up-to-date (they store the most recent
version of the data), while a minority of replicas may fail or lag behind because
they are slow or unresponsive. We explain the basics of majority replication in
Section 2, which applies to systems that are not reconfigurable.

We start the discussion of reconfiguration in Section 3, by explaining what
we mean by a system that supports reconfiguration. In particular, reconfiguration
affects the liveness or availability guarantees of the system. With majority repli-
cation, the system remains live even if up to a minority of replicas crash. For
example, with n = 3 replicas, we can tolerate one crash (a minority). If we recon-
figured the system to have n′ = 7 replicas, we could tolerate three crashes once
reconfiguration is completed. But how many crashes can we tolerate if the crashes
occur while the reconfiguration is in progress? And what happens if multiple re-
configurations were initiated and some have completed while others are still in
progress?

The algorithms to provide reconfiguration are subtle and easy to get wrong, as
we explain in Section 4. If not done correctly, reconfiguration can lead to a loss of
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atomicity, whereby the storage system retrieves stale versions of data, rather than
the most recently written version. To avoid such problems, during reconfiguration
clients of the storage system must carefully coordinate to transition from the old
to the new configuration as they store and retrieve data in the system. Moreover,
when a new replica is added to the system, it must be carefully populated with
fresh data so that it remains in sync with other replicas. This is tricky if reconfig-
uration can occur online, while the clients are actively trying to modify the data
stored in the system.

The first reconfiguration algorithms to allow online operation required pro-
cesses to reach consensus on the sequence of reconfiguration requests, to avoid
the problems that may arise from concurrent handling of such requests. We ex-
plain how these algorithms work in Section 5. However, consensus is known to
be impossible to implement in asynchronous systems subject to failures [10], and
therefore these algorithms must rely on some amount of synchrony. In contrast,
the replication algorithm itself is known to work in a completely asynchronous
system. So, this naturally raises the question of whether reconfiguration really
requires synchrony (or consensus) or not. This question was recently answered
negatively, due to the existence of reconfiguration algorithms that work in asyn-
chronous systems (without consensus), which we describe in Section 6.

While most of this tutorial focuses on tolerating crash failures, some systems
may be subject to the more general Byzantine failures. We discuss the additional
challenge of reconfiguration in this setting, and what to do about it, in Section 7.
We then briefly cover other related work in Section 8, namely, state machines,
dynamic quorums, and virtual synchrony. We conclude in Section 9.

2 Background: replicated atomic distributed
storage

In this section, we explain the setting we consider and give some background on
replicated atomic distributed storage systems.

2.1 Setting

We consider a distributed system with two types of nodes: storage nodes keep data
for applications and users, while client nodes (or simply clients) issue requests to
read and write data on storage nodes. The term node refers to a storage node or a
client node.

A network allows nodes to communicate. We assume there is a link between
every pair of nodes, which need not be a physical link.
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Nodes may fail, and we are mostly concerned with crash failures, which
causes a node to stop; we also briefly consider Byzantine failures, which causes
a node to possibly deviate from its algorithm. If a node crashes, it stops execut-
ing its algorithm possibly without any advance warning to other nodes. Crashes
are permanent: once a node stops, it never resumes execution. We make this as-
sumption without loss of generality: if the hardware of the node recovers later, the
hardware restarts as a new node in the system. If a node never fails it is called a
correct node; otherwise, it is called a faulty node.

If the network fails by intermittently dropping or corrupting messages, these
failures can be handled by standard mechanisms such as retransmissions and
checksums. Thus, we can assume without loss of generality that messages are
not dropped or corrupted. More precisely, we assume messages are unique (e.g.,
they have sequence numbers) and links are quasi-reliable, meaning they satisfy
two properties: (1) if a correct node p sends a message m to a correct node q then
eventually q receives m from p, and (2) a node q receives a message m from a
node p at most once, and only if p previously sent m to q. We do not consider
permanent network failures.

We do not assume any bounds on the relative speed of nodes or on message
delivery delays. Technically, the system is asynchronous or partially synchronous
[9].

2.2 Requirements of an atomic storage system

The storage system provides two operations, write and read, for storing and re-
trieving data, respectively. Typically, the storage space is divided into several stor-
age cells, such as blocks, sectors, or files, to help users organize and manage their
data. We are interested in the fundamental storage algorithms and techniques, and
these are exactly the same for each storage cell. Therefore, we assume without
loss of generality that the storage system comprises a single storage cell. We de-
note the operation to write a value v to this cell as write(v) and the operation to
read this cell as read().

The storage system should provide the following properties:

• Safety. We consider a type of consistency called atomicity or linearizability
[14], which states that each operation must appear to take place instanta-
neously between the time when it is invoked and the time when it produces
a response.

• Liveness. A correct client should terminate its operation despite the failures
of a reasonable number of client nodes and/or storage nodes.
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Note that liveness is ensured only if the failures are limited in number, where
the exact number is a feature of the protocol and it is called the protocol’s re-
silience. The majority replication we present below allows the failure of any num-
ber of client nodes and of any minority of the storage nodes. When the set of
storage nodes can be reconfigured, the number of allowed failures depends on the
occurrence of reconfiguration operations, as we explain in Section 3. For instance,
the resilience generally increases if we add storage nodes.

2.3 Majority replication
Majority replication is a simple scheme that provides the properties above by stor-
ing and retrieving data at a majority of storage nodes, while a minority of such
nodes may crash.2 We explain majority replication [4] in a simple context without
reconfiguration, where the set of storage nodes is static and known a priori when
the system is started. The rest of this tutorial will explain how we can reconfigure
the set of storage nodes without affecting the basic workings of the protocol we
describe in this section.

