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Abstract Many reliable distributed systems are consensus-
based and typically operate under two modes: a fastnor-
mal mode in failure-free synchronous periods, and a slower
recoverymode following asynchrony and failures. A lot of
work has been devoted to optimize the normal mode, but lit-
tle has focused on optimizing the recovery mode. This paper
seeks to understand whether the recovery mode is inherently
slower than the normal mode.

In particular, we consider consensus algorithms in the
round-based eventually synchronous model of [11], where
t out of n processes may fail by crashing, messages may
be lost, and the system may be asynchronous for arbitrarily
long, but eventually the system becomes synchronous and no
new failure occurs (we say that the system becomes stable).
For t ≥ n/3, we prove a lower bound of three rounds for
achieving a global decision whenever the system becomes
stable, and we contrast this with a bound of two rounds when
t < n/3. We then give matching algorithms for botht ≥ n/3
andt < n/3.

1 Introduction

1.1 Background and motivation

State machine replication [21,29] is the most popular tech-
nique for achieving software fault-tolerance in distributed
systems. With this approach, all replicas perform operations
that update the data in the same order, and thus remain mu-
tually consistent. In order to agree upon the order of opera-
tions, aconsensusalgorithm [24] is often employed, where
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an instance of consensus is triggered for each user request or
group of user requests [22].

In a consensus algorithm, every process proposes a
value, and correct processes are required to eventually de-
cide on one of the proposed values, so that no two correct
processes decide differently. It is well-known that consen-
sus is not solvable in an asynchronous system even if only
one process can crash [14]. On the other hand, it is often
unrealistic to assume a completely synchronous system with
known time bounds by which all messages arrive. In prac-
tice, one can generally assume that the system may behave
asynchronously for an arbitrary period of time, but eventu-
ally satisfies some timing guarantees. Such system are called
eventually synchronous[11]. Partially synchronous mod-
els [11,7] and asynchronous models enriched with failure
detectors [4] are frequently used to model eventually syn-
chronous systems.

A run in an eventually synchronous system may begin
with an unboundedunstableperiod during which failures
may occur, no latency bounds are guaranteed to hold, and
the output of failure detectors can be arbitrary. However,
every run eventually enters astableperiod, in which latency
bounds or guarantees on failure detector outputs do hold, and
during which there are no new failures. Many distributed al-
gorithms and systems optimize for stable periods, running
a special (more costly)recovery modealgorithm upon re-
covery from unstable periods, and anormal modealgorithm
while stability lasts. This is true for replication schemesà
la Paxos [22,30,25]; transaction-based schemes such as [27,
12]; virtually synchronous group communication systems,
where the group membership algorithm is run in recovery
mode [3,6,1]; and also replication engines based on group
communication [18,15,2].

In this paper, we focus on the cost of the recovery mode.
We consider a round-based eventually synchronous model
that is close to the crash-stop basic round model in [11], and
we are interested in determining time-complexity bounds for
consensus algorithms in this model. Obviously, in unstable
periods, we cannot bound the number of rounds needed to
achieve a global decision (i.e., rounds needed for all correct
processes to decide), as this would contradict the FLP re-
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sult [14]. 1 We can, however, bound the number of rounds
needed to reach global decision in stable periods. Specifi-
cally, we consider how quickly a consensus algorithm can
decide after an arbitrarily long asynchronous failure-prone
period, i.e., the cost of recovery of a consensus algorithm
from asynchrony and failures. Note that if a system oscil-
lates between unstable and stable periods, this cost of recov-
ery also indicates how long a system has to remain stable in
order to guarantee that a consensus algorithm will be able to
decide.

1.2 Results and Contributions

We consider an eventually synchronous model in which
processes only fail by crashing, and the model ensures that in
every runr, there is an unknown round numberGSR(r) ≥
1, (Global Stabilization Round of runr) such that only cor-
rect processes enter roundGSR(r),2 and from that round
onwards, messages sent from correct processes to correct
processes are received in the same round in which they are
sent. (Any message sent beforeGSR(r) may be lost.) At
mostt out of n processes may fail in any run. For example,
GSR(r) = 1 implies that all faulty processes crash before
starting round 1 in runr.

Our first result, presented in Section 4, is a lower bound
on recovery mode: we show that ift ≥ n/3, then every
consensus algorithm has a runr that requires at least three
rounds for global decision from roundGSR(r) (i.e., some
process decides at or after roundGSR(r) + 2), for any
value of GSR(r). Given the known tight lower bound of
two rounds on global decision in runs that are failure-free
and stable from the very beginning [19], (also callednice
runs), we get that there is an inherent overhead of one round
for recovering from failures in systems that can be asynchro-
nous whent ≥ n/3. Intuitively, recovery in the eventually
synchronous model is more costly even after the system be-
comes stable, since an algorithm cannot know that the sys-
tem has stabilized, and must account for the possibility that
processes from which messages do not arrive are in fact cor-
rect. Our lower bound is proven by examining a subset of
the runs in which each process receives at leastn − t mes-
sages in each round. Thus, our lower bound also applies to
algorithms that wait forn − t messages in each round be-
fore starting a new round. (Note that algorithms that do not
overcome message loss may wait forn− t messages in each
round, but waiting for more messages may violate liveness,
ast processes may crash.)

In Section 5, we give a matching consensus algorithm
that globally decides by roundGSR(r) + 2 in every runr,

1 The time-complexity metric considered in this paper is the number
of rounds required for all correct processes todecide(global decision).
The number of rounds required for all correct processes tohalt (global
halting [8]) may be different.

2 Our definition of GSR differs from the definition of the Global
Stabilization Time (GST) in [11] in that, in the latter, processes may
fail after GST.

thus showing that our lower bound is tight. This is signifi-
cantly faster than any previously suggested algorithm. This
algorithm also achieves the two-round lower bound in nice
runs.

Interestingly, in Section 6, we show that whent < n/3,
recovery mode is not more costly than the normal mode: we
give a consensus algorithm that toleratest < n/3 crashes
and globally decides by roundGSR(r) + 1 in every runr.
This suggests that mechanisms such as leases [25,30] and
group membership [6], which often slow down the recovery
mode in order to expedite the normal mode, are not needed
when less than a third of the processes can crash.

2 Related work

In the eventually synchronous model, any algorithm that
solves consensus also solves uniform consensus [17], a vari-
ant of consensus in which no two processes (whether correct
or faulty) are allowed to decide differently. Therefore, for
the rest of this paper, wherever we mention consensus, we
implicitly refer to its uniform version.

In the synchronous model, the tight bound on the num-
ber of rounds for global decision of a uniform consensus
algorithm ist + 1 [13,5]. But in the eventually synchronous
model, there obviously cannot be any bound on the number
of rounds for decision, since the system can be asynchro-
nous arbitrarily long. We can, however, bound the number
of rounds needed to reach a global decision in stable peri-
ods. In [19], it has been suggested to investigate the bound
in nice runs of eventually synchronous systems, i.e., those
runs that are failure-free and stable from the very beginning.
It was shown that the tight bound in such runs is two rounds.

