Distributed Computing manuscript No.
(will be inserted by the editor)

Partha Dutta - Rachid Guerraoui - ldit Keidar

The Overhead of Consensus Failure Recovery

Received: date / Accepted: date

Abstract Many reliable distributed systems are consensusn instance of consensus is triggered for each user request or
based and typically operate under two modes: affiast group of user requests [22].
mal mode in failure-free synchronous periods, and a slower In a consensus algorithm, every process proposes a
recoverymode following asynchrony and failures. A lot ofvalue, and correct processes are required to eventually de-
work has been devoted to optimize the normal mode, but ldtide on one of the proposed values, so that no two correct
tle has focused on optimizing the recovery mode. This pag&ocesses decide differently. It is well-known that consen-
seeks to understand whether the recovery mode is inherestlg is not solvable in an asynchronous system even if only
slower than the normal mode. one process can crash [14]. On the other hand, it is often
In particular, we consider consensus algorithms in thwarealistic to assume a completely synchronous system with
round-based eventually synchronous model of [11], whekgown time bounds by which all messages arrive. In prac-
t out of n processes may fail by crashing, messages mége, one can generally assume that the system may behave
be lost, and the system may be asynchronous for arbitrad§ynchronously for an arbitrary period of time, but eventu-
long, but eventually the system becomes synchronous andaily satisfies some timing guarantees. Such system are called
new failure occurs (we say that the system becomes stab@)entually synchronoufll]. Partially synchronous mod-
Fort > n/3, we prove a lower bound of three rounds foels [11,7] and asynchronous models enriched with failure
achieving a global decision whenever the system becontietectors [4] are frequently used to model eventually syn-
stable, and we contrast this with a bound of two rounds whehronous systems.
t < n/3. We then give matching algorithms for batt» »n/3 A run in an eventually synchronous system may begin
andt < n/3. with an unboundedinstableperiod during which failures
may occur, no latency bounds are guaranteed to hold, and
the output of failure detectors can be arbitrary. However,
every run eventually entersséableperiod, in which latency

1 Introduction bounds or guarantees on failure detector outputs do hold, and
during which there are no new failures. Many distributed al-
1.1 Background and motivation gorithms and systems optimize for stable periods, running

a special (more costly)ecovery modealgorithm upon re-
State machine replication [21,29] is the most popular tecgPvery from unstable periods, ancharmal modealgorithm
nique for achieving software fault-tolerance in distributeghile stability lasts. This is true for replication schenes
systems. With this approach, all replicas perform operatiolasPaxos [22, 30, 25]; transaction-based schemes such as [27,
that update the data in the same order, and thus remain 2], virtually synchronous group communication systems,
tually consistent. In order to agree upon the order of operbere the group membership algorithm is run in recovery

tions, aconsensuslgorithm [24] is often employed, wheremode [3,6,1]; and also replication engines based on group
communication [18, 15, 2].

P. Dutta In this paper, we focus on the cost of the recovery mode.
Bell Labs Research, Bangalore, India We consider a round-based eventually synchronous model
R. Guerraoui that is close to the crash-stop basic round model in [11], and
School of Computer and Communication Sciences, EPFL, CH 1018¢ are interested in determining time-complexity bounds for
Switzerland consensus algorithms in this model. Obviously, in unstable
. Keidar periods, we cannot bound the number of rounds needed to

Department of Electrical Engineering, The Technion, Haifa, 32000, lachieve a global decision (i.e., rounds needed for all correct
rael processes to decide), as this would contradict the FLP re-

2 Dutta, Guerraoui and Keidar

sult [14].* We can, however, bound the number of roundius showing that our lower bound is tight. This is signifi-

needed to reach global decision in stable periods. Speaifintly faster than any previously suggested algorithm. This

cally, we consider how quickly a consensus algorithm catgorithm also achieves the two-round lower bound in nice

decide after an arbitrarily long asynchronous failure-promans.

period, i.e., the cost of recovery of a consensus algorithm Interestingly, in Section 6, we show that wher: n/3,

from asynchrony and failures. Note that if a system oscilecovery mode is not more costly than the normal mode: we

lates between unstable and stable periods, this cost of reagive a consensus algorithm that tolerates n/3 crashes

ery also indicates how long a system has to remain stableaimd globally decides by roun@dSR(r) + 1 in every runr.

order to guarantee that a consensus algorithm will be abl€eTiois suggests that mechanisms such as leases [25,30] and

decide. group membership [6], which often slow down the recovery
mode in order to expedite the normal mode, are not needed
when less than a third of the processes can crash.

1.2 Results and Contributions

We consider an eventually synchronous model in whi¢hRelated work

processes only fail by crashing, and the model ensures that in

every runr, there is an unknown round numb@SR(r) > In the eventually synchronous model, any algorithm that
1, (Global Stabilization Round of rur) such that only cor- solves consensus also solves uniform consensus [17], a vari-
rect processes enter rouddSR(r),? and from that round ant of consensus in which no two processes (whether correct
onwards, messages sent from correct processes to coroedtulty) are allowed to decide differently. Therefore, for
processes are received in the same round in which they e rest of this paper, wherever we mention consensus, we
sent. (Any message sent befakS' R(r) may be lost.) At implicitly refer to its uniform version.

mostt out of n processes may fail in any run. For example, In the synchronous model, the tight bound on the num-
GSR(r) = 1 implies that all faulty processes crash beforker of rounds for global decision of a uniform consensus
starting round 1 in rum. algorithm ist + 1 [13,5]. But in the eventually synchronous

Our first result, presented in Section 4, is a lower bourmodel, there obviously cannot be any bound on the number
on recovery mode: we show thatif > n/3, then every of rounds for decision, since the system can be asynchro-
consensus algorithm has a raithat requires at least threenous arbitrarily long. We can, however, bound the number
rounds for global decision from roun@dSR(r) (i.e., some of rounds needed to reach a global decision in stable peri-
process decides at or after routS R(r) + 2), for any ods. In [19], it has been suggested to investigate the bound
value of GSR(r). Given the known tight lower bound ofin nice runs of eventually synchronous systems, i.e., those
two rounds on global decision in runs that are failure-fre@ins that are failure-free and stable from the very beginning.
and stable from the very beginning [19], (also calldde It was shown that the tight bound in such runs is two rounds.
runs), we get that there is an inherent overhead of one round Next, consider synchronous runs in which all crashes are
for recovering from failures in systems that can be asynchiiaitial, i.e., any process that crashes, crashes before starting
nous whert > n/3. Intuitively, recovery in the eventually round 1. (In our model, this corresponds to the a numm
synchronous model is more costly even after the system bdtichGSR(r) = 1.) First of all, let us examine the synchro-
comes stable, since an algorithm cannot know that the spsus model. We observe that a simple adaptation of the syn-
tem has stabilized, and must account for the possibility thatronous consensus algorithm of [23] gives a synchronous
processes from which messages do not arrive are in fact aaniform consensus algorithm that globally decides in two
rect. Our lower bound is proven by examining a subset gfunds in every run where all failures are initial. Our lower
the runs in which each process receives at leastt mes- bound shows that the same performance cannot be achieved
sages in each round. Thus, our lower bound also appliesrtahe eventually synchronous modeltif> n/3: in this
algorithms that wait fom — ¢ messages in each round beease, every algorithm has some muwith GSR(r) = 1 in
fore starting a new round. (Note that algorithms that do nathich global decision requires three rounds. Thus, our lower
overcome message loss may wait#fior ¢ messages in eachbound highlights an inherent difference in time complexity
round, but waiting for more messages may violate livenesmstween uniform consensus algorithms for the synchronous
ast processes may crash.) model and ones for the eventually synchronous model.

