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Abstract

We present Brahms, an algorithm for sampling random nodeslémge dynamic system prone to
malicious behavior. Brahms stores small membership vi¢waeh node, and yet overcomes Byzantine
attacks by a linear portion of the system. Brahms is compo&&d components. The first is an attack-
resilient gossip-based membership protocol. The secontbapent extracts independent uniformly
random node samples from the stream of node ids gossipedebfiréh We evaluate Brahms using
rigorous analysis, backed by simulations, which show thatloeoretical model captures the protocol’s
essentials. We study two representative attacks, and $taiwith high probability, an attacker cannot
create a partition between correct nodes. We further priogedach node’s sample converges to an
independent uniform one over time. To our knowledge, no quadperties were proven for gossip
protocols in the past.

Keywords: Random sampling, gossip, membership, Byzantine faults.

1 Introduction

We consider the problem of sampling random nodes (sometialésd peers) in a large dynamic system
subject to adversarial (Byzantine) attacks. Random noalsag is important for many scalable dynamic
applications, including neighbor selection in constmgtind maintaining overlay networka3, 32, 35, 37],
selection of communication partners in gossip-based potdd13, 18, 21], data sampling, and choosing
locations for data caching, e.g., in unstructured pegxeter networks34.

Typically, in such applications, each node maintains a seamdom node ids that is asymptotically
smaller than the system size. This set is called the ndolegs view We consider a dynamic system, subject
to churn, whereby the set of active nodes changes over time. Locabviesuch a system must continuously
evolve to incorporate new active nodes and to remove onéstteano longer active. By using small local
views, the maintenance overhead is kept small. In the absgfmmalicious behavior, small local views can
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be effectively maintained with gossip-based membershapopols [L, 21, 22, 26, 43], which were proven
to have a low probability for partitions, including undetuch [1].

Nevertheless, adversarial attacks present a major chaltem small local views. Previous Byzantine-
tolerant gossip protocols either considered static ggttwhere the full membership is known to dlB] 33,

39], or maintained (almost) full local view®] 28], where faulty nodes cannot push correct ones out of the
view (please se8ection Zor more detailed discussion of previous work). In contrastall local views are
susceptible to poisoning with entries (node ids) origimafirom faulty nodes; this is because in a dynamic
system, nodes must inherently accept new ids and store thg@tade of old ones in their local views. In
Section 3 we illustrate that traditional gossip-based membershifghly vulnerable to adversary attacks,
which can quickly poison the entire views of correct nodes.

It is even more challenging to providedependent uniform sampl@s such a setting. Even without
Byzantine failures, gossip-based membership only endhedseventually theaveragerepresentation of
nodes in local views is uniformi[ 22, 26], and not thaevery nodebtains an independent uniform random
sample. Faulty nodes may attempt to skew the system-widigbdison, as well as the individual local view
of a given node.

This paper addresses these challengesSdction 4 we present Brahms, a membership service that
stores a sub-linear number of ids (e@(,/n) in a system of size) at each node, and provides each node
with independent random node samples that converge toronibmes over time. The main ideas behind
Brahms are (1) to use gossip-based membership with somee defenses to make it viable (in the sense
that local views are not solely composed of faulty ids) in dvesisarial setting; (2) to recognize that such a
solution is susceptible to attacks that niagsthe views, i.e., cause certain nodes to be over-represanted
views while others are under-represented (we preciselgtifudhe extent of this bias mathematically); and
(3) to correct this bias at each node. Specifically, each nmaiatains, in addition to the gossip-based local
view, an unbiasedample listof nodes.

To achieve the latter, we introdu@ampler a component that obtains uniform samples out of a data
stream in which elements recur with an unknown bias. Sampes min-wise independent permuta-
tions [14], and stores one element of the stream at a time. In Brahrasgdta stream is comprised of
gossiped ids, from which Samplers obtain independent unlforandom id samples, and store them in the
sample list. By using suchistory samplesrom the sample list to update part of the local view, Brahms
achievesself-healingfrom partitions that may occur with gossip-based membprshi particular, nodes
that have been active for sufficiently long (we quantify ha@nd) cannot be isolated from the rest of the
system, with high probability. The use of history samplearisexample oamplification whereby even a
small healthy sample of the past can boost the resiliencecohgtantly evolving view. We note that only a
small portion of the view is updated with history sampleg,,d.0%. Therefore, the protocol can still deal
effectively with churn.

In Section 5 we define the attacker’s goals and the corresponding asiimategies, under which we
evaluate Brahms. We consider two possible goals for ankattadirst, we study attacks that attempt
to maximize the representation of faulty ids in local viewsaay given time. This goal is achieved by
a uniform attack whereby the attacker equally divides its power among altecd nodes. Second, we
consider an attacker that aims to partition the network. ddmest way to do so is by isolating one node
from the rest 1]. Since samples help prevent isolation, we analyze the athatrse circumstances, where
an attack is launched on a new node that joins the system wshsamples are still empty, and when it does
not yet appear in views or samples of other nodes. We furgmae that suchtargetedattack on the new
node occurs in tandem with an attack on the entire systenesasitded above.

One of the important contributions of this paper is our matatcal analysis, which provides insights



to the extent of damage that an attacker can cause and téweifeess of various mechanisms for dealing
with them. Extensive simulations of Brahms with up4@0 nodes validate the few simplifying assump-
tions made in the analysis. We first show 8ection § that whenever the set of nodes remains connected,
the sample lists converge to independent uniformly randel@ctons from among all nodes. We further
show that if views are of siz€(+/n), then the convergence rate is bounded independently ofysiers
size. Section 7then analyzes the local views generated by the gossip merekshows that under certain
circumstances, they preserve the connectivity requiredridorm samples.

Specifically, for the attack goal of maximizing the repraaéon of faulty ids Section 7.), we show
that under certain conditions on the adversary, even withsing history samples, the portion of faulty ids
in local views generated by Brahms'’s gossip process is kalibgl a constant smaller than one. (Recall that
the over-representation of faulty ids is later fixed by Sampghe upper bound on faulty ids in local views
ensures Sampler has good ids to work with).

Next, we consider the goal of isolating a no@e¢tion 7.2. The key to proving that Brahms prevents,
with high probability, an attacked node’s isolation is imgmaring how long it takes for two competing
processes to complete: on the one hand, we provide a lowadmuthe expected time to poison the entire
view of the attacked node, assuming there are no historylsampall. On the other hand, we provide an
upper bound on how fast history samples are expected to gmvender the same attack. Whenever the
former exceeds the latter, the attacked node is expectegctmnie immune to isolation before it is isolated.
We prove that with appropriate parameter settings, thisdeed the case.

Finally, we simulate the complete syste®egttion §, and measure Brahms'’s resilience to the combi-
nation of both attacks. Our results show that, indeed, Beapravents the isolation of attacked nodes, its
views never partition, and the membership samples convergerfectly random ones over time.

2 Related Work

We are not familiar with any previous work explicitly deajimnvith random node sampling in a Byzantine
setting. We next review previous work on Byzantine membpr&bection 2.}, node sampling and sampling
from data streams in benign settinge€tion 2.2, and on the related problem of Byzantine-resilient owerla
construction $ection 2.3.

2.1 Byzantine Membership

Most previous Byzantine-tolerant gossip based protocale leither considered static settings where the
full membership is known to all1]9, 33, 39] or focused on maintaining full local view®]28] rather than
partial samples. The only exception we are aware of iSéneure peer sampling service (SPES]).

This paper considers an attack on gossip-based membevgigoeby the attackers send many faulty
ids to correct nodes. The proposed service, SPSS, mitigatdsattacks by gathering statistics about over-
represented node ids. Over-represented ids are deemég gnd are removed from views. However, as
the authors show, the effectiveness of this approach isddrio a small number of malicious nodes (in the
order of the view size). In contrast, Brahms toleratgs) Byzantine failures with views of siz®(¥/n).
Moreover, SPSS is only evaluated in simulations and no fopmuefs of its properties are given.

2.2 Node Sampling and Sampling from Streams

Gossip-based membershif, 21, 22, 26, 43] is a robust and efficient technique for maintaining small,
(typically logarithmic-size) local views in the presendebenign failures, ensuring a low probability for
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partitions [L], and an eventual uniform average representation of nodesal views [, 22, 26]. However,
even in benign settings, it does not ensure that every naslgadly obtains a uniform random sample as
Brahms does. Furthermore, as we showattion 3it is vulnerable to Byzantine failures.

Proven near-uniform node samples can be obtained using @oRaWwalk (RW). Random walks are
often used for peer sampling and counting in peer-to-peexarks; their outcome is used for overlay
construction and for the maintenance of partial local mestbp views R3, 32, 36, 10]. RWs have also
been recently proposed to combat Sybil attackd [in which malicious nodes forge identities in order
to impose as multiple nodes). However, the correctness ofbBR¥e¢d sampling depends on the network
topology. If the actual topology is different from the as®drone, then the sample produced by the RW
may be far from uniform23]. In contrast, Brahms does not assume any specific netwptdgy. Its sole
assumption is that the graph formed by correct nodes is ctexhe Moreover, using RWs in a Byzantine
setting is problematic, because a faulty node anywheregaioa path of a random walk can render the
information obtained in this walk useless.