Next, consider synchronous runs in which all crashes are
initial, i.e., any process that crashes, crashes before starting
round1. (In our model, this corresponds to the a runr in
whichGSR(r) = 1.) First of all, let us examine the synchro-
nous model. We observe that a simple adaptation of the syn-
chronous consensus algorithm of [23] gives a synchronous
uniform consensus algorithm that globally decides in two
rounds in every run where all failures are initial. Our lower
bound shows that the same performance cannot be achieved
in the eventually synchronous model ift ≥ n/3: in this
case, every algorithm has some runr with GSR(r) = 1 in
which global decision requires three rounds. Thus, our lower
bound highlights an inherent difference in time complexity
between uniform consensus algorithms for the synchronous
model and ones for the eventually synchronous model.

Finally, let us examine recovery from arbitrary periods of
asynchrony and failures. The original DLS [11] consensus
algorithm for the eventually synchronous model progresses
in phases and uses the rotating coordinator approach. Each
phasek consists of four rounds,4k − 3 to 4k, and is coor-
dinated by a predefined process. There are runsr in which
DLS globally decides only at roundGSR(r)+ 2+4(t+1):
GSR(r) might occur in the second round of a phase and thus
“waste” that phase, and the nextt phases may be wasted
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if they are coordinated by faulty processes. In general, all
rotating coordinator algorithms are prone to recovery times
linear int.

Leader-based algorithms can recover from failures faster
than rotating-coordinator ones. Roughly speaking, after
GSR(r), the phases with faulty coordinators may be pre-
vented if processes elect a leader to coordinate each phase
instead of relying on a predefined coordinator [22,26,9].
However, to the best of our knowledge, no previously sug-
gested algorithm meets our bound of three rounds. For ex-
ample, in Paxos [22], decision can take up to five rounds
after GSR(r). More specifically, after a leader fails, three
rounds are needed in order to elect a new leader, and then it
takes two additional rounds for the leader to achieve consen-
sus. Intuitively, our algorithm achieves the optimal recovery
time by running the normal and recovery modes simultane-
ously.

The leader-based algorithms in [26,9] require that
processes receive at leastn − t messages in every round,
whereas in our model, any number of messages may be lost
beforeGSR(r)3. This difference is significant in the pres-
ence of asynchrony even if there is no message loss, as it
may require processes to wait arbitrarily long (forn − t
messages) before moving to the next round. This condi-
tion does not allow processes to locally advance rounds
based only on their clocks. Thus, even if processes’ clocks
are perfectly synchronized, during periods of asynchrony, a
group of fast processes may advance an unbounded num-
ber of rounds without reaching decision, while some cor-
rect processes may lag behind. In such cases, once syn-
chrony is re-established and the fast processes begin to exe-
cuteGSR(r), the processes lagging behind may have to ex-
ecute an unbounded number of rounds (and send and await
an unbounded number of messages) in order to catch up.
Thus, these protocols have unbounded recovery times. In
contrast, if, as in this paper, arbitrary message loss is al-
lowed, then each process can advance rounds according to
its local clock, and once all clocks are synchronized (after
GSR(r)), all process can execute the same round without
delay. Moreover, the algorithm in [9] globally decides by
roundGSR(r) + 3, not GSR(r) + 2, and the leader-based
algorithm of [26] does not achieve the2-round failure-free
lower bound.

In an earlier paper [10], we have considered a slightly
different eventually synchronous model, and studied the
complexity of consensus algorithms in synchronous runs
with failures. We have shown that in runs that are synchro-
nous from the beginning,t + 2 is a tight lower bound on
the number of rounds for consensus. However, unlike this
paper, [10] did not study algorithm complexity in failure-
free stable periods that follow unstable (asynchronous and
failure-prone) ones, and did not present a protocol that
quickly recovers from asynchrony as we do here. The lower
bounds presented herein neither imply nor are implied by

3 Note that our lower bound proof covers such algorithms as well,
because it is restricted to runs in which each process receivesn − t
messages.

those in [10]. Furthermore, thet + 2 lower bound of [10]
holds for anyt ≥ 1, whereas the lower bounds shown in this
paper distinguish the casest ≥ n/3 andt < n/3.

3 Model and Problem Definition

3.1 The eventually synchronous model

We consider a distributed system consisting of a set ofn ≥ 3
processes, denoted byΠ = {p1, p2, . . . , pn}. Every ordered
pair of process communicate by message-passing using a
communication channel that does not create, duplicate, or
alter messages. A communication channel is a set consisting
of messages that have been sent but not yet received. Each
channel is associated with a single sender and a single desti-
nation.

A distributed algorithmA is a collection of determinis-
tic automata, whereAp is the automaton assigned to process
p. Each automaton has an initial state. A computation pro-
ceeds inroundsof message-exchange. Rounds are identified
by round numbers that start from1. At each process, a round
consists of three sub-rounds:send, receive, andcomputation.
A sub-round, in turn, consists of an atomicstep. A step atp
atomically does the following: (1) removes a set of messages
M (possibly∅) from some channels, (2) appliesM and the
current statestp of p to Ap, which outputs a new statest′p
and a set of messages to be sent, and then (3) updates the
state ofp to best′p and puts the output messages in respec-
tive channels. In particular, a step of a send sub-round puts
n messages in then channels going out frompi. In a step
of a receive sub-round, a process receives some messages
but does not send any message. In steps of a computation
sub-round, each process computes the messages for the next
round, but does not send or receive messages.

Given an algorithmA, a run of A is an infinite sequence
of sub-rounds of processes such that (1) initially, all chan-
nels are empty and everyAp is in its initial state; (2) for
each message setM received in a step at a processp, and
for every messagem ∈ M , the appropriate channel con-
tainsm immediately before that step is taken; (3) all steps
involving processp are transitions of the state machineAp;
(4) processp executes a sub-round of a round only after ex-
ecuting all lower rounds; and (5) inside a round, sub-rounds
are executed in the following order: send, receive, and com-
pute. (Sub-rounds of different processes, possibly at differ-
ent rounds, may be interleaved.)

In every run, at most a thresholdt of the processes may
fail by crashing: if some processpi does not take the as-
signed steps in some sub-round of a runr, then we say that
pi is faulty in r, andpi does not take any subsequent steps.
A process that does not fail in a runr is correct in that run.
If pi takes some steps in roundk but does not take any step
in roundk + 1, then we say thatpi crashes in roundk. If pi

does not take any step in round1, then we say thatpi crashes
in round 0, orcrashes initially. A processentersroundk if
it takes at least one step in roundk, and a processcompletes
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at processpi

1: k ← 0; initialize() {initialize local variables}
2: while truedo
3: k ← k + 1
4: for j = 1 ton do: send roundk message topj

5: receive messages
6: compute() {compute roundk + 1 messages}

Fig. 1 A generic algorithm in the eventually synchronous model.

roundk if it takes all assigned steps in roundk. Note that
according to our terminology, a processpi may complete
roundk but still crash in roundk if it takes all assigned steps
in roundk but does not take any steps in roundk + 1; in this
case, we say thatpi crashes at the end of roundk. A round
k message of processpi is a message sent bypi in roundk.
We say that a messagem is lost in run r if m is sent but not
received in runr.

