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Abstract

We propose a framework and methodology for quantifying ffieceof denial of service (DoS) at-
tacks on a distributed system. We present a systematic efuittlg resistance of gossip-based multicast
protocols to DoS attacks. We show that even distributed andamized gossip-based protocols, which
eliminate single points of failure, do not necessarily @tiate vulnerabilities to DoS attacks. We pro-
pose Drum — a simple gossip-based multicast protocol tlirairedtes such vulnerabilities. Drum was
implemented in Java and tested on a large cluster. We shavg ci®sed-form mathematical analysis,
simulations, and empirical tests, that Drum survives seirS attacks.

1 Introduction

One of the most devastating security threats faced by aalistd system is denial of servicdDoS) attack,

in which an attacker makes a system unresponsive by fortiioghiandle bogus requests that consume all
available resources. Indistributed denial of servic€DDoS) attack, the attacker utilizes multiple computers
as the source of a DoS attack, in order to increase the attarigeh. In 2003, approximatel2% of U.S.
organizations, including government agencies, finanaigtitutions, medical institutions and universities,
were faced with DoS attacks [5]. That year, DoS attacks werasé¢cond most financially damaging attacks,
only short of theft of proprietary information, and far albasther attacks [5]. Therefore, coping with DoS
attacks is essential when deploying services in a hostite@ment such as the Internet [23].

As a first defense, one may protect a system against DoS sttsakgy network-level mechanisms [4].
However, network-level filters cannot detect DoS attackbeatpplication level, when the traffic seems le-
gitimate. Even if means are in place to protect against nétlavel DoS, an attack can still be performed at
the application level, as the bandwidth needed to perforrh an attack is usually lower. This is especially
true if the application performs intensive computationseach message, as occurs, e.g., with secure proto-
cols based on digital signatures. In this paper, we are coadeavith DoS attacks asecureapplication-level
multicast protocols (such as, e.g., Spinglass [2]), famsinly on the multicast protocol layer.

A DoS attack that targets every process in a large systentaidywcauses performance degradation, but
also requires vast resources. In order to be effective evierlimited resources, attackers target vulnerable
parts of the system. For example, consider a tree-baseitastlprotocol; by targeting a single inner node
in the tree, an attacker can effectively partition the neabt group. Hence, eliminating single points of
failure is an essential step in constructing protocols éinatess vulnerable to DoS attacks.

*A preliminary version of this paper appeared in The IEEErma¢&onal Conference on Dependable Systems and Networks
(DSN) 2004.



We therefore focus on gossip-based (epidemic) multicastopols [7, 1, 8, 12, 15, 16, 14], which
eliminate single points of failure using redundancy andioan choices. Such protocols are robust and have
been shown to provide graceful degradation in the face oluawtimay failures [13, 17]. One may expect that
such a system will not suffer from vulnerabilities to DoSaalts, since it can continue to be effective when
many processes fail. Surprisingly, we show that gossigdb@sotocols can be extremely vulnerable to DoS
attacks targeted at a small subset of the processes. Thissdmecause an attacker can effectively isolate a
small set of processes from the rest of the group by attadkisget.

To quantify the effects of DoS attacks, we measure theirénite on the time it takes to propagate a
message to all the processes in the system, as well as ondisgavhroughput processes can receive. We
do this using asymptotic analysis, simulations, and measents.

Having observed the vulnerabilities of traditional pratts; we turn to search for a protocol that will
eliminate these vulnerabilities. Specifically, our goabislesign a protocol that would not allow an attacker
to increase the damage it causes by focusing on a subset pfdbesses. We are not familiar with any
previous protocol that achieves this goal. We are familighwnly one previous work, by Minsky and
Schneider [22], that deals with DoS attacks on a gossipebpeatocol. However, the problem they con-
sider differs from ours in a way that renders their approaetpplicable to our setting (see Section 2), and
moreover, they only deal with limited attack strengths.

We presenDrum (DoS-Resistant Unforgeable Multicast), a gossip-basetticast protocol, which,
using a few simple ideas, eliminates common vulneralslitee DoS attacks. Mathematical analysis and
simulations show that Drum indeed achieves our design goaitacker cannot substantially hinder Drum’s
performance by targeting a small subset of the processeen\ath adversary has a large sending capacity,
its most effective attack against Drum is an all-out attdwkt distributes the attacking power as broadly
as possible. (We concentrate on heavy attacks since thep@edamaging, and one can expect them to
happen in actual scenarios [28].) Obviously, performaregratiation due to a broad all-out DDoS attack
is unavoidable for any multicast protocol, and indeed altésted protocols exhibit the same performance
degradation under such a broad attack.

We have implemented Drum in Java and tested it on a on a clolstesrkstations. Our measurements
validate the analysis and simulation results, and showDhatn can withstand severe DoS attacks, where
naive protocols that do not take any measures against Da&ksitcompletely collapse. E.g., under an
attack that focuses or0% of the processes, Drum’s latency and throughput reroaistantas the attack
strength increases, whereas in traditional protocolslatieacy growdinearly with the attack strength, and
the throughput continuously degrades.

In summary, this paper makes the following contributions:

e It presents a new framework and methodology for quantifitimg effects of DoS attacks. We are
not familiar with any previously suggested metrics for D@Sistance nor with previous attempts to
quantify the effect of DoS attacks on a system.

e It uses the new methodology to conduct the first systematigysdf the impact of DoS attacks on
multicast protocols. This study exposes vulnerabilitreraditional gossip-based protocols.

e It presents Drum, a simple gossip-based multicast protihatleliminates such vulnerabilities. We
believe that the ideas used in Drum can serve to mitigatefteet ®f DoS attacks on other protocols
as well.

e It provides closed-form asymptotic analysis as well as ftians and measurements of gossip-based
multicast protocols under DoS attacks varying in strength extent.



This paper proceeds as follows: Section 2 gives backgronmbssip-based multicast and related work.
Section 3 presents the system model. Section 4 describes. 3ection 5 presents our evaluation methodol-
ogy and considered attack models. The following three @estevaluate Drum and compare it to traditional
gossip-based protocols using various tools: Section Ggil@sed-form asymptotic latency bounds; Sec-
tion 7 provides a thorough evaluation using simulationst &action 8 presents actual latency and through-
put measurements. Section 9 evaluates the usefulnesseasf@ts-mitigation techniques used in Drum.
Section 10 overviews a dynamic membership protocol thabeansed along with Drum. Section 11 con-
cludes. Appendix A contains some derivations for the asgtigpanalysis. Appendix C provides detailed
numerical analysis and compares it with the simulationltesu

2 Background and Related Work

Gossip-based dissemination [7] is a leading approach irdésiggn of scalable reliable application-level
multicast protocols, e.g., [1, 8, 12, 15, 16, 14]. Our workuses on symmetric gossip-based multicast
protocols like Ipbcast [8], that do not rely on external meadkms such as IP multicast.

Such protocols work roughly as follows: Each process lgadillides its time intayossip roundsrounds
are not synchronized among the processes. In each roungiabess randomly selects a small number of
processes to gossip with, and tries to exchange informatitmthem. Every piece of information is gos-
siped for a number of rounds. It has been shown that the patipagtime of gossip protocols increases
logarithmically with the number of processes [25, 14]. Ehare two methods for information dissemina-
tion: (1) push in which the process sends messages to randomly selectegspes; and (2ull, in which
the process requests messages from randomly selectegggec@&oth methods are susceptible to DoS at-
tacks: attacking the incoming push channels of a processomeagnt it from receiving valid messages, and
attacking a process’s incoming pull channels may prevenbih sending messages to valid targets. Some
protocols use both methods [7, 14]. Karp et al. showed thabawing push and pull allows the use of fewer
transmissions to ensure data arrival to all group membdis [1

Drum utilizes both methods, and in addition, allocates alded amount of resources for each operation
(push and pull), so that a DoS attack on one operation dodsangper the other. Such a resource separation
approach was also used in COCA [33], for the sake of overcpioS attacks on authentication servers.
Drum further utilizes randomly selected ports for datagtraission, thus making it difficult for an attacker
to target these ports. Note that Drum deals with DoS attatkiseaapplication-level, assuming network-
level defenses are already in place. Network-level DoSyarsabhnd mitigation has been extensively dealt
with [27, 3, 9, 30, 4, 26] but DoS-resistance at the securdicast service layer has gotten little attention.