King and Saia 31] present a method for (proven) uniform sampling in a distielol hash table (DHT)
like Chord, which is not resilient to Byzantine attaciks]

Uniform sampling is related to the problem of load-balagaiata over nodes in a DHR9, 30], which
strives to achieve the following: given a data item, the ntidg stores it should be chosen uniformly at
random. Typically in DHTSs, all nodes use the same hash fondbr mapping data to nodes, in order to
facilitate data location. This approach results in an umbegd load, which can be improved by creating
multiple virtual nodes for each real nod2d], or by dynamic re-balancing of the key spa8&€][ In contrast,
our application does not require all nodes to agree on a canirash function. Brahms ensures balanced
sampling (i.e., that every correct node appears with theeganobability in every sample of a correct node),
by using random (or pseudo-random) hash functions, piakeelpendently by each node.

Various previous works have dealt with benign sampling,, é.gm unbiased data strean#2] or from
biased data streams wittkaown biag8, 17]. Other works have focused on unbiasing data samples from a
random accesmedium rather than a streahl], or counting the number of distinct elements in a (possibly
biased) stream, e.g2,[12]. However, we are not aware of previous work providing umicamples from
a data stream with an unknown bias, as our Sampler compooest d

2.3 Byzantine Resilient Overlays

One application of Brahms is Byzantine-tolerant overlagstnuction. Brahms'’s sampling allows each node
to connect with some random correct nodes, thus constguatiroverlay in which the sub-graph of correct
nodes is connected. As noted above, previous Byzantieeatal gossip-based membership solutions have
maintained (almost) full local view®][ 28] or withstood only weak attack&7)].

Several recent works have focused explicitly on securirgglays, mostly structured ones, also attempt-
ing to ensure that all correct nodes may communicate with etteer using the overlay, i.e., to prevent the
eclipse attack40, 41], where routing tables of correct nodes are gradually padawvith links to adversarial
nodes. These works typically assume that faulty nodes ¢aramarol their ids, which is implemented by
using mechanisms such as a (8|15, 40] or a cryptographic random number generafgjr Brahms also
assumes that the number of ids controlled by faulty nodesusdbed, but does allow faulty nodes to control
their own ids.

Singh et al. §0, 41] proposed a defense against eclipse attacks in structwerdiaygs, based on the
observation that when an eclipse attack is launched, tdegmnee of faulty nodes is likely to be higher than
the average in-degree of correct nodes. The idea is, threré¢fbaudit node degrees, and choose neighbors



whose degree is below some threshold. Unlike Brahms, thes dot result in a uniform random selection
of neighbors. Finally, this approach is not appropriateufastructured overlays.

Other solutions for Byzantine-tolerant structured oweslanaintainconstrainedrouting tables, where
faulty nodes are not over-represented, in addition to thalae routing tables, in which faulty nodes might
by over-representedlp, 16]. This approach resembles our unbiasing of the local vieewever, the
constrained table is not proven to be a uniform sample of thes. Moreover, unlike Brahms, these
solutions require either frequent id re-assignm@et pr a secure way of measuring network distandes. [

Awerbuch and Schiedeler propose Byzantine-tolerant stred overlay constructiongl[6, 7], with
logarithmic-size views. However, unlike Brahms, they eithequire constant re-joiningt] or employ a
complex cryptographic random-number generafjrand need id re-distributions upon every joid [7].
Moreover, these solutions are much more complex than Brahms

Finally, unlike the works mentioned above, we presege@eralsampling technique, one application of
which is building Byzantine-resilient unstructured oegd.

3 Model, Goal, and Challenges

We describe the system model, outline our design goal, argdriite the challenges in achieving it.

3.1 System Model

We consider a collectiotv of nodes, each identified by a unique id. We do not constramidty in which
node ids are chosen, e.g., we do not assume a certificatibordayt Nevertheless, nodes are not allowed
to use multiple ids, which rules out massive Sybil attacdkd [where one faulty node can impersonate as
many nodes). Individual nodes do not know the entire set desd/. Rather, each node has some initial
knowledge of a small set of other nodes, so that the graptcedlby this knowledge is connected.

The system is subject to churn, i.e., nodes can join and lgaverash) dynamically. A node that has
joined and did not leave or crashastive A correct active node follows the protocol, whereas faaltjive
nodes may exploit the protocol to attack other nodes. Evairygh nodes can communicate with each other
directly through bidirectional reliable links, providdust they know each other’s ids. A node can determine
the source of every incoming message, and cannot interceggages addressed to other nodes (this is the
standard "unauthenticated” Byzantine moda).[ For simplicity of the analysis, we assume a synchronous
model with a discrete global clock, zero processing timed,raessage latencies of a single time unit.

3.2 Design Goal

Each node maintains a list of node ids calkainple list Intuitively, each entry in the sample list should
converge to an independent uniform random sample of theeaistides. However, the notion of a uniform
sample is only meaningful when applied to a fixed set, andmahtever-changing one. Therefore, for the
sake of specifying our protocol’s goal, we assume that tiseagimeT; at which churn ceases, and require
each entry in the sample list to converge to an independéafdromrandom sample of the nodes that are
active from timel, onward.

3.3 Design Challenges - Vulnerabilities of Gossip-Based M#ership

Gossip-based protocols (e.dL, 6]) are a well-known mechanism for membership informaticssdmina-
tion in the presence of churn. These protocols maintainct rade a small subset of active node ids, called
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Figure 1: Malicious attacks on traditional gossip protocols using pgh and pull requests. (a) Faulty
nodes flood a correct node: with pushes, and totally poison its view. (b) Node, with a totally poisoned
view sends pushes only to faulty nodes, and ceases being regented in the views of other correct
nodes. (c) Node: pulls views from two correct nodes with50% correct ids, and two faulty nodes. (d)
The faulty nodes return only faulty ids, thus poisoning75% of u’s view.

view. The primary goal of a gossip-based membership servicefgegerve connectivity of the overlay in-
duced by the nodes’ views; that is, to avoid network parigioNote that connectivity is also a prerequisite
for random sampling, since nodes in distinct connected compts have zero probability for learning about
each other.

Nodes propagate membership information through two pirigg{push— unsolicited sending of a node’s
id to some other node in the sender’s view, gl — request-reply retrieval of another node’s view. Pushes
allow new active nodes to become represented in other nowwss, whereas pulls spread knowledge about
active nodes throughout the system. Allavena etldlhfive shown that both are needed in order to avoid
partitions and star-like topologies with high probabilifyhey have further shown that in benign gossip that
uses both pull and push, the expected time until a netwottikiparis exponential in the squares of both the
view size and the isolated component’s size, under reakoaabumptions. Extensive empirical studi2g [
26] have validated that gossip-based protocols maintainectivity in benign setting in practice.

We now illustrate that traditional gossip is not resiliemtiversarial pushes and pulls. For example, an
adversary can choose to over-represent the faulty ids ividwes of some correct nodes. We illustrate how
both push and pull can be abused so as to lead to rapid pogsohinews at all correct nodes.



Push flooding. The adversary can flood correct nodes with pushes of fautyaiad thus to cause all views
of correct nodes to quickly become poisoned with faulty s mitigate push flooding, we assume that the
sending rate of Byzantine nodes can be constrained. Thiiei® is a mechanism that makes it costly for
nodes to send designated messages, which wikma#d sendand use for push messages. This mechanism
can be implemented in different ways, e.g., computatiohallenges like Merkle’s puzzles3§], virtual
currency, etc. Note that employing limited send is necgsbat not sufficient: while such rate-limiting
prevents the adversary from flooding all correct nodes ialfgy an attacker can still target correct nodes
one by one. This process is illustratedFigure 1 first, the attacker focuses on one nageand leads to
complete poisoning of its views{gure Xa)). For simplicity,Figure Xa) shows the effect of this attack on a
push-only protocol; when pull and push are combined, a aimdiégradation occurs, although it might take
longer, as we show iBection 7

Once the attacker succeeds in poisonirig entire view, all ofu’s pushes are sent to faulty nodes
(Figure 1b)), and consequently, disappears from the views of other correct nodes. Note e @
push-pull gossip, the representation of ids that are ndbguiso correct nodes is exponentially decaying,
since a constant part of each view is updated with new pusBese this occursy is isolated from the
system, and the attacker can proceed to attack additiodaisno

Skewed pull responses. Faulty nodes can return only faulty ids in response to puajuests. Since pulls
from correct nodes return faulty ids as well as correct ids, behavior leads to exponential decay in the
representation of correct nodes in the system.

The effect of this attack on a purely pull-based gossip maltds illustrated inFigures 1c) and1(d).

In this example, the system begins a gossip round in a stagee®% of ids in all views are faulty,
(Figure Xc)), and we see that at the end of the same rousfd, of the ids in a typical node’s view are faulty
(Figure 1d)).

These scenarios demonstrate that an adversary can exattittanal gossip to bias the distribution of
ids in the views of correct nodes. In the long run, an attadeer disintegrate the entire overlay, thus
precluding peer sampling completely. Brahms adopts a &yerlapproach to this problem. As a first step,
we guarantee, with high probability, that the attacker carsolate correct nodes, that is, the maximum bias
to their views is bounded. As a second step, we correct theried bias through local uniform sampling.