In Section 5, we give a matching consensus algorithm Finally, let us examine recovery from arbitrary periods of
that globally decides by roun@SR(r) + 2 in every runr, asynchrony and failures. The original DLS [11] consensus
algorithm for the eventually synchronous model progresses

! The time-complexity metric considered in this paper is the numbigr phases and uses the rotating coordinator approach. Each
of rounds required for all correct processeségide(global decision). phasek consists of four roundstk — 3 to 4k, and is coor-
The number of rounds required for all correct processésliglobal dinated by a predefined process. There are ruinswhich

halting [8]) may be different. . .
2 Our definition of GSR differs from the definition of the GlobalP-S globally decides only at roundSR(r) +2 + 4(t + 1):

Stabilization Time (GST) in [11] in that, in the latter, processes mdy 'S F2(r) might occur in the second round of a phase and thus
fail after GST. “waste” that phase, and the nexphases may be wasted

The Overhead of Consensus Failure Recovery 3

if they are coordinated by faulty processes. In general, #ilose in [10]. Furthermore, the+ 2 lower bound of [10]

rotating coordinator algorithms are prone to recovery timéslds for anyt > 1, whereas the lower bounds shown in this

linear int. paper distinguish the cases n/3 andi < n/3.
Leader-based algorithms can recover from failures faster

than rotating-coordinator ones. Roughly speaking, after

GSR(r), the phases with faulty coordinators may be Pre Model and Problem Definition

vented if processes elect a leader to coordinate each phase

instead of relying on a predefined coordinator [22,26,9‘1.1 The eventually synchronous model

However, to the best of our knowledge, no previously sug-

gested algorithm meets our bound of three rounds. For

ample, in Paxos [22], decision can take up to five roun Socesses. denoted by — {pr, po pn}. Every ordered

after GSR(r). More specifically, after a leader fails, thre aif of process communicate by message-passing using a
rounds are needed in order to elect a new leader, and th @o%munication channel that does not create, duplicate, or

takes two additional rounds for the leader to achieve conseig, -\ oscaqes. A communication channel is a set consisting
sus. Intuitively, our algorithm achieves the optimal recovelyc messages that have been sent but not yet received. Each

time by running the normal and recovery modes SImunanc‘?ﬁannel is associated with a single sender and a single desti-
ously. :
ntatlon.

The leader-based algorithms in [26,9] require tha A distributed algorithmA is a collection of determinis-

\I?vrr?e?reesasseisn rcifrexﬁ dagl IZ?t;ergiiiigrr?Zslgae\éir{n;OUQS ?(i)csgutomata, wherd,, is the automaton assigned to process
s any 9 y p. Each automaton has an initial state. A computation pro-

beforeGSR(r)*. This dlﬁergnce IS _S|gn|f|cant in the pres ceeds irroundsof message-exchange. Rounds are identified
ence of asynchrony even if there is no message loss,

; . o aB)/ ound numbers that start fromAt each process, a round
may require processes to wait arbitrarily long (for— ¢

messages) before moving to the next round. This con EnS'StS of three sub-roundsnd receivg andcomputation

tion does not allow processes to locally advance roun sub-round, in turn, consists of an atonsiep A step a

W p Y , mically does the following: (1) removes a set of messages
based only on their clqcks. Thqs, even if processes’ cloc (possibly@) from some channels, (2) appliég and the
are perfectly synchronized, during periods of asynchronycar ’

roup of fast processes may advance an unbounded n rent statest,, of p o A, which outputs a new state,
group P y Md a set of messages to be sent, and then (3) updates the

ber of rounds without reaching decision, while some cof; . ofp to best!, and puts the output messages in respec-

B I el o, oo cases. once JUE channets. i paricar, a st of a send sub-ound puts
y P 9 n?nessages in the channels going out from;. In a step

cuteGSR(r), the processes lagging behind may have to 8t ? receive sub-round, a process receives some messages

ecute an unbounded number of rounds (and send and awall 4 oes not send any message. In steps of a computation

?ﬂuusnbtﬁgggequg?ofrhcgvénﬁﬁ%%ﬁeg r%rc(:j(;a\;etro fia#g; Y I -round, each process computes the messages for the next
! P y ‘rqund, but does not send or receive messages.

o D e I et e an agortmi, arun of 4 an e seuence
! b %f Qub-rounds of processes such that (1) initially, all chan-

e consider a distributed system consisting of a set f3

its local clock, and once all clocks are synchronized (aft %Is are empty and eveny,, is in its initial state: (2) for
GSR(r)), all process can execute the same round witho TP '
delay. Moreover, the algorithm in [9] globally decides b¥aCh message saf received in a step at a processand

or every messager € M, the appropriate channel con-
roundGSR(r) + 3, notGSR(r) + 2, and the leader-based, _. : . !)
algorithm of [26] does not achieve tleround failure-free tainsm immediately before that step is taken; (3) all steps

lower bound. involving proces are transitions of the state machidg;

In an earlier paper [10], we have considered a slight 4) proces® executes a sub-round of a round only after ex-

different eventually synchronous model, and studied tgé:utmg all lower rounds; and (5) inside a round, sub-rounds

complexity of consensus algorithms in. svnchronous rueke executed in the following order: send, receive, and com-
mplexity g : y Ute. (Sub-rounds of different processes, possibly at differ-

with failures. We have shown that in runs that are synchr At rounds, may be interleaved.)

nous from the beginning, + 2 is a tight lower bounq N In ever); run, at most a threshalaf the processes may

the number of rounds for consensus. However, unlike t%s '

. : Lot e o fdll by crashing: if some procegs does not take the as-
paper, [10] did not study algorithm complexity in fa'luresigned steps in some sub-round of a rytthen we say that

free stable periods that follow unstable (asynchronous an is faulty in r, andp; does not take any subsequent steps.

falzlilérk?-pr;%%?ergr}?jh Z’;d n?:lr?ror;m agr\?vséegé ﬁeféofﬁhcglloﬁprocess that does not fail in a ruris correctin that run.
d Y y y ' '), takes some steps in routdout does not take any step

bounds presented herein neither imply nor are implied Pﬁ’[;oundk + 1, then we say thas; crashes in round. If p;

3 Note that our lower bound proof covers such algorithms as weﬂ,Oes not take any step_ ”.‘ _rouindhen we say tha; crash_es
because it is restricted to runs in which each process receiveg 1N round O, orcrashes initially A processentersroundk if

messages. it takes at least one step in rouhgand a processompletes

4 Dutta, Guerraoui and Keidar

at procesp; of that run. We say that a run dfachieves global decision at
1: k « 0; initialize() {initialize local variableg roundk if (1) every process that decides in that run decides
2: while truedo at roundk or at a lower round; and (2) at least one process
2:]{gr‘_ kbl ‘ decides at round.
: j =1ton do: send roundc message tp;
5: receive messages
6: compute() {compute round: + 1 messages

. . L 4 The Lower Bound
Fig. 1 A generic algorithm in the eventually synchronous model.

