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ABSTRACT
We consider data-centric distributed storage, where storage-
nodes are directly attached to the network. We present
DynaDisk, the first read/write storage system that allows
clients to add and remove storage devices in a completely de-
centralized manner, and without stopping ongoing read/write
operations. DynaDisk supports two alternative approaches
to reconfiguration, one partially synchronous (consensus-
based) and one asynchronous. We evaluate DynaDisk on
a LAN cluster and compare these two reconfiguration meth-
ods.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—shared mem-
ory ; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications; D.4.2 [Operating
Systems]: Storage Management—secondary storage, dis-
tributed memories; D.4.5 [Operating Systems]: Reliabil-
ity—fault-tolerance; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—distributed systems

General Terms
Algorithms, Design, Reliability, Performance

Keywords
Shared-memory emulations, dynamic systems, atomic stor-
age.

1. INTRODUCTION
Distributed storage architectures [10, 16, 1] provide a cheap

and scalable alternative to expensive monolithic disk array
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systems currently used in enterprise environments. Such dis-
tributed architectures make use of many unreliable storage-
nodes directly attached to the network and provide reliabil-
ity through redundancy, e.g., by replicating each object on
3 nodes. We focus on large scale distributed storage that
provides read/write functionality with atomic guarantees.

The large number of fault-prone storage-nodes requires
supporting dynamic configuration changes when faulty nodes
are removed and new ones are introduced. When such recon-
figurations occur, proper coordination is essential to avoid
“split-brain” behavior. In this paper we consider the prob-
lem of reconfiguration in the data-centric system model [8],
motivated in Section 1.1, where storage-nodes are accessed
directly through the network by many ephemeral clients.
Neither the storage devices nor the clients communicate with
their peers.

We present DynaDisk, the first data-centric read/write
storage system that reconfigures in a completely decentral-
ized fashion. DynaDisk can be configured to either use an
asynchronous or a partially synchronous (consensus-based)
algorithm for reconfigurations. In fact, one of our main goals
is to compare the two reconfiguration approaches. Our solu-
tion can be seen as a data-centric version of our DynaStore
algorithm [3] (see Section 1.2). DynaDisk encapsulates the
core mechanism enabling reconfigurations, (whether asyn-
chronous or partially-synchronous), in an object with sim-
ilar guarantees to the weak snapshots of [3]. Thus, Dy-
naDisk provides a unified framework for evaluating differ-
ent reconfiguration approaches. In particular, in order to
compare the consensus-based reconfiguration approach to
an asynchronous one, we implement weak snapshots using
each approach. We implement weak snapshots in the asyn-
chronous data-centric model for the first time (Section 3).
Note that the storage overhead of message-passing snapshot
algorithms [2, 3] is linear in the number of coordinating par-
ties. Thus, if adopted näıvely to the data-centric model, the
overhead would be linear in the number of clients, which is
prohibitive as it can be unbounded. Our new asynchronous
implementation is conceptually different and entails an over-
head proportional only to the number of storage-nodes cur-
rently in the system. Beyond weak snapshots, DynaDisk
makes several other modifications to adapt DynaStore to our
model (see Section 4). These include eliminating the broad-
cast of new configurations among storage-nodes, adding sup-
port for multiple objects (DynaStore implements a single
object), and incremental state transfer.

We evaluate DynaDisk to investigate an interesting ques-



tion – what coordination mechanism is preferable in prac-
tice? Our evaluation (see Section 5) shows that, compared
to the consensus-based approach, asynchronous reconfigura-
tions have a significant negative effect on latency of read and
write operations that execute concurrently with reconfigu-
rations. Essentially, this inherently stems from the fact that
a consensus-free algorithm must sometimes work with mul-
tiple configurations that it considers possible, whereas an
algorithm based on consensus can always work with a single
configuration on which all clients agree. Having said that,
the asynchronous algorithm achieves a slightly better and
much more predictable reconfiguration latency when many
reconfigurations occur simultaneously. In such extreme sit-
uations, the consensus-based algorithm sometimes takes a
long time to reach a decision (in theory, reconfigurations are
not guaranteed to complete [9]).