The eventually synchronous model ensures that the fol-
lowing properties hold in each runr: (1) self delivery: in
every round, each non-crashed process receives the message
from itself; and (2)eventual synchrony: there is an unknown
but finite round numberGSR(r) such that every process that
enters roundGSR(r) is a correct process, and in every round
k ≥ GSR(r), each correct process receives a roundk mes-
sage from every correct process.

Observe that any message sent beforeGSR(r) may be
lost, except by its sender. Also note thatGSR(r) = 1 does
not imply that runr is failure-free: it only implies that every
process that crashes inr, crashes initially. A runr is called
a nice run if no process crashes inr and GSR(r) = 1.
A generic algorithm (modified from [16]) in the eventually
synchronous model is shown in Figure 1. A specific algo-
rithm simply describes the initial state assigned in line 1 and
the local computation done in line 6.

3.2 Consensus algorithms

In a consensus algorithm, we assume that every processp
is provided with two local variables: a read-only variable
propp and a write-once variabledecp. In every runr, propp

is initialized to some valuev 6= ⊥, (we say thatp proposesv
in r), anddecp is initialized to⊥. We say thatp decidesd in
r if p writesd 6= ⊥ todecp in some step ofr. Every runr of a
consensus algorithm satisfies the following three properties:
(a) (validity) if a process decidesv then some process has
proposedv, (b) ((uniform) agreement) no two processes de-
cide differently4, and (c) (termination) every correct process
eventually decides.

Consider any consensus algorithmA in the eventually
synchronous model. We say that a processp decides in round
k of a run ofA if p writes a value todecp in a step of roundk

4 Recall that, from [17], every consensus algorithm in the eventually
synchronous model also solves uniform consensus. Since this paper
focuses on the eventually synchronous model, we consider the uniform
variant of consensus.

of that run. We say that a run ofA achieves global decision at
roundk if (1) every process that decides in that run decides
at roundk or at a lower round; and (2) at least one process
decides at roundk.

4 The Lower Bound

In this section, we give a lower bound on the number of
rounds for achieving global decision in the eventually syn-
chronous model. In order to strengthen our lower bound, we
consider a subset of the runs of the eventually synchronous
model satisfying the following two properties: (1)communi-
cation closed rounds: every message that is sent in a round,
and is not received in the same round, is lost and (2) in every
roundk, each process that completes roundk, receives at
leastn−t roundk messages. (Note that we assume these ad-
ditional properties only for the sake of broadening the scope
of our lower bound. The algorithms we present in the ensu-
ing sections do not rely on these properties.)

In addition, since we are concerned with proving a lower
bound, without loss of generality, we assume algorithms to
be (1) full-information, i.e., a message includes the entire
state of the sender, and the state of a process includes all
previous steps of the process, (which in turn includes all re-
ceived messages), and (2) binary, i.e., the proposal values
are restricted to0 and1.

Definitions and Notation

Consider a runr of a consensus algorithmA. The round
k configurationof r is an orderedn-tuple where elementj
contains the state ofpj at theendof roundk in r. (A round
0 configuration, or initial configuration, specifies only the
proposal value of each process.) The state of a process that
does not complete roundk is a special symbol>. The round
k configuration ofr is failure-freeif all processes complete
roundk in r (or there are no initial failures ifk = 0).

Given a failure-free roundk configurationC (of some
run r), we definerj(C) (1 ≤ j ≤ n) to be a run such that
(1) C is the roundk configuration ofrj(C); (2) pj does not
enter roundk + 1 (i.e., pj crashes at the end of roundk);
and (3)GSR(rj(C)) is k + 1. Note that the runrj(C) is
unambiguously defined by these three conditions because,
(1) asA is a full-information algorithm,C completely de-
fines the run until roundk, and (2) the message exchange
pattern is completely defined from roundk + 1 onward. We
denote byrff (C) a run such that (1)C is the roundk con-
figuration ofrff (C); (2) no process crashes inrff (C); and
(3) GSR(rff (C)) = k + 1.

We denote byvalj(C) the decision value of correct
processes inrj(C). We say that a configurationC is uniF-
valent(uni-failure-valent) if for every pair of processesi, j,
(1 ≤ i, j ≤ n), vali(C) = valj(C). We denote this common
value byval(C). A uniFvalent configuration is1-Fvalent if
val(C) = 1 and0-Fvalent otherwise. A configuration that is
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not uniFvalent is calledbiFvalent. In other words, in a biF-
valent configuration, there are two processespi andpj , such
thatvali(C) 6= valj(C). Note that our notion of biFvalency
is more restrictive than the traditional notion of bivalency,
since the latter is satisfied wheneverany two extensions of
C lead to different decision values, whereas biFvalency re-
quires that two extensions with a specific structure lead to
different decision values.

Lower bound proof

Our first lemma shows that the environment (adversary) can
cause every algorithm to remain in a biFValent state for an
arbitrary number of rounds. A similar result is proven in [28]
(for bivalent configurations); we give the proof here for com-
pleteness.

Lemma 1 Let 3 ≤ n and 1 ≤ t ≤ n − 1. Let A be a
consensus algorithm in the eventually synchronous model.
For everyk ≥ 0, there is a failure-free runr in which each
process receives at leastn − t messages in each round and
r’s roundk configuration is biFvalent.

Proof : We prove the lemma by induction on round number
k.

Base Case:There is a failure-free biFvalent initial configura-
tion. Suppose by contradiction that all initial configurations
are uniFvalent. For0 ≤ j ≤ n, let Cj be a failure-free initial
configuration in which all processespl, where1 ≤ l ≤ j,
propose1, and the rest of the processes propose0. From va-
lidity, val(C0) = 0 andval(Cn) = 1. We claim that, for
1 ≤ j ≤ n, val(Cj−1) = val(Cj). To see why, notice that
Cj−1 and Cj differ only in the proposal value ofpj , and
hence, no process can distinguishrj(Cj−1) from rj(Cj). So
valj(Cj−1) = valj(Cj), and sinceCj−1 andCj are uniF-
valent,val(Cj−1) = valj(Cj−1) = valj(Cj) = val(Cj). It
follows that if val(C0) = 0 thenval(Cn) = 0, a contradic-
tion.

Induction Hypothesis:There is a failure-free runr in which
each process receives at leastn − t messages in each round
1 . . . k, andr’s roundk configuration,C, is biFvalent.

Induction Step:From the induction hypothesis, there is a
failure-free biFvalent roundk configurationC. Thus, there
are1 ≤ i, j ≤ n, such thatvali(C) = 0 andvalj(C) = 1.
Suppose by contradiction that all failure-free roundk + 1
configurations, that extendC and in which each process re-
ceives at leastn− t messages in roundk +1, are uniFvalent.
For the rest of the proof, we will construct roundk + 1 in
which each process receives at leastn−1 ≥ n− t messages,
and hence will be uniFvalent by this assumption.

