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ABSTRACT
The perception of future wireless mesh network (WMN) de-
ployment and usage is rapidly evolving. WMNs are now
being envisaged to provide citywide “last-mile” access for
numerous mobile devices running media-rich applications
with stringent quality of service (QoS) requirements. Con-
sequently, some current-day conceptions underlying appli-
cation support in WMNs need to be revisited. In particular,
in a large WMN, the dynamic assignment of users to In-
ternet gateways will become a complex traffic engineering
problem that will need to consider load peaks, user mobil-
ity, and handoff penalties. We propose QMesh, a framework
for user-gateway assignment that runs inside the WMN, and
is oblivious to underlying routing protocols. It solves the
handoff management problem in a scalable distributed man-
ner. We evaluate QMesh through an extensive simulation
(mostly of VoIP), in two settings: (1) a real campus net-
work, with user mobility traces from the public CRAWDAD
dataset, and (2) a large-scale urban WMN. Simulation re-
sults demonstrate that QMesh achieves significant QoS im-
provements and network capacity increases compared to tra-
ditional handoff policies, and illustrate the need for intelli-
gent gateway assignment within the mesh.

1. INTRODUCTION
Wireless mesh networks, or WMNs, are a rapidly ma-

turing technology for providing inexpensive Internet ac-
cess to areas with limited wired connectivity [9]. While
initially designed for small-scale installations (e.g., iso-
lated neighborhoods), WMNs are now envisioned to
provide citywide access and beyond through deploying
thousands of access points and supporting thousands of
simultaneous users [6].
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WMN users access the Internet through a multi-
hop backbone of fixed wireless routers. Some of these
routers, called gateways, are connected to the wired in-
frastructure. The WMN assigns each user to a gateway
upon initial connection, and can migrate it between
gateways over time. In traditional implementations,
the gateways provide only Internet access. However,
QoS-sensitive applications will probably be supported
by high-level services at the network edge, similarly to
the recent trend in wireline networks [5]. We envision
a future WMN gateway that also provides application-
level support, e.g., acts as a SIP proxy, a media server
cache, or a full-fledged game server [15]. This trend ex-
tends the scope of the gateway assignment problem to
a large variety of applications and services.

This paper considers gateway assignment – a traf-
fic engineering (TE) problem that seeks optimizing the
QoS or fully exploiting the network’s capacity for a
specific application. The solution must take into ac-
count the parameters that incur QoS degradation and
additional costs, e.g., network distances and conges-
tion, server (gateway) loads, and application-level hand-
offs. Mature networking systems employ TE technolo-
gies (e.g., MPLS [23]) on top of their existing routing
infrastructure, to allow scalability of management. We
believe that in future WMN’s, traffic engineering solu-
tions like gateway assignment will deployed atop other
performance optimizations that are already in place
(e.g., multiple radios [10], smart routing metrics [17],
etc.).

It is common practice in small-scale WMNs to al-
ways assign a user to the nearest gateway (e.g., [11]).
In this approach, gateway handoffs (macro-mobility)
are tightly coupled with link-layer access point (AP)
handoffs (micro-mobility). That is, when a user moves
and associates with an AP that is closer to a differ-
ent gateway than its current one, it automatically per-
forms a gateway handoff too. This simple approach
suffers from two drawbacks. First, it cannot adapt to
load peaks within the WMN by load-balancing among
multiple gateways. Second, it does not consider the
application-level impact of such gateway handoffs. For



example, in VoIP, handoffs are relatively low-cost, due
to a small state associated with a session, whereas in
online gaming, the performance penalty of transferring
the cached application state between two servers may
be very high. Hence, there is a need to decouple AP
transitions from gateway handoffs. While the former
are purely location-based, application-transparent, and
do not incur a high performance impact [11], the latter
are not transparent, and should be driven by service-
specific QoS considerations.

We propose QMesh (Section 4) – a framework for
dynamically managing gateway assignments in future
WMNs that can be instantiated with application-
specific policies. QMesh is most beneficial for appli-
cations that allow gateway handoffs. Traditional ap-
plications that do not handle handoffs are supported,
but might receive a degraded QoS. QMesh manages two
types of decisions for each mobile user: (1) when to mi-
grate it between two gateways, and (2) which gateway to
choose upon a transition. QMesh employs application-
specific considerations to balance the tradeoff between
two conflicting goals: assigning the user to a gateway
that provides it with the best QoS at any given time,
and reducing the number of costly gateway handoffs.
QMesh does not require any extension of the underly-
ing routing infrastructure, in particular, it does not in-
troduce any non-scalable mechanisms like host-specific
routes. Since QMesh makes decisions on a per-user ba-
sis, migrating a single user does not directly affect oth-
ers, thus avoiding traffic oscillations.