Secure gossip-based dissemination protocols were seggegtMalkhi et al. [19, 20, 21]. However,
they did not deal with DoS attacks. Follow-up work by MinskydeSchneider [22] suggested a pull-based
protocol that can endure limited DoS attacks by boundingthraber of accepted requests per round. How-
ever, these works solve thiffusion problem, in which each message simultaneously originatesoae
thant correct processes, where upitprocesses may suffer Byzantine failures. In contrast, wesider
a multicast system where a message originates at a singleesodence, using a pull-based solution as
suggested in [22] does not help in withstanding DoS attabksreover, Minsky and Schneider [22] focus
on load rather than DoS attacks; they include only a briefyaisof DoS attacks, under the assumption that
no more thant processes perform the attack, and that each of them gemeraiagle message per round
(the reception bound is also assumed to be one message pdj.réwi contrast, we focus on substantially
more severe attacks, and study how system performanceddsgra the attack strength increases.

Here, we focus on DoS attacks in which the attacker sende&ibd application messages. DoS can also



be caused by churn, where processes rapidly join and le&}getfilis reducing availability. In Drum, as in
other gossip-based protocols, churn has little effect ailahility: even when as many as half the processes
fail, such protocols can continue to deliver messageshigliand with good quality of service [17]. A DoS
attack of another form can be caused by process perturbatidrereby some processes are intermittently
unresponsive. The effect of perturbations is analyzed Jinwhere it is shown that probabilistic protocols,
e.g., gossip-based protocols, solve this problem. We matedur work is the first that we know of that
conducts a systematic study of the effect of DoS attacks @msage latency.

3 System Model

Drum supports probabilistically reliable multicast [1,18]] among processes that are members of a group.
Each message is created by exactly one group membesofiteg. Throughout most of this paper we
assume that the multicast group is static. Section 10 stgyggmssible solution for dealing with a dynamic
group membership.

Like previous gossip protocols [1, 8], we assume that theetdyiehg network is fully-connected. There
are no bounds on message delays, i.e., the communicati@ynst@onous. The link-loss probability is
constant, equal for all links, and independent of any othetof. The communication channels are insecure,
meaning that senders of incoming messages cannot be yaligoitified in a simple manner. However, the
data messages’ sources (originators) can be identified) s&imdard cryptographic techniques, e.g., [24].
Additionally, some information intended for a specific pges may be encrypted using, e.g., a public-key
infrastructure.

An adversary can generate fabricated messages and snoopssagas. However, these operations
require the adversary to utilize resources. Malicious gsees perform DoS attacks on group members. In
case these malicious processes are part of the group, gwyedflain from forwarding legitimate messages.

We assume that a DoS attack that does not specifically tangetahdom ports does not affect the
reception on these port (i.e., the application-level Dda&ctdoes not cause a network-level DoS attack as
well).

4 DoS-Resistant Gossip-Based Multicast Protocol

Drum is a simple gossip protocol, which achieves DoS-rasc# using a combination of pull and push
operations, separate resource bounds for different eapesatind the use of random ports in order to reduce
the chance of a port being attacked. Each progedscally divides its time into rounds. The rounds are not
synchronized among the processes. A round is typicallyerotider of a second, and its duration may vary
according to local random choices. Procpdwolds a list of other processes in the group (maintained by
the membership service). Every roundzhooses two small (constant size) random sets of processas f
this list, viewy,,s;, andview,,,;;, and gossips with them. E.g., when these views consist ofprwoesses
each, this corresponds to a combined fan-out of four. Inteaidip maintains a message buffer. Procgss
performs the following operations in each round:

e Pull-request-p sends a digest of the messages it has received to the preaegseicw,,,;, request-
ing missing messages. Pull-request messages are sentllekaoven port. The pull-request specifies
a randomly selected port on whighwill await responses, andspawns a thread for listening on the
chosen port. This thread is terminated after a few rounds.



e Pull-reply—in response to pull-request messages arriving on thekmelln port,p randomly selects
messages that it has and are missing from the received sligext sends them to the destinations
indicated in the requests.

e Push-in a traditional push operatiop,randomly picks messages from its buffer, and sends them to
each target in its viewy,q,. In order to avoid wasting bandwidth on messages tlateady hasp
instead requeststo reply with a message digest, as follows:

1. p sends gush-offerto ¢, along with a random port on which it waits for a push-reply.

2. t replies with apush-replyto p's random port, containing a digest of the messagass, and a
random port on which waits for data messages.

3. If p has messages that are missing from the digest, it chooseslamasubset of these, and
sends them back ts randomly chosen port.

The target process listens on a well-known port for pushreff

The random ports transmitted during the push and pull ojpetare encrypted (e.g., using the recip-
ient’s public key), in order to prevent an adversary froncdigring them. Thuspiewy,s,| + |viewpu|
encryptions are performed each time these ports are changed

Upon receiving a new data message, either by push or in reggona pull-requesty first performs
some sanity checks. If the message passes these chedbdts/ers it to the application and saves it in its
message buffer for a number of rounds.

Resource allocation and boundsln each roundp sends push-offers to all the processes initsv,,,n
and pull-requests to all the processes imitav,,,;. If the total number of push-replies and pull-requests that
arrive in a round exceegss sending capacity, themequally divides its capacity between sending responses
to push-replies and to pull-requests. Likewigagesponds to a bounded number (typicattyew,,s|) of
push-offers in a round, and if more data messages than it @adldn arrive, them divides its capability
for processing incoming data messages equally betweeragessarriving in response to pull-requests and
those arriving in response to push-replies.

At the end of each roung; discards all unread messages from its incoming messagers&ufThis is
important, especially in the presence of DoS attacks, adtaokar can send more messages tharan
handle in a round. Since rounds are locally controlled andaenly vary in duration, the attacker cannot
“aim” its messages for the beginning of a round. Thus, a bagessage has an equal likelihood of being
discarded at the end of the round as an authentic messages doe

Achieving DoS-resistanceWe now explain how the combination of push, pull, random pelections,
and resource bounds achieves resistance to targeted Ra&satA DoS attack can flood a port with fabri-
cated messages. Since the number of messages accepteth porat a round is bounded, the probability
of successfully receiving a given valid messagein a given round is inversely proportional to the total
number of messages arriving on the same poft/ais that round. Thanks to the separate resource bounds,
an attack on one port does not reduce the probability forviegevalid messages on other ports.

In order to prevent a process fraendingits messages usingmushoperation, one must attack (flood)
the push-offer targets, the ports where push-replies agdtedy or the ports where data messages are
awaited. However, the push destinations are randomly chioseach round, and the push-reply and data
ports are randomly chosen and encrypted. Thus, the atthekano way of predicting these choices.

Similarly, in order to prevent a process frasceivingmessages during faull operation, one needs to
target the destination of the pull-requests or the ports leiclnpull-replies arrive. However, the destinations



and ports are randomly chosen and the ports are sent entrypteus, using the push operation, Drum
achieves resilience to targeted attacks aimed at pregeatprocess frorsendingmessages, and using the
pull operation, it withstands attacks that try to prevent@pss fronreceivingmessages.

5 Evaluation Methodology

The most important contribution of this paper is our thotowyaluation of the impact of various DoS
attacks on gossip-based multicast protocols. In additoexaimining the effect of DoS on Drum, we also
measure the effectiveness of the DoS-mitigating techsigueployed by it. We mostly concern ourselves
with the benefits of combining both the push and pull methodie evaluate three protocols: (i) Drum,
(i) Push which uses only push operations, and @®ill, which uses only pull operations. Pull and Push
are implemented the same way Drum is, with the important oreasof bounding the number of messages
accepted in each round and using random ports. Thus, in corgpte three protocols, we study the
effectiveness of combining push and pull operations urteassumption that these other measures are used.
Following that, Section 9 evaluates the effectiveness efdtiner DoS-mitigation concepts, by comparing
Drum’s performance to two modified versions of Drum: withoesource separation, and without using
random ports.

We begin by evaluating the effect that a range of DoS attaake bn message latency using asymptotic
mathematical analysis (in Section 6) and simulations (ioti6e 7). Our simulation results exhibit the
trends predicted by the analysis. In Appendix C, we alsogmtedetailed mathematical analysis, with
results virtually identical to our simulations.

For these evaluations, we make some simplifying assunmgtife consider the propagation of a single
messageV/, and assume thal/ is never purged from any process’'s message buffer. We dogvesyw
assume that all the processes have messages othevitivatheir buffers, and thus all the processes gossip
regardless of whether they ha¢ or not. We also assume that when processes send a data méssgge
send the complete contents of their buffer in a single ojmraiVe model the push operation as performed
without push-offers (in Drum and in Push). We assume thatrdlnbeds are synchronized, and that the
message-delivery latency is smaller than half the gossiipgiethus, a process that sends a pull-request
receives the pull-reply in the same round. We consider & gjetup ofn processes, and assume that every
process has complete knowledge of all the other process$ies group. All of these assumptions were made
in previous analyses of gossip-based protocols, e.g., [19,822].