The key intuition behind majority replication is that any two majorities of
storage nodes always have at least one storage node in common. Therefore if
some client stores value v at a majority of storage nodes then another client is
guaranteed to see v when it queries any majority. We now explain the scheme in
more detail.

Each storage node keeps a local copy of what it believes to be the most recent
value stored by a client, together with a timestamp indicating the freshness of the
value. A vt-pair refers to a pair of (value, timestamp), which a storage node keeps.
To execute a write(v) operation, the client proceeds in two phases:

• Get phase. The client asks storage nodes to send their vt-pairs and waits for
a majority of responses. The client finds the largest received timestamp, and
then chooses a higher unique timestamp ts-new. Uniqueness can be ensured
by adjoining the client-id to the timestamp, so that a timestamp consists of
a pair with a number and a client-id, ordered lexicographically.

• Set phase. The client asks storage nodes to store the vt-pair (v, ts-new).
Each storage node checks if this vt-pair has a larger timestamp than the
one it stores; if this is so, the storage node stores the new vt-pair. In either
case, the storage nodes sends an acknowledgement to the client. The client
then waits for a majority of acknowledgements. The write(v) operation then
returns an ok response.

2Majority replication can be generalized to quorum-based replication as we explain in Sec-
tion 8.
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To execute the read() operation, the client also executes two phases:

• Get phase. The client asks storage nodes to send their vt-pairs and waits for
a majority of responses. The client finds the largest received timestamp and
selects the vt-pair (v, t) with that timestamp.

• Set phase. The client asks storage nodes to store the vt-pair (v, t). Each
storage node checks if this vt-pair has a larger timestamp than the one it
stores; if this is so, the storage node stores the new vt-pair. In either case, the
storage nodes sends an acknowledgement to the client. The client then waits
for a majority of acknowledgements. The read() operation then returns v as
its response.

The Set phase in read() is needed to prevent oscillating reads, in which succes-
sive reads oscillate between an old and a new value while a write is in progress—
which is a violation of atomicity. The Set phase ensures that a subsequent read()
will return a value at least as recent as the value returned by the current read() [4].

We observe that the protocols for read() and write(v) are very similar; the key
difference is the vt-pair used in the Set phase: for write(v), it consists of v and a
new timestamp, while for read(), it consists of the vt-pair from the Get phase with
highest timestamp.

It is easy to see that this protocol can tolerate the crash of a minority of storage
nodes and an arbitrary number of client nodes, and it works in an asynchronous
system.

3 Reconfiguration service and liveness
A configuration is the set of storage nodes that comprise the storage system. In a
static system, the configuration does not change and it can be hard-coded into the
protocols that clients use. In a reconfigurable system, there are ways to change
the configuration via a reconfiguration operation, which we explain in Section 3.1.
This operation is invoked by clients, which can execute on behalf of an administra-
tor, a monitoring system, or any other entity that needs to reconfigure the system.
In Section 3.2, we describe a service that allows new clients to discover the current
configuration, so they can start using the storage service. In Section 3.3, we give
a specification of the liveness conditions of a reconfigurable system as a function
of how it has been reconfigured.

3.1 Reconfiguration interface
To allow reconfiguration, we augment the storage system interface with an oper-
ation reconfigure(addSet, removeSet) that clients can invoke to add and/or remove
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storage nodes. We allow removeSet to include nodes that are not currently in
the system, or addSet to include nodes that are already in the system—in both
cases, these nodes are simply ignored. The reconfigure operation returns an ok
response.3 The implementation of reconfigure may continue executing actions in
the background after a response has been returned.

It is desirable to allow clients to invoke reconfigure at any time and, in par-
ticular, concurrently with the execution of read/write operations or even other
reconfigure operations. The reason is that, in a system that is not synchronous,
it is generally impossible to ensure that an operation is running by itself. For
example, if one client invokes reconfigure and then crashes, it is impossible for
others clients to know that the crash has occurred: for all they know, the client
may be merely slow and the reconfigure operation may still be running. If we did
not allow the execution of concurrent reconfigure operations, this scenario would
forever preclude any subsequent reconfigurations. (An alternative is to employ
a human operator to ensure operations execute by themselves, but this solution
could be expensive and error prone.)

The reconfiguration operation does not affect the semantics of read and write
operations. However, as we explain in Section 3.3, it generally affects the liveness
of the system or, more specifically, number of failures that the system can tolerate
before it becomes unavailable.

3.2 Directory service
When a new client starts executing, it needs a way to bootstrap itself and learn
the identity of storage nodes so that it can access the storage system. This infor-
mation is provided by a directory service, which upon request returns a hint of
what are the storage nodes in the current configuration. The directory service can
be updated by the reconfiguration scheme once a new configuration emerges. We
allow the directory service to return storage nodes in old configurations, say be-
cause it is lagging behind the storage service; in that case, the clients will be able
to contact nodes in the old configurations and learn the latest configuration via the
protocols that we describe later. However, if the directory service returns storage
nodes from a very old configuration, these storage nodes may be unresponsive
because they have crashed or were taken down, and this information is of no use
to the clients. Thus, we make the assumption that eventually the directory service
catches up and returns storage nodes in a recent configuration. More precisely,
if there are finitely many executions of reconfiguration operations, then there is

3There is an alternative interface for reconfigure, in which the operation specifies the entire
set of storage nodes in the new configuration, and the operation could (but it is not guaranteed
to) return a fail response when multiple reconfigurations occur simultaneously. We believe the
interface we give is better suited for systems with concurrent operations.
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time after which the directory service returns the storage nodes in the final con-
figuration, which is the configuration that incorporates all the changes specified
by the reconfiguration operations. The directory service can be implemented via
state machine replication or, in practice, it can be provided by the DNS service by
choosing some fixed DNS names to map to the IP addresses of the storage nodes.