4 Brahms

Brahms has two components. The local sampling componemitaias asample listS — a tuple of uniform
samples from the set of ids that traversed the n&kxtjon 4.1. The gossipcomponent is a distributed
protocol that spreads ids across the netw@#cdtion 4.2, and maintains a dynamigew ). We denote the
size ofV by ¢; and the size of by /;. Each node has some initial (e.g., received from some bootstrap
server or peer node) andS may contain duplicates, and some entrie§ imay be undefined (denoted).

4.1 Sampling

Sampler is a building block for uniform sampling of uniqueraknts from a data stream. The input
stream may be biased, that is, some values may appear inatthmon others. Sampler accepts one element
at atime as input, produces one output, and stores a simgieat at a time. The output is a uniform random
choice of one of the unique inputs witnessed thus far. Famgka, assume some idl;, appears only once
in a certain input stream, while another idz, appears 1000 times in the same stream; Sampler’s output on
this stream has an equal probability of beidgas for beingds.
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Figure 2: Uniform sampling from an id stream in Brahms. (a) Sampler’'s pseudo-code. (b) Sampling
and validation of /5 ids.

Sampler usesnin-wise independerpermutations 14]. A family of permutationsH over a range
[1...]U]] is min-wise independent if for any sé& C [1...|U|] and anyz € X, if h is chosen at ran-
dom fromH, thenPr(min{h(X)} = h(x)) = ﬁ That is, all the elements of any fixed s€thave an
equal chance to have the minimum image urnfidePseudo-random functions (e.q24]) are considered an
excellent practical approximation of min-wise indeperndegrmutations, provided that/| is large, e.g.,
9160

The pseudo-code of Sampler appearBigure 4a). It selects a random min-wise independent function
h upon initialization, and applies it to all input values (lrethext () function). The input with the smallest
image value encountered thus far becomes the output retbsnghesanpl e() function. The property of
uniform sampling from the set of unique observed ids follairectly from the definition of a min-wise
independent permutation family.

Brahms maintains a tuple @ sampled elements in a vector &6f Sampler blocks (seEigure Zb)),
which select hashes independently. The same stream of s#swad by the node is input to all Samplers.
Sampled ids are periodically probed (e.g., using pings),aasampler that holds an inactive node is invali-
dated (re-initialized). Thus, when churn ceases, eachlsatopverges to an independent uniform random
selection from among the active nodes.

4.2 Gossip

Brahms’s view is maintained by a gossip protocol as showsigare 3 We denote list concatenation by
o. By slight abuse of notation, we denote both the vector ofpdara and their outputs (the sample list) by
S. Brahms executes in (unsynchronized) rounds. It uses tvama®r propagation: (Jpush— sending the
node’s id to some other node, and [Jll — retrieving the view from another node. These operationgese
two different purposes: pushes are required to reinforasviedge about nodes that are under-represented
in other nodes’ views (e.g., newborn nodes), whereas préls@eded to spread existing knowledge within
the network 1].

Brahms uses parametets> 0, 8 > 0, andy > 0 that satisfya 4+ 3 + v = 1, to control the portion of
pushed ids, pulled ids, and history samples in the new viespectively. In a single round, a correct node
issuesaf; push requests and/; pull requests to destinations randomly selected from esvyvpossibly
with repetitions (Lines 22-26). At the end of each routdand S are updated with fresh ids. While all
received ids are streamed&dLine 37), re-computing’ requires extra care, to protect against poisoning of
the views with faulty ids. Brahms offers the following settethniques to mitigate this problem.

Limited pushes. Since pushes arrive unsolicited, an adversary with an uteldhcapacity could swamp
the system with push requests. Then, correct ids would bpagaied mainly through pulls, and their



1: V :tuplef(,] of Ia 19: {Gossig

2: S :tuple[l] of Sampler 20: while true do

3: Initialization (Vo): 211 Vpush = Vpuu < 0

4: VYV 22: forall 1 <i<af;do

5. forall 1 <i</¢;do 23 {Limited push

6: Sli].init() 24: send_lim (“push_request®) to rand(V, 1)

7:  updateSample (V) 25: forall 1 <: < ¢ do

8: {Stale sample invalidatign 26: Sfmd {“pull_request®) to rand(V, 1)

9: periodically do 27 wait(1)

10: forall 1 <i < /¢y do 28: forall received (“push_request) from id do
11 if probe(S[i].sample()) fails then 29: Vpush < Vpush © {id}

12: Sli].init() 30: forall received (“pull_request“) from id do

13: {Auxiliary functiong 3L send (“pull reply*,V) toid

14: function updateSample (V) 32:  for all received (“pull_reply“, V') from id do
15: forall id € V,1 < i < {5 do 33: if 1 sent the request, and this is the first refilgn
16: S|i].next (id) 34: Vpuit — Vpuir 0V’

17: function rand(V, n) 35:  if (Vpusn| < als A Vpusn #0 A Vpun # 0) then
18: return n random choices frony 36: V « rand(Vpusn, 1) o rand(Vpuu, B41) o rand(S, v41)

37:  updateSample(Vpush © Vpuil)

Figure 3:The pseudo-code of Brahms.

representation would decay exponentially. [ The protocol employs limited sending of push messages
(performed bysend_l i m), hence the system-wide fraction of faulty pushes is cairstd.

Attack detection and blocking. While using limited pushes prevents a simultaneous attackllacorrect
nodes, it provides no solace against an adversary that febegecific node. Brahms protects against such
atargeted attaclby blocking the update of. Namely, if more than the expected; pushes are received

in a round, Brahms does not updaten that round (Line 35). Although this policy slows down press,

its expected impact in the absence of attacks is bounded$nedtomputd’ in most rounds). Thanks to
limited pushes, the adversary cannot block all correct sgdaultaneously, i.e., some nodes make progress
even under an attack.

Controlling the contribution of pushes versus pulls. As most correct nodes do not suffer from targeted
attacks (due to limited pushes), their views are threatéggallls from neighbors more than by adversarial
pushes. This is because whereas all pushes from correcs aoeleorrect, a pull from a random correct
node may contribute some faulty ids. Hence, the contribuwbibpushes and pulls t@ must be balanced:
pushes must be constrained to protect the targeted nodis puhs must be constrained to protect the rest.
Brahms update¥® with randomly chosem/; pushed ids and/; pulled ids (Line 36).

History samples. The attack detection and blocking technique can slowdowargeted attack, but not
prevent it completely. Note that if the adversary succeedndrease its representation in a victim’s view
through targeted pushes, it subsequently causes thisnviotipull more data from faulty nodes. As the
attacked node’s view deteriorates, it sends fewer pushesrtect nodes, causing its system-wide represen-
tation to decrease. It then receives fewer correct pusipesing the door for more faulty pushe8rahms
overcomes such attacks using a self-healing mechanismebha portiony of V reflects thehistory; i.e.,
previously observed ids (Line 36). A direct use of historgsloot help since the latter may also be biased.

1This avalanche process can be started, e.g., by oppoitatiistsending the target a slightly higher number of pusthes
expected. Since correct pushes are random, a round in whffibiently few correct pushes arrive, such that Brahms duzs
detect an attack, is expected to happen soon
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Figure 4:View re-computation in Brahms.

Therefore, we use feedback frafhto obtain unbiased history samples. Once some correct idnbes
the attacked node’s permanent sample (or the node’s id lEcampermanent sample of some other correct
node), the threat of isolation is eliminateeigure 4illustrates the view re-computation procedure.

Parameter settings. Brahms’s parameters control a tradeoff between performana benign setting and
resilience against Byzantine attacks. For exampi@ust not be too large since the algorithm needs to deal
with churn; on the other hand, it must not be so small as to nfaéxdeedback ineffective. We show in
Section 8that~ = 0.1 is enough for protecting from partitions. The choice of; and /¢, is crucial for
guaranteeing that a targeted attack can be contained hatdttacked node’s sample stabilizes. We study
their impact inSection 7 where we show that choosirg, ¢/, = ©(/n) suffices to protect even nodes that
are attacked immediately upon joining the system.

5 Definitions and Attack Models

In the next two sections we present mathematical analysighalike previous studied], makes some sim-
plifying assumptions. The theoretical results are theidatéd through extensive simulations 8ections 7
and8).

We study the asymptotical properties of a system Gictive nodes, after a poirffy at which churn
ceases. The subset of correct nodes is dendtddhe faulty nodes comprise less than some fracfion 1
of n. We assume that the system-wide fraction of pushes thati/fnodes can jointly send (using limited
send) in a single round (time unit) is at mesfor somep < 1.

We denote the view and the sample list at no@e timet by V,,(¢) andS,,(¢), respectively. We define the
overlay graphV\/(t), induced by the union of andS at all correct nodes, which captures their knowledge
about each other at timeas follows:

N(t) & {C, [ J{wv)lv € (Vut) USu(t) NC}H.
ueC
We also defing’(t), a subgraph ol (¢) induced by of correct nodes (edges induced &ywre omitted):
V() 2A{C, [ J{(u,v)lv € Vu(t) N C}}.
ueC

For a noday, the number of its incoming edges in a graph is callethidegree and the number of outgoing
edges is called iteut-degree For example the in-degree of noden V(t) is the number of instances af
in views of correct nodes, and its out-degree is the numbeowéct ids in its view. Thelegreeof v is the
sum of its in-degree and out-degree.
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Brahms’s resilience depends on the in-degrees and oueeegn/(t). We assume a necessary condition
for initial connectivity, namely, that the view of every ding correct node contains some correct ids (though
the ratio of faulty ids in the view is not necessarily boundsdf). We further assume that before an
attack starts, the in-degrees and out-degrees of all ¢anoetes are (roughly) equal. This property is an
approximation of reality — Jelasity et aRg] have shown that benign gossip leads to a low variance in
in-degrees. Our simulations demonstrate that our resuftich use this assumption, are valid.