In this section, we give a lower bound on the number of
¢ rounds for achieving global decision in the eventually syn-
chronous model. In order to strengthen our lower bound, we
consider a subset of the runs of the eventually synchronous
model satisfying the following two properties: (@@mmuni-
cation closed roundsvery message that is sent in a round,
and is not received in the same round, is lost and (2) in every
t round k, each process that completes roundeceives at

leastn —t roundk messages. (Note that we assume these ad-

The eventually synchronous model ensures that the fg!}ionall propgrtiesdor_lrl)é forlthe_sr?ke of broadenin_g tEe scope
lowing properties hold in each rum (1) self delivery in Of 0ur lower bound. The algorithms we present in the ensu-

every round, each non-crashed process receives the mes%éecnon_s do not rely on these propert|_es.) .
from itself; and (2)eventual synchronghere is an unknown __In addition, since we are concerned with proving a lower
but finite round numbefS R(r) such that every process thagound, without loss of generality, we assume algorithms to

enters round?SR(r) is a correct process, and in every rounf® (1) full-information, i.e., a message includes the entire
k > GSR(r), each correct process receives a rotnmdes- state of the sender, and the state of a process includes all
saae from every correct process. previous steps of the process, (which in turn includes all re-

Observe that any message sent befé&R(r) may be ceived messages), and (2) binary, i.e., the proposal values

lost, except by its sender. Also note ti@$sR(r) = 1 does '€ restricted to and.
not imply that runr is failure-free: it only implies that every

process th:_:\t crashesincrashes |n|_t|aIIy. Arumris called pefinitions and Notation
a nice runif no process crashes inand GSR(r) = 1.

A generic algorithm (modified from [16]) in the eventually,

: Consider a run- of a consensus algorithm. The round

synchronous model is shown in Figure 1. A specific alg%’configura‘tionof r is an orderech-tuple where elemeni

rithm simply describes the initial state assigned inline 1 and .. < the state of; at theendof roundk in . (A round
the local computation done in line 6. 0 configuration, or initial configuration, specifies only the
proposal value of each process.) The state of a process that

. does not complete rouridis a special symbol". The round
3.2 Consensus algorithms k configuration ofr is failure-freeif all processes complete

) roundk in r (or there are no initial failures & = 0).
In a consensus algorithm, we assume that every prqeess Gijyen a failure-free round configurationC' (of some
is provided with two local variables: a read-only variablgn), we definer;(C) (1 < j < n) to be a run such that
propp, and a write-once variabléec,. In every runr, prop, (1) C'is the roundi configuration ofr;(C); (2) p; does not
is initialized to some value 7 1, (we say thap proposes enter roundk + 1 (i.e., p; crashes at the end of rourtd;
in r), anddec, is initialized to_L. We say thap decidesiin gng (3)GSR(r;(C)) is k + 1. Note that the run-;(C) is
rif pwritesd # L todec, in some step of. Every runr ofa ynambiguously defined by these three conditions because,
consensus algorithm satisfies the following three propertie$j a5 A is a full-information algorithm(’ completely de-
(a) (validity) if a process decides then some process hasines the run until round;, and (2) the message exchange
proposed, (b) ((uniform) agreemeiino two processes de-pattern is completely defined from rouhdt 1 onward. We
cide differently‘_, and (c) ferminatior) every correct process genote by (C) a run such that (1) is the roundk con-
eventually decides. figuration of ' (C'); (2) no process crashes iff (C); and

Consider any consensus algorithinin the eventually (3) GSR(rT(C)) =k + 1.

synchronous model. We say thata progedscidesinround ~ *\ve denote byval;(C) the decision value of correct
k of arun of A if p writes a value talec, in a step of round: processes im;(C). We say that a configuratiofi is uniF-
alent(uni-failure-valent) if for every pair of processeg,

4 . .
Recall that, from [17], every consensus algorithm in the eventua L) o) -
synchronous model also solves uniform consensus. Since this p e 47 <), val;(C) = val;(C). We denote this common

focuses on the eventually synchronous model, we consider the unifoff{ue byval(C). A uniFvalent configuration is-Fvalent if
variant of consensus. val(C) = 1 and0-Fvalent otherwise. A configuration that is

roundk if it takes all assigned steps in rouid Note tha
according to our terminology, a processmay complete
roundk but still crash in round if it takes all assigned steps
in roundk but does not take any steps in roung 1; in this
case, we say that; crashes at the end of rourid A round
k message of procegs is a message sent by in roundk.
We say that a messageis lostin runr if m is sent but no
received in rurr.

The Overhead of Consensus Failure Recovery 5

not uniFvalent is calletiFvalent In other words, in a biF- Denote byC? the failure-free round: + 1 configura-
valent configuration, there are two procesgeandp;, such tion that extends” by one round in which all messages
thatval,(C) # val;(C'). Note that our notion of biFvalency sent byp; are lost and no other message is lost. Note that
is more restrictive than the traditional notion of bivalencgvery process receives — 1 > n — t messages in this
since the latter is satisfied whenewty two extensions of round. Consider the runs(C) andr;(C°). The roundk + 1
C lead to different decision values, whereas biFvalency resnfiguration ofr;(C) differs from C° only in the state
quires that two extensions with a specific structure lead ¢ processp;. Sincep; crashes at the end of rourkd+ 1
different decision values. in 7;,(C?), no correct process can distinguisf{C) from
7;(CY). Thus,val;(C°) = wval;(C) = 0. C° being uniF-
valent,val(C?) = 0.

We now consider a series of roukd+ 1 configurations,

, . each of which extendé&’ by one round. Configuration
Our first lemma shows that the environment (adversary) ng | < n) extends” by one round in which (1) no process

Lower bound proof

cause every algorithm to remain in a biFValent state for Doshes. and (2) all messages senphin roundk + 1 are
arbitrary number of rounds. A similar result is proven in [2 st excépt those sent{g1, ..., p.}. Consider configurations

(fgtg:]v:slim configurations); we give the proof here for COMEi-1 andC!. The two configurations differ only at. Thus
P ' no correct process can distinguish ryC'~1) fromr;(C1).
Thuswal;(C'=1) = val;(CY). C'=1 and C! being uniFva-

cemmallets < nandl = @S - L LeADE A 1ontuai(C1o1) = val(CY). A simple induction ovet, along

consensus algorithm in the eventually synchronous mo d ; o ;
For everyk > 0, there is a failure-free rum in which each with our previous observation thatl(C") = 0, gives us

process receives at least— ¢+ messages in each round and’ al(C™) = 0. Observe that configuratiofi™ extendsC by .
r's round % configuration is biFvalent. one round such that no process crashes and no message is

lost in roundk + 1. That is,C™ is the roundk + 1 configu-

Proof : We prove the lemma by induction on round numbd@tion of 7 (C). A contradiction to our assumption that the
k. roundk + 1 configuration of-# (C) is 1-Fvalent. O

. _ _ o _ The next lemma shows a lower bound of two rounds,
Base CaseThere is a failure-free biFvalent initial configurawhich applies for most values af This lemma can also
tion. Suppose by contradiction that all initial configurationse shown using a simple modification of the proof of [20].
are uniFvalent. Fob < j < n, letC; be a failure-free initial However, a straightforward modification of the proof of [20]

configuration in which all processes, wherel < I < j, would requiret > 2, whereas our proof holds for> 1.
proposel, and the rest of the processes propagerom va-

