Decentralized Electronic Mail

Sivan Bercovici, Yaniv Frishman
Department of Computer Science
Technion - Israel Institute of Technology

Abstract— E-mail is one of the most popular Internet appli-
cations. Unfortunately, the server-centric architecture of today’s
commercial solutions inherently limits availability, efficiency, and
scalability. The single point of failure as well as the increasing
processing and storage stress on the server drives the 35 year old
infrastructure to the limits of its abilities. This paper proposes
decentralized electronic mail (DEM), a novel e-mail architecture
that overcomes existing systems’ shortcomings. Following the
mobile-object paradigm, DEM offers a decentralized approach,
which breaks the dependency between a mail user and a single
service provider, while relying entirely on participants’ resources.

I. INTRODUCTION

E-mail is one of the most common and well known com-
puterized services available today. Home users, corporations,
and universities, all expect around the clock availability of
the service, with almost immediate delivery of mail items.
Nowadays, e-mail architectures are governed by a server-
centric design, which implies a handful of weaknesses. These
include a single point of failure, storage and processing stress,
bottlenecks, and inefficiency. All these lead to continued
deterioration in the quality of service as more users join. To
address these challenges, current commercial solutions (e.g.,
Hotmail, Yahoo) focus mainly on the use of clustered servers,
implying a high operational and maintenance cost.

Conversely to the centric architectures, the trend of decen-
tralized self-organizing services that utilize user resources is
rising. The universal broadband connectivity achieved dur-
ing the last decade, as well as high performance personal
computers with increasing local storage sizes, yield a good
ground for many decentralized services. Based on peer-to-
peer (P2P) technology, with applications such as Gnutella [1]
and FreeNet [2], users have been able to harness their home
computer resources to the benefit of the global computer home
users community. We wish to adopt the properties of such
self-organizing, highly-available, decentralized networks in an
e-mail service.

In this paper, we present DEM, a novel e-mail architecture
based on the mobile-object paradigm. In this paradigm, objects
are able to migrate to remote-hosts along with their state
and behavior, while conserving the correct execution of the
program. As depicted in Figure 1, DEM’s concept revolves
around a decentralized approach in which the users hold
their own mailboxes, as well as the mailboxes of other users
that are temporarily offline. The sharing of computation time
and storage space opens a wide range of opportunities. User
mailboxes are mobile-objects that can travel so as to stay on
the live network. This way, mailboxes are able to continue their

Idit Keidar, Ayellet Tal
Department of Electrical Engineering
Technion - Israel Institute of Technology

[
|
2 ‘*,J _‘;,J (’_‘jjé'f ‘g;J

Client Client

FarGo

Fig. 1. DEM architecture overview.

operation despite users joining and leaving the network. Light-
weight mobile servers (depicted in figure 1 as gray disks) keep
track of user mailbox movement, thus enabling e-mail senders
to locate destination mailboxes. Mail items travel directly
from the sender’s to the receiver’s mailbox. Attachments are
also mobile-objects, separate from the mail items, allowing
multiple mail-items to point to a single attachment object.
Each of the persistent system’s components is replicated across
a number of hosts, allowing fault-tolerance.

We describe the implemented mobile-object based e-mail
system. Our implementation is realized using Fargo [3], a java-
based lightweight middleware and programming environment
that provides services that enable object mobility. To the
best of our knowledge, the DEM architecture is the first
attempt to create an e-mail system based on the mobile-object
paradigm. The work focuses on the development of a new
solution to the e-mail systems’ challenges, harnessing the
power of mobile-objects. We show that through the use of
this decentralized approach, the required properties of high-
availability, efficiency, and scalability are achieved.

The rest of the paper is organized as follows: Section II
discusses previous solutions, and identifies their shortcomings.
Section III defines the requirements we have set out for
our service. Section IV presents our architecture. Section V
discusses our implementation. An analysis of the quality of
our solution and a comparison with other solutions is given
in Section VI. Section VII concludes the paper and presents
possible future directions.

II. PREVIOUS SOLUTIONS

In this section, we list major problems in current e-mail
architectures. We also review previous work that proposed
decentralized e-mail architectures based on P2P.