We assume that Byzantine nodes always prefer to increasedpeesentation rather than decrease it.
That is, they push only faulty ids to correct nodes and alwaysrn faulty ids in pulls. Likewise, faulty
nodes always respond to probe requests, to avoid invalidati

We study two representative Byzantine attacks. The firdedthalanced attackdistributes the faulty
pushes evenly among the correct nodes. We shd@eittion 7that this attack maximizes the system-wide
representation of faulty ids at each round. The secondkattatledtargeted focuses an increased portion
of faulty pushes on a small subset of correct nodes, in amptt® isolate them from the overlagection 7
analyzes the dynamics of both attacks, and demonstratem thath cases, Brahms prevents the overlay’s
partitioning, with the right choice of parameters.

6 Analysis - Sampling

In this section we analyze the properties of a sandple®f a correct node:. Let s = S, [i] be a sampler
element for some correet and some. Recall thats employs a permutation./, chosen independently at
random. Lets(¢) denote the output of at timet. We define theerfectid corresponding ta, s*, to be

the id with the minimal value o§.h among alln ids (we neglect collisions for the sake of the definition).
Note thats* can be either a correct or a faulty id. 8ection 6..we show thak eventually converges to an
independent uniform random sample.Saction 6.2ve analyze how fast a node obtains at least one correct
perfect sample, as needed for self-healiggction 6.3discusses scalability, namely, how to choose view
sizes that ensure a constant convergence time, indepeoflsystem size. For readability, some formal
proofs are deferred tAppendix A while this section overviews the proof approach.

6.1 Eventual Convergence to Uniform Sample

Consider a sampler € S,, of nodeu. The perfect id ok, s*, samples ids uniformly at random by definition
of min-wise independent family of hash functions. Thus, goal is to prove that eventually holdss*.
Obviously, fors to be able to sample some correct nadehe id ofv has to reach.. To allow for such
reachability between all the correct nodes, we require tleelay graph\ (¢) to remainweakly connected
after 7p. That is, the undirected graph, obtained fravi{¢) by replacing all of its directed edges with
undirected ones, is connected forialk Ty. The following theorem shows that under this assumptiom eac
id eventually has the same probability to be sampled.by

Theorem 6.1 If NV (t) remains weakly connected for eack Tj, then, for allv € C,

Pr(s(t) =v) =00 %

Proof : Let u be an active node at tinig). Thenu sends pushes in every roundTj (recall that we assume
this also for faulty nodes, segection . We now consider a time > Tj, and study the spreading afs
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id as a random process from timenward. We denote bygee, (t) the set of nodes that have a nonzero
probability of includingu in their local views at time. That is,

Seey(t) = {v| Pr(u € V,(t)) > 0}.
We will show that eventuallySee, () includes all active nodes.
Proposition 6.2 Every idv € See,(t) is also inSee,, (t') at any timet’ > ¢.

Proof : The probability that: is the perfect sample of every samplet js:, and hence, oncehas a nonzero
probability of being included iw, (), it has a nonzero probability of being sampledirit). Since a perfect
id remains inS, (t) forever,u has a nonzero probability of being added back’tcas a history sample at
every later time’. O

Proposition 6.3 As long asSee,, does not contain all active nodeS¢e,, grows by at least one id each 3
rounds.

Proof : Consider a time > Ty. If See,(t) includes all active nodes, we are done. Otherwise, by
Proposition 6.2See,, never shrinks, so it remains to show that at least one new adlded to it every 3
rounds.

By connectivity of V/(¢), there is a path iV (¢) from every node irbee,,(t) to every node that is not in
See,(t). Consider an edge between somec See, (t) and someuy ¢ See,(t). We now show that; is
added taSee,, within at most 3 rounds. That isp € See,(t + 3). There are 4 possible cases, depending
on the type of edge between andus.

1. u; € Vyu,(t). There is a positive probability for, to pull from u; at round¢, and sinceu; €
See,(t), u has a nonzero probability of being 11, (¢) and being returned in the pull and included
into V,,, (t + 1), and we are done.

2. uz € Vy, (t). There is a positive probability far; to push tous at roundt, leading tou; being in
Vu, (t + 1), and the proof continues as case 1.

3. uy € Sy, (t). There is a positive probability far; to be added t¥,,, (¢ + 1) as a history sample, and
the proof continues as case 1.

4. uz € Sy, (t). There is a positive probability far, to be added t¥,, (¢ + 1) as a history sample, and
the proof continues as case 2.

We conclude that for every and everyt > Tj, See,(t + 3) contains at least one new id that was not
included inSee, (t). O

By Proposition 6.3for everyu and everyt > Ty, See,(t + 3n) includes all active nodes. That is,
for every nodeu, and at every time in the run of the protocol aftefy, there is a positive probability for
u to appear in every other node’s stream by titne 3n. Since the event of, being in another node’s
stream by time + 3n has nonzero probability of occurring starting from everyai > T;, eventually, with
probability 1, there will be somewhen this even will occur. O

Recall that we assume8éction 5 that faulty active nodes always seek to maximize theiraggntation,
and therefore, send pushes to correct nodes and respongilid@ton probes. Therefore, they appear in
the gossip streams, and are sampled with the same propaslitorrect nodes. In a system where this
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assumption does not hold, and faulty active nodes may nefram responding to pings, the probability
. . 1 1 1 .

that a correct id is sampled converges to the ra{%gw] or =, W]’ instead of exactly ta/n as stated

above.

The next lemma discusses the convergence rate of samples.

Lemma 6.4 FromT;, onward, for each correct node, the expected fraction of samplerssp that output
their perfect ids grows linearly with the fraction of uniqigs observed by.

Proof : Let D(t) be the set of ids observed lyuntil time ¢, for ¢ > 7. Note thatD(¢) contains only ids
that are active aftefy, since inactive ids are invalidated and no invalidationgpea afterl|, (recall that at
time Ty churn ceases). Then, for eagls samplers, Pr(s* € D(t)) = PW| ~since for eachs such that

n

s* € D(t), s(t') = s* for eacht’ > ¢, the lemma follows. O

6.2 Convergence to First Perfect Sample

We show a lower bound on the probability tkfat containsat least ongoerfect id of an active correct node,
as a function of the set of ids thatobserves, and system parameters. This provides an upped botthe
time it takesS,, to ensure self-healing and prevert isolation. For the sake of proving the lower bound, we
made worst-case assumption: we assumeiti@ns the system at timé,, with an empty sample. Let(t)
be the number of correct ids observeddbyrom time T; to timet¢. Our analysis depends on the number
of unique ids observed by, rather than directly om. Obviously, it is unrealistic to expect our gossip
protocol to produce independent uniform random sampleq26€}). Indeed, achieving this property is the
goal of sampler. In order to capture the bias\inve define astream deficiency factpb < p < 1, so that a
stream of length\(¢) produced by our gossip mechanism includes as many randayoeiids as a stream
of length pA(¢) in which correct ids are independent and distributed unifgrat random. This is akin to
the clustering coefficient of gossip-based overl&@@}.[\We empirically measuregdto be about.4 with our
gossip protocol (seSection 7.2

In the following lemma we study the dependency between tbbalility of a sampler to output its
correct perfect id, the numbeX(¢) of (non-unique) correct ids streamed into the sampler, hadstream
deficiency factomp.
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Proposition 6.5 Let s be a sampler. Then, fd€| > 1 and for eacht > Ty,

pPA(t)

Pr(s(t) #s*[s"€C) =€ T .

Proof idea. A sampler does not output its correct perfect id only if tithtdid not occur in the stream.
We calculate the probability of this event as a function @f #ffective numbepA (¢) of independent and
uniformly distributed correct ids in the stream by timél'he full proof appears idppendix A.1

We define theperfect sample probability?SP,(t) as the probability thas, (¢) contains at least one
correct perfect id. The convergence rateRff P is captured by the following lemma:

Lemma 6.6 Letu be a random correct node. Then, for- Ty,

A(t €2
PSP,(t) > 1 — ((1 e f) .

Proof : Sinceu has/, independent samplers, the probability of each one to havaraat perfect id is
Pr(s* € C) > 1— f. Similarly,Pr(s* ¢ C) < f. Based orProposition 6.5the probability ofs(¢) not being
a correct perfect id is
Pr(s(t) #s"Vs" ¢ C) = Pr(s(t) #s*|s" € C)Pr(s* € C) + Pr(s* ¢ C)
A(t)
<(1-fe T 4 f
The perfect sample probability S P, (t) equalsl minus the probability of each 6§ samplers not outputting
a correct perfect id, that is:

A(t £
PSP,(t) > 1— <(1 _ ey f) .

O
Figure S5illustrates the dependence BS P on the stream siz&(¢) and on¢,. For example, we see that
when the sample size &) = 4¥/n (for n = 1000, f = 0.2), and the portion of unique ids in the stream is
p = 0.4, a correct perfect sample is obtained, with probabilityselto1, after300 ids traverse the node.