lidity, val(Cy) = 0 andwval(C,,) = 1. We claim that, for Lemma2Let3 < n andl < ¢ < n — 2. For every
1< j < nval(C;_y) = val(C;). To see why, notice that G = 1. every consensus algorithm has a rann which
C,_1 and C; differ only in the proposal value g;, and EVery process receives at least ¢ messages in each round,
hence, no process can distinguishC;_1) fromr;(C;). So GSR(r) = G, and some process decides at rodnsiR(r)+
val;(Cj_1) = val;(C;), and sinceC;_, andC; are uniF- 1 OF atahigher round.
valent,val(C;j_1) = val;(Cj—1) = val;(C;) = val(Cj). It Proof : Suppose by contradiction that there exists a con-
follows that if val(Co) = 0 thenval(Cy,) = 0, a contradic- sensus algorithnB and some round numbe?, such that
tion. for every runr of B in which GSR(r) = G, all correct
processes decide by rousd
Induction HypothesisThere is a failure-free runin which Consider a failure-free run in which every process re-
each process receives at least t messages in each rouncteives at least — ¢ messages in each round, and the run’s
1...k, andr’s roundk configuration(, is biFvalent. roundG — 1 configuration(, is biFvalent. (From Lemma 1,
such a run exists.) Thus, there dre< 4,5 < n such that
Induction Step:From the induction hypothesis, there is aal;(C') = 0 andwval;(C') = 1. Observe that from our as-
failure-free biFvalent roun@ configurationC. Thus, there sumption, by the end of rour@, every process distinct from
arel < i,j < n, such thawal;(C) = 0 andval;(C) = 1. p; decided) inr;(C), every process distinct fromy decides
Suppose by contradiction that all failure-free round- 1 11inr;(C), and every process decides by the end of raGnd
configurations, that extend and in which each process rein » (C). Letz € {0, 1} be the decision value of processes
ceives at least — ¢t messages in rounid+ 1, are uniFvalent. in » (C). We show a contradiction assuming= 1. (The
For the rest of the proof, we will construct roudt 1 in caser = 0 is symmetric.)
which each process receives at leastl > n—¢ messages, Consider run- (C’), where(" is a failure-free round
and hence will be uniFvalent by this assumption. G configuration that extend§' by one round, such that in
Let the round: + 1 configuration of- (C') bez-Fvalent round G, p; receives its own message, all other messages
(z € {0,1}). We show a contradiction assuming= 1. (The sent byp; are lost, and no other message is lost. Then
caser = 0 is similar — in the argument below, we simplyG'SR(r# (C')) = G + 1. Letp. be a process distinct from
usep; instead ofp;.) p;. Atthe end of roundz, p; cannot distinguish? (C”) from

6 Dutta, Guerraoui and Keidar

r#(C), andp, cannot distinguish (C") from r;(C). Thus, C2) from the round= + 1 configuration of rurb. There-
at the end of round: in 7 (C"), p; decidesz = 1 andp, fore, p; decidedl at the end of round”+ 1 in rund. Due
decide9), violating uniform agreement; a contradictionl to the uniform agreement properpy, andp, eventually

decidel in rund.
We next prove our three-round lower bound for the spe-

cial case that = 3 andt = 1. Now consider rung andd. At the end of rounds, the
two runs differ only at procegs; (because it receives differ-
Lemma 3 Letn = 3andt = 1. ForeveryG > 1, every con- ent sets of messages). Procegseandp, receive the same
sensus algorithm has a rurin which every process receiveset of messages in rour@ + 1 of runsc andd, and they
at leastn — ¢ messages in each roun@,SR(r) = G, and do not include a message fropy. Therefore, the states of
some process decides at rouGd 2(r) + 2 or at a higher 5, andp, are the same at the end of rou6d+ 1 in both
round. runs. Since procesgs does not send any message after round
. _ G + 1 (recall thatc is r5(C1) andd is r3(C2)), p1 andps
Proof : Suppose by contradiction that there exists a coBan never distinguish ruafrom run d. Thereforep, (and

sensus algorithnd and some round numbe#, such that ;) must decide the same valuedrandd: a contradiction.
for every runr of A in which GSR(r) = G, all correct O

processes decide by routd+ 1.

Consider a failure-free run in which every process re- Finally, we construct a proof for the general case by sim-
ceives at least — t messages in each round, and the runtdating a single process with a group of processes.
roundG — 1 configuration(, is biFvalent. (From Lemma 1,
such a run exists.) Thus, there dre< i,j < 3 such that Lemma4 Let3 <nandl <t <n—2andn/3 < t. For
val;(C)) = 0 andwval;(C) = 1. For convenience of presen-€veryG > 1, every consensus algorithm has a rtin which
tation and without loss of generality, we assume that1 €very process receives at least t messages in each round,
andj = 2. GSR(r) = G,and some process decides at rodnsiR(r)+

We consider four runs that exted@ (In each run, note 2 or at a higher round.
that each process receives at least ¢ = 2 messages in)))
every round — including one from itself.) Roundsand Proof : We prove this lemma by simulating three processes

G-+1 of these runs are depicted in Figure 2. We now descriB¥er a system where > 3 and¢ > n/3. Divide the set of
them in words. processed! into 3 sets of processe®), P», and P3, each

of size less than or equal {d; . (This is always possible
— Runa is 7 (C). ThusGSR(a) = G, and from our as- because&([5]) > n.) Sincet > n/3 andt is an integer, it
sumption on4, correct processes decidel; (C) = 0in follows thatt > [%]. Therefore, the setB;, P, andP; are

roundG + 1. each of size less than or equaki@nd hence, in a given run

— Runb is ro(C). ThusGSR(b) = G, and from our as- all the processes in any one of the sets may crash.
sumption onA, correct processes decidel(C) = 1in We now construct runs corresponding to runs with three
roundG + 1. processes. The relationship between a ruronstructed

— Runcisr3(C1), where the round?+ 1 configurationC1 in this simulation to the corresponding runwith three
is constructed as follows: In rourdd, the messages fromprocesses is as follows: (1) g proposest (0 or 1) in r,
p1 to {p2, p3} are lost (this is depicted by the absencthen every process iR; proposes: in r/, (2) if p; crashes
of any message arrow fromy, to {p,,ps} in roundG without sending any message in some roundf r, then
in Figure 2(c)), and the message frgmto p, is lost. every process i®; crashes without sending any message in
In roundG + 1, the messages fromy to ps, and from roundk of ', (3) if p; crashes in some rounfdof r, then
p3 to {p1, po} are lost. Procegs; cannot distinguish the every process itP; crashes in round of +/, (4) if p;, does
round G + 1 configuration of runc (i.e., configuration not crash in- then no process i; crashes in’, and (5) for
C1) from the round= + 1 configuration of ruru. To see 1 < j < 3, if p; receives a messages framin some round
why, notice thaps does not receive any message fram k& of r, then every process iR; receives a message from
in roundG andG + 1 of both runs. Furthermorg, does every process it?; in roundk of »’. (Note that in particular,
not distinguishe from ¢ at the end of round& — 1 and if p, does not crash at rourid then it receives a message
G, and hence, sends identical messages toroundsG from itself, and therefore, at rouridof »/, each process in
andG +1 of both runs. Therefore, as in runp; decides P; receives messages from every process;ij
0in roundG + 1 inrunc. Due to the uniform agreement From Lemma 3, every consensus algorithm has a run
property,p; andp, eventually decid® in runc. r in which every process receives at least ¢ messages
— Rundisr3(C2), where the roundr+1 configurationC2 in each roundSR(r) = G, and some process decides at
is constructed as follows: In rour@, the message from roundGSR(r) + 2 or at a higher round. We simulatéfrom
p1 to po is lost, and the messages frgmto {p,, p3} are r as explained above. Sincerinin each round, each process
lost. In round& + 1, the message from, to p3, and from loses a message from at most one process, @ach process
ps to {p1, p2} are lost. Notice that; cannot distinguish receives messages from at least ¢ processes. Moreover,
the roundG + 1 configuration ofd (i.e., configuration GSR(r’) = GSR(r). Since processes iR; decide inr’

The Overhead of Consensus Failure Recovery 7

Config C Config C
1
Pl >< 77777777777777777 L » P1
o
p2 p2 ><77 — Y .
o3 o b3 1
(@) runa (b) runb
config C Config C
pl pl
p2 p2.
(0}
pP3. p3. *
(c) runc (d) rund

Fig. 2 RoundsG andG + 1 of the four runs ofA.

whenp; decides in, we get that in”’, some process decideschannel property, but without adding any new message. Cru-

at roundGSR(r') + 2 or at a higher round. O cial to our transformation is the property of full-information
,) _ algorithms that requires any message to contain all lower
We conclude with the following theorem: round messages from its sender to its destination.