The analysis and simulations measure latency in terms aigosunds: we measu®’s propagation
time, which is the expected number of rounds it takes a given pobto propagaté/ to all (in the closed-
form analysis) or t®9% (in the simulations) of the correct processes. We choseesltibid 0f99% since
M may fail to reach some of the correct processes. Note thaéatoprocesses can be either attacked or
non-attacked. In both cases, they should be able to senccaente dataa messages.

Finally, we turn to measure actual performance on a clustedkstations (in Section 8). Our goal for
this evaluation is twofold: First, we wish to ensure that siraplifying assumptions made in the analysis
and simulations have little impact on their results. Ermgthie implementation, rounds are not synchronized
and the push-offer mechanism is used (in Drum and in Puskprisiewe seek to measure the consequences
of DoS attacks not only on actual latency (in msecs.), but afsthe throughput of a real system, where
multiple messages are sent, and old messages are purgegrisoesses’ message buffers.

Attacks. In all of our evaluations, we stage various DoS attacks. thedtack, the adversary focuses on
a fractiona of the processe® (< o < 1), and sends each of thenfabricated messages per round (in Drum,
this means; push messages agdpull-requests). We denote the total attack strengtiby z - o - n. We
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Figure 1: Actual values af,, andp,.

assume that the message source is being attacked (this irapaxd on the results of Push). We consider
attacks either of dixed strengthwhere B is fixed and« increases (thusy decreases); or dhcreasing
strength where either: is fixed andw increases, or vice versa (in both cas@sncreases). Examining fixed
strength attacks allows us to identify protocol vulnentibs, e.g., whether an adversary can benefit from
targeting a subset of the processes. Increasing strengtksienable us to assess the protocols’ performance
degradation due to an increasing attack intensity.

6 Asymptotic Closed-Form Analysis

To simplify the analysis, in this section we assume thatredlgrocesses are correct and the DoS attack is
launched from outside the system. The protocols use a euriataout,F. Every round, each process sends
a data message 10 processes and accepts data messages from atfscesses. In Drung; is equally
divided between push and pull, e.g. fif = 4, thenview,,s;, = viewy,; = 2, and each process accepts
push messages from at magtrocesses and pull-request messages from at2rpsicesses in a round. We
analyze Drum in Section 6.1, Push in Section 6.2, and PulettiGn 6.3

We denote byp,, the probability of a non-attacked process to accept a validming push or pull-
request message sent to it. Similarly, we denotg e probability of an attacked process to accept a valid
incoming message. Obviously, is independent of the attack strength. In Appendix A, we gietailed
formulas forp, andp,,, and Lemma 8 shows that, > 0.6 for all F' > 3. In fact, an exact calculation using
the formula in Appendix A shows that, > 0.6 for all F' > 1, as can be seen in Figure 1(a). Since an
attacked process is sent at leashessages in a round, and accepts at most them, we get the following
coarse boundp, < % Figure 1(b) shows an example of the numerical calculatfqvb(yersusg.

6.1 Drum

We define theeffective expected fansih, to be the average number of valid data messages a process suc
cessfully receives in a round. (If the same data messagees/esl fromk processes, we count this As
messages.) Likewise, tledfective expected fan-qud, is the average number of messages that a process
sends and are successfully received by their targets inrarou



Let us examine the effect of a DoS attack @rand I, with respect to the push operatiof,,; and
Lusn, resp.). The probability of an attacked process to receppesh message js,. The probability of a
non-attacked process to receive a push message Eherefore, the effective fan-ing, ., and/} , of an
attacked and non-attacked process (resp.) are:

push = F *pa and Iy o = F-py Q)

Whenan processes are attacked, the effective fan-outs are:
gush: Zush:F'(a'pa—i_(l_O‘)'pu) (2)

Similar arguments apply for the pull opertaion. The prolighof an attacked process to receive a pull-
request isp,. The same probability for a non-attacked procesg,is Receiving pull-requests allows a

process to send data messages, and on average, each pegedsssf’ pull-requests. Due to the use of

random ports, we can assume that each pull-reply is actbaihg received, and thus, the effective fan-outs
are:

Opuu= F-pa and  Opy=F-py (3)
4)

Receiving data messages requires sending pull-requeatsh eund,F’ pull-requests are being sent. On

averageq I’ of them reach an attacked process and are successfully rgaprabability p,, and(1 — «) F

of those reach a non-attacked process and are succesadywth probabilityp,,. Due to the use of random

ports, we can assume it makes no difference whether thestiogigorocess is attacked or not. We get the
following fan-ins:

put = Ly = F-(a pa+(1—a) pu) )

In Drum, O = 1(Opush + Opunr) @aNdI = 3 (Ipusn + Lpuu)- Therefore:

" " a+1 1l -«

0"=I"= L (a-pa+(1—a)pu+pa) =F-( 5 Pat —5— Pu) (6)
o 2 —«

oY=1"= %'(a'pa+(1_a)pu+pu) :F'(E'pa+ 9 'pu) (7)

We begin by considering increasing strength attacks. Wevghat in Drum, an adversary does not
gain any significant advantage by increasing its attackgthewhile focusing on a fixed strict subset of the
processes.

Lemma 1. Fix @ < 1 andn. Drum’s expected propagation time is bounded from above bgrestant
independent aof.

Proof. From Equations (6) and (7) we get that forall0* = I* > F'I_Ta-pu, ando* = 1* > F-Z‘Ta-pu.
Sincep, is independent of, anda < 1 is fixed, the effective fan-ins and fan-outsaf the processes are
bounded from below by a constant independent.df has been shown that a constant fan-out and a constant
group size entail a constant propagation time [25, 14]. &loee, the propagation time is inevitably bounded
from above by a constant independent:of O



Figure 3(a) in Section 7.2 illustrates this quality of Drumsing simulations.

We now consider attacks where the adversary has a fixed iaigoéwer. In this scenario, the attacker
can intensely attack a small group of processes, or perfonoderate attack on a large number of processes.
We would like to see which strategy is more beneficial to thachker. We denote by = % = 9 the
attack strength divided by the total system capacity. Wevghat the adversary’s best strategy against Drum
is to attack as many processes as it can, i.e., inciease
Lemma 2. For ¢ > 5, Drum’s expected propagation time is monotonically insiag witha.

Proof. We will show that all the processes’ effective fan-ins anddaits are monotonically decreasing with
a. That is, we want to prove that2> < 0 and 92~ < 0. We require the following:

=G =5 (pa+ozd”“+d”“ pu> <0
pa+(a+1)%p; <pu

Recall thatp, < £. In Lemma 7 in Appendix A we show thg2e < . Bounding the left side of the

A A axr

inequality, we get:

F F 204+1 3
<

dpq
1 il N = 1) =
Pa + (a0 + )da w—i—(a—k )ax — (a+a+1) - -

Thus, our condition holds whei’l < py, that is, whernc > p%. Similarly, for the second derivative we get
the condition:

u w da
08 4 £ (4 adfs —p) <0

dpa
pa+ad’; < Py

Bounding the left side of the inequality, we get:
d F F F 2 2
pa+aﬁ<—+a—:—-(a+a):—a<—
da x ar ax c c
Thus, we require tha% < py, Or thate > pi This is already inferred from our previous result. The leanm
follows sincep,, > 0.6. O

This behavior is validated in the simulations in Section N®reover, the simulations show that even
for much smaller values of (ranging from0.25 to 2), Drum’s propagation time increases with(see
Figures 7-8).

6.2 Push

We first prove the following simple lemma.

Lemma 3. Va > 0 “<1(1+ )<a—|—1

Proof. We show that'y > 0 < 1n(1+y) < = + 1.
Defineh(y) = In(1 +y) — 1+y andg( ) = ln(l + y) — y. By taking derivatives we get:

W) = w5 — (g ~ gite) = gite >0 >0,
g’(y):1+y 1<0, Yy >0.

Sinceh(0) = ¢(0) =0,y > In(1 +y) > ﬁ Therefore < iy <3 + 1. O

1+y

9



We proceed to show that Push’s propagation time is lineatr in
Lemma 4. The expected propagation time to all processes in Push isdemifrom below by:

Inn—In[(1 —a)n+1]
In (14 Fap,)

Proof. We prove that the given bound holds even for the case whdialliyiall the non-attacked processes
haveM, in addition to the source (which is attacked). The lemma todows immediately.