Let the roundk +1 configuration ofrff (C) bex-Fvalent
(x ∈ {0, 1}). We show a contradiction assumingx = 1. (The
casex = 0 is similar — in the argument below, we simply
usepj instead ofpi.)

Denote byC0 the failure-free roundk + 1 configura-
tion that extendsC by one round in which all messages
sent bypi are lost and no other message is lost. Note that
every process receivesn − 1 ≥ n − t messages in this
round. Consider the runsri(C) andri(C0). The roundk +1
configuration ofri(C) differs from C0 only in the state
of processpi. Sincepi crashes at the end of roundk + 1
in ri(C0), no correct process can distinguishri(C) from
ri(C0). Thus,vali(C0) = vali(C) = 0. C0 being uniF-
valent,val(C0) = 0.

We now consider a series of roundk + 1 configurations,
each of which extendsC by one round. ConfigurationCl

(1 ≤ l ≤ n) extendsC by one round in which (1) no process
crashes, and (2) all messages sent bypi in roundk + 1 are
lost except those sent to{p1, ..., pl}. Consider configurations
Cl−1 andCl. The two configurations differ only atpl. Thus
no correct process can distinguish runrl(Cl−1) from rl(Cl).
Thusvall(Cl−1) = vall(Cl). Cl−1 andCl being uniFva-
lent,val(Cl−1) = val(Cl). A simple induction overl, along
with our previous observation thatval(C0) = 0, gives us
val(Cn) = 0. Observe that configurationCn extendsC by
one round such that no process crashes and no message is
lost in roundk + 1. That is,Cn is the roundk + 1 configu-
ration ofrff (C). A contradiction to our assumption that the
roundk + 1 configuration ofrff (C) is 1-Fvalent. 2

The next lemma shows a lower bound of two rounds,
which applies for most values oft. This lemma can also
be shown using a simple modification of the proof of [20].
However, a straightforward modification of the proof of [20]
would requiret ≥ 2, whereas our proof holds fort ≥ 1.

Lemma 2 Let 3 ≤ n and 1 ≤ t ≤ n − 2. For every
G ≥ 1, every consensus algorithm has a runr in which
every process receives at leastn−t messages in each round,
GSR(r) = G, and some process decides at roundGSR(r)+
1 or at a higher round.

Proof : Suppose by contradiction that there exists a con-
sensus algorithmB and some round numberG, such that
for every runr of B in which GSR(r) = G, all correct
processes decide by roundG.

Consider a failure-free run in which every process re-
ceives at leastn − t messages in each round, and the run’s
roundG−1 configuration,C, is biFvalent. (From Lemma 1,
such a run exists.) Thus, there are1 ≤ i, j ≤ n such that
vali(C) = 0 andvalj(C) = 1. Observe that from our as-
sumption, by the end of roundG, every process distinct from
pi decides0 in ri(C), every process distinct frompj decides
1 in rj(C), and every process decides by the end of roundG
in rff (C). Let x ∈ {0, 1} be the decision value of processes
in rff (C). We show a contradiction assumingx = 1. (The
casex = 0 is symmetric.)

Consider runrff (C ′), whereC ′ is a failure-free round
G configuration that extendsC by one round, such that in
round G, pi receives its own message, all other messages
sent bypi are lost, and no other message is lost. Then
GSR(rff (C ′)) = G + 1. Let pc be a process distinct from
pi. At the end of roundG, pi cannot distinguishrff (C ′) from



6 Dutta, Guerraoui and Keidar

rff (C), andpc cannot distinguishrff (C ′) from ri(C). Thus,
at the end of roundG in rff (C ′), pi decidesx = 1 andpc

decides0, violating uniform agreement; a contradiction.2

We next prove our three-round lower bound for the spe-
cial case thatn = 3 andt = 1.

Lemma 3 Letn = 3 andt = 1. For everyG ≥ 1, every con-
sensus algorithm has a runr in which every process receives
at leastn − t messages in each round,GSR(r) = G, and
some process decides at roundGSR(r) + 2 or at a higher
round.

Proof : Suppose by contradiction that there exists a con-
sensus algorithmA and some round numberG, such that
for every runr of A in which GSR(r) = G, all correct
processes decide by roundG + 1.

Consider a failure-free run in which every process re-
ceives at leastn − t messages in each round, and the run’s
roundG−1 configuration,C, is biFvalent. (From Lemma 1,
such a run exists.) Thus, there are1 ≤ i, j ≤ 3 such that
vali(C) = 0 andvalj(C) = 1. For convenience of presen-
tation and without loss of generality, we assume thati = 1
andj = 2.

We consider four runs that extendC. (In each run, note
that each process receives at leastn − t = 2 messages in
every round — including one from itself.) RoundsG and
G+1 of these runs are depicted in Figure 2. We now describe
them in words.

– Run a is r1(C). ThusGSR(a) = G, and from our as-
sumption onA, correct processes decideval1(C) = 0 in
roundG + 1.

– Run b is r2(C). ThusGSR(b) = G, and from our as-
sumption onA, correct processes decideval2(C) = 1 in
roundG + 1.

– Runc is r3(C1), where the roundG+1 configurationC1
is constructed as follows: In roundG, the messages from
p1 to {p2, p3} are lost (this is depicted by the absence
of any message arrow fromp1 to {p2, p3} in roundG
in Figure 2(c)), and the message fromp2 to p1 is lost.
In roundG + 1, the messages fromp1 to p3, and from
p3 to {p1, p2} are lost. Processp3 cannot distinguish the
roundG + 1 configuration of runc (i.e., configuration
C1) from the roundG + 1 configuration of runa. To see
why, notice thatp3 does not receive any message fromp1

in roundG andG+1 of both runs. Furthermore,p2 does
not distinguisha from c at the end of roundsG − 1 and
G, and hence, sends identical messages top3 in roundsG
andG+1 of both runs. Therefore, as in runa, p3 decides
0 in roundG + 1 in run c. Due to the uniform agreement
property,p1 andp2 eventually decide0 in run c.

– Rund is r3(C2), where the roundG+1 configurationC2
is constructed as follows: In roundG, the message from
p1 to p2 is lost, and the messages fromp2 to {p1, p3} are
lost. In roundG+1, the message fromp2 to p3, and from
p3 to {p1, p2} are lost. Notice thatp3 cannot distinguish
the roundG + 1 configuration ofd (i.e., configuration

C2) from the roundG + 1 configuration of runb. There-
fore,p3 decides1 at the end of roundG+1 in rund. Due
to the uniform agreement property,p1 andp2 eventually
decide1 in rund.

Now consider runsc andd. At the end of roundG, the
two runs differ only at processp3 (because it receives differ-
ent sets of messages). Processesp1 andp2 receive the same
set of messages in roundG + 1 of runsc andd, and they
do not include a message fromp3. Therefore, the states of
p1 andp2 are the same at the end of roundG + 1 in both
runs. Since processp3 does not send any message after round
G + 1 (recall thatc is r3(C1) andd is r3(C2)), p1 andp2

can never distinguish runc from run d. Therefore,p1 (and
p2) must decide the same value inc andd: a contradiction.