Consider any rum in the above proofs in which some

Theorem1 Let3 <nandl <t <n-2.ForeveryG > 1, messagen from a correct process; to another correct
(a) every consensus algorithm has a ruin which every procesg) is lost (e.g. rure in Lemma 3). Letm be a round
process receives at least — ¢ messages in each roundy message. Recall that, no message from a correct process
GSR(r) = G, and some process decides at ro@8iR(r)+ to a correct process is lost in rou#s R(r) and in higher
1 or at a higher round. rounds. Thusk < GSR(r). Consider the round*SR(r)
(b) if ¢ > n/3, then every consensus algorithm has a rumessagen’ from p; to p;. Messagen’ containsm because
r in which every process receives at least- ¢ messages our algorithm is full-information. Thus, on receiving’,
in each roundSR(r) = G, and some process decides gbrocess; can simulate reception of in round GSR(r).
roundGSR(r) + 2 or at a higher round. Similarly, we can simulate the reception of any other lost

message from a correct process to a correct process, and

. thus, satisfy the reliable channel property.
Reliable channels

We now consider a stronger eventually synchronous modet. : ;

We extend the proof to a model where channels are reliabte® Matching Algorithm for ¢ < n/2

i.e., all messages from correct processes to correct processes)

are eventually received. We now argue that Theorem 1 holy§ Now present a consensus algoritlini;; , for the eventu-

with this modification. Our discussion is informal. ally synchronous model with a majority of correct processes,
If all the runs constructed in the above proofs can be cdr- ¢ < 7/2. Recall that there is no consensus algorithm in

structed in the modified model then the proofs immediatﬂ;,evemua"y synchronous model whetr n/2 [11]. Al-

translate to the modified model. Observe that, the only c&thm UC, matches the lower bound of Theorem 1(b) as

when a run in the above proofs cannot be constructed in #{g!l @ the known lower bound of two rounds in nice runs.

modified model is when some message from a correct to a

correct process is lost, i.e., the reliable channel property is

violated. (Actually, due to the communication closed rourfsl1 Algorithm description

restriction assumed in the lower bound proof, any message

from a correct process to a correct process, that is not delMdgorithm UC; is presented in Figure 3. In every round,
ered in the same round in which it is sent, will be lost.) Weach procesg; sends its four primary variables to all
now show how to transform such a run to satisfy the reliabpgocesses: (1) the message typagType; initialized to

8 Dutta, Guerraoui and Keidar

at proces®;
1: k; < 0; initialize()
2: while truedo
3 ki —ki+1
4 for j = 1ton do: send round:; message tp;
5 receive messages
6: compute()
7
8
9

. procedure initialize()

. esty «— propp, {read the proposal valde
2 ld; «— pn;ts; — 0; msgType; <— PREPARE nextLD; < py; mazxTS; «— 0
10: round1 message— (1, msgType;, est;, tsi, ld;)

11: procedure compute()

12: if decp;, = L then

13: nextLD; «— p; wherej = Max{w| received a rouné&; message fromp,, }
14: mazT'S; — Max{ts| received a messagg(*, *, ts, *) }

15: if received k;, DECIDE, est’, ts’, x) then

16: est; « est'; ts; « ts'; decy, < est;; msgType; «+ DECIDE {decisior}
17: elseifreceived k;, COMMIT, %, *, x) from a majority of processes (including) andid; then
18: decp; — est;; msgType; <— DECIDE {decisior}

19: else if(receivedg;, *, *, , ld;) from a majority of processe§COMMIT-1}
and (received ki, *, ¥, mazTS;, Id;) from Id;) {COMMIT-2 }
and (Id; = nextLD;) then {COMMIT-3}

20: msgType; < COMMIT; est; < est received fromld;; ts; — k;
21: else
22: est; «— anyest s.t. receivedi;, , est, maxT'S;, x); ts; < maxTS;; msgType; «— PREPARE

23: ld; «— nextLD;
24: roundk; + 1 message— (k; + 1, msgType, est;, ts;, ld;)

Fig. 3 Algorithm U 1.

PREPARE (2) an estimate:st; of the decision value, ini- We now describe the computation sub-round in more de-
tialized to the proposal value (read fropnop,,), (3) the tail. Once a process; decides, it sendsBECIDE message
timestampts; of the estimate value, initialized t0, and with the decision value in every round. Otherwise, in round
(4) the leadeid; of the current round, initialized tp,,. In &k, p; updates its primary variables as follows. From the set
the computation sub-round, processes update their primafymessages receiveg; first computes its leader for the
variables depending on the messages received in that rourekt round ezt LD;) and the highest timestamp received
and possibly decide. (maxTS;). Then it executes the following four conditional

We now briefly explain the purpose of these variable siatements. (A statement is executed only if the conditions
processp;. Roughly speaking, the message type indicatésall the previous statements are false.)
the level of progress a process has made towards reaching)))
a decision. In the computation sub-round of roundf p; — If p; receives edECIDE message then it decides on the
sees a possibility of decision in the next round, then it sends received estimate (by writing that estimatedir,,,).
aroundk + 1 message with typeommIT. We then say that — If ps receivesCOMMIT ~messages from a majority of
p; commits in roundk. Once the process decides, it sends Processes, including itself and its current leader, fhen
messages with typeecIDE in all subsequent rounds. Oth- decides on its own estimate.
erwise, the message typeFiREPARE — Let ld; be the leader Of)i at roundk. Consider the fol-
lowing three conditions on the messages received by
p;: commit-1 received messages from a majority of
processes that say that; is their leader at round;
commit-2 received a message frdiah that has the high-
est timestamprhaxT'S;) and hadd; as the leader; and
commit-3!d; = nextLD;. If all three conditions are sat-
isfied, therp; sets its message type (for the round 1
message) tcoMMIT, adopts the estimate received from
ld;, sayz, and sets its timestamp to the current round
The leader of p; at roundk > 2 is simply the process numberk. We say thap; commits in round: with esti-
p; with the highest id from whiclp; received a round — 1 matezx.
message. Procesgs is the leader at all processes in round 1— Otherwise p; adopts the estimate and the timestamp of
Note that different processes may have different leaders in the message with the highest timestampxz7'S;, and
the same round. sets its message type RREPARE

In the computation sub-round of a roukdn which p;
does not decide and has not yet deciggédopts one of the
estimate values received in that round. Progeséso adopts
the timestamp received along with the estimate, unjgss
commits in roundz, in which casep; updates its timestamp
to k. Thus, the timestamp associated with an estimate value
x simply indicates a round number in which some processes
has committed while adopting estimate

The Overhead of Consensus Failure Recovery 9

Finally p; updates it3d; to next L D; and composes theLemma 9 (Uniform Agreement) No two processes decide
message for the next round. differently.