Let M (k) denote the expected number of processes that Naw the beginning of round. In
round &k, each process havinfy/ sends it toF' other processes. On averagéy of those are attacked,
and each attacked process receives the message with pitgbahi Thus, we get the coarse recursive
bound M (k + 1) < M(k) + M(k) - Fap, with the initial conditionM (0) = (1 — a)n + 1. Thus,
M(k) < [(1—a)n+1] (14 Fap,)*. M reaches all the processes whief(k) > n. The first round
numberk that satisfies this inequality is the required formula. O

Corollary 1. Fix « andn > é The propagation time of Push increases at least linearti wi

Proof. Sincea andn > é are fixed, the numerator in Lemma 4 is a positive constant. siden the

denominator: sincg, < £, it holds thatF- o - p, is O(1). The lemma follows since, by Lemmal%m

isf(x). O
The above corollary explains the trend exhibited by Pushgare 3(a).

6.3 Pull

We begin by proving the following lemma.

Lemma5. Vb e N ﬁ is O(z).
Proof. We first show thag;! < W < ¢l 1foreverya > 1,b€ N,
In order to prove the left inequality, we prove by inducticnnhl)thata%1 > W
F 1 H—(a—1)bH! a(a)’=(a=1)(a=1)" a®
orb =1, 1 > - for everya > 1. The inductive StepZ 571 = (@)t = o
a—1 a—1 b 1 b b+1 b+1
T#< +Tﬁ:a+a— <o .
Next, we prove tha{ﬁ <elitie. % < 221 From the inequalitya)® > (a—1)"+
a— a—1)b a—
b(a — 1)1, we get thau® — (¢ — 1) > b(a —1)®~1. Hence,; ( 1)1)b < b(g_lﬁzfl = ol
Therefore,“b1 < ﬁ < 5= L 4+1. By substituting# for « in the last inequality, we get that

z—F x?
bF S:cb (z—F)®

< =L 4 1foreveryz > F. Therefore,- isO(x). O

Z’b
We definep as probability thafl/ is propagated from the source in a round.

Lemma 6. Fix & andn. The number of rounds it takes a message to leave the souredligrows at least
linearly with x.
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Proof. We give a gross over-estimate by assuming that all the other— 1 processes choose the source
every round. (When fewer processes choose the solifde]esslikely to leave the source.) Singg < %
p<(l-— (%)"‘1). The number of rounds it takes to propagate a message bdyemdessage source is

geometrically distributed witlp. Therefore, its expectation js> mn,l_m(";fF)7L,l . Substitutingn — 1 for b

in Lemma 5, we get tha is Q(z). O
Corollary 2. Fix a andn. The propagation time of Pull grows at least linearly with

Figure 3(a) illustrates this behavior of Pull.

7 Simulation Results

This section presents MATLAB simulations of the three peots under various DoS attack scenarios. Only
one of the group members is a source, with respect to the erandata messagd . However, all the group
members constantly have messages to send, even if they gossssd/. Each process receives messages
from at mostt’ = 4 other processes each round (disregarding pull-replieg)ofe thanf’ processes try to
access this process’s incoming channels, a ranBlesized subset of them is chosen. We consider a link-loss
probability of0.01 on all links and a fan-out of" = 4. Rounds are synchronized among all processes. Each
data point is averaged ov&d00 runs.

In Section 7.1 we consider situations with no DoS attaclégiho failures or only crash failures), and
validae known results about gossip protocols. We continugeictions 7.2 and 7.3 by measuring the effect
of DoS attacks on the system. In these studies, we assuméa0¥iabf the processes are controlled by
the adversary, perform a DoS attack on some correct praesseé do not propagate any valid messages.
It is important to realize that the attacking processes doattack each other, but the correct processes
may choose to gossip with these malicious processes. Irtésat the gossiped messages will be simply
discarded by the attacking processes. We note that, aogotdiour model, malicious group members
performing a DoS attack are equivalent to group membersrsuff crash failures, and an externally-sourced
DoS attack of the same strength. As Figure 2(b) shows, thqoils are highly robust to crash failures.
Thus, controlling more group members does not grant theradme with a significant advantage. We
measure the propagation times to the correct processds,altacked and non-attacked. In Section 7.2
we measure the impact of targeted DoS attacks, and in SetBowe examine fixed strength attacks and
adversary strategies.

7.1 Validating Known Results

We begin by evaluating the three protocols in a failure-8eenario, and in situations where crash failures
occur. We assume that the crashes occur beférss generated, and that the source does not crash. We
also assume that the crashes are not detected by the caweetsges, i.e., they try to gossip with crashed
processes as well.

Our aim is to validate two known results: (1) the propagatiore of gossip-based multicast protocols is
O(logn) [25, 14], as can be seen in Figure 2(a), with a logarithmigis;aand (2) the performance of such
protocols degrades gracefully as crash failures amounta]3as depicted in Figure 2(b)). We can see that
Push and Pull slightly outperform Drum in these experimefiss is due to the fact that the bounds on the
pull and push channels in Drum are strict, i.e., even if inec8w round no messages have arrived via the
push channels, only requests from at most two distinct gsEewill be handled, although the process is
capable of handling four such requests. Conversely, Pustrat have only one bound, which guarantees
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Figure 2: Runs without DoS attack: Average propagation tm$#9% of the correct processes (simulations).

that messages won't be discarded if they can be processexlability to perform well even when many
processes crash stems from the random choice of commumqadrtners each round.

7.2 Targeted DoS Attacks
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Figure 3. Increasing attack strength: Average propagatiore to 99% of the correct processes,
n = 120, 1000 (simulations).

In this section we consider targeted attacks, where a sabs®re an of the processes is attacked.
Figure 3 compares the time it takbbto reach99% of the correct processes for the three protocols under
various DoS attacks, with20 and 1000 processes. Figure 3(a) shows that whéfi; of the processes
are attacked, the propagation time of both Push and Puktases linearly with the severity of the attack,
while Drum’s propagation time is unaffected by the attackrggth. This is consistent with the prediction
of Lemma 1 and Corollaries 1 and 2. Moreover, the three padgoperform virtually the same without
DoS attacks (see the leftmost data point). Figure 3(b)titiiss the propagation time as the percentage of
attacked processes (and thidsincreases. The rightmost data point in this figure matclseeaario where
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Figure 4: Increasing attack strength: STD of the propagatine t099% of the correct processes,—= 1000
(simulations).

only 10% of the processes are both correct non-attacked. Althouglptbtocols exhibit similar trends,
Drum propagates messages much faster than Push and Pull.

Figure 4 illustrates thestandard deviationSTD) of the propagation times presented in Figure 3 for
n = 1000. It shows that for a fixedr, Drum’s STD is not affected by the attack strength, wherkasther
protocols’ STD increases linearly. Furthermore, both Damd Push exhibit a small STD compared to Pull.
E.g., fora = 10% andx = 128, the STDs of Drum and Push abes and2.9 rounds (resp.), whereas Pull’s
STD is9.3 rounds. Therefore, the bahavior of Drum and Push is mordqiadde. The high STD of Pull’s
propagation time is mainly due to the large STD of the numibepwunds it takes to propagaké beyond the
source. The number of rounds it takes to propaghteeyond the source is geometrically distributed with
p, wherep is the probability to propagatd beyond the source in a round. Thus, the STD number of rounds

it takes to propagat® beyond the source i@. A numerical calculation of according to the formula
in Appendix B , withF' = 4 andz = 128 yields an STD oR.17 rounds, which explains Pull's measured
STD of9.3 rounds mentioned above.

Figure 5 illustrates the cumulative distribution functi@@DF) of the percentage of correct processes
that receiveM by a given round, under different DoS attacks. As expectadhPropagate! to the non-
attacked processes very quickly, but takes much longerojoggate it to the attacked processes. Again, we
see that Drum significantly outperforms both Push and Pulidnstrict subset of the system is attacked.

Interestingly, on average, Push propag&tie® more processes per round than Pull does (see Figure 5),
although the average number of rounds Pull takes to propddab 99% of the correct processes is smaller
than that of Push (see Figure 3). This paradox occurs sinitie Pwll, there is a hon-negligible probability
thatM is delayed at the source for a long time. With= 4 andz = 128, the probability forM not being
propagated beyond the sourcebini0, and 15 rounds is0.54, 0.3, and0.16 resp. (as computed using the
formula forp in Appendix B). Oncel/ reaches one non-attacked process, it quickly propagatbs test of
the processes. Therefore, even if by a certain rdyriid most runs, a large percentage of the processes have
M, there is still a non-negligible number of runs in which Ridles not reaclny process (other than the
source) by round:. This large difference in the percentage of processes eedtas a large impact on the
average depicted in Figure 5. In contrast, Push, which esaah the non-attacked processes quickly in all
runs, does not have runs with such low percentages factmoghis average. Nevertheless, Push’s average
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Figure 5: Targeted DoS attacks: CDF: Average percentageroéa processes that receive n = 1000
(simulations).

propagation time t89% of the correct processes is much higher than Pull’s, bedausk has to propagate
M to all the attacked processes, whereas Pull has to propagiately out of one attacked process.