6.3 Scalability

FromLemma 6.6 we see tha’S P depends om\ and/,. To get a higherPS P, we can increase either
of them. While increasing\ is achieved by increasing, and consequently the network traffic, increasing
/5 has only a memory cost. We now study the asymptotic behavVidt <P, (t) as the number of nodes,
n, increases. When a node Wassamplers, and is fixed, {2(¢2) of them have correct perfect sampi¢,
with high probability. Therefore, biProposition 6.5the probability of at least one of theSg/¢,) samplers
outputting its perfect id satisfies, with high probability

PSP, (t) > Q1 — (e~ %)) = Q(1 — e~ “7).
For a constant, A(t) = Q(¢2) since there ar€(¢;) pulls, obtainingQ(¢;) ids each. ThusPSP,(t) >

0209

Q(1 — e~ 7= ). For scalability, it is important that for a given PSP,(t) will be bounded by a constant
independent of the system size. This condition is satisfiedna#? - /5 = Q(n), e.g., whendy = ¢ =
Q(/n), or whent; = Q(¥/n) andly = Q(&n). To reduce network traffic at the cost of a higher memory
consumption, one can séf = Q(logn) and/ly = Q(logL%). When choosing parameter values for our

simulations later in the paper, we shall Use= ¢, = ¢/n for some c.
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Correct node u Random correct node  Semantics

number/fraction number/fraction

ZTu(t)/Zu(t) x(t)/z(t) faulty ids in the node’s view (complement to out-degree)
Yu(t)/Gu(t) occurrences of the node in views of correct nodes (in-dggree
g (t) /gRush () PR (t) /gPush(¢) correct ids pushed to the node

pRush () /ppush(y)  ppush(yy jppush faulty ids pushed to the node

gBM(t)/gE () gPM(t) /P (1) correct ids pulled by the node

pRU () /7R () pPull(y) SRl (g) faulty ids pulled by the node

Table 1:Random variable definitions.

7 Analysis — Overlay Connectivity

We now prove that Brahms, with appropriate parameter ggttimaintains overlay connectivity despite the
attacks defined in Sectids satisfying the prerequisite fdrheorem 6.1

We study two possible adversary targets. The first targelresded irSection 7.1 is increasing the
global representation of faulty ids. We prove that in anygkrround, abalancedattack, which spreads
faulty pushes evenly among correct nodes, maximizes thectsg system-wide fraction of faulty ids at the
end of the round, among all strategies. (A similar approd@nalyzing the adversary’s damage in a single
round was taken, e.g., iB8].) We proceed by analyzing the effect of this attack, nantedyevolution of the
system-wide fraction of faulty ids at the end of each rouna fther show that under certain conditions
this fraction converges to a value that is strictly smalkemt 1. That is, this attack alone can not partition
the network.

We next consider an attack that attempts to partition therort (rather than increase the faulty nodes’
representation) by targeting a subset of nodes with morkgsuthan in a balanced attack. Without prior
information about the overlay’s topology, attacking a &ngode can be most damaging, since the sets of
edges adjacent to single nodes are likely to be the spansessincthe overlay.Section 7.2hows that had
Brahms not used history samples, correct nodes could hareiselated in this manner. However, Brahms
withstands suclargetedattacks, even if they start immediately upon a node’s joinemvthe node is not
represented in other views and has no history. The key proper prove is that Brahms’s gossip prevents
isolation long enough for history samples to become effectiThis section employs stochastic analysis
backed by simulations.

Notation. We study time-varying random variables, listedlable 1 A local variable at a specific correct
nodeuw is subscripted by,. When used without subscript, a variable corresponds tadora correct node.
The variablex denotes the number of faulty ids in the node’s viewH x is the node’s out-degree in the
overlay of correct nodes) ang denotes the number of occurrences of node’s id in the viewsookct
nodes (the node’s in-degree). Their fractions in views aeoted with above. Correct (resp., faulty)
ids propagated through pushes and pulls are denpt@ddr green) (resp.y (for red)), with appropriate
superscripts for push and pull.

Simulation setup. We validate our assumptions using simulations witk= 1000 nodes or more. Each
data point is averaged over 100 runs. For simplicity, we génesep = f. A different subset of faulty nodes
push their ids to a given correct node in each round, usingiad-oobin schedule.
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(a) Impact of push (b) Impact of pull

Figure 6:Fixed point analysis illustration.

7.1 Balanced Attack - Increasing Global Representation of &ulty Ids

We study the balanced attack, which shares the adversashép evenly among all correct nodeemma B.1
in Appendix B.1shows that this attack is most efficient in maximizing theteyswide representation of
faulty ids in a single round. Intuitively, this result is éamed as follows. The probability for an adversary’s
message to be accepted, (i.e., selectethird on line 36 inFigure 3, in a given round is maximized when
the message reaches a node that receives a minimal numhehafgoin that round; over-loading nodes only
reduces the adversary’s messages chances of being accejaedver, the adversary has no information
about the number of correct pushes received by any panticateect node. Moreover, the expected number
of received pushes is the same at all the correct nodes. foheréhe adversary maximizes the number of
faulty pushes expected to be accepted in a round by distrgotiiem evenly among correct nodes.

We now proceed and study the system dynamics when a balattaekl ia applied over multiple rounds.
The analysis makes two simplifying assumptions. First, gr@ie the effect of view blocking={gure 3
Line 35). Note that this is a worst-case assumption, whidlyg ancelerates the deterioration of correct
views. Second, we assume that the balanced attack preskevesdegrees and out-degrees of all correct
nodes equal over time, since it does not distinguish betwemect nodes. Formally,

Assumption 7.1 For all uw € C and allt > Tp: z,(t) = x(t), andy,(t) = {1 — z,(t).

Our extensive simulations closely validate the theorktiesults obtained using these two assumptions.
Throughout this section we assuihe: p < 1. The other cases (all pushes are faulty or no faulty pushes at
all) are not interesting.

7.1.1 The evolution ofz(t)

We study the evolution of the ratio of faulty node ids in view§ ), over time. We show the existence of a
parameter-dependent fixed pointigt) and the system’s convergence to it. Since the focus is onatsyin
behavior, we assumes Tj.

Definition 7.1 Assuming a fixegd € (0, 1) we define:

AO& P —X)T T .
vle) 2 0ol £ B = )+ a) £

Lemma 7.2 For t > T, andp € (0, 1), the expected system-wide fraction of faulty ids evolves as

E(z(t + 1)) = E(y(2(1)))-
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Proof : Consider the re-computation dfat a correct node at timet. The weights of pushes, pulls, and
history samples in the recomputed view are5 and~, respectively. Since the random selection process
(Figure 3 Lines 36 and 17-18) preserves the distribution of fauléyimdeach data source, the probability of
a push- (resp., pull)-originated entry being faulty is éqaahe probability of receiving a faulty push (resp.,
pulling a faulty id).

Figure @a) illustrates the analysis aP"s"(¢), the probability of a received push to be faulty. Each
correct node wastes an expected fractigt) of its a/; pushes because they are sent to faulty nodes. The
rest are sent with an equal probability over each outgoinyg @) (¢). Since out-degrees and in-degrees are
equal among all correct node&gsumption 7.}, each correct node receives the same expected number
of correct pushesE(gh""(t)) = (1 — &(t))aty. The variablegh"" () is binomially distributed, with the
number of trials equal to the total number of pushes amongpalés with an outgoing edge 4d(i.e., nodes
v s.t.u € V,(t)). Since this number is large, the number of received copeshes is approximately equal
to its expectation at all correct nodes, igh"*" (¢) ~ (1 — &(t))aty, for all u.

The total number of correct pushesi; |C|, which is a portionl — p out of all pushes (by definition of
p). Hence, the total number of pusheﬁi@p[c , and the number of faulty pushes%%_%\C\. Since faulty

pushes are perfectly balanced among the correct nadesgives exactlyBuSh(t) = %ael faulty pushes,
and their fraction among all received pushes is:

h _pP_
7:push (t) _ Tgus (t) o l—pael p

ST Ry g e+ (1-3(@)al p+(L-p)(1-3(1)
Out of all push-received ids stores a fraction odv in its view. Hence, the expected ratio of push-originated

i i i p
faulty ids in)V, is A=) A=F @)

Figure gb) depicts the evolution of pull-originated faulty idsn8e all correct nodes have an equal out-
degree Assumption 7.}, a correct node is pulled with probability- z(¢), while a faulty node is pulled with
probability z(¢). A pulled id is faulty with probabilityz(¢) if it comes from a correct node, and otherwise,
it is always faulty. Hence, the expected fraction of pulgorated faulty ids is3((1 — Z(t))Z(t) + Z(¢)).

Finally, sincet > Ty, all history samples are perfect (the ratio of faulty idsharh isf). Hence, their
expected contribution td(¢ + 1) is v f, and the claim follows. O

7.1.2 Fixed point existence

We now show that the system has a stable state. A vialsiealled dixed pointof z(¢) if ¢(z(t)) = Z(t) =
z. To find the potential fixed points, we substitute this inte #guation fromLemma 7.2 The following
Claim immediately follows from our definitions.

Claim 7.3 For o, 3,7, f € [0,1] andp € (0, 1), every real rooD) < & < 1 of the equation)(z(t)) = &(t)
is a fixed point oft(¢).