3.3 Specifying liveness

A storage system has a maximum number of failures that it can tolerate (its re-
silience). Beyond this number, data can be lost and the system will cease to be
live, that is, clients operations will fail to complete.4 We are interested in specify-
ing the resilience conditions under which the system is guaranteed to be live. In a
static system, these conditions are often simple; for example, with majority repli-
cation, the system can tolerate the crash of any minority of storage nodes—that is,
the system remains live as long as a majority of storage nodes are correct.

In a reconfigurable system, things are more complicated, because reconfigu-
ration modifies the set of storage nodes. An elegant way to specify the liveness
condition is in terms of the reconfiguration operations themselves [2], by taking
into consideration the operations that have completed (i.e., those that have re-
turned an ok indication) and operations that are still outstanding (i.e., those that
have started but have not yet returned ok). Another approach to specify liveness
is in terms of the internal actions of the reconfiguration protocol. This other ap-
proach is less elegant since it does not separate specification and implementation,
so we do not consider it here.

When there are no outstanding reconfiguration operations, the liveness condi-
tion should match that of a static system: liveness should require only a majority
of storage nodes in the current configuration to be correct. But what happens with
liveness while reconfiguration operations execute? In general, removing a live
storage node will worsen resilience, while adding a storage node will improve
resilience. The key intuition is that, while the reconfiguration operation is execut-
ing, its changes may or may not have taken effect and, in the worst case, we must
assume that the changes that worsen resilience have occurred, while the changes
that improve resilience have not yet occurred.

We must assume that clients cannot continually issue reconfiguration opera-
tions, because otherwise these reconfigurations may forever hinder the execution
of read or write operations. For example, suppose that a client starts a write(v)
operation. Before the write completes, it must store v at a majority storage nodes.
But if other clients continually issue reconfiguration operations to add new storage

4Some storage systems can be live even when data is lost, by returning stale data or other
garbage to the clients. We do not consider such systems in this article.
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nodes, it is possible that v never gets stored in a majority of this growing system,
and so the write operation may never complete. Therefore, we must assume that
there is only a finite number of executions of the reconfiguration operation.

We now explain more precisely the liveness condition. We give a weak prop-
erty in the sense that it should be satisfied by any reasonable reconfiguration pro-
tocol, but certain protocols may ensure a stronger liveness condition. We define
four time varying sets: at a given time t in the execution, Current(t) is the con-
figuration that reflects all reconfigurations that completed by time t. Nodes added
(resp., removed) in reconfigurations that were invoked but did not complete by
time t belong to AddPending(t) (resp., RemovePending(t)). Finally, nodes that
crash by time t are in Failed(t). Note that these sets are not known to the nodes;
they are defined from the point of view of an omniscient global observer.

Before we use these sets to specify the liveness of a reconfigurable system,
let us restate the liveness property of static systems in terms of these sets. Here,
AddPending(t) and RemovePending(t) are always empty. The liveness requirement
can be stated as follows:

Static liveness. If at any time t in the execution, fewer than |Current(t)|/2
processes out of Current(t) are in Failed(t), then all the operations of correct
clients eventually complete.

We expect a reconfigurable system to satisfy this property whenever there are
no outstanding reconfigurations, i.e., when AddPending(t) and RemovePending(t)
are empty. Intuitively, this means that only failures in the current configuration
are relevant and the overall number of failures in the execution is immaterial.

What about the case when there are outstanding reconfigurations? Note that,
in a distributed system, different nodes might have different perceptions of the cur-
rent configuration. For example, suppose there is an outstanding reconfiguration
operation to add sa and remove sr. There may be a time when some node already
considers sa to be in the new configuration, while another does not include it yet.
At that time, to be safe, we need to take both possibilities into account. To accom-
modate the view that sa is in the configuration, we should count a failure of sa as
part of our failure budget (which is a minority of the current configuration). On
the other hand, we need to accommodate the view that sa is not yet in the new con-
figuration. Therefore, we do not allow more failures than a minority of Current(t),
which does not include sa. Similarly, the node sr being removed should already be
counted towards the budget of failed nodes, because some nodes may no longer
consider it to be in the current configuration. We arrive at the following defini-
tion [2]:

Dynamic liveness. Suppose there is a finite number of reconfigurations.
If at any time t in the execution, fewer than |Current(t)|/2 processes out of
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Current(t)∪AddPending(t) are in Failed(t)∪RemovePending(t), then all the
operations of correct clients eventually complete.

It is easy to see that this liveness condition requires that at any given time, the
set of crashed processes and those whose removal is pending comprises no more
than a minority of the current configuration, or of any pending future configura-
tion.

As an aside, we note that the liveness specification is slightly more complex
in systems where a client node must be one of the storage nodes [2], because in
this case we need to worry about whether a client is in the system (i.e., the storage
node is in the configuration). We do not consider this setting here.

4 The dangers of naïve reconfiguration
In a nutshell, reconfiguration entails three steps: (1) populate at least a majority
of storage nodes in the new configuration with the current version of the data, (2)
stop the storage nodes that are to be removed, (3) inform clients about the new
configuration so that they subsequently access the new set of storage nodes.