Figure 6 illustrates this behavior: Figure 6(a) shows thettRpropagated/ much faster than Pull to the
non-attacked processes, while Figure 6(b) indicates thstt Bnd Pull take the same time to propagddtéo
the attacked processes. Conversely, Drum exhibits fapagation times both to attacked and non-attacked
processes.

7.3 Adversary Strategies

We now evaluate the protocols under a range of attacks widlt fixdversary strengths. First, we consider
severe attack witlB = 7.2n and B = 36n (corresponding te = 2 andc = 10, resp.) fabricated messages
per round. If the adversary chooses to attack all correatgases, it can serl (resp.,40) fabricated
messages to each of them in each round, bec#ifgeof the processes are correct. If the adversary instead
focuses o 0% of the processes, it can sef#l (resp.,360) fabricated messages per round to each. Figure
7 illustrates the protocols’ propagation times with difiet percentages of attacked processes, for system
sizes 0f120 and500. It validates the prediction of Lemma 2, and shows that thetrdamaging adversary
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strategy against Drum is to attack all the correct proces3ést is, an adversary cannot “benefit” from
focusing its capacity on a small subset of the processesoritrast, the performance of Push and Pull is
seriously hampered when a small subset of the processagésed. Not surprisingly, the three protocols
perform equally when all correct processes are targetedt®erightmost data point).

Next, we evaluate Drum under attacks with relatively smd¥eaisary powers o = 0.9n, B = 1.8n
andB = 3.6n (c = 0.25, ¢ = 0.5, andc = 1, resp.) and also without an attack (as a baseline). As Figjure
shows, such attacks have little impact on Drum’s propagdtioe.

8 Implementation and Measurements

We have implemented Drum, Push, and Pull in Java. The impl&atiens are multithreaded. The operations
that occur in a round are not synchronized, e.g., one proo@f# send messages before trying to receive
messages in that round, while another might first receivexnamessage, and then propagate it. We run our
experiments oB0 machines at the Emulab testbed [32], on a 100Mbit LAN, whesingle process is run
on each machine (i.em, = 50). As in the simulations, we designaté% of the processes as malicious —
they do not propagate any messages, and instead performtiacksaonly on correct processes.

8.1 \Validating the Simulation Methodology

Ouir first goal for these experiments is to validate the sitmrtamethodology. To this end, we experiment
with the same settings that were tested in Section 7, firsinfeasing values of anda = 10%, and
then forx = 128 and increasing values of. As in the simulations, we track the propagation a singla dat
messagelV/, where every process has messages to send, even if it doéslda¥/. Each data point is
averaged over000 runs.

Due to the lack of synchronization, messages can be pramhgatltiple hops in a single round in some
situations. We use the following method to count the numifeoonds it takes to propagate a message:
when a message is created, a round counter is attached tinidalized to0. The message source logs
the value0, and immediately increases the round countdr. td/henever a process receives a new message,
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Figure 7: Strong fixed strength attacks: Average propagdime t099% of the correct processes (simula-
tions).

it logs the message’s current round counter. Every rourzh peocess increments the round counters of all
the messages in its local buffer.

Figure 9 depicts the results of these experiments, and aaspizem with the corresponding simulation
results. It shows that the experimental results are camistith the simulation results, indicating that the
simplifying assumptions made in the analysis and simuiatimave negligible effect on the results.

8.2 High Throughput Experiments

We proceed to evaluate the protocols in a realistic settifigere multiple messages are sent, and old mes-
sages are purged from processes’ buffers. By running onl aeesork, we can faithfully evaluate latency
in milliseconds (instead of rounds), as well as throughput.

In each experiment scenario, a total 16f 000 messages are sent by a single source, at a raté of
messages per second. The average received throughputema/lare measured at the remainddgcorrect
processes (recall thatof the 50 processes are faulty). The average throughput is calcuigtering the
first and lasts% of the time of each experiment. The round duration second. Data messages é&fe
bytes long. (The evaluation in [8] used a similar transmissate and similar message sizes.)

In a practical system, messages cannot reside in localrbufdeever, nor can a process send all the
messages it ever received in a single round. In our expetaneressages are purged from processes’ buffers
after 10 rounds, and each process sends at rRdsandomly chosemew messages to each of its gossip
partners in a round. These are roughly twice the buffer sicesanding rate required for the throughput of
40 messages per round in an ideal attack-free setting, simcprdpagation time in the absence of attacks
is about5 rounds. Due to purging, some messages may fail to reacheafirtitesses. Since we measure
throughput at the receiving end, this is reflected by an gesthroughput lower than the transmission rate
(of 40 messages per second).

Figure 10 shows the throughput at the receiving processedriom, Push, and Pull, under the same
DoS attack scenarios staged above. Figure 10(a) indida#dsas for latency, Drum’s throughput is also
unaffected by increasing, while Push shows a slight degradation of throughput, aritsRaroughput
decreases dramatically. Figure 10(b) shows that Drumtsutditput gracefully degrades asincreases,
while Push exhibits a linear degradation, and Pull's thhqug is drastically affected for every > 0.
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Figure 11 depicts the CDF of the average latencgufcessfully receivethessages in two scenarios.
Each data point shows, for a given latemcthe percentage of correct processes for which the avesiteyecly
does not exceeld We observe that Push is the fastest in delivering messagemtattacked processes, but
suffers from substantial variation in delivery latency,rasssages take a long time to reach the attacked
processes. E.g., Figure 11(a) shows thatithdacked processes (other than the source) measure agevera
latency4 times longer than non-attacked processes. While Pull @égstdabnost the same average latency for
all the processes, this latency is very long. Drum combihesest of Push and Pull: it delivers messages
almost as fast as Push, while maintaining a small variatedwéen attacked and non-attacked processes.

9 Other DoS-Mitigation Methods

Until now, we have evaluated the advantage of combining bwhpush and pull techniques as a way to
mitigate DoS attacks. We now turn to examine the importarfiessing the other two techniques: utilizing
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random ports whenever possible, and allocating separsdenees for orthogonal operations.

In order to evaluate the effectiveness of random ports, melsie Drum as described in Section 7, with
the difference that pull-replies are sent to a well-knownt estead of to a random one. The adversary
attacks this port by equally dividing its attack strengthtfee pull channels between the pull-request port
and the pull-reply port (i.e., each pull port is attackedheitquarter of the total attack strength). Figure 12(a)
presents simulation results comparing Drum’s performavitie and without the use of random ports, when
10% of the processes are attacked. The results show a lineaasein propagation time for the well-known
ports variation of Drum, as the rate of bogus messages etakad process receives in a round increases.
This is in contrast to the propagation time of Drum using mangorts, which is bounded by a constant.

When solely using well-known ports, the adversary can ltbath pull ports, as well as the push port. A
process under attack experiences difficulty receiving agEsboth via push and through the pull channels,
since the push and pull-reply ports are attacked. The saocvegs’s ability to send messages is only partly
hampered. Although the pull-request port is attacked, theei@gary cannot directly affect the process’s
outgoing push channels.

Next, we measure the effect of resource separation on Drparfermance. To this end, we change
Drum’s implementation detailed in Section 8. Resourcesnaxe combined (i.e., a joint bound on the
maximum number of processed messages per round is usedréiving control messages: pull-requests,
push-offers, and push-replies. We do not include the remeplf data messages in this bound, since this
bound may differ greatly from the bound on control messagesiual scenarios. Figure 12(b) contrasts the
measurements of Drum’s propagation time with shared boagdsst those with separate bounds, when
10% of the processes are attacked. The results indicate a lieggadation of performance as the attack
rate increases, when bounds are shared. On the other handnrtodified version of Drum is virtually
indifferent to the increase in attack strength.

Shared bounds degrade Drum’s performance under a DoS ,adtack the fabricated control messages
sent by the adversary to the well-known push-offer and mgliest ports consume resources that should be
used for reading pull-requests, push-offers, and puslieseplhe valid control messages are then discarded
when resources are exhausted, and the attacked processdsdess responsive.

We conclude that random ports and separate resource borendaiaial to Drum’s ability to cope with
DoS attacks.