Most modern e-mail systems are based on a centralized
approach in which users communicate with a central server in
order to retrieve their personal mail. In such an approach, the

user depends strongly on the availability and normal function
of the server that provides the e-mail service. This centralized
system design inherently suffers from key problems in terms
of scalability, performance, server stress, and fault-tolerance.

In a non-clustered e-mail system, a bottleneck is evident
at the single-server’s side. An increase in the number of
users increases both the storage and communication stress on
the single server. On top of these, nowadays, more features
are becoming available on the server side, enhancing the
mailing experience (e.g., anti-virus and anti-spam facilities),
thus further increasing the load. Processing, communication,
and storage stress may cause fatal deterioration of service
availability, up to the point where the server is unable to
provide the service at all.

Attachments in e-mail cause storage stress on the server. In
basic e-mail architectures, servers create duplicates of attach-
ments for each mail recipient. While a partial solution, imple-
mented in some commercial architectures, suggests sharing an
attachment by users of each server (a single attachment copy
per server), one can’t avoid the replication of the attachments,
when these are sent to multiple distant servers.

The single point of failure is another inherent problem
with current e-mail system design. A failure in an e-mail
server denies all mailing services from all the users who use
that computer to manage their mailboxes. Moreover, partial
network disconnection or delays can cause online clients not
to be able to reach the functioning server.

Several clustered server solutions have been proposed [4],
[5] and some implemented (e.g., Hotmail), yet these solutions
are both expensive and hard to maintain. Dedicated hardware
as well as dedicated maintenance staff is needed in order to
keep the service operational.

Not all e-mail systems’ drawbacks are due to its centralized
design. Several shortcomings are caused by legacy formats
and protocols that are still supported and used. For example,
the use of the standard Base 64 for in-mail binary-attachment
encoding inflicts a 33% increase in mail size [6].

Finally, current e-mail systems are insensitive to the end-
users’ computer resources and access rates. A user with
narrow-band connection may wish to review part of the mail
items, or even a part of a mail item.

Several attempts were made to construct a serverless e-
mail system that relay on peer-to-peer substrate to provide
the persistent mail storage. In [7], inboxes and messages are
replicated across multiple peers. Using the inbox’s and mes-
sages’ unique identifiers and through the use of the underlying
Distributed Hash-Table (abbreviated DHT), one can locate the
hosting users’ peers. Each user has a corresponding inbox that
holds the keys of unread mail. When a user wishes to read
mail, the inbox is retrieved from a storing peer, and a search for
each new item is processed using the lookup substrate. When
a user wishes to send a message, s/he first stores it on a set of
peers, and then locates the destination inbox using the lookup
service. A header, specifying the message identifier (i.e., the
key), is appended to that inbox. POST [8] describes a similar
architecture built on top of Pastry [9]. OceanStore [10] is a
distributed utility that provides continuous access to persistent

information. The work suggested building an e-mail system as
an application on top of the distributed persistent file-system
layer. [11] examined the implementation of a mail reader on
top of Bayou, a weakly consistent replicated database designed
to support distributed applications.

III. REQUIREMENTS

We identify the following requirements from our service:

1) Availability: E-mail users would like their mailbox to
be accessible regardless of their connection point. From
any Internet-connected computer, one should always be
able to read her/his new mail and perform other basic
mailbox operations, such as mail composition, deletion,
archiving, and search.

2) Efficiency: The service should be efficient in terms of
communication, space, and performance.

3) Scalability: As the number of users of a mail service
grows, scaling the system should require adding as little
dedicated hardware as possible (if any addition at all).
The overhead inflicted on users due to the growth should
be kept to a minimum.

4) Personalized mailbox: The service should support per-
sonalized mail features. These may include client-side
e-mail application elements such as an address book,
folders, white-list, and general applications* preferences.

5) End user sensitivity: Users of e-mail systems are hetero-
geneous in the sense of the CPU power and connection
bandwidth of the machines they use. The system should
be sensitive to each user’s computation and communi-
cation abilities, and suit the individual constraints.

6) Low cost: The system should require as little dedicated
hardware as possible.

7) Minimum maintenance: It is desirable that the mainte-
nance of such a system be kept to a minimum, so as
to inflict low operational cost and ease management and
scalability. A self-maintaining system is preferred.