2

Finally, we construct a proof for the general case by sim-
ulating a single process with a group of processes.

Lemma 4 Let 3 ≤ n and1 ≤ t ≤ n − 2 andn/3 ≤ t. For
everyG ≥ 1, every consensus algorithm has a runr in which
every process receives at leastn−t messages in each round,
GSR(r) = G, and some process decides at roundGSR(r)+
2 or at a higher round.

Proof : We prove this lemma by simulating three processes
over a system wheren ≥ 3 andt ≥ n/3. Divide the set of
processesΠ into 3 sets of processes,P1, P2, andP3, each
of size less than or equal todn

3 e. (This is always possible
because3(dn

3 e) ≥ n.) Sincet ≥ n/3 andt is an integer, it
follows thatt ≥ dn

3 e. Therefore, the setsP1, P2, andP3 are
each of size less than or equal tot, and hence, in a given run
all the processes in any one of the sets may crash.

We now construct runs corresponding to runs with three
processes. The relationship between a runr′ constructed
in this simulation to the corresponding runr with three
processes is as follows: (1) ifpi proposesx (0 or 1) in r,
then every process inPi proposesx in r′, (2) if pi crashes
without sending any message in some roundk of r, then
every process inPi crashes without sending any message in
roundk of r′, (3) if pi crashes in some roundk of r, then
every process inPi crashes in roundk of r′, (4) if pi does
not crash inr then no process inPi crashes inr′, and (5) for
1 ≤ j ≤ 3, if pi receives a messages frompj in some round
k of r, then every process inPi receives a message from
every process inPj in roundk of r′. (Note that in particular,
if pi does not crash at roundk, then it receives a message
from itself, and therefore, at roundk of r′, each process in
Pi receives messages from every process inPi.)

From Lemma 3, every consensus algorithm has a run
r in which every process receives at leastn − t messages
in each round,GSR(r) = G, and some process decides at
roundGSR(r)+2 or at a higher round. We simulater′ from
r as explained above. Since inr, in each round, each process
loses a message from at most one process, inr′, each process
receives messages from at leastn − t processes. Moreover,
GSR(r′) = GSR(r). Since processes inPi decide inr′
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Fig. 2 RoundsG andG + 1 of the four runs ofA.

whenpi decides inr, we get that inr′, some process decides
at roundGSR(r′) + 2 or at a higher round. 2

We conclude with the following theorem:

Theorem 1 Let3 ≤ n and1 ≤ t ≤ n− 2. For everyG ≥ 1,
(a) every consensus algorithm has a runr in which every
process receives at leastn − t messages in each round,
GSR(r) = G, and some process decides at roundGSR(r)+
1 or at a higher round.
(b) if t ≥ n/3, then every consensus algorithm has a run
r in which every process receives at leastn − t messages
in each round,GSR(r) = G, and some process decides at
roundGSR(r) + 2 or at a higher round.

Reliable channels

We now consider a stronger eventually synchronous model.
We extend the proof to a model where channels are reliable,
i.e., all messages from correct processes to correct processes
are eventually received. We now argue that Theorem 1 holds
with this modification. Our discussion is informal.

If all the runs constructed in the above proofs can be con-
structed in the modified model then the proofs immediately
translate to the modified model. Observe that, the only case
when a run in the above proofs cannot be constructed in the
modified model is when some message from a correct to a
correct process is lost, i.e., the reliable channel property is
violated. (Actually, due to the communication closed round
restriction assumed in the lower bound proof, any message
from a correct process to a correct process, that is not deliv-
ered in the same round in which it is sent, will be lost.) We
now show how to transform such a run to satisfy the reliable

channel property, but without adding any new message. Cru-
cial to our transformation is the property of full-information
algorithms that requires any message to contain all lower
round messages from its sender to its destination.

Consider any runr in the above proofs in which some
messagem from a correct processpi to another correct
processpj is lost (e.g. runc in Lemma 3). Letm be a round
k message. Recall that, no message from a correct process
to a correct process is lost in roundGSR(r) and in higher
rounds. Thus,k < GSR(r). Consider the roundGSR(r)
messagem′ from pi to pj . Messagem′ containsm because
our algorithm is full-information. Thus, on receivingm′,
processpj can simulate reception ofm in roundGSR(r).
Similarly, we can simulate the reception of any other lost
message from a correct process to a correct process, and
thus, satisfy the reliable channel property.

5 A Matching Algorithm for t < n/2

We now present a consensus algorithm,UC1, for the eventu-
ally synchronous model with a majority of correct processes,
i.e., t < n/2. Recall that there is no consensus algorithm in
the eventually synchronous model whent ≥ n/2 [11]. Al-
gorithmUC1 matches the lower bound of Theorem 1(b) as
well as the known lower bound of two rounds in nice runs.

5.1 Algorithm description

Algorithm UC1 is presented in Figure 3. In every round,
each processpi sends its four primary variables to all
processes: (1) the message typemsgTypei initialized to
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at processpi

1: ki ← 0; initialize()
2: while truedo
3: ki ← ki + 1
4: for j = 1 ton do: send roundki message topj

5: receive messages
6: compute()

7: procedure initialize()
8: esti ← proppi {read the proposal value}
9: ldi ← pn; tsi ← 0; msgTypei ← PREPARE; nextLDi ← pn; maxTSi ← 0

10: round1 message← (1, msgTypei, esti, tsi, ldi)

11: procedure compute()
12: if decpi = ⊥ then
13: nextLDi ← pj wherej = Max{w| received a roundki message frompw}
14: maxTSi ← Max{ts| received a message (ki, ∗, ∗, ts, ∗) }
15: if received (ki, DECIDE, est′, ts′, ∗) then
16: esti ← est′; tsi ← ts′; decpi ← esti; msgTypei ← DECIDE {decision}
17: else ifreceived (ki, COMMIT, ∗, ∗, ∗) from a majority of processes (includingpi) andldi then
18: decpi ← esti; msgTypei ← DECIDE {decision}
19: else if(received(ki, ∗, ∗, ∗, ldi) from a majority of processes){COMMIT-1}

and (received (ki, ∗, ∗, maxTSi, ldi) from ldi) {COMMIT-2}
and (ldi = nextLDi) then {COMMIT-3}

20: msgTypei ← COMMIT; esti ← est received fromldi; tsi ← ki

21: else
22: esti ← anyest s.t. received (ki, ∗, est, maxTSi, ∗); tsi ← maxTSi; msgTypei ← PREPARE
23: ldi ← nextLDi

24: roundki + 1 message← (ki + 1, msgTypei, esti, tsi, ldi)

Fig. 3 Algorithm UC1.

PREPARE, (2) an estimateesti of the decision value, ini-
tialized to the proposal value (read fromproppi), (3) the
timestamptsi of the estimate value, initialized to0, and
(4) the leaderldi of the current round, initialized topn. In
the computation sub-round, processes update their primary
variables depending on the messages received in that round,
and possibly decide.