10 Dynamic Membership

Our analysis and implementation of Drum until this pointiemed that the multicast group is composed
of a static set of processes. This assumption is in accoedaith other studies in the literature [1, 8, 19].
However, in a dynamic environment, the membership infoimnaknown to each process might not be
complete or consistent with the actual group status. Simre@ess only communicates with processes that
are known to be part of the group, a dynamic membership psbiemeeded in order to have processes
maintain up-to-date and consistent membership informafilhe membership protocol should also strive to
prevent malicious processes from infiltrating the group.

We now sketch out the design of a dynamic membership profocdrum, assuming the existence of
a certification authority(CA). The complete details of the CA are beyond the scopeisfgaper, but we
note that distributed, Byzantine fault-tolerant impletagions of CAs exist, e.g., [33, 10]. The membership
protocol is layered on top of Drum’s multicast protocol, a$d, 6].
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10.1 Ouitline of the Suggested Dynamic Membership Protocol

In order to join the group, a process must be authorized byCheOnce the CA authorizes the process
according to its credentials, the CA grants the processavitmestamped certificate, which expires (and so
must be renewed) after a certain period of time. A processisibership list will never contain processes that
do not have a valid certificate. This prevents unauthorizedgsses from joining the group. Additionally,
certificates can be revoked.

The CA provides the newcomer with an initial (not necesgariimplete) list of the other processes in
the group, and propagatesog-in message to the other processes, containing the newly isstiftcate.

Whenever a process wishes to log out of the group, it setalg-aut request to the CA, which in turn,
revokes that process’s certificate and forwards the logrmgsage to the other processes in the group.

The CA may also revoke a process’s certificate due to suspaficnalbehavior. In this case, an appro-
priate message is sent to the processes, in order to remmpedbess from the group.

The certificates expire after a certain amount of time. Whproaess’s certificate is about to expire, the
process must request a new certificate from the CA, or bete#éc removed from the group (we assume
that the clock drift among group members is small and bounded

Processes may suffer benign failures, or long delays tfedtaheir responsiveness. In order to prevent
situations in which processes try to spread their data firaunresponsive processes, a failure detection
mechanism is used. From time to time, each process testegpensiveness of the other processes it com-
municates with. If a failure is detected, the process stopsncunicating with the failed process, but does
not propagate this information to other processes. Notghisgdoes not affect the status of the slow/failed
process as a group member, as it is possible that the prazes®mmunicate with other processes.

Each process piggybacks its certificate on top of an outgoirgsage if it hasn't done so for a rela-
tively long period, or if it has recently joined the systemhigway, processes that do not have a complete
membership information database are able to authentieatenmessages and complete the database.

Actual implementations of the dynamic memberhsip proteual differ in two parameters: the size
of the initial membership information obtained from thevees, and the points in time at which a process
piggybacks its certificate on its messages. E.g., piggybgdatertificates on all of the messages guarantees
that all valid messages will be authenticated.

10.2 The Rational Behind the Suggested Protocol

We now discuss the implications of dynamic membership ireganand particularly in Drum. We present
possible problems that can occur and point out the solutiovigled by the proposed membership protocol:

e A process may choose as a gossip partner another process tladtieady logged out of the system.
This is exactly the same as trying to perform a gossip operati a crashed process. We have inves-
tigated the effect of crashes and found out that they hale dffect on performance (see Figure 2),
as also shown in [17]. Eventually, the failure detector Wl the logged-out process as failed, and
even this minor performance penalty will be gone.

e A process may not know of another newly-joined process.Thus, the probability that a “new”
process will be selected as a communication partner by engtiocess in the group is lower than
the respective probability for an “old” process. This pnapés inherent to all of the membership
protocols layered on top of gossip-based multicast prdépeog., [8, 6]. Since the expected number
of rounds to propagate a message to the group members usiogsip-tpased multicast protocol is
logarithmic in the group size, it take3(logn) rounds for the log-in message to propagate to all
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processes and for the process to be known by every other gneamber [14]. Once this period is
over, this difficulty is naturally gone. Specifically, thisopertly holds in Drum even under a DoS
attack, since Drum succeeds in propagating multicast gess® all the processes under such an
attack.

e Membership information can be fabricated by malicious pro@sses.This can create inconsisten-
cies in the system, as bogus processes suddenly appeaminiembership databases, and valid
processes are removed from these databases. Drum solsgwdblem by guaranteeing that ev-
ery join/leave/expel message contains a certificate isbygte CA. Since this certificate cannot be
forged by a malicious process with high probability, anckés cannot send valid group management
messages. Also, as opposed to some failure detectors [I,1wi® our approach a process’s fail-
ure detector does not remove another process from the laabership view, based on information
received from other processes.

e The membership protocol might suffer a DoS attack.Such an attack may cause group management
messages not to reach the processes. This is resolved byetkdant that the dynamic membership
protocol operates using Drum’s multicast protocol as imdport layer. Since Drum’s multicast
protocol withstands DoS attacks, so does the membershipgmio Furthermore, a DoS attack on the
CA does not hamper communication among processes that lagéyajoined the group.

e Messages from unknown processes in the group are discardedhe membership information in
Drum is composed of certificates granted by the CA to the msE®in the group. These certificates
are used in order to validate incoming messages. Thus, ib@ps is missing from the local mem-
bership database, its messages will be discarded. In avdesolve this issue, Drum piggybacks
certificates on of data messages.

11 Conclusions

We have conducted the first systematic study of the impacta8 Bttacks on multicast protocols, using
asymptotic analysis, simulations, and measurements. tdy $1as exposed weaknesses of traditional
gossip-based multicast protocols: Although such proweoé very robust in the face of process crashes,
we have shown that they can be extremely vulnerable to DaSkstt In particular, an attacker with limited
attack strength can cause severe performance degradgtfonusing on a small subset of the processes.

We have suggested a few simple measures that one can takiemaimprove a system'’s resilience to
DoS attacks: (i) combining pull and push operations; (iijiding resources separately for each operation;
and (iii) random port selection. We have presented Drumrgplsl gossip-based multicast protocol that
uses these measures in order to eliminate vulnerabilitid3oiS attacks. Our closed-form mathematical
analysis, simulations, and empirical tests have proventhese measures go a long way in fortifying a
system against DoS attacks. We have shown that, as the attackjth increases asymptotically, the most
effective attack against Drum is one that divides thhe ktfmver among all the correct processes in the
system. As expected, the inevitable performance degaddtie to such a broad attack is identical for all
the studied protocols. However, protocols that use only gubnly push operations perform much worse
under more focused attacks, which have little influence ambr

We expect our proposed methods for mitigating the effectas Bttacks to be applicable to various other
systems operating in different contexts. Specifically,ube of well-known ports should be minimized, and
each process should be able to choose some of its commonigqetitners by itself. Our analysis process
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and its corresponding metric can be used to generally dyahe effect of DoS attacks. We hope that
other researchers will be able to apply similar techniguesrder to quantitatively analyze their system’s
resilience to DoS attacks.
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A Calculating p, and p,

Suppose process; sends a message to process we want to calculate the probability that procegs
accepts this message. Denote the event “progessnds a message to procpgsby S;;. Assumen > F,
and definegy as the probability that proceps appears in procegs’s view, then:

n—2 n—3 n—1—F n—1—F F

n—-1n—2 n—F n—1  n-—1
LetY be the number of valid messages receiveg pin a single round, then:

Pr(Y <0[S;;) = Pr(Y >n|S;)=0

-2
0< y <n PI‘(Y =y | SZJ) = <Z_ 1>qy_1(1 — q)n—l—y

Let py be the probability that a non-attacked procegsdiscards the message senthygivenS;;, then:

g=1-

0 YLF
Py =9 Y-1 Y2  _Y-F Y-F yvSF

Calculatingp,, gives:

pu = 1= > p,-Pr(Y =y|Sy) =

y=—00

i
o1 Y y—1/\n—1 n—1

ZF: n—2 F\N ' /n-1-F "‘1‘y+ -
y—1 n—1 n—1

y=1

”Z‘:l F <n—2>< F )y—l <n—1—F>"_1_y
y:F+1y y—1 n—1 n—1

If p; is attacked withe > F' messages, we get:
Ytz -1 Y+or-2 Y+o-F  Y+ax-F
Y=y e Yve—1 Yiz-F+1l Y4z