1.1 Why data-centric?
We believe that in distributed storage, replication algo-

rithms should be separate from replica state. This is en-
abled by the data-centric approach [8] which enforces a two-
tier architecture, where replication protocols are executed
by clients, and storage-nodes simply provide persistent stor-
age. The alternative approach that requires communication
among storage-nodes is undesirable for many reasons. First,
it unnecessarily complicates storage functionality. In fact,
even though advances in storage technology allow customiza-
tion of controller logic [11], application-dependent commu-
nication among storage-nodes would turn storage-nodes into
servers with local disks. Allowing clients to directly access
the storage simplifies control logic and reduces the number
of fault-prone system components. In addition, enabling the
disks to transfer data directly to clients eliminates the server
bandwidth bottleneck.

Whether disks are directly connected to the network or
through servers, the data-centric approach increases sys-
tem throughput as storage-nodes are able to respond to
clients immediately, without prior coordination involving
other nodes.

Finally, note that each object is usually stored on a dif-
ferent small subset of storage-nodes and each storage-node
hosts a vast amount of objects. Therefore, in a non-data-
centric solution, each storage-node has to communicate with
a large overall number of peers coordinating updates on all
of its objects. As TCP is the transfer protocol most used in
data-centers [5], this may lead to a scalability problem since
the number of connections is expected to be very large.

1.2 Related work
Data-centric read/write storage is considered in many works,

e.g., [1, 6, 14, 15]. Most of these, however, assume a static
world, where the set of storage devices is fixed from the
outset. The only exceptions we are aware of are Ursa Mi-
nor [1] and the work of Martin et al. [15], which employ a
centralized sequencer for configuration changes. Unlike Ursa
Minor [1], the protocol of Martin et al. [15] allows read/write
operations to continue during reconfigurations. DynaDisk is
completely decentralized – it allows every client to reconfig-
ure the system without communicating with other clients,
and also allows read/write operations to continue.

Reconfiguration was mainly considered in models where
servers storing object replicas communicate. This enabled
solutions where servers run consensus or virtual synchrony

algorithms to agree on the configuration [13, 16]. Recently,
Aguilera et al. [3] proposed DynaStore, a reconfigurable read/write
storage algorithm based on consensus-free coordination also
using direct communication among storage servers. In the
data-centric model, however, the reconfiguration problem
is more challenging since storage-nodes cannot coordinate
directly, whereas clients are mostly disconnected from the
system.

2. SYSTEM ARCHITECTURE
We assume an unknown, unbounded universe of storage-

nodes Π and infinitely many clients that access them over the
network. All clients and storage-nodes can crash, though as
we mention below, excessive storage-node crashes can ham-
per liveness. The system emulates multiple atomic (high-
level) objects with a read and write interface, provided as a
client-side library. Each high-level object is replicated, and
is stored in multiple basic storage units called base-objects,
each residing on one of the storage-nodes. The initial value
of every high-level object is ⊥ and base-objects are created
only when a non-⊥ value is written to the high-level object
for the first time.

In addition to read and write operations, clients expose
a reconfig interface, which allows for adding and removing
storage-nodes and returns the new configuration. We say
that a storage-node i is active if i does not crash, some client
invokes a reconfig operation to add i, and no client invokes a
reconfig operation to remove i. We assume that each active
storage-node i responds to client requests starting from the
time a reconfig operation adding i is invoked.

Obviously, system liveness depends on reconfig operations
– for example, if all storage-nodes are removed, liveness is
inevitably lost. Intuitively, each read, write and reconfig
operation is guaranteed to complete as long as changes to
the system are introduced gradually, and there is only a
finite number of changes that occur during the operation (a
formal liveness definition appears in [3]). A prerequisite for
operation liveness is that clients are able to find a current
set of storage-nodes. We discuss this further below.

Storage-nodes’ interface.
Clients can invoke read i and writei operations on every

storage-node i ∈ Π. These operations can operate on one or
more base-objects stored on i. Multi-object operations only
access individual base-objects atomically – they are simply
an optimization and can be replaced with multiple single-
object operations.

We further assume that the storage-nodes support read-
modify-write access, e.g., a compare&swap operation, which
updates an object only if it equals to some value and returns
the old value. This simple additional functionality does not
require full customization of controller logic, as in Active
Disks [11], and can be reused by multiple applications. Note
that it is impossible to use a collection of fail-prone read-
modify-write objects to emulate a reliable one [12] or solve
consensus, but they can be used to enable reliable atomic
read/write storage [4].