To shed more light on the balanced attack’s dynamics, weyshelfixed point values under specific com-
binations ofw, § and~. Simplifying the equation)(z) = z, we geth(x) = 0, where:

h(z) = B(1 = p)z® + (26p = 38 —p+ )2’ + (vfp —vf + 26 — D+ ap + /.
By Claim 7.3 the fixed pointz is a root of h(z). We first establish a number of useful observations
regarding the functiong (z) andh(x) that will be used throughout our analysis, here andppendix B.2
They can be shown by straightforward calculus.
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Figure 7:Fixed point z of the system-wide fraction of faulty ids in local views, as #unction of p, under
a balanced attack.

Observations:

0.1 ¢ (z) is monotonically increasing for € [0, 1], since both}m andi + (1 — ) = 23 — 2
are monotonically increasing in this interval.

0.2 The absolute value of the first derivativewfz) for = € [0, 1] is bounded by a constasf.

0.3 lim;—_ oo h(x) = —00, h(0) = ap+~vf > 0, h(z) = 0, h(1) = pla+ B+ ~vf—1) <0, and
lim, .1 h(xz) = +00. h(x) has a single feasible rodbt< & < 1 (sinceh(z) is continuous and the
other two roots lie outsid@, 1]). In addition,k(z) is increasing in0, &) and decreasing ifi, 1).

0.4 (z) > xzforx € (0,2) andy(x) < z for z € (z,1). This is a straightforward application of the
previous observation.

We focus on valid roots < z < 1. Afixed pointz = 1 is calledtrivial (any other value is nontrivial).
The existence of a nontrivial fixed point means that theresisible system state in which the representation
of correct ids is nonzero. On the other hand, if the systent iseatrivial fixed pointz = 1, it means the
views of all correct nodes hold only faulty ids.

Fixed points with history samples. If v > 0 (i.e., history samples are used), a trivial fixed point daas n
exist (1 is not a root) and a single nontrivial fixed point always exidthis is sincé:(0) > 0 andh(1) < 0
and by Observation 0.3 a single feasible root lie8 1 = < 1.

Fixed points without history samples. If v = 0 (no history samples), theth = 1 is a root, i.e., a trivial
fixed point exists. This is easily explainable, since if ti@ms of all the correct nodes are totally poisoned,
then neither pulls nor pushes can help. By Observation @ tis also a single feasible root< & < 1.

For example, iftx = § = 1 andy = 0, thenz = Y2 V(ff;)?’pQ, for0 < p < i. In contrast, if the fraction of
faulty pushes excee@ the only fixed point is 1.

Two more parameter combinations deserve special interest:

1. 8 = 1,a = v = 0 (pull only, no history samples). Both roois= 0 andz = 1 exist, for all p.
This can be easily explained by considering the initial ¢ois. Since faulty nodes cannot push
their own ids, if none of the views initially contain a faulity, correct nodes pull only from correct
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nodes and the faulty nodes will remain unrepresented. Oaotties hand, as shown Figure Xc,d),
if 2(Ty) > 0 (faulty nodes are initially represented) the views colafmsi = 1.

2. a=1,8 =~ =0 (push only, no history samples). The only valid rootis- 1%}), forp < % (recall
thatp > 0). That is, a nonzero fraction of correct ids can be maintiiffethe majority of pushes
are correct. This follows from the fact that a single cornqgash and a single faulty push equally
contribute to the view.

These results highlight the importance of using historygam Figure 7depicts a fixed point of(t)
for two combinations oy, 3, and~ and for various values gf. We see a perfect match between theoretical
analysis and simulations.

7.1.3 Convergence to the fixed point
We conclude the analysis by showing convergence to a naitfived point, if one exists.

The idea. We show Appendix B.J that the sequence of expected values(@§, {E(z(Ty+k))} for k > 0,
can be approximated by an auxiliary sequefw&(z(T,))}. The latter sequence convergegiae., so does
the expected value af(t). We exploit the properties af and use well-known calculus techniques.

7.2 Targeted Attack

We study a targeted attack on a single correct ngdehich starts upom’s join, which occurs at timdy,.
We prove that: is not isolated from the overlay by showing a lower bound @nekpected time to isolation,
which exceeds the upper bound on the time to a perfect coseguple shown irSection 6(a sufficient
condition for non-isolation).

Lower bound on expected isolation time. As we seek a lower bound, we make a number of worst-case
assumptions (formally stated Appendix Q. First, we assume that the protocol does not employ history
samples (i.ey = 0), so thatS does not correcy’s bias. Next, we assume an unrealistic adaptive adversary
that observes the exact number of correct pushesgb“h(t), and complements them with/; — gE“Sh(t)
faulty pushes — the most that can be accepted without blgclihthe same time the adversary maximizes
its global representation through a balanced attack oroaiect nodes # u, thus minimizing the fraction

of correct ids that, pulls from correct nodes. Finally, we assume thas not represented in the system
initially, and it derives its initial view from a random seft @orrect nodes. Hence, the ratio of faulty ids in
this view is at the fixed point, i.e., higher thar{Section 7.}

Clearly, the time to isolation iV(¢) is a lower bound on that i/ (¢). We study the dynamics af's
degree inV(¢), i.e., the sum of the out-degree (the number of correct idgew), ¢; — xz,(t), and the
in-degree,y, (t). We show inAppendix C.2that for every two values aof,(t) andy,(t), the expected
out-degree and in-degree values at 1 are

(Corsty ) =2 ()

where

PR
7 Nt 80 -2))
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Figure 8: Targeted attack without history samples: node degree dynams. n = 1000, p = 0.2,
a = (= 0.5,y = 0. Without history samples a targeted attack isolates: in logarithmic time in
/1.

Note that the coefficient matrix does not dependzQI) or v, (¢), and the sum of entries in each row is
smaller than 1. This implies that once the in-degree and titelegree are close, they both decay exponen-
tially (initially, this does not hold becauseis not represented, i.ey,,(7y) = 0, but within a few rounds,
u becomes represented afid— z,, andy, are close). Hence, the expected time to isolation is Idyaiit
with ¢;. Note that this process does not depend on the number of ygdes blocking bounds the potential
attacks onu independently of the system-wide budget of faulty pushesd blocking not been employed,
the top right coefficient would have beérnnstead ofn, because the adversary would have completely poi-
soned the push-originated entries\ip. The decay rate would have been much larger, leading to almos
immediate isolation.

Figure &a) depicts the dynamics afs expected degree (the sum @6 in- and out-degrees) until it
becomes smaller than 1. Simulation results closely followamalysis. The temporary growthqirs degree
att = 1 occurs because becomes represented in the system after the first round. Whelegree becomes
1, the node is isolated. For example, the average time tatisolfor¢; = 2/n is 10 rounds.Figure §b)
depicts the same results in log-scale, emphasizing thenexpial decay ot.'s degree and the logarithmic
dependency betwedh and time to isolation.

Upper bound on expected time to perfect correct sample.For given values of the non-unique stream
sizeA(t) and the deficiency factgr (Section §, Lemma 6.6boundsP.S P, (t), the probability for a perfect
sample at time, from below. The expected number of correct ids observed iy the end of round!” is
A(t) = ZtTfi)T_l(E(gSHSh(t)) + E(g5™(t))); the expected values gf™" (¢) and 5™ () are by-products
of the analysis iPAppendix C Figure 9a) depicts the deficiency facter measured by our simulations,
which behaves similarly for all values éf: p > 0.4 for all t. Figure 9b) depicts the progress of the upper
bound ofLemma 6.6with time, with A(¢) computed as explained above agné- 0.4. The corresponding
simulation results show, for each timethe fraction of runs in which at least one correct idSinis perfect.
For ¢y > 40, the PSP becomes close to 1 in a few rounds, much faster thlatios happensHigure &b)).
For /¢, = 20, it stabilizes af.5. The growth stops because we run the protocol without jistamples, thus
u becomes isolated, and ceases observing new correct idghariiPSP can be achieved by independently
increasingls, e.g., if¢» is 40, then the PSP grows ta8 (seeFigure 5. Note that perfect samples only
provide an upper bound on self-healing time,&scontains imperfect correct ids, andalso becomes
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Figure 9:Dynamics within a targeted node . = 1000, p = 0.2, « = g = 0.5 and v = 0): (a) Fraction
of unique ids in the stream of correct ids,p. (b) Growth of Perfect Sample Probability (PSP) with
time, p = 0.4. PSP becomes high quickly enough to prevent isolation.

sampled by other correct nodes, with high probability. Bhiestors coupled with history samples £ 0)
completely prevent's isolation, as shown iGection 8
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Figure 10:Targeted attack: degree dynamics of an attacked node i/ (), n = 1000, p = 0.2, a = 3 =
0.45and v = 0.1.

8 Putting it All Together

In previous sections we analyzed each of Brahms’s mechansgparately. We now simulate the entire
system.Figure 10depicts the degree of nodein N (¢) under a targeted attack. Nodeemains connected
to the overlay, thanks to history samples=£ 0.1). The actual degree af in A/(¢) is higher than the lower
bound shown irSection 7.2 due to the pessimistic assumptions made in the analysikighary samples,
no imperfect correct ids, etc.).
We now demonstrate the convergenceSah the correct nodes. We simulate systems with up te

4000 nodes;¢; and/, are sett@/n. To measure the quality of sam@feunder a balanced attack, we depict
the fraction of ids inS that are indeed the perfect sample over timEigure 11(a) Note that this criterion is
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Figure 11: Balanced attack: fraction of perfect samples (a) and faultynodes (b) inS, for f = 0.2,
n = 1000, . ..,4000, and {s = 2¥/n.

conservative, since missing a perfect sample does not atitzatty lead to a biased choice. More thaiVo

of perfect samples are achieved within less than 15 roundg; = ¢; = 3/n, the convergence is twice as
fast. Figure 11(b)depicts the evolution of the fraction of faulty idséh Initially, this fraction equalg, and

at first increases, up to approximately the fixed point’s @allhis is to be expected, since the first observed
samples are distributed like the original (biased) datastr. Subsequently, as the node encounters more
unique ids, the quality of improves, and the fraction of faulty ids drops fastftoThe protocol exhibits
almost perfect scalability, as the convergence rate isahedorn > 2000.