QMesh manages gateway handoffs in a scalable dis-
tributed way, through a low-overhead signaling protocol
that runs within the mesh transparently to the mobile
user’s networking stack. It monitors the QoS of ap-
plication traffic flows to determine the handoff times,
and probes the prospective QoS to in a shadow pro-
cess to select the candidate handoff targets. The key to
the protocol’s efficiency is its adaptive approach, which
performs probing (1) at distances proportional to those
required for dissipating the load, and (2) at the fre-
quency required to satisfy the QoS needs. For exam-
ple, in a low-utilized mesh with little mobility, where a
near gateway is likely to provide a good performance,
QMesh infrequently performs very few probes limited to
the close neighborhood. In contrast, if load is high and
current QoS is unsatisfactory, QMesh is more aggressive
in probing distant gateways more frequently.

We evaluate QMesh’s impact on the application QoS
in a WMN through extensive simulations, mostly of
VoIP but also of other real-time applications that are
more handoff-sensitive (e.g., online games). The studied
network topologies and mobility models are described
in Section ??, whereas Appendix A extends on the as-
sumed MAC architecture and the traffic scheduling poli-
cies. We first explore a campus-scale WMN (600 APs)

with topology and mobility traces drawn from the pub-
lic CRAWDAD database [3]. Since our main interest is
in large-scale networks, we also study a citywide WMN
(4000 APs) with highly mobile users. To this end,
we experiment with two user populations: (1) a near-
uniform distribution, generated by the popular random
waypoint (RWP) mobility model [31], and (2) a more re-
alistic distribution biased toward the residential centers,
induced by an alternating weighted waypoint (AWWP)
model for urban traffic [21]. The numerical results
demonstrate QMesh’s significant advantage over näıve
nearest-gateway assignment for all workloads. The QoS
achieved by QMesh is close to that of a theoretical Best-
Match algorithm that uses instantaneous perfect infor-
mation. Finally, we show that QMesh adjusts its over-
head to workload in a scalable way.

2. RELATED WORK
Handoff optimizations in mobile systems have been

extensively addressed since the early 1990’s, mostly in
the context of cellular networks (e.g., [26]). These stud-
ies primarily focused on optimizing the network capac-
ity. Handoffs in cellular networks are triggered by phys-
ical metrics, and are handled at the link layer. Our work
is different, because we consider the network layer and
above. In this context, handoffs are optional, they can
improve the QoS over time, but their potential perfor-
mance hit is not negligible.

Recently, Amir et al. presented a design and imple-
mentation of SMesh - a prototype WMN with mobility
support [11]. They concentrated on seamless mobility
of users between mesh access points. SMesh adopts the
nearest-gateway handoff policy, i.e., the users of each
AP are automatically assigned to the gateway closest
to this AP. This approach is appropriate in a small-size
installation described in that paper (about 20 access
points and two gateways on the same LAN segment).
However, this policy can lead to poor QoS in a wide-
area mesh, as shown herein.

Many mature networking solutions address QoS op-
timizations as as a traffic engineering (TE) problem on
top of the existing routing infrastructure (e.g., MPLS
in carrier networks [23]). Almost all modern routing
protocols (e.g., OSPF [25]) are traffic-independent, thus
separating the concern of optimizing the QoS of individ-
ual flows to higher-level TE solutions. A different ap-
proach, adaptive QoS routing, has been actively studied
by the research community (e.g., [20, 24]), originating
at Gallagher’s seminal work on minimum delay rout-
ing [18]. Many load-adaptive routing algorithms are
designed for static or quasi-static workloads and suf-
fer from slow convergence in highly dynamic situations.
Moreover, they are complex to implement, and their be-
havior is hard to predict and manage. QMesh’s design
adopts the first approach for WMNs.



While most TE solutions optimize the unicast QoS,
the problem of instantaneously optimal gateway assign-
ment is equivalent to anycast routing [32] that seeks
connecting each user to some service node among a
given set, so as to minimize the average delay. However,
we are not aware of any work that handles dynamic any-
cast of flows with mobile endpoints while considering
handoff costs, and proposes scalable real-time solutions.

Adaptive probing of multiple mobile anchor points
(MAPs) was proposed in the context of hierarchical mo-
bile IPv6 routing [16]. However, in that work, handoffs
are fully dictated by geography (rather than by QoS),
and the simulation scale is small (a few MAPs, and a
few tens of users). Ganguly et al. [19] suggested a num-
ber of VoIP performance optimizations in a WMN. In
particular, they proposed maintaining the assignment
of each flow to a single gateway, while constantly prob-
ing multiple user-gateway paths and opportunistically
re-routing the traffic through the best path. Unlike
QMesh, this approach tightly couples between gateway
selection and routing, and induces non-scalable host-
specific paths within the mesh.