Service discovery.
Finding the service is usually overlooked or not treated

explicitly in theoretic distributed computing literature deal-
ing with dynamic services. To address this issue, we model



Algorithm 1 Asynchronous weak snapshot algorithm.

1: Base-objects: ∀i, j ∈ S, Ni[j] is a base-object on storage-node i, initially ⊥

2: operation update(c)
3: (j, c′)← (⊥,⊥)
4: S′ ← any subset of size d(|S|+ 1)/2e from S
5: invoke in parallel for all i ∈ S′:
6: prev← compare&swapi(Ni[i],⊥, c)
7: if prev 6= ⊥ then (j, c′)← (i, prev)
8: else (j, c′)← (i, c)
9: wait until (j, c′) 6= (⊥,⊥)

10: M ← ∅
11: invoke in parallel for all i ∈ S:
12: M ←M ∪ {writei(Ni[j], c′))}
13: wait until |M | ≥ d(|S|+ 1)/2e
14: return OK

15: operation scan()
16: if collect() = ∅ then return ∅
17: return collect()

18: procedure collect()

19: M1, M2 ← ⊥; L← ⊥|S|
20: invoke in parallel for all i ∈ S:
21: M1 ←M1 ∪ {readi(Ni)}
22: wait until |M1| ≥ d(|S|+ 1)/2e
23: forall i ∈ S s.t. L′[i]6=⊥ for some L′∈M1

24: L[i]← L′[i]
25: I ← {i | L[i] 6= ⊥}
26: invoke in parallel for all i ∈ S:
27: M2 ←M2 ∪ {writei(Ni{I}, L{I})}
28: wait until |M2| ≥ d(|S|+ 1)/2e
29: return {L[i] | L[i] 6= ⊥}

the service discovery component as a publicly known ora-
cle, accessible by all clients. When queried by a client, the
oracle returns some configuration previously returned by a
reconfig operation, or the initial configuration if no reconfig
has yet completed. If reconfigurations stop and the oracle
is queried infinitely many times, it is assumed to eventually
output the last configuration of the system.

The oracle can be implemented in different ways, e.g., us-
ing a publicly known naming service, such as DNS or UDDI.
In case all storage-nodes are located inside an organization’s
network, it can be implemented by having clients broadcast
a discovery request (e.g., as in ARP or Web Services Dy-
namic Discovery protocol). Note that after initially finding
some node in the system, clients can usually proceed with-
out the oracle, and may learn the latest configuration by
contacting a storage-node they already know. Nevertheless,
if the system reconfigures too quickly, they might need to
contact the oracle again. It is important to note that the
functionality we require of the oracle is very weak and can-
not be used, e.g., to reach consensus in an asynchronous
model. Finding the weakest sufficient oracle is an interest-
ing direction for future work.

3. DISTRIBUTED WEAK SNAPSHOTS
A weak snapshot distributed object (WS, introduced in [3])

exposes two operations: update(c) and scan(). Weak snap-
shot is implemented on some fixed set S of storage-nodes
and can be accessed by any number of clients. A client calls
update(c) to propose a new value c, and calls scan() to re-
trieve a subset of previously proposed values. When used
for reconfigurations in DynaDisk, c is a set of proposed con-
figuration changes.

WS ensures the following safety guarantees [3]: Once at
least one update completes, every newly invoked scan re-
turns a non-empty set of updates; and once some value is
returned in one complete scan, it is returned by all scans
invoked thereafter. Moreover, WS ensures that there exists
some common update value c that is returned in all non-
empty scans. Intuitively, c can be seen as the first value to
have been proposed, although in the presence of concurrent
updates there isn’t always a clear notion of the first one. WS

ensures liveness of all operations provided that a majority
(or quorum) of the fixed set of storage-nodes holding it are
active.

WS objects allow us to encapsulate coordination neces-
sary to reconfigure separately from the data objects stored
in the system. These objects can be implemented in differ-
ent ways, which allows for comparing different reconfigura-
tion approaches in a modular fashion. Note, however, that
previously proposed asynchronous WS algorithms [2, 3] are
unsuitable for the data-centric model, since the storage over-
head they require (when adapted näıvely to our model) is
proportional to the number of clients, which can be arbitrar-
ily large. We next present a new data-centric asynchronous
WS algorithm, whose overhead is proportional only to the
number of storage-nodes in the current system configuration,
and is independent of the number of clients.