The simplest reconfiguration scheme is to take down the storage system so
that there are no client operations in execution, and then perform each step above
sequentially. In the populate step, an administrative node executes the Get phase
(Section 2) using the nodes in the old configuration to learn the current version
of data, followed by the Set phase using the nodes in the new configuration to
store the data; if the administrative node crashes while executing these actions,
another administrative node restarts from the beginning. This approach is simple,
but it leads to unavailability of the storage system during reconfiguration, which
could be unacceptable. (We observe that storage systems in practice tend to have
many storage cells and lots of data to be populated, so reconfiguration can take a
long time.) A similar approach would be to place a write lock on the old config-
uration, to prevent clients from writing to it, while the three steps above execute.
This approach would have similar unavailability problems: clients are not able to
write for long periods. We are interested in online reconfiguration schemes, which
perform reconfiguration while the storage system remains accessible to clients.

However, inconsistencies may arise if we naïvely execute the three reconfig-
uration steps described above (populate, stop, inform) while clients continue to
execute their operations. We give three scenarios that illustrate how things can go
wrong. The first two scenarios arise when read and write operations occur while
the system is reconfiguring. The third deals with multiple reconfigure operations
that execute concurrently.

In the first two scenarios, the system initially has three storage nodes s1, s2, s3

(the old configuration) and there is a reconfiguration operation to replace s2 with s′2
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(i.e., to remove s2 and add s′2), so the system ends up with storage nodes s1, s′2, s3

(the new configuration). Because the system is not synchronous, it is impossible
to ensure that clients are informed simultaneously about the new configuration.
Thus, at a given time, different clients may be executing with different configura-
tions. The following problems can occur:

1. Suppose one client writes new data using the new configuration, and another
reads the old one. The first client stores a new value in two (a majority of)
storage nodes, say s1, s′2. Subsequently, the second client, which reads using
the old configuration, may query two storage nodes, say s2, s3. The second
client misses the new value, causing the client to read stale data—a violation
of atomicity.

2. Similarly, consider the client that is performing the reconfiguration, and
suppose it is populating the new configuration with value v, which it ob-
tained from s1, s2 in the old configuration. Suppose the client stores v in
s′2, s3, a majority of the new configuration. Then, another client starts to
write v′ and it is still using the old configuration, so it stores v′ in s2, s3, a
majority of the old configuration. Now all clients switch to the new config-
uration, but because s′2 is populated with v and s1 still has v, a subsequent
read may query storage nodes s1, s′2 and miss the new value v′—a violation
of atomicity.

In the third scenario, the system initially has four storage nodes s1, . . . , s4 and
two clients wish to reconfigure concurrently. The following problem can occur:

3. One client starts a reconfiguration operation to remove s4, while a second
client starts a reconfiguration operation to add s5. The first client succeeds
and its new configuration is s1, s2, s3, while the second client also succeeds
and its new configuration is s1, s2, s3, s4, s5. The clients will learn of each
other’s reconfiguration later, but they have not yet done so. Now, the first
client writes a value v′ to s1, s2, which is a majority of its new configuration;
subsequently, if the second client reads using s3, s4, s5 then it misses v′—a
violation of atomicity.

This last example is an example of a “split brain” scenario. Such conflicting
reconfigurations could arise due to asymmetric network delays. Early attempts to
solve the reconfiguration problem were susceptible to this problem, as described
in [23].

In the next sections, we present solutions that avoid all three problems, by
coordinating reconfigurations and making the read and write operations aware of
reconfigurations.
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5 Reconfiguration using consensus
To avoid the “split brain” problem of Section 4, one solution is to order the recon-
figuration operations in a way that all nodes agree. This idea dates back to work on
dynamic replica replacement in distributed database systems [13, 15], which used
two-phase commit for reconfiguration. More recent solutions [18, 12, 7, 22] use
consensus [17], which is a building block that allows nodes to agree on a value.
More precisely, with consensus, each correct node proposes some value and must
reach an irrevocable decision on a value, such that nodes never decide on different
values, and the decision value is one of the proposed values.

Consensus is used to establish a sequence of configurations that all nodes agree
upon. More precisely, there is a consensus instance associated with each config-
uration c, allowing the nodes in c to agree on the subsequent configuration. To
execute a reconfiguration operation, a client tries to cause the consensus instance
of the latest configuration c to decide on its new configuration (by requesting the
nodes in c to propose the new configuration). If the client is not successful, there
must have been another reconfiguration operation that succeeded, creating another
configuration; the client retries using the other configuration, until it is success-
ful. In this way, consensus ensures that each configuration is followed by a single
configuration. For example, in the third scenario of Section 4, the current con-
figuration is s1, . . . , s4 and there are two outstanding reconfiguration operations;
consensus ensures that only one of them is chosen to be the next configuration
after s1, . . . , s4.

Consensus solves the “split brain” problem, but we must still avoid the other
two bad scenarios described in Section 4. They arise because some clients use the
old configuration to read or write, while other clients use a new configuration. The
problem here is not that clients disagree on the ordering of configurations, but that
some clients may not yet be aware of the last configuration in the ordering (e.g.,
because when they checked, the latest configuration had not been established yet).
This problem is solved as follows. As a first step, the reconfiguration operation
stores a forward pointer at a majority of nodes in the old configuration, which
points to the new configuration. This pointer ensures that, if a client were to
perform an operation on the old configuration, it will find the forward pointer and
will execute its operation on the new configuration as well. As a second step, the
reconfiguration operation populates the new configuration, so that it stores data
as recent as the old configuration. As the third and final step, clients can be told
to execute their reads and writes only on the new configuration. Even if some
clients were told before others, this will not violate atomicity: clients that were
told will use the new configuration, while the others will use both the old and the
new configuration, due to the forward pointer.

For example, consider the first two scenarios of Section 4. The reconfiguration
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operation causes a majority of nodes among s1, s2, s3 to store a forward pointer to
s1, s′2, s3. With this pointer, clients will execute reads and writes using both the old
and new configurations (they may start with the old configuration only, but will
see the forward pointer). The reconfiguration operation then populates the new
configuration; then, it tells clients to disregard the old configuration and use only
the new configuration.