And thus:

pa = 1= Y py-Pr(Y =y|S;) =

y=—00

. "z‘:lerx—F n—2\( F \'/n-1-F\"1v
— Y+ y—1)\n—1 n—1 N
S F <n—2>< F )y—l <n_1_F>”—1—y<
yzly—l—az y—1 n—1 n—1
"Z‘:lF n—2\/ F \*'/n—1-F\"'"V F
T y—1 n—1 n—1 o
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dpa I
Lemma 7. & < .
Proof. Calculating the derivatives, we get:

dpa d F P\"'Y

n oS '< D) (5
Z <n—2>< F )y 1<n—1—F>”_1_y
= (y+x)2 \y—1 n—1 n—1

da de  -B

da da _ a?n

dpa  _ dpa dz _

da dr do
”Zl FB <n_2>< > (n—l—F)"_l_y_
e 2n(y+x)?2 \y n—1 n—1
"Zl Fx F n—1- F\"

aly+z)? \y n— T n—1

s

ZFx_<n—2>< >y1<;F>”1y F
yzlom32 y—1/\n-1 n—1 ax
U

We now give a bound op,,.
Lemma 8. p, > 0.6.
Proof. Define:

pEEY Syl =30 0y (e - =02 F

E[Y?| Sy =300ty (0t — gty = 28 p2 g nst g
o & Var(y | Sy) = 0D g2y goaz gy (s2p ) = a2 p o a2 g

By [31], for n > 1 we get that” given S;; can be approximated using a normal distribution function,
with © = F + 1 ando? = F. The cumulative distribution functio®(z) is thus given by:

(1 (32)) - 1 e

From [31] we get the following:

D(z) = . (1 + erf (x_—F_l>) where  erf(z) =

V2F

1 2 00 —¢2 1
v <6 el < Sy o
Concluding that:

2 o0 2 2 e *
f(z)=1—- —= LAt >1- = ——
e =1 [t Y

z

3 e
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The first sum in formula 8 is approximated B F'). CalculatingD(F’) gives:

1
1 -1 11 2 e or
DF) = =--(1 fl — I I —
) 2 <+er <\/2F>>>2+2 ( Vo1 a 1
2F s V2

1_i e_% —1_3. VF- e_%
VT P8 = VT +8F + /1
Define: )
(F) = L
g r t8F 1 /x

We want to bound D(x) from above by finding for which valuestf ¢'(F) < 0. The denominator of
¢ (F) is always positive, so we ignore it when calculating thedive:

1
e VFe 2F VvV Fe
( \ﬁQF + 2F22F> ( T+ 81 — \/E) 82x/7r+82}§ <0

1
F31F3 8VF
St (Vm+8F — /1) — N;T;; <0
(F%+F%)(\/7r+8F—ﬁ)\/7r+8F—8F2
2F2\/7t8F

<0

Once again, the denominator is positive, and we get:

(F2+F3) (VA +8F - 7) v+ 8F - 8F% <0
7+ 8F — V2 - 87F —8F - (1 1) <0
\F(F—i-l <VmH8F -7
Taking derivatives we get:
8 ? 8
VARF+1? © 2/zier
20/r 1 8F < Ja(F+1)

Clearly, (F + 1)? grows faster thar/7 + 8F. Numerically solving forF = 1 shows that the inequality
holds. Thus, it holds for every’ € N. Consequently, we only need to find the fitsfor which:

8F
VAE + 1)

A numerical solution for this inequality shows that it firgiltis for F¥ = 3. Thus, forF' > 3 we get that
¢ (F) < 0, and thusD(F + 1) > D(F'). AssigningF’ = 3 in our previous bound for D(F), we get that for
all F >3, D(F)> D(3) > 0.3968 ~ 0.4. AssumingF’ > 3, we get:

B ) )

y=1

<Vm+8F — /1
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SinceD(x) is maximal atz = ¢ = F' + 1 and symmetric around it, we get the approximation:

ZXF: n—2 F\'/n-1-F n_l_y>zF: n—2 F \'/n—1-F\"1
yaF1 y—1 n—1 n—1 y—1 n—1 n—1

y=1

And finally, we conclude that:

F -1 n—1—
n—2 F Y n—1—F Y
v=2G0)6S) ()

y=1

Sf F <n—2>< F )%ﬂ<n—1—f>"*fy>
y:F+ly y—1 n—1 n—1
2F

2 F (n-2 F N\ /n—1-F\"1Y
e Y R
) 2F \y—1 n—1 n—1

Yy=
1 Eoin—9 F\'/n-1-F ”‘1‘y>
2 — y—1 n—1 n—1
1
2

B Calculating p

We now compute, the probability thatl/ is propagated from the source in a round in Pull. Assume F',
and defing; as the probability that proceps appears in procesgs’s viewp,,;, theng = n—fl LetY be the
number of valid pull-requests received in a single roundnth

Pr(Y <0) = Pr(Y>n)=0

-1
0<y<n Pr(Y=y) = <ny >qy(1_q)n—1—y

Assumer > F', and definepy as the probability that a valid pull-request is read fromtbéer, then:

(1 Y N(,__Y - Y _,_ el (Y+z—P)
by = Y +a Y+z—1)" Yto—F+1)  (@-F)l- (Y +a)

The probabilityp that a valid pull-request is read from the buffer, indepenas Y, is:

p= Z py - Pr(Y Z <1 y)+x(y—+F;!)!> <n;1> <n€1>y <n7_11__1 F>n—1—y

y=—00 y=
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C Detailed Analysis

In this section we give a formal analysis of the three prataothe absence of DoS attacks (failure-free
and crash failures) as well as under Dos attacks. In Sectibnw describe the parameters and notations
used in our analysis formulas. In Section C.2, we detail oaheais formulas. In Section C.3, we use these
formulas to compute the expected percentage of correcepses that receivé for a given round, and
compare these results with the simulation results of theigue chapter.

C.1 Definitions
Parameters
e b— number of faulty processes.

e ¢,5s — the link-loss probability. We assume thayi,, is equal for all links and independent of any
other factor.

® Fin—push» Fin—pu —bounds on the number of process to receive messages frorouma, in a push
or a pull (respectively) operation. We 8, _p.sn = Fin—pu = g in Drum, Fiy, s, = Fin Push,
andFyy,_pu = F in Pull.

® T,,sn, Tpu — NUMber of fabricated push or pull (respectively) messagesto an attacked process
in each round. In Drumg,,,sp, = Tpuu = 5, iN Pushz,,sn, = o, and in Pullzy,,; = .

Notation

e p— the probability that a given correct procetsget will receive a gossip messayk from another
given correct processendeyin a certain round. We denote= 1 — p.

® Dpush, Pputr — SiMilar top, but as a result of a push or a pull (respectively) operation.

e d,,sn — the probability that the target will discard the sendemsoiming push message due to the
bound F;,_,.s;, ON push messages accepted during each round, given thagrtler's message
reached the target.

e d,,; — the probability that the sender will discard the targetisoming pull-request message due
to the boundF;,,_,,;; on pull-request messages accepted during each round, thaethe target’s
message reached the sender.

Note that sinceF,, s, and Fj,_p,,;; are smaller in Drum than in Push and Pull, these evaluate to
different values for different protocols.

¢ S, —the number of correct processes that Hevat the beginning of round S, € [1 ... n — b].

The probabilityd is similar tol — p,, computed in Appendix A for the asymptotic analysis, exceptiie
following: (i) €055 > 0, (i) there are faulty processes (> 0), and (iii) in Drum, the boundd,,
and Fy,, ., are tested separately. That is, each processes acceptmpashges from at most,,_,,.sn
processes, and pull-request messages from at ygst,,; processes.
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C.2 Formulas

In Section C.2.1, we present the formulas for the case witbam$ attacks. In Section C.2.2, we add DoS
attacks. In the next section we present the results obtdioedboth analyses.

C.2.1 Without DoS Attacks

Here, theb faulty processes are crashed — they do not send any messdgas)(= 0 there is no attack).
Our formulas are based on the analysis of a push-based prpi@sented in [8].

We first computel,,, ., andd,,,;;. Whered,,,.,, is the probability that the target will discard the sender’s
incoming push message, given that the sender’'s messadedethe target, and,,,;; is the probability that
the sender will discard the target’s incoming pull-requasssage, given that the target's message reached
the sender. Note that,,; (respectivelyd,,;;) depends on the number of messages that the target (respec-
tively, sender) receives in a gossip round, since a progdgRoceptst,, s, (respectivelyF, _,.i;) push
(respectively, pull-request) messages in each round. dimpetation ofd,,,, is as follows:
Denote the event “sender s chooses target t and the sendes&age is not lost” byg,_;. LetY be the
number of valid messages received by the target in a singledtcandZ be the number of processes that
choose the target in a single round, then:

n—b—2 [viewpush| =1 [viewpush| nob-l-x y—1 ey
PI‘(Y:y,Z:Z|RS,t) = 21 ﬁ 1—ﬁ y—l (1—61053) €loss

Where0 < y < z < n — b. Therefore,

Pr(Y =y|Ret) = » Pr(Y =y, Z=z2|Res)=

" (n—b—2 |[viewpush| ==l [viewpush| nobml=z M y—1 I
Z —_— l1l—-—F— (1 - Eloss) €loss
= z—1 n—1 n—1 y—1

Let ¢y be the probability that the target discards the messagégehe sender, giveR;_,, then:

Gy = 0 Y < En—push
- Y-1 Y-2 Y-F Y-F
v_vy—1 " = v Y>En—push

Calculatingd,,,s;, gives:
dpush = Z @y -Pr(Y =y|Rst) =
Yy

n—b—1

Z Yy — Finfpush .