3.1 Asynchronous algorithm
Algorithm 1 is an asynchronous data-centric WS imple-

mentation. It uses a vector Ni of |S| base-objects stored at
each storage-node i, where Ni[j] stores the value “endorsed”
by storage-node j, if this value is known to storage-node i
(initially ⊥). The update(c) operation contacts a majority
of the storage-nodes asking them to endorse the value c by
invoking compare&swap on each storage-node in line 6. It
then waits until the first storage-node, j, responds. Its re-
sponse, prev, indicates whether j endorses c because it is
the first such request it receives (prev=⊥), or whether Nj [j]
was not changed to c, and it is still equal to prev6=⊥. The
update then writes the value endorsed by j to Ni[j] at a
majority of storage-nodes (line 12). Note that all non-⊥
values that appear in Ni[j] for the same j are identical, as
compare&swap guarantees that each storage-node endorses
at most one value. For the same reason, once a base-object
gets a non-⊥ value, it is never modified.

The scan operation returns a set of values that were en-
dorsed by storage-nodes. It invokes collect, which reads vec-
tors Ni from a majority of the storage-nodes, and merges
them into a single vector L in lines 23-24. The k-th entry
in L is the value endorsed by storage-node k, if such a value
appears in one or more of the vectors retrieved in line 21, or



⊥ otherwise. Then, similarly to the update operation, collect
has a write-back phase (lines 26-28) where it makes sure that
a majority of the storage-nodes have the latest information,
in this case, the non-⊥ values appearing in L (in line 27
we denote by L{I} the sub-vector of L consisting of entries
that correspond to indices in the set I). After invoking col-
lect once, scan checks whether the returned set of values
is empty. If so, it returns ∅, and otherwise invokes collect
one more time. The second invocation is required to ensure
that some common value appears in all non-empty sets re-
turned by scan operations. In the full paper we prove that
Algorithm 1 guarantees the properties of weak snapshots.

4. DYNADISK
Our data-centric reconfiguration system, DynaDisk, is based

on the DynaStore algorithm [3]. The heart of DynaStore is
the WS object, which encapsulates the coordination mech-
anism necessary for reconfigurations. In DynaDisk, each
configuration w has a weak snapshot object WS(w) that
stores reconfiguration proposals, i.e., changes proposed to w
by clients. For each configuration, the associated storage-
nodes keep several replicas of the stored data. Clients con-
tact storage-nodes to read or write the data, or to learn
about storage-nodes that were added or removed. If all the
storage-nodes that a client knew about have been removed,
then that client uses the discovery service to locate some
suitable storage-nodes.

The protocol leverages the WS properties to guarantee
that all clients observe read and write operations as if they
happened in the same total order (which conforms with the
operation precedence relation), despite crashes and concur-
rent reconfiguration requests. DynaDisk uses two alterna-
tive algorithms for implementing WS objects – an asyn-
chronous algorithm presented in Section 3.1 and a second
algorithm based on consensus.

In DynaDisk, as in DynaStore, each configuration’s WS
object may be updated by multiple clients. We can define
a unique global sequence of configurations, as the sequence
that starts with some fixed initial configuration, and contin-
ues by following the “first” proposal stored in each configu-
ration’s WS. Although this sequence is not visible to clients,
they can read a superset of proposals, namely, the current
set of values in the WS, which is guaranteed to contain the
first proposed one. They then follow and read from all po-
tential next configurations. Then, they write back the latest
data they read to a final configuration, which is guaranteed
to be part of the global sequence. In this way, even without
consensus on the unique global sequence, the latest written
data is guaranteed to be observed by a reader.

Besides the WS algorithm used by DynaStore, which is
unsuitable for the data-centric model (see Section 3), most
of DynaStore remaining logic can be easily adapted to the
model. In particular, its read/write mechanism is based on
the ABD algorithm [4]. The only other functionality of Dy-
naStore that cannot work in our model is the broadcast of
new configurations. This is required to inform all servers in
a new configuration that it can now be used. In DynaDisk,
this mechanism was replaced by an oracle, explained in Sec-
tion 2, which encapsulates the necessary service-location
functionality. When blocking on a wait statement longer
than some threshold of time, a client starts querying the or-
acle periodically. If it responds with a newer configuration
the client restarts the operation in that configuration.