Different algorithms implement these ideas in different ways. We now explain
one such algorithm, whose main ideas come from the RAMBO protocol [18, 12,
11]. Each storage node q stores a vt-pair (see Section 2.3) and a local variable
cmapq, which maps indices to configurations. The map always consists of a prefix
of retired configurations, followed by one or more active configurations, followed
by an infinite suffix of yet-unknown configurations. To store the map compactly as
a finite data structure, the initial prefix of retired configurations and the final suffix
of unknown configurations are not represented explicitly. Each client also stores a
cmap; below we explain how the client obtains the map initially. To execute a read
or write, the client contacts storage nodes in the active configurations according
to its cmap. Storage nodes piggyback their cmaps to the messages to the client,
which integrate with its own cmap. The protocol for reading and writing a value
works roughly as follows:

• Get phase. When a client p wants to read or write the object, it sends a
request to the storage nodes in the active configurations in its cmapp. Each
storage q replies with its vt-pair (vq, tq) and its cmapq. The client integrates
cmapq into its own cmapp, including retiring configurations that are retired
in cmapq. It repeats its request to any new storage nodes in active con-
figurations that it learns about. This phase completes when the client has
obtained replies from a majority of storage nodes in every active configura-
tion in cmapp (this is called a fixed point). The client then finds the vt-pair
(v, t) with largest timestamp t.

• Set phase. The client first picks a vt-pair as follows. If the operation is to
read, the picked vt-pair is (v, t) (the vt-pair found in the Get phase). If the
operation is to write a value v′, the picked vt-pair consists of v′ and a unique
timestamp tp higher than t.

The client sends the picked vt-pair to the storage nodes in the active config-
urations in cmapp. Upon receiving the vt-pair (w, t′), the storage node up-
dates its vt-pair (vq, tq) if t′ > tq, and then sends back an acknowledgement
to the client. The acknowledgement piggybacks the storage node’s cmapq.
The client integrates cmapq into its own cmapp, and sends the picked vt-pair
to any new storage nodes it learns about. As in the Get phase, this phase
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terminates at a fixed point, when the client has received acknowledgements
from a majority of storage nodes in each active configuration in cmapp.

A new client that just started has an empty cmap; similarly, a client that has
been inactive for a while may have a very old cmap that contains only configura-
tions with crashed storage nodes. This is problematic, because these clients are
unable to communicate with any storage nodes. To address this problem, we rely
on the directory service (Section 3.2). Each client periodically contacts the direc-
tory service and obtains a list of storage nodes. If this list has nodes that are not
in active configurations in the client’s cmap, or if the client just started executing,
the client requests the cmap from each of those nodes. Upon receiving a cmap,
the client integrates it with its own. Note that the directory service may return
nodes from old configurations, but as we explained in Section 3.2, eventually it
must return nodes from the final configuration.

Reconfiguration and garbage collection. Reconfiguration relies on a separate
module to obtain consensus on a sequence of configurations. This module could
be implemented using consensus algorithms, or it can be provided manually by
human that decides on a sequence of configurations. When the module appends a
new configuration to the sequence, the directory service (Section 3.2) is informed
of the new configuration.

For a reconfiguration operation to complete, the old configuration must even-
tually be retired or garbage collected, meaning that clients can disregard the old
configuration and execute operations using only the newer configurations (and
therefore servers in the old configuration that are not in the newer configurations
can be turned off). If c is a configuration and c′ is the next configuration in the
sequence, then c can be garbage collected after two actions have been performed:

• Action 1. The next configuration c′ has been stored in the local cmap vari-
ables of a majority of storage nodes of c. Intuitively, this provides the for-
ward pointer from c to c′, so that any operations that execute using config-
uration c will discover the existence of c′ (and therefore will execute using
c′ as well).

• Action 2 (State transfer). The Get and Set phases were performed after
Action 1. This action guarantees that any value previously stored only in c
will be copied to c′.

It is worth making a note about liveness. Before the garbage collection is
completed, a majority of nodes in c and a majority of nodes in c′ must be alive.
After c is garbage collected, we only need a majority of c′ to be alive. At that
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point, even if all the nodes in c crash, this is not a problem since the knowledge
held by c was transferred to c′.

The RDS algorithm [7], developed after RAMBO, is based on the same princi-
ples, but it integrates the consensus algorithm into the garbage collection protocol
to improve efficiency, at the cost of having no flexibility of employing other con-
sensus implementations.

6 Reconfiguration without consensus
Consensus cannot be implemented in asynchronous systems subject to node fail-
ures [10], and therefore reconfiguration protocols that use consensus require some
synchrony to work. In contrast, as we saw in Section 2.3, in a static system dis-
tributed storage can be implemented without any synchrony. Thus, the question
arises whether reconfigurable storage really requires synchrony or not. Recently,
it has been shown that it does not [2]—in particular, DynaStore is a scheme that
works in asynchronous systems, without the need for consensus to prevent split-
brain scenarios and other problems. We now briefly describe the main ideas in Dy-
naStore. Our description is based on a variation of DynaStore presented in [22],
as the original DynaStore protocol was designed for a model where no distinction
is made between clients and storage nodes.

If different reconfiguration proposals are made concurrently, DynaStore does
not attempt to agree on a single next configuration to follow each configuration.
Instead, for each configuration c, each client has a family of next configurations
that it believes could follow c, and the coordination mechanism guarantees that
such families at different clients always intersect. Thus, there is at least one com-
mon configuration that all clients consider as a possible next configuration after
c. Intuitively, clients will execute read and write operations on all configurations
that they believe could follow c, to ensure that all clients overlap in the common
configuration.