IV. DEM ARCHITECTURE

This section presents the design of our novel e-mail ar-
chitecture, which addresses the described challenges. DEM
provides the fundamental operations for e-mail clients: mail
delivery, automated reception of mail, and mailbox mainte-
nance. The architecture includes administration components,
enabling system-wide monitoring and performing run-time
application-network layout modifications. DEM is built on
top of a distributed application middleware that offers several
mobile-object services:

1) Explicit migration: The application can explicitly request
to relocate specific components to specific hosts at
runtime, while conserving correct state and execution.

2) Implicit migration: Following developer-defined co-
location relationships between application components,
the middleware enforces implicit migration (e.g., two
components that must reside on the same machine will
always migrate together, and to the same destination
machine).

3) Location transparency: The application interacts with its
components through enhanced references that mask a

component’s actual host location. These interactions take
the form of object method calls through these enhanced
references, hiding location information. The middleware
updates these references so that pointers remain valid
despite source or target migration.

4) Monitoring: Object locations and migration events can
be monitored by the application, thus enabling applica-
tion components to react to system events.

5) Reference construction: An enhanced reference can be
constructed in run-time to enable interaction with remote
objects that are searched for and discovered on-the-fly.

In the DEM architecture, all primary components are mo-
bile. The most basic component is the mobile mailbox. Each
user has a private mailbox through which she/he interacts with
her/his personal mail items. In order to achieve continuous
operation and availability of a mailbox, the mailbox travels
among computers, so as to ensure that it remains on the live
network (i.e., on a participating computer that is operating and
connected to the network).

To help a mailbox stay on the live network, a second mobile
component, called the dispatch-unit, is used. The dispatch-unit
holds a list of connected hosts. By knowing which computers
are on-line, the dispatch-unit is able to act as a match-
maker between mobile mailboxes and possible temporary
hosts. Every participating computer is considered a legitimate
host for mobile mailboxes and attachments. The dispatch-
unit also holds references to mailboxes, and references to
attachments. Using hash-tables, the dispatch-unit maps unique
user identifiers and attachment identifiers to mailbox object en-
hanced references and attachment object enhanced references,
respectively. The location transparency property provided by
the middleware keeps the references held in the hash-table
valid despite mailbox and attachments migration. A user who
wishes to get a valid reference to an object consults the
dispatch-unit by providing the object’s identifier.

As a mobile component, the dispatch-unit can reside on any
of the hosts. A number of dispatch-units co-exist, balancing the
number of requests among them and offering a degree of fault-
tolerance by replication. From this point on, we describe com-
munication in the system with respect to a single dispatch-unit,
which is randomly selected from the set of dispatch-units per
request. An external list of backbone dispatch-units is available
for first-time requests (i.e., joining the network). To add a new
dispatch-unit (other then those in the backbone list), the new
dispatch-unit must inform any currently connected dispatch-
unit of its existence. The connecting dispatch-unit copies its
initial hash-tables from an already connected dispatch-unit.

A. Connecting to the service

When a user becomes on-line and wishes to retrieve her/his
personal mailbox, she/he first searches for a dispatch-unit
(depicted in figure 2(a) as a gray disk). Using the middleware’s
reference construction service, dispatch-unit objects can be
searched in different hosts (namely those in the backbone list)
to provide the joining user with an entry point to the e-mail
service. From that point, the user’s component communicates
with the dispatch-unit through ordinary method calls (achieved
through the use of the enhanced references and the loca-

My
Client
. iﬂﬁ‘
h ¥

Client

yd

e

Miline Client

(a) Before movement.

oo

Client ~L_Client

/
el [3"”* .
& i = g

Client Client

o
[}

(b) A client connected and a mailbox migrated to it.

i .ﬁ —

Client

=]

7
I'E o,
Clicnt

(c) A mailbox migrates from a disconnecting client.