9 Conclusions

We presented Brahms, a Byzantine-resilient membershiplgagralgorithm. Brahms stores small views,
and yet resists the failure of a linear portion of the nodesnsures that every node’s sample converges to
a uniform one, which was not achieved before by gossip-bassubership even in benign settings. We
presented extensive analysis and simulations explaitiegnipact of various attacks on the membership,
as well as the effectiveness of the different mechanismirBssemploys.
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A Analysis - sampling

A.1 Convergence to First Perfect Sample

Proposition 6.5(restated) Lets be a sampler. Then, fda€| > 1 and for eacht > Tj,

pPA(t)

Pr(s(t) # s*|s* €C) =e T .

Proof : A sampler outputs its perfect it once that id occurs in the sampler’s input stream. So thegprob
bility of s(t) # s* is the probability that* did not appear in the stream of during the roufigs< ¢’ < t.
Recall thatA(¢) is the number of correct ids observed by the sampler from fign® ¢, and that a stream

of length A(¢) includes as many random unique ids as a stream of length) in which correct ids are in-
dependent and distributed uniformly at random. GGedenote a random correct id observed by the sampler,

and note that for each e C, Pr(G = v) = i| Then,

Pr(s(t) # s*|s* €C) = Pr(G # s*|s* € )P =
(1—Pr(G = s*|s* € €)M =

1 PA(t)
1—-— .
)

Sinceﬁ < 1, weusel —x = e * (1 — «x is the first order Taylor expansion ef*, and is a good
approximation for a smalt), and approximate the above as follows:

_PA(Y)

_ 1\ PA®)
Pr(s(t) # s*|s* € C) = <e \é\>p =e .
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From now on, we assun% is small enough, so we use equality. That is,

B Balanced Attack Analysis

B.1 Short-term Optimality

We now prove that in any single round, a balanced attack nmiagshe expected system-wide fraction of
faulty ids,z(¢), among all strategies. Consider a sched®leC — N that assigns a number of faulty pushes
to each correct node at roundA schedule isalancedif for every two correct nodes andv, it holds that
|R(u) — R(v)| < 1. Otherwise, the schedule imbalanced We prove that every unbalanced schedule is
suboptimal. All balanced schedules are equally optimalsyonmetry considerations.

Lemma B.1 If scheduleR is unbalanced, then there exists another schedule thaslead larger expected
ratio of faulty ids thanR in roundt + 1.

Proof : Since a schedule of faulty pushes in roundoes not affect the pulls or history samples in this
round, it is enough to prove the claim for the push-origidatés. Consider two nodesg, andwv, such that
R(u) > R(v) + 1. Consider an alternative schedutéthat differs fromR in moving a single push from

to v. Consider the change in the expected cumulative fractigushi-originated faulty ids iw, (¢t + 1) and
V,(t + 1) following this shift (in the other nodes, the ratio of faults does not change).

The probability of a push-originated view entry at nadeeing faulty, provided thak(«) faulty pushes
were received, is equal to the expected fractio¢f) among all pushes received by Note thatR(u) is
set in advance, i.e., without knowing the number of recec@tect pusheg;p“h( t). The expected number
of faulty pushes accepted depends on the latter as follows:

IC]
E(fgush‘rgush Z PI‘ push G]
We need to show that

B re™h = R(u)=1)+ B P = R(v)+1) > B = R(u))+ P = R(v)),

i.e.,
| |
R(u R(v)+1
push pUSh B —
ZPr =Gl R(u—1+G+ZPr = o tive
[c| [C]
R(u) R(v)

push _ . push _ .
ZZPr[gu (t) =G 7()+G+2Pr (t) =G I OETeR
Since all correct nodes have the same in-degreg(in (Assumption 7.}, g5 (¢) andg5"*" (¢) have iden-

tical (binomial) distributions. Hence, it is enough to shitat for allG > 0 and allR(u) > R(v) +1 > 0:

R(u) —1 R(v)+1 - R(u) n R(v)
Ru)—1+G R(w)+1+G ~ Rlu)+G Rw)+G’
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We simplify by switching sides:
R(u) —1 R(u) R(v)+1 R(v)
(R(u)—1+G - R(u)+G) + (R(v)+1+G - R(v)+G) =0
-G n G
(R(u) + G)(R(u) =14+ G) (R(w)+G)(R(v)+1+G)
SinceR(u) — 1> R(v) +1>0andR(u) — 2 > R(v) > 0, indeed

> 0.

e G
B + G (R —1+G) (RO + O ERO) +1+0)
e
Z RO L ORW -1+6) " R -2+ ) (R —1+0)
S G . ( 1 _ 1 ) _ G . 2 >0
" Ru)—1+G \R(u)—2+G Ru)+dG Ru)—1+G (R(u)+G)(R(u) —2+G) '
As needed. O

We conclude by showing that all balanced schedules arelgaqmimal for the adversary.

Proposition B.2 Every two balanced schedules lead to the same expectedbirasft faulty ids in round
t+1.

Proof : Consider two balanced schedukand R’. R can be transformed int®’ by a sequence of moves
of a single push message from nadéo nodev, such thatR(u) = R(v) + 1 whereask’(v) = R'(u) + 1.
For symmetry reasons, neither of these moves alters the®xpeumulative fraction of faulty ids received
by » andv. Hence, each transformation produces a schedule thaeisble same(t + 1) as the previous
one. g

B.2 Convergence to the fixed point

To capture the dynamics @ft), we define the sequendey }, the expected system-wide fractions of faulty
ids at timeT;, + k, as follows:

o famw) k=0,
" EGT + k) = B@(@ETy+k—1)) k>0

We next defing b, }, which we use to approximate: }. {bx} is defined as follows:
br = V*(2(Ty)), Yk > 0.

Equivalently, b, = *(b._1). Thatis, {b,} is a sequence of applying on the expected system-wide
fractions of faulty ids in every cycle.

In order to prove convergence {f;. }, we define an auxiliary sequenge; } below. We prove thab }
is bounded betweef and{c; }. Finally, we show that the latter sequence converges tmplying that so
does{by }. Since{b;} approximateqay}, {ar} converges ta: as well.

We now explain why{b;} can be used to approximafe,}. Consider an element, of {ax}. Since
ay, is the expectation of a random variable (name{{{, + &)), it can be written asy, = > p;z;, where
Vi : p; = Pr[z(Ty + k) = z;]. By Lemma 7.2a,1 can be written ag;1 = > pith(x;).
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Sincez is obtained as a combination of binomial distributions witany trials (we assumeto be very
large), it has a small variance, and therefore all the siganifi contributors to this sum are very close to
each other, i.e., they all lie within a small segment. Moegpgincey is continuous, monotonic, and has
a bounded derivative if0, 1), in small segments, it can be approximated by a linear fanctTherefore,

apy1 =y pitb(xi) = (D piws) = Y(ag).
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Figure 12:System-wide fraction of faulty ids in local views, under a bé&anced attack. Convergence to
a fixed pointz: n = 1000, p = 0.2, « = 8 = 0.5 and v = 0. The theory depicts the sequencéb; }.

Figure 12depicts the evolution ofb,} as a function of time for various initial values #{7). The
figure also depicts the actual ratio of the faulty ids in trews in the simulation study. We can see tfiat}
well approximates the actual faulty ids fractioffy, }'s convergence is slightly faster because the analysis

ignores blocking.

We next prove thafcy } converges ta:.. This is done by applying Hillam’s theorerij]. We conclude
by showing thaf{ b, } is bounded betweehn and{cy }, thus proving the convergence @f;, }.

Preliminary B.3 Liphschitz condition (simplified2f:
The functionf : [a,b] — |a,b] satisfies the Liphschitz condition with constant K iff fdraly € [a,b] it

holds that|f(x) — f(y)| < K|z — y|.

Preliminary B.4 Hillam’s theorem R5:

If f:]a,b] — [a,b] satisfies the Liphschitz condition with constant K, thenité@tion schemgz,, 1 =
Az, + (1= X)f(zn)}, whered = L, converges to a fixed point ¢f

Lemma B.5 The sequencéc; } converges to the fixed point ofz).

Proof : Based on Observations O.1 and O.2 and by the mean valuethgorell z,, zo € [0, 1] (Z1 < Z9),

there existst’ € [z1, Z2] such that

PY(Z2) — P(21)

Y
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We can therefore find a constaht satisfying the Lipschitz condition fop in [0,1]. Let K be such a
constant, and let = —1—. We are now ready to definey, }, as follows:

K+1-
o QE(TO) k=0,
T Ve + (1= Nibler1) k>0

Therefore, by Hillam’s theorenPfeliminary B.4, the iteration schemfry, = Acg—1+(1—N)9(ck—1)},

where\ = KLH converges to a fixed point ef(z) for eachcy = (1) € [0, 1].