Proof : If no process ever decides then the lemma trivially
5.2 Correctness of the consensus algorith@y holds. Suppose some process decides.kLie¢ the lowest

round in which some procegs decides. Process can de-
Lemma 5 Until a process decides, its timestamp is norside either (1) by receiving aECIDE message, or (2) by
decreasing. receiving a majority ofcoMmIT messages, including mes-

sages from itself and its leader. In case 1, some process has
Proof : If a processp; does not decide in rounk, then it sent abECIDE message in rounk, and hence, has decided
can change its timestamp by adopting eithgor the max- in a lower round, which contradicts the definition of round
imum timestampreaxT'S) received in messages of round:. We now consider case 2.
k, as its new timestamp. Sincg; receives its own mes- Suppose; decidesz in roundk. As p; receives a ma-
sage in every roundpazT'S is never lower than its cur- jority of coMMIT messages in rounk, and it decides on
rent timestamp. Also, a simple induction shows that thfe estimate of one of theoMmIT messages (namely, the
timestamp of a process is always less than or equal to dige from itself). From Lemma 7, all theoMMIT messages
round number. Thus when a process updates its timestainplude the same estimate and the same leader, say.
the new timestamp value is greater than or equal to the atdusyp; receives k, commIT, z, k — 1, p;) from a major-
value. U ity of processes, and hence, a majority of process commits

__inroundk — 1 with estimatez. Let us denote this majority

Lemma 6 For every round:, no two processes commit withyf processes b,
different estimates in rounki and no two processes commit " \ye claim that if any process commits or decides in round
with differentnew L Ds in roundk. k' > k—1, then it commits with estimateor decides:. The
claim immediately implies agreement. We prove the claim

Proof : Consider two processgs andp; that commit in by induction on round numb.

round k£ with estimatesest; andest;, andnewLD values
newld; andnewld;, respectively. Also, in round, letid; be
the leader op; andld’; be the leader of ang;. Thus, from
commit-1, each of them has received in round majority
of messages that contdiff andid’; as leaders, respectively.
As two majorities intersectd; = ld;. Furthermore, from
commit-3,newld; = Id; andnewld; = ld;-. So,newld; =
ld; = ld} = newld;.

From the algorithmp; commits with the estimate sen
by Id;, andp; commits with the estimate sent By;. As
ld; = ld}, p; andp; commit with same estimate. a

Base Casek’ = k — 1. As processes iy, commitz in
roundk — 1, from Lemma 6, no process commits with an
estimate different from: in roundk — 1. By definition ofk,

no process decides in rouad- 1.

Induction Hypothesidf any process commits or decides in
any roundk1 such thatt — 1 < k1 < K/, then it commits
With estimater or decides:.

Induction StepWe need to show that if any process commits
h OF decides in round’ + 1, then it commits with estimate
ol decides:. Suppose by contradiction that some proggss
commits with estimate # « in round%’ + 1. Thenp; has
not received anypECIDE message in round’ + 1. Also
Proof - Immediate from Lemma 6. g hote thatp;, commits on the estimate of the rourd + 1
message that has the highest timestamp among all messages

Lemma 8 If some process sends a message with timestafpeived byp; in roundx’ + 1. Let this highest timestamp be

ts > 0 and estimater then some process commits in roundsM ax. Therefore, some process has sent a ratind mes-
ts with estimater. sage with timestamgs M ax and estimate. From Lemma 8,

some process commits in roundV/ ax with estimatez.

Proof : If a procesyp; sends a message with timestamp Since the highest timestamp that can be received in
thenp; sets its timestamp ts in some round. Consider theroundx’ + 1is &/, tsMax < k'. Sincep; commits in round
lowest roundk in which some process; sets its timestamp £’ + 1, it has received rounk + 1 messages from a majority
to ts. From the definition oft, p; cannot receiveés from of processes, and hence, received rokfrgl message from
another process in rourd Thusp,; commits with timestamp at least one process 8., sayp,. Recall that every process
ts in roundk, and from the algorithmi = ¢s. in S, commits in roundc — 1 with estimater. Thus,p, has

Also, from the algorithm, if a process adopts a timestantpnestampk — 1 at the end of round — 1. As p; has not
from a message, it also adopts the associated estimateeived anyDECIDE message in rounél’ + 1, p, has not
Therefore, by induction on rounds of the run, we can shadecided by round’. From Lemma 5, the rounkl + 1 mes-
that each estimate is associated withsaqual to a round sage ofp, contains timestamp greater than or equdl tol.
number in which it was committed. O Thus,tsMax >k — 1.

Lemma 7 For every roundk, all round k¥ messages wit
msgType = COMMIT have identical estimate values an
identicalld values.

10 Dutta, Guerraoui and Keidar

Thus we havée—1 < tsMax < k’. By the induction hy- Let ts” be the timestamp of; at the end of round
pothesis, every process that commits in rouwstf ez com- GSR(r). Consider round7SR(r) + 1. Clearly, p; sends
mits x # z; a contradiction. (GSR(r) + 1, *, x, ts”, p;). Every process on receiving this

If some procesg, decides a valug in roundk’ +1, then message evaluatesaxT'S to ts”. At every correct process,
in that round, either some process sen@€alDE message p; is the leader, andextLD is evaluated tg,;. Thus, all
with decision valuey or p, sends &coOMMIT message with three conditions required to commit hold at every correct
estimatey. By the induction hypothesig,= x in both cases. process. As no correct process decides by raafi®(r)+1,
O every correct process commits in routb R(r) + 1. In
) the next round, every correct process sends the message
Lemma 10 In every runr, all correct processes decide bY(GSR(r) + 2, COMMIT, #, %, p,). In round GSR(r) + 2,
roundGSR(r) + 2. every correct process receive®MMIT messages from a
majority that includes itself ang;, and hence, decides; a

Proof : First, observe that in the eventually synchrono]ptradiction. 0

model, every correct process executes an infinite number o
rounds, and in particular, executes rourR8R(r) + 2. Lemma 11 AlgorithmU C; solves consensus.

We prove the lemma by contradiction. Assume that some :
correct process; does not decide by roundSR(r) + 2 Proof : From Lemma 10, every correct process decides (ter-

in some runr. If any correct process; decides by round Mination). Validity holds since estimates are initialized to
GSR(r) + 1, then it sends @ECIDE zmessage in round the proposal value and can only be set to other estimate val-
GSR(r) + 2’ and all correct processes receive that me es received in messages, and the decision value is one of

sage and decide in rourt@SR(r) + 2, contradicting our as- the estimates. Uniform agreement is proven in Lemmal9.

sumption. Therefore, our assumption implies that, no correg{egrem 2 There is a consensus algorithm in eventually
processes decides by rouGd R(r) + 1. synchronous model with< n/2 such that (a) in every run

_ Let p; be the correct process with the highest idrin " correct processes decide by roued R(r) + 2, and (b) in
Since correct processes receive messages from all corgggdry nice run-’, correct processes decide by round 2.
processes in all rounds fro6S R () onward, it follows that