Client

Fig. 2. Mailbox mobility in the DEM system.

tion transparency property provided by the middleware). The
dispatch-unit is inquired for a valid reference (shown as a red
arrow) to the user’s mailbox object, which at that point in time
resides on some remote host. Upon resolving the reference, the
middleware’s explicit object migration service is used in order
to move the mailbox from the remote host to the user’s own
computer. Figure 2 shows a visualization of the movement
of a mailbox between computers during the user’s connection
and disconnection process. In Figure 2(a), one client holds her
mailbox, and another client holds both her mailbox, and the
mailbox of an offline user. In Figure 2(b), a mailbox moved
to the client that just got connected to the service (shown
in the lower-right blue frame). The newly connected user
can continue the interaction with her/his mailbox at its new
location through the use of the same enhanced reference (as
it is kept valid by the middleware after the migration ends).
As long as that user’s computer is operating and on-line, this
computer may also serve as a host for other offline users’
mailboxes.

B. Disconnecting from the service

When a user wishes to disconnect from the network, the
application transfers all locally operating mailboxes (includ-
ing her/his own) and attachments to a set of distant hosts.
Figure 2(c) illustrates this process. The dispatch-unit provides
the match-making service: it uses its list of on-line participants
to find suitable operating hosts. By using the middleware’s
explicit migration service, mailboxes and attachments are
transferred from the disconnecting user’s computer to their
new hosts. The middleware, which provides location trans-
parency, updates the enhanced references in the dispatch-unit
hash-tables so that they will reflect the new post-migration
locations.

C. Sending mail

The most fundamental operation of an e-mail system user
is sending an e-mail. In DEM, a user can send an e-mail to
another user’s mailbox regardless of the connection status of
the destination user (i.e., the destination user may be either
on-line or off-line). This is possible thanks to the fact that
although a destination user may be off-line, her/his mailbox,
being a live mobile-object, continues its operation on some
temporary host, and is reachable through the valid references
held in dispatch-units. To acquire a valid reference to the
destination mailbox, a query with the destination mailbox’s
identifier is sent to the dispatch-unit. The dispatch-unit uses
its hash-table and the given identifier to retrieve a reference to
the corresponding mailbox, returning it to the requester. Using
the returned reference to directly invoke a store-mail method
in the destination mailbox, the new mail item is passed and
stored in the destination mailbox object.

D. Mailbox interaction

Mail items reside inside the mailbox object. To enable inter-
action with the mail items, a valid reference to the mailbox is
acquired through the use of the afore mentioned dispatch-unit
services. Mailbox operations, such as reviewing and deleting
mail items, are possible regardless of the actual location of
the mailbox. It is important to note that although during the
user connection process the personal mailbox travels to the
user’s machine, the user can choose to leave the mailbox on
the distant machine, performing the operations on the mailbox
from distance.

E. Attachments

Our architecture supports floating attachments. When a user
wishes to send an attachment as part of a mail item, a mobile-
object that encapsulates the attachment is created. A mail item
contains a unique identifier to a mobile-attachment rather than
the attachment itself. If a mail item with an attachment is
sent to multiple recipients, they all contain the same unique
identifier of the floating attachment. Attachments, much like
mailboxes, travel on the live network using the dispatch-unit’s
match-making services, and hence they also offer continuous
availability. The location transparency property allows the
dispatch-unit to offer valid references of mobile-attachments,
thus providing clients with the ability to acquire a valid
reference to any attachment object.

F. Replication

The personal mailboxes, dispatch-units, and floating attach-
ments are all replicated, improving their availability. Each
personal mailbox has a fixed set of replicas scattered randomly
over the live network. When a mailbox is acquired by a user,
the dispatch-unit returns a reference to one of the mailbox’s
replicas. Each replica has references to all other replicas of the
same mailbox. These references are kept valid by the mid-
dleware, regardless of the independent mailbox movements.
The mailbox replicas periodically compare their contained
mail item lists and history of maintenance operations (such
as mail deletion). Each mailbox performs periodic liveness
tests on the other replicas by attempting to invoke a method
through a replica reference. When a mailbox detects a non-
responding replica, it creates a new replica, which in turn is
passed to another computer through the use of the dispatch-
unit services. In this scheme, there is a positive probability
for multiple replicas to detect a faulty mailbox, reacting in
multiple creations of new replicas. In order to converge to a
fixed number of replicas per mailbox, when a certain threshold
is exceeded and this is detected by one of the replicas,
synchronized termination of a replica is performed. A self-
healing mechanism, similar to the one in the mailbox object,
is also used for floating attachments and for dispatch-units.