To ensure the existence of this common configuration, DynaStore uses the ab-
straction of a “weak snapshot”. Each configuration c is associated with a weak
snapshot, which is implemented using the storage nodes in c; the weak snapshot
holds information about the family of possible configurations that follow c. A
weak snapshot abstraction supports two operations: update(d) and scan(). up-
date(d) is called to propose a configuration change d to configuration c, where
d consists of sets of nodes to be added and removed; and scan() is called to re-
trieve a subset of the changes to configuration c previously proposed by storage
nodes. Weak snapshots ensure that (1) once an update completes, every subse-
quent scan returns a non-empty set of configuration changes; and (2) once some
configuration change is returned by a scan, it is returned by all subsequent scans.
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Moreover, there exists some common configuration change dcommon that is returned
in all non-empty scans. This is called the non-empty intersection property. Intu-
itively, dcommon can be thought of as the first configuration change applied to c.
The implementation of weak snapshots ensures liveness provided that at most a
minority of the storage nodes in c are removed or fail.

The weak snapshot of a configuration c is implemented as follows. Each stor-
age node si in c stores an array Ni indexed by the set of storage nodes in c. The
set of such arrays forms a matrix N distributed over the storage nodes. Ni[ j] holds
the configuration change endorsed by storage node s j, if it is known to si. We now
explain how the client executes the two operations, update and scan, of the weak
snapshot of configuration c:

• To execute update(d), a client first tries to get one of the storage nodes in c
to endorse the configuration change d. To this end, it sends an endorsement
request with d to the storage nodes in c and waits for a response. A storage
node si endorses the first configuration change d it receives for c, by storing
d in Ni[i] and responding with d. If a storage node had already endorsed
another configuration change d′, it simply responds with d′. When the client
receives the first response d′′ from some node s j, it ensures that a majority
of the storage nodes know that s j endorses d′′,5 by executing essentially the
Set phase from Section 2.3 on the j-th column of the matrix N, that is, on
N∗[ j].

• To execute scan(), a client collects the arrays from a majority of the nodes
(this is done similarly to a read() in Section 2.3), and then does it again to
guarantee the non-empty intersection property; it returns a set containing all
configuration changes it obtained.

The algorithm of Section 5 uses consensus to establish a sequence of configu-
rations that all nodes agree upon. In contrast, DynaStore uses weak snapshots and,
instead of establishing a sequence, it establishes a DAG (directed acyclic graph) of
configurations. Edges in the DAG correspond to configuration changes—a client
creates an edge from a configuration c by executing the update operation of the
weak snapshot of c; and it checks what edges are outgoing from c by executing
the scan operation on the weak snapshot of c. Scans performed by different clients
may return a different set of edges, and so different clients may obtain different
subgraphs of the DAG. However, the non-empty intersection property ensures that
there is a path that is common to all the subgraphs obtained by clients. Clients do
not know what is this common path.

5If d′′ , d, then d may not have been stored in the weak snapshot of c; intuitively, this is fine
since there is no point in changing an old configuration. As we explain later, the client will then
try to execute update(d) on a newer configuration.
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Concurrent
reconfigurations 

f d d d

s1, s2, s3, 

found and merged

s1, s2, s3, s4

1, 2, 3,
s4,s5Add s5
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weak snapshot
Remove s4 s1, s2, s3

Figure 1: Example DAG of configurations for third scenario of Section 4.

During a read, write, and reconfigure operation, the client traverses the DAG
of configurations. If the client finds a vertex with multiple outgoing edges (several
branches), the client reconciles these branches. To do so, the client creates a new
vertex that merges the branches (i.e., the new vertex includes all of the configu-
ration changes in the branches), and creates edges from each branch to the new
vertex, by executing the update operation on the weak snapshots of the branches.
The client may fail to add some edges—recall that the update operation is not re-
quired to create a new edge if another edge already exists in the weak snapshot;
in that case, the client follows this other edge to reach a new vertex, and then tries
to add an edge from that vertex. Essentially, DynaStore guarantees atomicity by
reading from the configurations in all possible paths in the DAG, using the Get
phase of Section 2.3 to read at each configuration. When a vertex without out-
going edges is reached, data is stored at this configuration using the Set phase of
Section 2.3; then a scan is performed on the weak snapshot of this configuration
to check for new edges that may have been created by concurrent reconfigura-
tions. If there are new edges, the traversal continues. Otherwise, the configuration
is guaranteed to appear on all paths seen by other operations, and the client can
complete its operation—this will happen provided that (a) there is a finite number
of reconfigurations, and (b) the other liveness conditions specified in Section 3
are met so that a majority of storage nodes are responsive in each traversed con-
figuration. Note that the client ensures that all configuration changes encountered
during the DAG traversal are reflected in the last traversed configuration (this is
ensured by creating new vertices and edges as we described above).

Figure 1 illustrates a DAG that may be created by an execution of DynaStore
for the third scenario of Section 4. Two conflicting reconfigurations execute con-
currently and update the weak snapshot of the initial configuration s1, s2, s3, s4.
After the updates, both reconfigurations scan the weak snapshot to find the out-
going edges. The non-empty intersection property ensures that both operations
observe at least one common configuration change. For instance, it is possible
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that the reconfiguration removing s4 does not see the one adding s5 and completes
after transferring the state to configuration s1, s2, s3; however, in this case, if the
reconfiguration adding s5 completes, it will notice and merge the branch in the
DAG by creating a new vertex for s1, s2, s3, s5, connecting it to the DAG by updat-
ing the weak snapshots of the preceding branched configurations, and transferring
the state to s1, s2, s3, s5.