p; is the leader of all correct processes in all rounds froRvoof : From Lemma 11{/C, solves consensus. Part (a) fol-
GSR(r) onward. lows from Lemma 10. To see part (b), consider any nice run
Consider round=SR(r). We claim that at the end of 7’ of UCy. In v/, all processes are correct and receive mes-
roundGSR(r), no process has a higher timestamp than sages from all processes in every round. Therefoyés the
Suppose by contradiction that some other progessom- leader at all processes in every round. In rotngdrocesses
pletes round= SR(r) with a higher timestamp tham, say receivePREPARE messages from all processes with leader
timestampk’. There are three cases depending on whégat top,, and timestamp set t0. So processes commit in
p; adopts timestamp@’: (1) p; adopts timestamg@’ be- roundl, and sencoMMIT messages in rourtd On receiv-
fore roundGSR(r), (2) p; adopts timestamp’ on receiv- ing COMMIT messages from all processes, processes decide
ing a message from some process in round GSR(r) inround2. O
with timestampt’, or (3) p; commits in round7SR(r) and
adoptsk’ = GSR(r) as its timestamp. In the first two cases,
since only correct processes enter rodh8lR(r), and cor- 6 A Matching Algorithm for ¢t < n/3
rect processes receive messages from all correct processes
in roundGSR(r), p; receives a message with timestaiip We now present a consensus algorithi@: in the eventu-
(from p; in the first case, and from,, in the second case)ally synchronous model assuming< n/3. The algorithm
and adopts a timestamp not smaller tik&ra contradiction. matches the lower bound of Theorem 1(a), and hence, also
Consider the third case. We show thgatcommits in the lower bound of two rounds in nice rudsCs is inspired
roundGSR(r). In roundGSR(r), as correct processes reby by algorithm A;, of [10], which in turn is inspired
ceive message from all correct processes, every process dwalf26]. However, A, and [26] require that processes re-
uatesnextLD to p;, and evaluatesnazTS to the same ceive at least — ¢t messages in every round, and therefore
timestamp, says’. Sincep; commits in roundGSR(r), can have unbounded recovery times (see Section 2). We ap-
from condition commit-3, the leader pf in roundGSR(r) ply the timestamping scheme BIC, to obviate this require-
is same as itsiext LD, i.e., p;. From condition commit-2, ment.
it follows that p; received a messag&fR(r), *, *, ts', Algorithm U, is presented in Figure 4. The algorithm
p;) from p;. Thus,p; is its own leader at the beginning ofis based on the following simple observation. Suppose
round GSR(r). Thus, atp;, condition commit-3 holds. As n/3, andS is a multiset ofn» elements where some element
all correct processes receive the same set of messages appears: — t times. Then in any multiset containimg— ¢
roundGSR(r), andp,; andp; have the same leader in rouncelements fronf, v appears at least— 2¢ times and all other
GSR(r), commit-1 and commit-2 hold also at. Thus,p; elements ofS appear less tham — 2t times.
commits in round>SR(r), and hence, updates its timestamp We assume that some order is defined on proposal val-
to GSR(r) = k’; a contradiction. ues. In every round, each processends its three primary

The Overhead of Consensus Failure Recovery 11

at proces®;
1: k; < 0; initialize()
2: while truedo
3 ki —ki+1
4 for j = 1ton do: send round:; message tp;
5 receive messages
6: compute()
7
8
9

. procedure initialize()

. esty — propp, {read the proposal valde
. ts; «— 0; msgType; +— PREPARE maxT'S; « 0; msgSet; — ()
10: round1 message— (1, msgT'ype;, est;, ts;)

11: procedure compute()
12: if decp;, = L then
13: if received g;, DECIDE, est’, ts’) then

14: est; «— est'; ts; — ts'; decy; «— est;; msgType; «+ DECIDE {decisior}
15: elseifreceived at least — ¢ roundk; messages in rourid then

16: ts; «— kl

17: msgSet,; < set ofn — ¢ roundk; messages received py with lowest sender ids

18: maxTS; — Max{ts| (ki, *, *, ts) € msgSet;}

19: if every message imsgSet, has identicabst (sayest’) and hags = k; — 1 then

20: dec,,; « est’; msgType; < DECIDE {decisior}
21: else ifthere are at least — 2t messages imsgSet; with identicalest (sayest’’) then

22: est; «— est”

23: else

24: est; «— Max {est| (ki, , est, maxTS;) € msgSet;}

25: roundk; + 1 message— (k; + 1, msgType;, esti, ts;)

Fig. 4 Algorithm UC5.

variables to all processes: (1) the message twpeType; Consider roundGSR(r). Recall that only correct
initialized to PREPARE (2) an estimatest; of the decision processes enter the round, and all correct processes receive
value, initialized to the proposal value (read fremop,,), messages from all correct processes. It follows that every
and (3) the timestamyz; of the estimate value, initialized tocorrect process receives at least- ¢ messages, and re-

0. In the computation sub-roungd; decides if it receives a ceives the same set of messages. Since no correct process de-
DECIDE message. Ip; receives less tham — ¢t messages in cides in that round, correct processes update their timestamp
round k then it does not update its variables in that rountb GSR(r), and compute identicahsgSets. Then, either

If p; receives at least — ¢ messages then it updates itgvery correct process receives some estimate atrleast
timestamp to the current round numligiand updates othertimes and adopts that estimate, or all processes adopt the
variables as follows. First, it arranges all messages receivadximum estimate with the maximum timestamp. In ei-

in the round in ascending order of their sender ids, seleth®r case, since processes have identinalSets, they

the firstn — ¢ messages, and puts them in sefgSet;. If update their estimates to the same value. Thus, in round
every message imsgSet; has the same estimate, say’, GSR(r) + 1, processes receive identical estimates from all
and every message tnsgSet; has timestamg; — 1, then correct processes with timestangpSR(r), and decide; a

p; decidesest’. If at leastn — 2t messages imsgSet; have contradiction. O

the same estimate, sayt”, thenp; adoptsest”. Otherwise,

among the estimates received with maximum timestamp,Lemma 13 (Uniform Agreement) No two processes de-
adopts the maximum one (i.e., the order on proposal valugde differently.

is used in order to break ties). We now prove correctness of

UCs,. Proof : If no process ever decides then the lemma trivially
. holds. Suppose some process decides.A et the low-
Lemma 12 In every runr, all correct processes decide byest round in which some process decides; sagecides
roundGSE(r) + 1. in round k. Proces; can decide either (1) by receiving a
Proof : We prove the lemma by contradiction. ASSUmM®ECIDE message, or (2) by receivirRREPARE messages
that some correct procegs does not decide by roundfromrn —t processes with identical estimate values and with
GSR(r) + 1in runr. If any correct procesg; decides by timestampk — 1. In case 1, some process has semiea
round GSR(r), then it sends @ECIDE message in round CIDE message in rounk, and hence, has decided in a lower
GSR(r) + 1, and all correct processes receive that messund, which contradicts the definition of rouhdWe now
sage and decide in rour@dS R(r) + 1; contradicting our as- consider case 2.

sumption. Therefore, our assumption implies that no correct Supposep; decidesz in roundk. Then in roundk — 1,
processes decides by rouGd R(r). at leastn — t processes update their timestamgte 1 and

12 Dutta, Guerraoui and Keidar

their estimate ta:. Let this set of at least — ¢ processes be replication operate in two modes: a fast normal mode in sta-
Sy ble periods, and a slower recovery mode when recovering
We claim that if any process updates its estimate or deem unstable ones. Furthermore, we observed that in all ex-

cides inround:’ > k — 1, then it updates it estimate foor isting algorithms, the performance difference between the

decidesz. This claim immediately implies agreement. Wéwo modes is substantial: in all previous algorithms we are

prove the claim by induction on round humbér aware of, recovery can take up to five rounds, which is three
more than the optimal normal mode. We set out to explore

Base Casek’ = k — 1. From the definition of round, no whether the recovery mode is indeed inherently more costly

process decides in rourid— 1. Suppose some procegs than normal mode, and if yes, by how much. Not surpris-

updates its estimate in routd Thenp; has received at leastingly, we have found that it > n/3, there is an inherent

n—t messages. As< n/3, at least, — 2t of those messagesprice for recovery from failures and asynchrony. But some-

are from processes ifl,, and hence, contain estimateand what surprisingly, we have shown that this penalty is only

less tham — 2t messages are from processes natinThus one round. Even more surprisingly, we have shown that if

p; updates its estimate ta t < n/3, there is no cost to recovery, which can be as fast as
the normal mode.