V. IMPLEMENTATION

In this section, we describe our implementation of the DEM
architecture. To make this paper self-contained, we give a
brief overview of FarGo [3], which provides all the mobile-
component services described in Section IV.

FarGo is a distributed applications development and deploy-
ment environment. In FarGo, complets are the basic building
blocks of an application, defining the minimum unit of re-
location - the mobile object. Cores are uniquely-identifiable
objects that provide the system support needed for the mo-
bilization and interconnection of complets across machines.
Each complet is associated with exactly one core at any given
time. At runtime, complets can move across any running
core while preserving the correct execution of the application.
The FarGo environment is Java-based, which yields easy and
short development of architecture-neutral applications. Minor
modifications to the regular Java programming model are
necessary in order to make use of the mobility features.

Our implementation includes all the fundamental facilities
of an e-mail system, with its components built as complets
using FarGo. On the client end, we implemented the mo-
bile mailbox and a graphic user interface (GUI) component.
Floating attachments were implemented to enhance the system
with the ability to send files or other objects as part of
a mail item. On the service providing end, the dispatch-
unit was implemented. We implement it as a mobile object
in order to allow the greater flexibility, and also to take
advantage of optimization opportunities at the network level,
such as moving closer to dense users areas. A GUI for the
dispatch-unit was implemented to be used as part of the
service monitoring facility. As depicted in Figure 3, through
the monitor of any specific dispatch-unit, one can study the

Dispatch Unit / localhost.localdomain; 3099/stationl
List of clients

A Alice@DEM
A Bob@DEM
A Charlie@DEM

=)

List of mailbox pools

_‘;,J n
_QE-J m
()

e

(1) [ID:5426557 16197 4447984]

[ID:6646749014075725264]
[ID:4101079550977 16576]
[ID:7556196B35767266733]

List of Dispatch Units
= "7 [ID:6646749014075725502]

S5 ID:7556196835767266361]

Fig. 3. Dispatch-unit monitoring GUI.

number of known dispatch-units, on-line users, off-line users
and mailbox spread.

Log4J [12] is a logging infrastructure that is used as a
debugging tool for distributed applications. To enable the
system’s examination, all components produce event logs
managed by Log4J facilities. An integrated administration
environment allows monitoring and interaction with any of the
system’s components. The integrated environment includes an
application complet browser, a viewer for collective logs from
distant components, and a Python [13] scripting console. The
scripting console allows an administrator to perform a wide-
range of operations on the system, from inquiring a specific
component’s state, to explicitly ordering the movement of
components. The implemented environment supports the exe-
cuting of Python scripts that interact with the running system.
This means that modifications of the system, including creation
and addition of new components, can be performed in run-
time, without the need for a total system restart.

The replication mechanism for the dispatch-units, mail-
boxes, and attachments was implemented. The replicas per-
form a periodic synchronization, and were also enhanced with
a self-regeneration property (as described in section IV-F).

VI. ANALYSIS AND RESULTS

In this section we show that the proposed architecture and
its implementation correspond to the list of requirements.
Auvailability, efficiency, and scalability are all at the focus of
our novel system.

Our first requirement from the system is continuous avail-
ability. In DEM, the users’ mailboxes, attachments, and
dispatch-units, all achieve availability by traveling so that they
would stay on operating and Internet-connected computers.
Replicating the basic system components allows the system to
be resilient to any local faults. In our system, if a mailbox, a
dispatch-unit, or an attachment fails, any of their replicas can
be used. Common e-mail systems use clusters of servers to
offer the same solution, yet at the higher-price of additional
hardware and maintenance. Researched P2P based solution

offers the same fault-tolerant by replication mechanism, but the
lack of migration and self-healing properties produces a lower
degree of fault-tolerance per the same replication factor. In all
previous architectures a user is highly dependable on a fixed
set of computers that are responsible for her/his mailbox. If all
computers in that fixed set are down, the user can’t use the mail
service. Conversely, in DEM, the set of computers holding a
specific mailbox changes dynamically, thus a specific mailbox
is unavailable only if all the hosts holding the replicas fail at
the same time-window without regenerating. This yields that
DEM has a higher fault-tolerance, in comparison to previous
architectures.