We now briefly explain the purpose of these variable at
processpi. Roughly speaking, the message type indicates
the level of progress a process has made towards reaching
a decision. In the computation sub-round of roundk, if pi

sees a possibility of decision in the next round, then it sends
a roundk + 1 message with typeCOMMIT. We then say that
pi commits in roundk. Once the process decides, it sends
messages with typeDECIDE in all subsequent rounds. Oth-
erwise, the message type isPREPARE.

In the computation sub-round of a roundk in which pi

does not decide and has not yet decided,pi adopts one of the
estimate values received in that round. Processpi also adopts
the timestamp received along with the estimate, unlesspi

commits in roundk, in which casepi updates its timestamp
to k. Thus, the timestamp associated with an estimate value
x simply indicates a round number in which some processes
has committed while adopting estimatex.

The leader of pi at roundk ≥ 2 is simply the process
pj with the highest id from whichpi received a roundk − 1
message. Processpn is the leader at all processes in round 1.
Note that different processes may have different leaders in
the same round.

We now describe the computation sub-round in more de-
tail. Once a processpi decides, it sends aDECIDE message
with the decision value in every round. Otherwise, in round
k, pi updates its primary variables as follows. From the set
of messages received,pi first computes its leader for the
next round (nextLDi) and the highest timestamp received
(maxTSi). Then it executes the following four conditional
statements. (A statement is executed only if the conditions
in all the previous statements are false.)

– If pi receives aDECIDE message then it decides on the
received estimate (by writing that estimate indecpi).

– If pi receivesCOMMIT messages from a majority of
processes, including itself and its current leader, thenpi

decides on its own estimate.
– Let ldi be the leader ofpi at roundk. Consider the fol-

lowing three conditions on the messages received by
pi: commit-1: received messages from a majority of
processes that say thatldi is their leader at roundk;
commit-2: received a message fromldi that has the high-
est timestamp (maxTSi) and hasldi as the leader; and
commit-3: ldi = nextLDi. If all three conditions are sat-
isfied, thenpi sets its message type (for the roundk + 1
message) toCOMMIT, adopts the estimate received from
ldi, sayx, and sets its timestamp to the current round
numberk. We say thatpi commits in roundk with esti-
matex.

– Otherwise,pi adopts the estimate and the timestamp of
the message with the highest timestampmaxTSi, and
sets its message type toPREPARE.
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Finally pi updates itsldi to nextLDi and composes the
message for the next round.

5.2 Correctness of the consensus algorithmUC1

Lemma 5 Until a process decides, its timestamp is non-
decreasing.

Proof : If a processpi does not decide in roundk, then it
can change its timestamp by adopting eitherk, or the max-
imum timestamp (maxTS) received in messages of round
k, as its new timestamp. Since,pi receives its own mes-
sage in every round,maxTS is never lower than its cur-
rent timestamp. Also, a simple induction shows that the
timestamp of a process is always less than or equal to its
round number. Thus when a process updates its timestamp,
the new timestamp value is greater than or equal to the old
value. 2

Lemma 6 For every roundk, no two processes commit with
different estimates in roundk, and no two processes commit
with differentnewLDs in roundk.

Proof : Consider two processespi and pj that commit in
roundk with estimatesesti and estj , andnewLD values
newldi andnewldj , respectively. Also, in roundk, let ld′i be
the leader ofpi andld′j be the leader of andpj . Thus, from
commit-1, each of them has received in roundk a majority
of messages that containld′i andld′j as leaders, respectively.
As two majorities intersect,ld′i = ld′j . Furthermore, from
commit-3,newldi = ld′i andnewldj = ld′j . So,newldi =
ld′i = ld′j = newldj .

From the algorithm,pi commits with the estimate sent
by ld′i, andpj commits with the estimate sent byld′j . As
ld′i = ld′j , pi andpj commit with same estimate. 2

Lemma 7 For every roundk, all round k messages with
msgType = COMMIT have identical estimate values and
identicalld values.

Proof : Immediate from Lemma 6. 2

Lemma 8 If some process sends a message with timestamp
ts > 0 and estimatex then some process commits in round
ts with estimatex.

Proof : If a processpi sends a message with timestampts
thenpi sets its timestamp tots in some round. Consider the
lowest roundk in which some processpj sets its timestamp
to ts. From the definition ofk, pj cannot receivets from
another process in roundk. Thuspj commits with timestamp
ts in roundk, and from the algorithm,k = ts.

Also, from the algorithm, if a process adopts a timestamp
from a message, it also adopts the associated estimate.
Therefore, by induction on rounds of the run, we can show
that each estimate is associated with ats equal to a round
number in which it was committed. 2

Lemma 9 (Uniform Agreement) No two processes decide
differently.

Proof : If no process ever decides then the lemma trivially
holds. Suppose some process decides. Letk be the lowest
round in which some processpi decides. Processpi can de-
cide either (1) by receiving aDECIDE message, or (2) by
receiving a majority ofCOMMIT messages, including mes-
sages from itself and its leader. In case 1, some process has
sent aDECIDE message in roundk, and hence, has decided
in a lower round, which contradicts the definition of round
k. We now consider case 2.

Supposepi decidesx in roundk. As pi receives a ma-
jority of COMMIT messages in roundk, and it decides on
the estimate of one of theCOMMIT messages (namely, the
one from itself). From Lemma 7, all theCOMMIT messages
include the same estimatex and the same leader, saypl.
Thuspi receives (k, COMMIT, x, k − 1, pl) from a major-
ity of processes, and hence, a majority of process commits
in roundk − 1 with estimatex. Let us denote this majority
of processes bySx.

We claim that if any process commits or decides in round
k′ ≥ k−1, then it commits with estimatex or decidesx. The
claim immediately implies agreement. We prove the claim
by induction on round numberk′.

Base Case.k′ = k − 1. As processes inSx commit x in
roundk − 1, from Lemma 6, no process commits with an
estimate different fromx in roundk − 1. By definition ofk,
no process decides in roundk − 1.

Induction Hypothesis.If any process commits or decides in
any roundk1 such thatk − 1 ≤ k1 ≤ k′, then it commits
with estimatex or decidesx.

Induction Step.We need to show that if any process commits
or decides in roundk′ + 1, then it commits with estimatex
or decidesx. Suppose by contradiction that some processpj

commits with estimatez 6= x in roundk′ + 1. Thenpj has
not received anyDECIDE message in roundk′ + 1. Also
note thatpj commits on the estimate of the roundk′ + 1
message that has the highest timestamp among all messages
received bypj in roundk′+1. Let this highest timestamp be
tsMax. Therefore, some process has sent a roundk′+1 mes-
sage with timestamptsMax and estimatez. From Lemma 8,
some process commits in roundtsMax with estimatez.