Yy
Y=Fin_pusht1

" (n—b-2 [viewpusn| lviewpusn| " (2= 1 y—1 ey
Z —_— l-—F— (1 = €10ss)" ™" (€ioss)
z—1 n—1 n—1 y—1

z=y

We computei,,,; similarly to the computation af,,., and get the following formula:

dpuir = ZQy Pr(Y =y|Ri—s) =
y

n—b—1

Z y— Finfpull.

Yy
Yy=Fin_pun+1
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n—b—1 . z—1 . n—b—1—z
Z n—>b—2 |viewpuir| 1 [viewpyi| z—1 (1= €108)" " (€1085)" "
et 21 7,” 1 —TL 1 y— 1 loss loss

We now compute the probabilitigs,, s, andp,,;. Wherep,,;, (respectivelyp,.,;) is the probability
that the target will successfully receive a gossip messad@e®m the sender, in a certain round, as a result
of a push (respectively, pull) operation. The formulazgy,;, includes dependent probabilities. That is,

» Pr < sender chooses the msg is target does not >
push — =

target ’ notlost '  dropthe msg

Pr sender chooses Pr the msg is target does not | sender chooses the msg is .
target not lost drop the msg target ’ notlost -

|U’i€w ush|
(ni_pl)(l — €loss) (1 — d:lmsh)

The probabilityp,,; is calculated similarly:

|viewpy|

n—1 )(1 - 51085)2(1 - dpull)

Ppull = (

In Pushp = ppysh, in Pullp = ppy, and in Drump = 1 — (1 — ppusi) (1 — Dpui)-
Given thati correct processes haw at the beginning of round, we define the probability;; that
exactlyj (j > ) correct processes hat at the beginning of the next round:

A . .
pij = Pr(Sr1 = j[Sr = 1)
We now approximate;; as follows:
n—b—1 o _
i~ 1— iINj—i(, i\n—b—]
Pij ( i >( q¢')"(q")

S, is computed recursively as follows:

PI‘(SO = 1) = 1,
Pr ( r+1 —] ZPT ng
i<j

The expected number of correct processes that Maat the beginning of each gossip round is then as
follows:

E(S;)= Y Pr(S, =)

1<j<n—b

This formula gives an over-estimate pf;, since some of the counted events reflect a situation wherecegs sends and
receives more messages than allowed byRheand F,.: bounds. However, the probabilities of these events can fkected
(see [1)).
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C.2.2 DosS Attacks

We now add DoS attacks into the mix. For a probability we denote byP® the probability of P when
the process is under an attack, and®y the case that the process is not under an attack. Hjg.,, is
the probability that an attacked target will discard thedsels incoming push message, aaiﬁ;lush is the
probability that a non-attacked target will discard thedssis incoming push message.

Under a DoS attacld;ush (respectivelyi;u”) is equal tad,,, ., (respectivelyd,,,;) as calculated above,
whereas the formulas fat}, , andd} , also depend on the number of fabricated push or pull-request
spectively) messages sent to an attacked correct proceashiround, i.ez,,,s;, andz,,;;. The computation
of d ., is now as follows:

Let X’push be the number of fabricated push messages that the targétagin a single round, then:

, €T h . .

. _ pus Zpus Tpush—Lpus

Pr(Xpush — 5L'push) — <’ >(1 — eloss) Puaheloss push push
Lpush

and )
0 Y + Xpush < En—push
qy =

Y+ Xpush—F V4 X
e + X > Fi_
Y+ X push push in—push

Calculatingdg gives:

ush

gush = Z Z qy - Pr(Xpush = i’push) Pr(Y =y | Rsy) =

Y ipush

n—b—1 ZTpush L, F
E E max {O, Y ¥ Tpush — Lin—push } [ Frush 1- ELOSS)CéPush (Eloss)zpush*z'push .

+ Lpus Fpus
Y=1 Fpyen=0 Yy push push

n—b—1 . z—1 . n—b—1-z
Z n—b—2 |viewpush | 1 |viewpush | z—1 (1= €1008)" " (€1050)" "
=~ 21 n—1 n—1 y—l loss loss

We computet; ,, similarly to the computation of ., and get the following formula:

gull = Z Z qy - Pr<Xpull - ‘i'pull) : PI‘(Y =Y ’ Rt—s) -

Y :épull

Tpull

n—b—1 . z—1 . n—b—1—z
Z n—>b—2 |viewpui| 1 |viewpuil| z—1 (1= 1oss)" " (ctoss)” "
et y—1 771 _1 —n ] y— 1 loss loss

) andp,, ., (P},,;) are computed as follows:

n—b—1 Tpull + 4 Ia
max J 0 Yy Tpull _ in—pull . Tpull 1— €loss "‘épull €loss wpullfﬁépull .
’ +
Yy mpull

The probabilitiesy, . (p

U
pull

|view,ysh| [viewpy |

Ppush = (Tpuf)(l — €loss)(1 = dypusp)s  Ppunt = (T_pzf)(l — €l0ss) (1 — )
[viewyysh| |viewy|

pZush = (Tpuls)(l — €loss) (1 — Zush)v pZuu = (ﬁ)(l - Eloss)2(1 - guu)
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Given thati,, andi, non-attacked and attacked (respectively) correct presdsaveM at the beginning
of a round, we can compute the probabilify (respectivelyg?), that none of these, andi, processes
successfully propagatd to any other non-attacked (attacked) correct process:

Push:
g = (1 = Pyep)
@ = (1= plyep)t
Pull:
g =qy =0 —ppg)™ - 1 —ph)"

Drum:

@ = (L= plysn)™ T - (1= pltg)™ - (L= plu)™

@y = (L= plyen) o (1= plig)™ - (L= pluy)™

Now we can compute the joint probabilipy, ;. ;.. that exactlyj, andj, (ju > %u,j« > ia) COrrect
processes havd at the beginning of the next round:

A . . . .
piuiajuja = Pr(S;'L—Fl = jUJ STa+1 = ja’S;'L = ZU? Sg = Za) =
Pr(S;f_,_l = JulSy' = du, Sy =ia) - Pr(Sff_,_l = Jul Sy = tu, Sy = ia)
Where:
” - . a . n—b—on—iy *\ ju—1tu ( K \n—b—an—j
PI‘( r4+1 — ]u’Sr = Zu,ST = Za) = ( Ju = )(1 - qu)Ju u(qu) I
and .
an—iq

Pr(S;}—i—l = ]a‘S;j = 1y, S,(} = ia) = (ja — Za)(l _ q;)ja—ia(qZ)om—ja

S andS¢ are computed recursively as follows:

Pr(Sty =ju, S =Ja)= > Y. Pr(S¥=iu, 5% =ia)Pisisjuje

0<iu<ju 1<ia<ja

Pr(Sy = Jju) = Z Pr(Syy1 = Ju, Sfe1 = Ja)

0<ju<n—b—an
Pr(St = Ja) = Z Pr(S4 1 = Jus i1 = Ja)
1<jo<an

The expected number of non-attacked and attacked correcégses that hawd at the beginning of
each round, is calculated as follows:

E(SH)= > Pr(S'=ju)ju

0<jus<n—b—an
E(SY) = > Pr(Sf=ja)a
1<ja<an

E(Sy) = E(S)) + E(S))
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percentage of correct processes

C.3 Results

We numerically computed the above formulas uditg§TLAB with the same parameters used in the simu-
lation presented in the previous chapter. We now comparanhbysis results with the results obtained in
the simulations.

We show CDFs of the percentage of correct processes thateddeby each round. Figure 13 shows
the CDFs for failure-free operation (Figure 13 (a)), anddperation with crashed processes (Figure 13 (b)).
The analysis and simulation results are almost identical.
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(a) Failure-free operation. (b) Operation with crashed processes, 10% crashed.

Figure 13: Analysis vs. Simulation: CDFs of percentage ofet processes that receive n = 1000.

Figure 14 compares our analysis results with the simulatimults under various DoS attacks for a
system with 120 processes. Again, the analysis and sironlaéisults are virtually the same. Thus, the
analysis validates our simulations (and vice versa).
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