Efficiency is the second requirement from DEM. Dispatch-
units handle only lookup and match-making requests, while
most of the communication is performed between participants,
thus utilizing network resource better. In DEM, a mail item
travels directly between sender and receiver, which yield O(1)
communication cost. In common e-mail systems, mail items
pass through a chain of servers until reaching the destination
user mail server. In researched P2P solutions, mail delivery
costs O(logn) (where n is the number of participants) due
to the underlying DHT substrate. DEM balances the mailbox
lookup load by maintaining multiple dispatch-units, and using
the efficient hash-table data structure.

Spatial efficiency is treated in the form of attachments op-
timization. DEM encapsulates attachments as mobile-objects,
replacing the in-mail attachment with an in-mail unique at-
tachment identifier. Storage stress due to a single attachment
is att - rep (where att is the size of the attachment and rep
is the architecture’s constant replication factor), regardless to
the number of mail recipients. Similar mechanisms in P2P-
based architectures yield the same performance, yet the lack
of migration and regeneration reduces its degree of fault-
tolerance. In commercial solutions, where attachments are in-
mail, storage stress is linear to the number of mail recipients.

The third requirement of DEM is scalability. In DEM, most
of the communication takes place between a sender and a
mailbox holder. Communication with the dispatch-unit is kept
to a minimum, allowing the removal of bottlenecks evident
in server-centric designs. Concentrated stress is eliminated, as
the increasing storage and communication load is balanced
evenly among all participates, including the new ones. Relying
mostly on users’ resources, DEM inherent load balancing
offers a scalable system. On the other hand, in the centralized
approach, servers are highly stressed in both processing and
storage. Popular mail systems, such as Hotmail, distribute the
stress through the use of computer farms. Although the stress
problem decreases, the cost of acquiring and maintaining this
large number of machines is high.

DEM achieves the personalized e-mail experience by using
mobile-objects properties. Due to the fact the mobile-mailbox
state and behavior are preserved regardless of their host,
the personal configuration and additional mailbox plug-ins
continue to exist. In centralized solutions, additional features
inflicts on system’s performance and may require additional
hardware. P2P solutions offer only mail-content availability.

DEM offers an end-user sensitive architecture, as a mailbox

can reside on one host while the user’s interface on another.
Thus, a user can examine any single mail-item at any preferred
level with respect to her/his resources. Many commercial
mail services are provided through the use of the Post Office
Protocol (POP) [14], offering the mail service at a mailbox
granularity. In this scheme, a user periodically retrievs all
available mail-items from the server, deleting the server’s copy.
At best, current commercial solutions allows services at a mail-
item granularity. These solutions are insensitive to the user’s
computer and network abilities.

DEM relies mostly on users’ resources, thus offers a low
cost solution. Scaling the system does not imply additional
dedicated hardware, as is the case with commercial solutions.
The self-healing property of DEM’s components yields a
self maintaining system, whereas in traditional commercial
solutions, a larger e-mail system requires an increasing main-
tenance cost.

Table I summarizes the comparison among DEM, commer-
cial and researched solutions.

TABLE I
COMPARISON AMONG SOLUTIONS

Features Single Clustered P2P-based DEM
server server
No V v
bottlenecks
Mailbox VA
independent of
fixed servers
Service Server Cluster Fixed set Dynamic
failure dependent | dependent | dependent set crash
in short
window
Communication | O(1) O(logn) o(1)
cost
Spatial att - recipients att - rep att - rep
efficiency
scaling cost Stronger Larger None None
server farm
Service Requires Not Local
extension server upgrade supported changes
end-user At mail item granularity at mail item
sensitivity content
granularity
cost and Proportional to the No cost. Low cost.
maintenance amount of dedicated Maintenance | self-healing
hardware not possible

VII. CONCLUSION AND FUTURE DIRECTIONS

We have presented DEM, a novel decentralized mobile-
object approach to the e-mail service. The DEM architec-
ture deals with the principal challenges an e-mail system
faces. We have shown that DEM has a higher degree of
availability, efficiency and scalability than previous solutions,
while maintaining a low operational and maintenance cost.
The system also retains the personalization of the service and
allows sensitivity to the end-user resources. These features
are achieved thanks to the decentralized architecture which
eliminates bottlenecks, and the mobility, replications, and self-
healing properties.