As described above, during the traversal of the DAG of configurations, the
client performs Get and Set to read and write the data in each configuration, and
it performs update and scan to access the weak snapshot of that configuration.
DynaStore guarantees correct interleaving of these data and snapshot operations:
essentially, for every configuration in the DAG, if a Get is performed in the con-
figuration concurrently with a Set, then either the client performing Get sees the
data of the client performing Set, or the client performing Set sees at least all those
outgoing edges in the DAG seen by the client performing Get; in the latter case,
and if such outgoing edges exist (representing configuration changes proposed for
the current configuration), the client performing Set continues traversing the DAG
so that it performs Set in the latest configuration of the system.

A client starts executing an operation by communicating with the storage
nodes in the most recent configuration it knows. It then traverses the DAG of
configurations in the way we described above. It is possible that a configuration
discovered during the traversal is old and no longer has a majority of responsive
nodes. To handle such situations, the client periodically queries the directory ser-
vice, obtaining a set of storage nodes; it asks these storage nodes for their latest
configuration; if this configuration is new to the client, it retries its operation using
the new configuration.

A recent study [22] compared a consensus-based reconfiguration algorithm
against an asynchronous reconfiguration algorithm. This study discovered that
each algorithm works best in a different case. When multiple reconfigurations are
expected to occur concurrently and the latency of reconfigurations is important,
the asynchronous algorithm is better, since consensus may take a long time to
complete—theoretically, it may never complete [10]. On the other hand, with the
consensus-based algorithm, no reader or writer is affected by concurrently ongo-
ing reconfigurations until a new configuration is agreed upon, and only after this
point in time do operations need to start working in the new configuration. With
the asynchronous algorithm, operations must take into account reconfiguration
proposals made concurrently (this means traversing the DAG of configurations
for each operation). This results in slower reads and writes when multiple recon-
figurations are operating concurrently.
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7 Dealing with Byzantine failures

With Byzantine failures, we must assume a higher fraction of correct nodes than
with crash failures (e.g., in a static setting, there must be more than two-thirds of
correct nodes instead of a majority). Furthermore, if this assumption is violated,
the system may lose both safety and liveness, whereas with crash failures, it may
only lose liveness.

To deal with Byzantine failures, the storage system must rely on some tech-
niques that are unrelated to the reconfiguration algorithm. First, the replication
scheme must store data on more than two-thirds of the storage nodes to tolerate
lies (e.g., see [19]). We call these sets with more than two-thirds of nodes super-
majorities. Second, the consensus protocol, if used, must be resilient to Byzantine
failures.

A challenge unique to reconfiguration with Byzantine failures is that storage
nodes can lie about the composition of the current configuration, resulting in the
“I still work here” attack, which we now describe.

7.1 The “I still work here” attack

A system designer typically makes assumptions on the number of machines that
may be Byzantine (e.g., at most a third of them), based perhaps on the fact that
someone maintains those machines. One of the purposes of reconfiguration is to
relinquish machines and not have to worry about them anymore. After a stor-
age node is removed from the configuration, there should be no assumptions on
what can happen to it—in particular, it could crash or be subject of other types of
Byzantine behavior.

A client may be inactive for a long time, and when it returns to activity, the set
of storage nodes may have changed significantly, and the client may interact with
storage nodes that were long removed from the system. These storage nodes could
be Byzantine and pretend that the reconfiguration never took place, and therefore
hijack the client requests and serve them inappropriately (e.g., by returning bogus
results to reads).

One can avoid this attack by requiring that any new configuration overlaps
with the old one in some number of machines (as in the work on dynamic Byzan-
tine quorums [3]), but this goes against our goal of allowing arbitrary reconfigu-
ration. Another solution is to assume one never-changing trusted server (such as
a DNS server) that always points to the current configuration, but this violates our
desire to allow removal of any part of the system.
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7.2 The Forgetting Protocol

The above attack can be thwarted using cryptography [20]. The main idea is that,
as mentioned above, most Byzantine fault-tolerant protocols assume that some
fraction of the storage nodes are correct, at least while they are members of the
system. A command that will remove nodes from the system can also ask them
to overwrite the value of some variables that are needed to participate in the pro-
tocol. Correct nodes, by definition, will comply. Even if those nodes later turn
Byzantine, it will be too late for them to recover those variables, since they were
properly erased when the node was correct. Those variables contain cryptographic
secrets in the form of keys that are sent anew every time some nodes are added to
or removed from the system. One challenge is that, in an asynchronous system,
the messages containing those keys may be delayed for a long time and arrive to
the destination after it has become Byzantine: so the protocol must be designed to
make sure that enough key material was deleted that removed nodes cannot take
advantage of those delayed messages.

Allowing any participant to reconfigure the system would allow Byzantine
participants to move the system to adversary-controlled machines. Instead, the
protocol assumes that a trusted administrative entity selects a sequence of con-
figurations. It can be a trusted person or a replicated state machine, akin to the
consensus-based approach described in Section 5. The protocol then works as
follows. Each storage node i holds a symmetric key st

i for configuration num-
ber t. It is computed by hashing the key from the previous computation. That
is, st

i = h(st−1
i ). The key is known only to that storage node and to the admin-

istrator, and the storage node keeps only the key corresponding to the current
configuration. Each storage node keeps also an asymmetric key pair (pubt

i, privt
i)

associated with the configuration, and a matching certificate from the adminis-
trator cert = 〈i,meta, pubt

i〉admin (angle brackets indicate a signed message). The
meta-data meta includes the configuration number, t.

When the administrator reconfigures the system to a new configuration t, it
sends the following message to each storage node i: (NEW_VIEW, t, oldMeta,
encrypt((cert, privt

i), s
t
i)). Here, encrypt(m, k) encrypts m using the symmetric key

k. When a storage node sees that it is not part of the new configuration, it discards
its certificate, private key, and symmetric key.