Since the highest timestamp that can be received in
roundk′ + 1 is k′, tsMax ≤ k′. Sincepj commits in round
k′+1, it has received roundk′+1 messages from a majority
of processes, and hence, received roundk′+1 message from
at least one process inSx, saypa. Recall that every process
in Sx commits in roundk − 1 with estimatex. Thus,pa has
timestampk − 1 at the end of roundk − 1. As pj has not
received anyDECIDE message in roundk′ + 1, pa has not
decided by roundk′. From Lemma 5, the roundk′ + 1 mes-
sage ofpa contains timestamp greater than or equal tok−1.
Thus,tsMax ≥ k − 1.
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Thus we havek−1 ≤ tsMax ≤ k′. By the induction hy-
pothesis, every process that commits in roundtsMax com-
mitsx 6= z; a contradiction.

If some processpb decides a valuey in roundk′+1, then
in that round, either some process sends aDECIDE message
with decision valuey or pb sends aCOMMIT message with
estimatey. By the induction hypothesis,y = x in both cases.

2

Lemma 10 In every runr, all correct processes decide by
roundGSR(r) + 2.

Proof : First, observe that in the eventually synchronous
model, every correct process executes an infinite number of
rounds, and in particular, executes roundGSR(r) + 2.

We prove the lemma by contradiction. Assume that some
correct processpj does not decide by roundGSR(r) + 2
in some runr. If any correct processpi decides by round
GSR(r) + 1, then it sends aDECIDE message in round
GSR(r) + 2, and all correct processes receive that mes-
sage and decide in roundGSR(r) + 2, contradicting our as-
sumption. Therefore, our assumption implies that, no correct
processes decides by roundGSR(r) + 1.

Let pl be the correct process with the highest id inr.
Since correct processes receive messages from all correct
processes in all rounds fromGSR(r) onward, it follows that
pl is the leader of all correct processes in all rounds from
GSR(r) onward.

Consider roundGSR(r). We claim that at the end of
roundGSR(r), no process has a higher timestamp thanpl.
Suppose by contradiction that some other processpj com-
pletes roundGSR(r) with a higher timestamp thanpl, say
timestampk′. There are three cases depending on when
pj adopts timestampk′: (1) pj adopts timestampk′ be-
fore roundGSR(r), (2) pj adopts timestampk′ on receiv-
ing a message from some processpm in round GSR(r)
with timestampk′, or (3)pj commits in roundGSR(r) and
adoptsk′ = GSR(r) as its timestamp. In the first two cases,
since only correct processes enter roundGSR(r), and cor-
rect processes receive messages from all correct processes
in roundGSR(r), pl receives a message with timestampk′

(from pj in the first case, and frompm in the second case)
and adopts a timestamp not smaller thank′; a contradiction.

Consider the third case. We show thatpl commits in
roundGSR(r). In roundGSR(r), as correct processes re-
ceive message from all correct processes, every process eval-
uatesnextLD to pl, and evaluatesmaxTS to the same
timestamp, sayts′. Sincepj commits in roundGSR(r),
from condition commit-3, the leader ofpj in roundGSR(r)
is same as itsnextLD, i.e., pl. From condition commit-2,
it follows that pj received a message (GSR(r), ∗, ∗, ts′,
pl) from pl. Thus,pl is its own leader at the beginning of
roundGSR(r). Thus, atpl, condition commit-3 holds. As
all correct processes receive the same set of messages in
roundGSR(r), andpj andpl have the same leader in round
GSR(r), commit-1 and commit-2 hold also atpl. Thus,pl

commits in roundGSR(r), and hence, updates its timestamp
to GSR(r) = k′; a contradiction.

Let ts′′ be the timestamp ofpl at the end of round
GSR(r). Consider roundGSR(r) + 1. Clearly, pl sends
(GSR(r) + 1, ∗, ∗, ts′′, pl). Every process on receiving this
message evaluatesmaxTS to ts′′. At every correct process,
pl is the leader, andnextLD is evaluated topl. Thus, all
three conditions required to commit hold at every correct
process. As no correct process decides by roundGSR(r)+1,
every correct process commits in roundGSR(r) + 1. In
the next round, every correct process sends the message
(GSR(r) + 2, COMMIT, ∗, ∗, pl). In roundGSR(r) + 2,
every correct process receivesCOMMIT messages from a
majority that includes itself andpl, and hence, decides; a
contradiction. 2

Lemma 11 AlgorithmUC1 solves consensus.

Proof : From Lemma 10, every correct process decides (ter-
mination). Validity holds since estimates are initialized to
the proposal value and can only be set to other estimate val-
ues received in messages, and the decision value is one of
the estimates. Uniform agreement is proven in Lemma 9.2

Theorem 2 There is a consensus algorithm in eventually
synchronous model witht < n/2 such that (a) in every run
r, correct processes decide by roundGSR(r)+2, and (b) in
every nice runr′, correct processes decide by round 2.

Proof : From Lemma 11,UC1 solves consensus. Part (a) fol-
lows from Lemma 10. To see part (b), consider any nice run
r′ of UC1. In r′, all processes are correct and receive mes-
sages from all processes in every round. Therefore,pn is the
leader at all processes in every round. In round1, processes
receivePREPARE messages from all processes with leader
set topn and timestamp set to0. So processes commit in
round1, and sendCOMMIT messages in round2. On receiv-
ing COMMIT messages from all processes, processes decide
in round2. 2

6 A Matching Algorithm for t < n/3

We now present a consensus algorithmUC2 in the eventu-
ally synchronous model assumingt < n/3. The algorithm
matches the lower bound of Theorem 1(a), and hence, also
the lower bound of two rounds in nice runs.UC2 is inspired
by by algorithmAf+2 of [10], which in turn is inspired
by [26]. However,Af+2 and [26] require that processes re-
ceive at leastn − t messages in every round, and therefore
can have unbounded recovery times (see Section 2). We ap-
ply the timestamping scheme ofUC1 to obviate this require-
ment.

Algorithm UC2 is presented in Figure 4. The algorithm
is based on the following simple observation. Supposet <
n/3, andS is a multiset ofn elements where some element
v appearsn− t times. Then in any multiset containingn− t
elements fromS, v appears at leastn−2t times and all other
elements ofS appear less thann− 2t times.