We have presented the DEM implementation, from which
one can learn the feasibility of our solution. The implemen-
tation can be used as a ground-base for further research in
the direction of a decentralized mobile-object based e-mail

system. The system administration and research environment
developed as part of our solution offers a convenient experi-
mentation tool, and enables an easy expansion of the current
architecture.

Possible future directions include moving from a mobile
mailbox granularity to a mobile mail-items granularity, for
better utilization of system resources. To this end, we would
also like to examine attachments fragmentation. Additional
fault-tolerance mechanisms, such as backing-up mailboxes on
hosts’ disks, should be examined. Research on an adaptive
replication factor mechanism may produce a lighter system,
improving the overall performance while maintaining the same
level of stability. The mailbox content privacy feature should
be examined. We believe it can be achieved through the use
of known asymmetric cryptographic mechanisms.

Another important direction for future research is to provide
with a plan for incremental deployment of DEM. It is possible
to integrate DEM networks into the regular worldwide e-
mail systems by constructing a mail-delivery interface between
current mail systems and DEM. An interface should also
be made between common e-mail client applications (e.g.,
Outlook) and DEM.

REFERENCES

[1] “The Gnutella protocol specification,” 2000, available at
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.

[2] 1. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,” in
Workshop on design issues in anonymity and unobservability, 1CSI,
Berkeley, CA, USA, July 2000, pp. 311-320.

[3] O. Holder, I. Ben-Shaul, and H. Gazit, “Dynamic layout of distributed
applications in FarGo,” in Proceedings of the 1999 International Con-
ference on Software Engineering. 1EEE Computer Society Press / ACM
Press, 1999, pp. 163-173.

[4] A.D. Joseph, E. A. Brewer, B. Behren, J. Kubiatowicz, and S. Czerwin-
ski, “NinjaMail: the design of a high-performance clustered, distributed
E-mail system,” in Proceedings of the First International Workshop on
Scalable Web Services, Toronto, Canada, Aug. 2000.

[5] B. N. Bershad, H. M. Levy, and Y. Saito, “Manageability, availability
and performance in porcupine: A highly scalable, cluster-based mail
service,” in Symposium on Operating Systems Principles, 1999, pp. 1-
15.

[6] D. A. Turner and K. W. Ross, “Continuous media e-mail on the Internet:
Infrastructure inadequacies and a sender-side solution,” IEEE Network,
vol. 14, no. 4, pp. 30-37, July/Aug 2000.

[7] J. Kangasharju, K. W. Ross, and D. A. Turner, “Secure and resilient peer-
to-peer e-mail: Design and implementation,” in proceedings of the Third
IEEE International Conference on Peer-to-Peer Computing, Linkoping,
Sweden, Sep 2003.

[8] A. Mislove, A. Post, C. Reis, P. Willmann, P. Druschel, D. S. Wallach,
X. Bonnaire, P. Sens, J.-M. Busca, and L. Arantes-Bezerra, “POST: a
secure, resilient, cooperative messaging system,” in Proceedings of the
9th Workshop on Hot Topics in Operating Systems (HotOS’03), Lihue,
HI, May 2003.

[9]1 A. Rowstron and P. Druschel, “Pastry: scalable, decentraized object lo-
cation and routing for large-scale peer-to-peer systems,” in Proceedings
of the 18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Nov. 2001.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“Oceanstore: An architecture for global-scale persistent storage,” in
Proceedings of ACM ASPLOS. ACM, November 2000.

D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. Theimer, “The
case for non-transparent replication: Examples from bayou,” IEEE Data
Engineering, pp. 12-20, December 1998.

“Log4] logging services,” available at http://logging.apache.org/log4j/.
“Python,” available at http://www.python.org/.

M. Rose, “Post office protocol - version 3, extended service offerings;
RFC 1082, Internet Request for Comments, no. 1082, Dec. 1988.

[11]

[12]
[13]
[14]