Induction Hypothesidf any process updates its estimate or Our algorithms were given in the basic round model

decides in any rounéll such thatt — 1 < k1 < K/, thenit of [11]. We note that this model can be trivially simulated

updates it estimate to or decidese. in a system where eventually message delays are bounded
by a known constanbD, local computation takes negligible

Induction Steplf any process updates its estimate or decidéisne, and processes have access to synchronized clocks: in

in roundk’ + 1, then it updates it estimate toor decidesc. roundk, a process sends roukdnessages at timg — 1) D

Suppose a process decidgs roundk’ + 1. Then either and delivers all roun@d messages that are received by time

(1) some process has decidgdn a lower round and sentkD.

a DECIDE message in round’ + 1, or (2) at leasin — ¢

F_’rocesses has uDd,ated the'r eSt'ma@_'mroundk" In the Acknowledgements We thank Yoram Moses, Petr Kouznetsov, and

first case, from the induction hypothesis and our assumptigsstian Pochon for helpful discussions.

that no process decides before rodnd follows thaty = z.

Consider the later case. Again from the induction hypothesis

it follows that, by the end of rounk!, all processes i§, has References

either decided, retained their estimate or has crashed. As

there are at least — ¢ processes iy, and two sets of size 1. ACM: Special issue on group communications systems. Commu-

n — tintersect, we have = z. 2 zj%?rﬁo\;]s%ttﬂ eé 'CII\:/FogrEf)tcEtljgfr)der to database replication. In:

NOV\,/ SUppose some proce_‘ﬁgs updates its estimate in Proc,eed‘ings 6f the 22th IEEE International ConfeFr)ence on Dis-

round/’ + 1. Thenp; has received at least— ¢t messages yipyted Computing Systems (ICDCS-22) (2002)

in roundk’ + 1. Ast < n/3, at leastn — 2t of those mes- 3. Birman, K., van Renessee, R.: Reliable Distributed Computing

sages are from processessin and hence from the induction ~ with the Isis Toolkit. IEEE Computer Society Press (1993)

; ; ; i 4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
hypothesis, contain estimate or decision vatuélso, less distributed Systems. J. ACKI(2). 225-267 (1996)

thann — 2¢ messages are from processes ndf.inand so, 5. charron-Bost, B., Schiper, A.: Uniform consensus is harder than
less tham — 2t messages can contain a value different from consensus. Journal of AlgorithrB4(1), 15-37 (2004)

z. Thuspj updates its estimate ta O 6. Chockler, G.V,, Keidar, 1., Vitenberg, R.: Group communication
) specifications: A comprehensive study. ACM Computing Surveys
Lemma 14 AlgorithmUC, solves consensus. 33(4), 1-43 (2001)

. . 7. Cristian, F., Fetzer, C.: The timed asynchronous distributed system
Proof : From Lemma 12, every correct process decides (ter- model. IEEE Transactions on Parallel and Distributed Systems

mination). Validity holds since estimates are initialized to 10(6) (1999)
the proposal value and can only be set to other estimate v#- Dolev, D., Reischuk, R., Strong, R.: Early stopping in byzantine
ues received in messages, and the decision value is one ofadfeerment J. ACNB7(4), 720-741 (1990) .

- Dutta, P., Guerraoui, R.: Fast indulgent consensus with zero degra-
the estimates. Uniform agreement is proven in lemmall3. ™ gation. In: Proceedings of the Fourth European Dependable Com-

; ; ; puting Conference (EDCC-4). Toulouse, France (2002)
Theorem 3 There is a consensus algorlthm In eventual%_ Dutta, P., Guerraoui, R.: The inherent price of indulgence. Dis-

synchronous model with < n/3 such that, in every run ™ yinted Computingl8(1), 85-98 (2005). A preliminary version

r, correct processes decide by rou@d R(r) + 1. appeared in the Proceedings of the 21st ACM Symposium on Prin-
. . ciples of Distributed Computing (PODC-21), 2002.
Proof : Immediate from Lemmas 12 and 14. U 11. Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the pres-

ence of partial synchrony. J. ACBB(2), 288—-323 (1988)
12. El Abbadi, A., Skeen, D., Cristian, F.: An efficient fault-tolerant
7 Conclusions protocol for replicated data management. In: Proceedings of the
4th ACM Conference on Principles of Database Systems (1985)
. . .13. Fischer, M.J., Lynch, N.A.: A lower bound for the time to as-
Our work was motivated by the observation that many dis- syre interactive consistency. Information Processing Let#(r,

tributed systems and algorithms implementing state machine 183-186 (1982)

The Overhead of Consensus Failure Recovery

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

20.

30.

Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. AGNR), 374—

382 (1985)

Friedman, R., Vaysburd, A.: Fast replicated state machines over
partitionable networks. In: Proceedings of the 16th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS-16), pp. 130-137.
IEEE Computer Society (1997)

Gafni, E.: Round-by-round fault detectors: Unifying synchrony
and asynchrony. In: Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing (PODC-17), pp. 143-152.
Puerto Vallarta, Mexico (1998)

Guerraoui, R.: Revisiting the relationship between non block-
ing atomic commitment and consensus problems. In: Proceed-
ings of the 9th International Workshop on Distributed Algorithms
(WDAG-9) (1995)

Keidar, |., Dolev, D.: Efficient message ordering in dynamic net-
works. In: Proceedings of the 15th ACM Symposium on Princi-
ples of Distributed Computing (PODC-15), pp. 68—76. New-York,
NY (1996)

Keidar, I., Rajsbaum, S.: On the cost of fault-tolerant consensus
when there are no faults — a tutorial. Tech. Rep. MIT-LCS-TR-
821, MIT (2001). PODC 2002 Tutorial

Keidar, I., Rajsbaum, S.: A simple proof of the uniform consensus
synchronous lower bound. Information Processing Le®&(s),
47-52 (2003)

Lamport, L.: Time, clocks, and the ordering of events in a distrib-
uted system. Commun. ACIgH(7), 558—-565 (1978)

Lamport, L.: The part-time parliament. Tech. Rep. 49, Systems
Research Center, Digital Equipment Corp, Palo Alto (1989). A
revised version of the paper also appeared in ACM Transaction on
Computer Systems, 16(2):133-169, May 1998

Lamport, L., Fischer, M.: Byzantine generals and transaction com-
mit protocols. Technical Report 62, SRI International (1982)
Lamport, L., Shostak, R., Pease, M.: The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
4(3), 382-401 (1982)

Lampson, B.: How to build a highly available system using con-
sensus. In: Proceedings of the 10th International Workshop on
Distributed Algorithms (WDAG-10), pp. 1-15. Bologna, Italy
(1996)

Mostefaoui, A., Raynal, M.: Leader-based consensus. Parallel
Processing Letters1(1), 95-107 (2001)

Oki, B., Liskov, B.: Viewstamped replication: A general primary
copy method to support highly available distributed systems. In:
Proceedings of the 7th ACM Symposium on Principles of Distrib-
uted Computing (PODC-7), pp. 8-17. Toronto, Ontario, Canada
(1988)

Santoro, N., Widmayer, P.: Time is not a healer. In: 6th Annual
Symp. Theor. Aspects of Computer SciencCS vol. 349, pp.
304-313. Springer Verlag, Paderborn, Germany (1989)
Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Comput. SQ&4),
299-319 (1990)

Thekkath, C.A., Mann, T., Lee, E.K.: Frangipani: A scalable dis-
tributed file system. In: ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), pp. 224-237 (1997)