We assume that some order is defined on proposal val-
ues. In every round, each processpi sends its three primary
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at processpi

1: ki ← 0; initialize()
2: while truedo
3: ki ← ki + 1
4: for j = 1 ton do: send roundki message topj

5: receive messages
6: compute()

7: procedure initialize()
8: esti ← proppi {read the proposal value}
9: tsi ← 0; msgTypei ← PREPARE; maxTSi ← 0; msgSeti ← ∅

10: round1 message← (1, msgTypei, esti, tsi)

11: procedure compute()
12: if decpi = ⊥ then
13: if received (ki, DECIDE, est′, ts′) then
14: esti ← est′; tsi ← ts′; decpi ← esti; msgTypei ← DECIDE {decision}
15: else ifreceived at leastn− t roundki messages in roundki then
16: tsi ← ki

17: msgSeti ← set ofn− t roundki messages received bypi with lowest sender ids
18: maxTSi ← Max{ts| (ki, ∗, ∗, ts) ∈ msgSeti}
19: if every message inmsgSeti has identicalest (sayest′) and hasts = ki − 1 then
20: decpi ← est′; msgTypei ← DECIDE {decision}
21: else ifthere are at leastn− 2t messages inmsgSeti with identicalest (sayest′′) then
22: esti ← est′′

23: else
24: esti ← Max {est| (ki, ∗, est, maxTSi) ∈ msgSeti}
25: roundki + 1 message← (ki + 1, msgTypei, esti, tsi)

Fig. 4 Algorithm UC2.

variables to all processes: (1) the message typemsgTypei

initialized to PREPARE, (2) an estimateesti of the decision
value, initialized to the proposal value (read fromproppi),
and (3) the timestamptsi of the estimate value, initialized to
0. In the computation sub-round,pi decides if it receives a
DECIDE message. Ifpi receives less thann− t messages in
roundk then it does not update its variables in that round.
If pi receives at leastn − t messages then it updates its
timestamp to the current round numberki and updates other
variables as follows. First, it arranges all messages received
in the round in ascending order of their sender ids, selects
the firstn − t messages, and puts them in setmsgSeti. If
every message inmsgSeti has the same estimate, sayest′,
and every message inmsgSeti has timestampki − 1, then
pi decidesest′. If at leastn− 2t messages inmsgSeti have
the same estimate, sayest′′, thenpi adoptsest′′. Otherwise,
among the estimates received with maximum timestamp,pi

adopts the maximum one (i.e., the order on proposal values
is used in order to break ties). We now prove correctness of
UC2.

Lemma 12 In every runr, all correct processes decide by
roundGSR(r) + 1.

Proof : We prove the lemma by contradiction. Assume
that some correct processpj does not decide by round
GSR(r) + 1 in run r. If any correct processpi decides by
roundGSR(r), then it sends aDECIDE message in round
GSR(r) + 1, and all correct processes receive that mes-
sage and decide in roundGSR(r) + 1; contradicting our as-
sumption. Therefore, our assumption implies that no correct
processes decides by roundGSR(r).

Consider roundGSR(r). Recall that only correct
processes enter the round, and all correct processes receive
messages from all correct processes. It follows that every
correct process receives at leastn − t messages, and re-
ceives the same set of messages. Since no correct process de-
cides in that round, correct processes update their timestamp
to GSR(r), and compute identicalmsgSets. Then, either
every correct process receives some estimate at leastn− 2t
times and adopts that estimate, or all processes adopt the
maximum estimate with the maximum timestamp. In ei-
ther case, since processes have identicalmsgSets, they
update their estimates to the same value. Thus, in round
GSR(r) + 1, processes receive identical estimates from all
correct processes with timestampGSR(r), and decide; a
contradiction. 2

Lemma 13 (Uniform Agreement) No two processes de-
cide differently.

Proof : If no process ever decides then the lemma trivially
holds. Suppose some process decides. Letk be the low-
est round in which some process decides; saypi decides
in roundk. Processpi can decide either (1) by receiving a
DECIDE message, or (2) by receivingPREPARE messages
from n− t processes with identical estimate values and with
timestampk − 1. In case 1, some process has sent aDE-
CIDE message in roundk, and hence, has decided in a lower
round, which contradicts the definition of roundk. We now
consider case 2.

Supposepi decidesx in roundk. Then in roundk − 1,
at leastn− t processes update their timestamp tok − 1 and
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their estimate tox. Let this set of at leastn− t processes be
Sx.

We claim that if any process updates its estimate or de-
cides in roundk′ ≥ k − 1, then it updates it estimate tox or
decidesx. This claim immediately implies agreement. We
prove the claim by induction on round numberk′.

Base Case.k′ = k − 1. From the definition of roundk, no
process decides in roundk − 1. Suppose some processpj

updates its estimate in roundk. Thenpj has received at least
n−t messages. Ast < n/3, at leastn−2t of those messages
are from processes inSx, and hence, contain estimatex, and
less thann−2t messages are from processes not inSx. Thus
pj updates its estimate tox.

Induction Hypothesis.If any process updates its estimate or
decides in any roundk1 such thatk − 1 ≤ k1 ≤ k′, then it
updates it estimate tox or decidesx.

Induction Step.If any process updates its estimate or decides
in roundk′ + 1, then it updates it estimate tox or decidesx.
Suppose a process decidesy in roundk′ + 1. Then either
(1) some process has decidedy in a lower round and sent
a DECIDE message in roundk′ + 1, or (2) at leastn − t
processes has updated their estimate toy in roundk′. In the
first case, from the induction hypothesis and our assumption
that no process decides before roundk, it follows thaty = x.
Consider the later case. Again from the induction hypothesis
it follows that, by the end of roundk′, all processes inSx has
either decidedx, retained their estimatex, or has crashed. As
there are at leastn − t processes inSx and two sets of size
n− t intersect, we havey = x.

Now suppose some processpj updates its estimate in
roundk′ + 1. Thenpj has received at leastn − t messages
in roundk′ + 1. As t < n/3, at leastn − 2t of those mes-
sages are from processes inSx, and hence from the induction
hypothesis, contain estimate or decision valuex. Also, less
thann − 2t messages are from processes not inSx, and so,
less thann− 2t messages can contain a value different from
x. Thuspj updates its estimate tox. 2

Lemma 14 AlgorithmUC2 solves consensus.

Proof : From Lemma 12, every correct process decides (ter-
mination). Validity holds since estimates are initialized to
the proposal value and can only be set to other estimate val-
ues received in messages, and the decision value is one of
the estimates. Uniform agreement is proven in lemma 13.2

Theorem 3 There is a consensus algorithm in eventually
synchronous model witht < n/3 such that, in every run
r, correct processes decide by roundGSR(r) + 1.

Proof : Immediate from Lemmas 12 and 14. 2

7 Conclusions

Our work was motivated by the observation that many dis-
tributed systems and algorithms implementing state machine

replication operate in two modes: a fast normal mode in sta-
ble periods, and a slower recovery mode when recovering
from unstable ones. Furthermore, we observed that in all ex-
isting algorithms, the performance difference between the
two modes is substantial: in all previous algorithms we are
aware of, recovery can take up to five rounds, which is three
more than the optimal normal mode. We set out to explore
whether the recovery mode is indeed inherently more costly
than normal mode, and if yes, by how much. Not surpris-
ingly, we have found that ift ≥ n/3, there is an inherent
price for recovery from failures and asynchrony. But some-
what surprisingly, we have shown that this penalty is only
one round. Even more surprisingly, we have shown that if
t < n/3, there is no cost to recovery, which can be as fast as
the normal mode.

Our algorithms were given in the basic round model
of [11]. We note that this model can be trivially simulated
in a system where eventually message delays are bounded
by a known constantD, local computation takes negligible
time, and processes have access to synchronized clocks: in
roundk, a process sends roundk messages at time(k− 1)D
and delivers all roundk messages that are received by time
kD.
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