From now on, we separate the proof into 2 cases: N
1. 2 <3(Ty) =ap=by=cp < 1.
2.0<2(Th) =ap=by = ¢y < &.

Lemma B.6 If 2(Tp) < 1, then{c;} converges ta@: (and not toz: = 1).

Proof : For the first case, recall thatis a single nontrivial fixed point. By Observation O#(z) < x
for z € (&,1). For an arbitraryr € (z,1), it holds that\z + (1 — M)y (z) < =z, i.e, the sequencécy, }
is monotonically decreasing with Hence, this sequence cannot converge to the trivial fixéuat b one
exists), i.e., it converges to. The proof for the second case is symmetrical. O

Lemma B.7 {b;} is bounded betweetand{c}.

Proof : For the first part of the claim we need to prove that< b, < ¢ (the second part’s proof is
symmetrical). We prove by induction @n The basis is immediate by definition af andcy. Assume that
T < by < ¢ for k > 0. Consider the following statements:

1. Y(cr) < cpg1. We know thateg 11 = e + (1 — N)(cr) > (ex) sincey(c) < ¢ (by Observation
0.4,¢(x) < zforz € (z,1) and indeedy, € (z,1)).

2. P(br) < ¥(ex), sincer) is monotonically increasing for € [0, 1] (Observation O.1) and based on
the induction hypothesidf < c).

3. Y(bg) = biy1 by definition ofby ;.

4. (z) < (bg), sincey is monotonically increasing far € [0, 1] (Observation O.1) and based on the
induction hypothesisi( < by).

5. & = ¢(z) by definition ofz.

Combining the above statements we get (2) < by1 = ¥(br) < ¥(ck) < ck41, thus concluding
the induction step.
O
Since the balanced attack does not distinguish betweeaatarodes, the same result holds fqi(¢),
for each correct node.

C Targeted Attack Analysis

This section analyzes the dynamics of a targeted attack mgle £orrect node.
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C.1 Assumptions

We use the following assumptions on the environment in ai@léound the time to isolation from below.

Assumption C.1 (no history samplesy = 0, which is equivalent to the worst-case assumption that the
expected ratio of faulty ids i at all times is equal to that in the id stream observed by theéeng.e.,
history samples are ineffective).

Assumption C.2 (unrealistically strong adversary) In each round> Tj, the adversary observes the exact

number of correct pushes received 1Iayg5u5h(t), and complements it with faulty pushesaté, (i.e., the

maximal number of faulty ids that can be accepted withoutkitm). Formally,r2""(¢) £ max(al; —

g2""(1),0).

Assumption C.3 (background attack on the rest of the system) The adversarynmzes its global rep-
resentation through a balanced attack on all correct nodeg u. At timeTj, the system-wide expected
fraction of faulty ids is at the fixed poitt (Note that this attack minimizes the fraction of corret fildatu
can pull from correct nodes).

Assumption C.4 (fresh attacked node) joins the system &f. It is initially not represented in any correct
node’s view and.’s initial view is taken from a random correct node.

We assume that the effect afon the entire system’s dynamics is negligible. Hence, warassthat
the out-degrees and the in-degrees of all correct nodepexege equal at all timesAssumption 7.}, and
these nodes do not blockéction 7.1showed that the system-wide effect of blocking is marginal)

C.2 Node Degree Dynamics

We study the dynamics of the degree of the attacked modg). Consider a set of triple§( X, Y, ¢)}, each
standing for a statéz,,(t) = X A y,(t) =Y}, for X € {0,...,0:},Y € {0,...,|C|¢1}. Eacht defines a
probability space, i.e}_ vy Pr[(X,Y,?)] = 1. Sinceu is initially not represented, the only states that have
non-zero probability for = Tj are those for whicly” = 0. The probability distribution over these states is
identical to the distribution of,,(7p). Sinceu borrows its initial view from a random collection of correct
nodes;z, (1y) ~ Bin({y, ).

We now develop probability spaces for eaclr 7. The notationPr[(X’,Y”, ¢t + 1)|(X,Y,t)] stands
for the probability of transition from stateX,Y,¢) to state(X’, Y’ t). Thatis,Pr[( X', Yt + 1)] =
Yoy Pri(X Yt + 1)|(X,Y,t)] - Pr[(X,Y,t)]. To analyzePr[(X',Y’ ¢t + 1)|(X,Y,t)] we separately
consider four independent random variables: the numbeusifqand pull-originated entries Iy, (denoted
22" (t) and25™* (¢)), and the number of push- and pull-propagated instancesrothe views of correct
nodes (denoteg?™*"(¢) and 45 (¢)). The first two affectX’ whereas the last two affedt’. We now
demonstrate how conditional probability distributions floese variables are computed. For convenience,
we omit the conditioning 00X, Y, t) from further notation.

y}j“ll(t): Since the system is at the fixed point, the probability ofipglfrom some other correct node
is (1 — #). Hence,y?™(t + 1) is a binomially distributed variable, with the number ofitsi equal to
the total number of correct pull§]l — 2)3¢,|C|, and the probability of success equal to the chance of an

entry in a random node’s view being namely ;- Yt + 1) ~ Bin((1 — )84,|C], 7)) Note that

E(ya ™ (t+1)) = B(1 - 2)Y.
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y2""(t): By Lemma 7.2the number of pushes that reach correct nodedliﬁfi%pp)“’. Denote
the number of pushes fromto correct nodes in roundby z,(¢). This is a binomially distributed variable
with o/, trials and probability of success equalite- X: z,(t) ~ Bin(at;, 1 — £). Fora givenz, (t) = Z,
since the total number of push- originated entriesdgC|, the number of push-propagated instances isf
Push(t—i— 1|Z) ~ Bin (oz£1|C| Sl O (= x)_’_ —— )) Note thatE( Push(t v 1|Z)) _ ZlépA Hence,

p+(1-p)(1-2)
sinceZ is independent op and,

1—p ol — X)) I—-p
P TR R Gy e TGy

xﬁ“ll(t): A pull from a faulty node (which happens with probabiliﬁr) produces a faulty id with
probability 1, otherwise the probability to receive a fautt is &. Hence, the probability of pulling a faulty
id is g + (1 - —)ac That is, the number of pull-originated faulty ids irs view is z5™* (¢ + 1) ~
Bin(Bl1, 3 + (1 — 7£)2) (e, E(@i™ (t + 1)) = B(X + (41 — X))).

We also compute the expected number of correct ids (withichtel) pulled by, which we need for
estimating the size of the id stream that traverses this (®detion 7.2 Sinceu performsg/; pulls, and
the expected number of correct ids pulled from a random ne@e+ z)¢;,

By (t +1)) = E(Z)

E(g5"' (1) = <1——) Bl (1= &) = (1— @) (6L — X).

25" (¢): The number of push-originated ids}**" (¢ + 1), depends on the number of correct pushes
received byu, gp“Sh( t). The latter is a binomially distributed variable, with thenmber of trials equal to
the total number of correct pushes/; |C | and the probability of success equal to the chance of ag entr
a random node’s view being, namelyz e L g2 (1) ~ Bin(ady|C], A |C‘) (Note thatE(gh"" (1)) = aY.
This value is of independent use for evaluating the size@fdtstream that traverses(Section 7.3).

An expected representation of a correct node different fooim the system i1 — #)¢;. Sinceu is
under-represented’( < (1 — z)¢; with high probability), the probability of receiving above’; correct
pushes is low, and hence, we ignore the case leéing blocked by exceedingly many correct pushes. On
the other hand, faulty pushes cannot blaakither (AssumptiorC.2), and therefore, we assume thatever
blocks. If G < «af; correct pushes are received, the adversary complementmthleer of pushes to the

maximum allowed (Assumptio€.2), i.e., the fraction of faulty pushes tois 1 — —7-. Hence, the number
of push-originated faulty ids in’s view is 25*" (¢ + 1|G) ~ Bin(a/;,1 — o Gy In other words,
push
B (t + 1)) = aby (1 — 20Oy o 2y v,
0451 Oégl

Putting it all together. Summing up, the expected values of in-degree and out-degrebe written as

<r1 — E(zu(t+ 1))) _ < — (E(x P“sh(t+ 1)) + B (¢ + 1)))) _
E(yu(t +1)) By (t + 1) + B (t + 1))
)

:<el—<< —Y)+BX + (0~ >>>>
by = X) s phimsy + 801 — &)

) Qv% i) (i)
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Since we have shown that does not block with high probability, anSlection 7.1demonstrated that the
effect of blocking on the rest of correct nodes is negligible assume that all views are recomputed in each
round. That is,

Prlo,(t+1) = X'|(X,V,0)] = > Prlad*(t) = X{|(X,V,1)] - Pr[aB () = X5/(X, Y, 1)],
X+ X=X
and
Priy,(t+1) =Y'|(X, Y, )] = Y PrE**(t) = Y{|(X,Y,t)] - PrlyB*™ (t) = Y5 |(X, Y, 1)].
Y{+Y4=Y"

Since the computations df’ andY” are independent, we conclude:

Pr((X", Y t)|(X,Y,t)] = Prlz,(t + 1) = X'|(X,Y,t)] - Prlyu(t + 1) = Y'|(X,Y,1)].
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