We stress that a location service is needed in any recon-
figurable storage system. However, like other server-based
(non-data-centric) solutions (e.g., [13]), DynaStore did not
deal with the question of how clients can find the servers.
In the data-centric model this question cannot be avoided,
as the algorithm is now run by clients who must be able to
find the storage.

Another important modification to DynaStore concerns
adding support for multiple data objects. DynaDisk does
not restrict the number of objects that an application can
read and write, and at the same time, employs only one
WS object per configuration. Supporting a large number of
objects might pose a difficulty for clients that transfer the
state during reconfigurations, as clients cannot be expected
to have sufficient memory for copying all objects from the
old configuration to the new one, e.g., if the entire storage-
node’s memory must be copied. To mitigate this, we added
support for incremental state transfer, which copies objects
one by one (or in small sets of limited size).

With incremental state transfer, it is possible that one
object is copied to the new configuration c1, but when a
second object is transfered, a later configuration c2 is found
and the second object is written in c2. When state-transfer
is complete, reconfig “marks” the configuration to which the
first object was transfered, c1 in our example, as ready ; all
other objects can be found by following updates stored in
WSs starting from the WS of configuration c1. We imple-
ment ready as an atomic shared boolean object stored on
the nodes in c1 using the ABD algorithm [4]. Clients start
their operations (read, write or reconfig) from some pre-
viously known ready configuration c, and whenever a new
configuration c′ is found, the client reads its ready object to
determine whether it is safe to start subsequent operations
in c′ rather than c. The details of this mechanism, as well as
other modifications and optimizations made to DynaStore,
are deferred to the full paper.

5. IMPLEMENTATION AND EVALUATION
In order to compare the two approaches to reconfigura-

tions we implemented DynaDisk’s WS module in two ways:
(1) using our asynchronous Algorithm 1; and (2) using the
Active Disk Paxos consensus algorithm [7], with exponential
backoff as the leader-election mechanism (1ms. was used as
minimal backoff). We used C# with the Microsoft CCR
(Concurrency and Coordination Runtime) library. Clients
use TCP to communicate with storage-nodes.

The storage overhead of consensus-based coordination is
constant for each storage-node in each configuration (this
stems from the properties of Active Disk Paxos), whereas
the overhead of Algorithm 1 is linear with the number of
storage-nodes in the configuration.

We deployed the system on a cluster of 2-core 2GHz AMD
Opteron machines connected by 1Gb Ethernet. We used 8
such machines – 6 for storage (2 storage-nodes per machine),
and 2 for clients. In each experiment described below, all 12
storage-nodes are initially in the system. 5 clients concur-
rently perform sequences of write operations (with data size
of 4KB). During each sequence, we start 1, 2, or 5 clients
that simultaneously invoke reconfig to remove one of the
storage-nodes.

We first examine the latency of write operations. Figure 1
shows that, as expected, in stable periods, when no reconfig
is ongoing, the latency is the same whether we use consensus
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Figure 1: Average write latency.

or not. When one or more reconfiguration are executing si-
multaneously with the write, we can see that the consensus-
free approach has a noticeable negative effect on latency
compared to the consensus-based approach. This happens
because with consensus, even if multiple clients contend on
who will become the leader and be the first to reconfigure
the system, all other clients find out about changes to the
configuration only after the consensus algorithm has reached
a decision, and then, a single new configuration exists. On
the other hand, in the consensus-free approach writers see all
reconfiguration proposals as they are made and work with
multiple possible configurations until a single configuration
including all changes is formed.

We next examine the latency of reconfig operations in Fig-
ure 2. We see that when using consensus, average reconfig
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Figure 2: Average reconfig latency.

latency is slightly longer when many reconfigurations are
in progress at the same time, and the variance of the time
it takes to reconfigure is much bigger. This happens since
multiple clients attempt to become leaders at the same time,
which can lead to “infinite executions” in theory [9].

We have also emulated network latencies taken from dis-
tributions that model noisy LAN and WAN settings, as well

as read operations instead of writes and experimented with
adding storage-nodes instead of removing them. We got
similar results, which are omitted for lack of space.
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