As part of the write and read protocols, clients receive a copy of the adminis-
trator’s certificate, and a proof that the storage node has the corresponding private
key. Clients only proceed when a supermajority of storage nodes have the key for
the same configuration. In the protocol, every pair of supermajorities of nodes in-
tersects at a correct node, so after all nodes in a supermajority are asked to delete
their key, in every supermajority at least one storage node is missing its key. The
protocol requires a supermajority to present their keys before proceeding with a
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read or write, so no client will be fooled into using an old configuration.
The notion of protecting against removed nodes turning Byzantine has simi-

larities with the notion of protecting against nodes slowly turning Byzantine over
time. Proactive recovery [24, 6] addresses the latter problem: periodically reboot-
ing machines to return them to a safe state, and using cryptographic techniques
such as threshold cryptography to protect against an adversary squirreling away
key material as it compromises machines. Threshold cryptography can be used
to build a replicated state machine that can sign its consensus decisions (e.g. a
reconfiguration command) without allowing any single node to learn the private
key.

8 Related work
In this section, we briefly explain some work related to reconfiguration of atomic
storage that we did not cover in the previous sections.

Applications. While reconfiguration of atomic storage started as a theoretical
endeavor, this work has recently seen application to real systems. In particular,
FAB [21] is a replicated storage system built using commodity machines that are
prone to failures. FAB replicates data using a modification of the algorithm in Sec-
tion 2 to ensure a property stronger than linearizability [1], and its reconfiguration
uses the Rambo algorithm described in Section 5.

Dynamic quorum systems. A quorum system consists of a collection of sets
such that any two sets in the collection have non-empty intersection. This concept
can be used to replace majorities in majority-based replication, to obtain schemes
that can tolerate the failure of more than a majority of some chosen set of nodes,
at the expense not being able to tolerate the failure of any minority. For example,
consider the following quorum system for five storage nodes s1, . . . , s5:

{{ s4, s5 },
{s1, s2, s5 },
{s1, s3, s5 },
{ s2, s3, s5 },
{s1, s2, s4 },
{s1, s3, s4 },
{ s2, s3, s4 }}

We can modify the majority-based scheme in [4] so that, instead of waiting
for a majority of responses, processes wait to receive responses from one of the
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sets above, say {s4, s5}. The resulting scheme can tolerate the failure of s1, s2, s3

(a majority), but it cannot tolerate the failure of s4, s5 (a minority).
Quorum systems are static, but subsequent work proposed the notion of a dy-

namic quorum system [8, 13], which allows a user to add or remove elements to
it, permitting the system to be reconfigured, while retaining the property that any
two sets always intersect. Dynamic quorum systems by themselves are not suffi-
cient to obtain reconfigurable storage, because one must populate storage nodes
when the system is reconfigured and the scheme to populate is intertwined with
the scheme to add or remove a node. Hence, reconfiguration algorithms such as
those described here are needed.

Reconfiguration in state machine replication. State machine replication is a
general technique to replicate a computation across several nodes. In a nutshell,
one must ensure that all replicas start with the same state and see the same se-
quence of inputs (in the same order), thereby ensuring that they all undergo the
same state transitions.

State machine replication and atomic storage are quite different abstractions.
On one hand, the first is more general than the latter, because state machine repli-
cas are not limited to reading and writing data: they may perform more complex
read-modify-write operations or generate external events. On the other hand, it
has been shown that state machine replication cannot be realized in asynchronous
distributed systems subject to failures [10], whereas atomic storage can. Because
of these inherent differences, the algorithms to implement these abstractions are
quite different, and as a result the reconfiguration of state machines is quite dif-
ferent from the reconfiguration of atomic storage. However, some of the basic
concepts we introduced apply to state machines as well, such as the requirements
to obtain liveness in Section 3. For a tutorial on reconfiguration of state machines,
see [16].

Group communication and virtual synchrony. Virtual synchrony [5] is an ab-
straction that comprises (1) a membership service that maintains a group of active
nodes, and (2) a broadcast service for sending messages to the current members
of the group, while providing reliable delivery and possibly total ordering of mes-
sages. Virtual synchrony can be used to implement general dynamic reliable ser-
vices. This is done by using broadcast to deliver operations to service replicas,
and by using the membership service to reconfigure the replica set. The meth-
ods we present share commonalities with the virtual synchrony methods, such
as exposing reconfigurations and handling configuration changes via agreement.
However, traditionally, the virtual synchrony approach pauses operation while a
reconfiguration occurs, whereas we focus on on-line reconfiguration schemes.
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9 Conclusion

Reconfigurable distributed storage systems rely on subtle techniques to ensure that
reconfiguration operations maintain the expected semantics of the storage system.
We explained two such techniques, one that relies on consensus, and another that
does not. The first technique is simpler, but it requires a system where consensus
can be implemented, whereas the second technique can be used in any system,
even asynchronous ones. We hope that new techniques will be discovered that
combine the benefits of both approaches. The liveness conditions of a reconfig-
urable storage system require a careful specification. We have explained how one
can arrive at such specification. The specification we gave is weak and therefore
general: we expect any reasonable reconfigurable system to satisfy it. However,
we believe that stronger liveness specifications (i.e., specifications that ensure live-
ness in more cases) are attainable. We have also explained how to deal with the
problems that arise when there are Byzantine failures. These techniques were de-
veloped for a system where consensus is available—hence they do not work in
asynchronous systems. It remains to be seen whether reconfiguration is possible
with Byzantine failures in asynchronous systems.
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