We studied a theoretical problem of online assign-
ment of mobile users to service points while balanc-
ing between network distances and migration costs [13].
However, that work completely ignored the issue of
load. We also addressed the problem of assigning mul-
tiple static users to servers so as to minimize the maxi-
mum service delay [14] which was modeled as a sum of
a network-incurred delay, depending on the number of
hops to the server, and a server-incurred delay, stem-
ming from the load on the server. This delay model
may be inaccurate for WMNs since it does not consider
congestion delays within the network. Moreover, the al-
gorithms presented in both papers are centralized, and
their running time is inadequate for real-time systems.
In the current work, we use realistic delay models and
workloads, and employ a fundamentally different ap-
proach of adaptive probing to achieve scalability.

3. DESIGN GOALS
The QMesh framework handles dynamic assignment

of mobile users to WMN gateways. We pursue the fol-
lowing goals for this service:

• Satisfying application QoS requirements as closely
as possible, in the presence of user mobility.

• Handling a variety of applications with different
QoS requirements and handoff penalties.

• Maximizing the service capacity in the presence of
load peaks.

• Low-overhead, scalable, and fully distributed net-
work management.

• No proprietary client protocol stack extensions.

4. QMESH FRAMEWORK
In this section, we introduce the QMesh solution,

which implements the design goals listed in Section 3.
Section 4.1 outlines the QMesh network architecture,
and describes the methods and parameters that must be
deployed within a WMN to support QMesh. Section 4.2
introduces QMesh’s gateway assignment protocol.

4.1 Network Architecture
QMesh provides mobile mesh users with access to

real-time application services. The users perceived
the WMN as a standard 802.11 LAN, and are oblivi-
ous to the mesh’s internal multihop structure. At all
times, each user associates at the link level with some
mesh router within the radio transmission range, called
the user’s current AP. APs provide basic connectivity
within the WMN. As the user moves out of the radio
range of its current AP, it associates with a new AP to
preserve connectivity. Upon initial connection, QMesh
associates each user with a single gateway, which pro-
vides it with the high-level service (e.g., Internet ac-
cess, SIP proxy, or game server). QMesh may later mi-
grate this user to a new gateway when the QoS of the
original one becomes poor due to mobility or conges-
tion, while considering an application-specific handoff
penalty. QMesh gateway handoffs (macro-mobility) are
completely independent of the underlying WMN’s AP
handoffs (micro-mobility).

Applications that seek optimal QoS must explicitly
register with QMesh to receive gateway identity change
notifications. This can be done through the applica-
tion’s standard signaling protocol, e.g., SIP. For tradi-
tional applications that cannot function correctly in the
presence of gateway handoffs, QMesh can be configured
to either never re-assign the gateway, or to employ tun-
neling through the initially assigned one (e.g., [12]), at
the cost of QoS degradation. Below, we focus on the
former kind of applications.

Application Deployment: QMesh offers a generic
framework for supporting multiple applications. The
needs of each application are captured by its service cost
which combines multiple QoS-degrading factors. This
cost is accumulated over time. For example, the cost
of a VoIP application can be reflected as the number of
dropped or late voice packets. We distinguish between
continuous costs, which stem from network distances
and load peaks, and one-time costs incurred upon gate-
way transitions. The gateway assignment algorithm
balances the tradeoff between these two kinds of cost.
Figure 1 specifies the methods and parameters that ap-
plications using QMesh deploy at the mesh nodes.

4.2 Gateway Assignment Protocol
QMesh manages gateway handoffs in a fully dis-

tributed fashion, by running the assignment protocol
independently on each mesh router. Each AP router



Method Semantics Example Implementation
monitor(u) return the monitored QoS of user u’s gateway. VoIP delay/jitter RTCP within the user’s flow
probe(g) query the prospective QoS of gateway g VoIP delay/jitter RTCP over a test connection
cost(q) return the cumulative cost incurred by the QoS measure q VoIP packet loss

Parameter Semantics
τm Monitoring interval: the rate of running monitor().
Tmin, Tmax The lower and upper bounds on the probing rate

(the actual interval τp is set adaptively, depending on the QoS level).
P The number of simultaneous random probes

(a larger P can offer better QoS at the cost of higher overhead).
H Handoff threshold: the cumulative cost since the last transition that triggers a gateway handoff

(a smaller H means more aggressive handoffs).
∆ QoS threshold for the probing rate control

(the probes are run more frequently if the QoS is poor).
Figure 1: Methods and parameters deployed at the mesh nodes by applications using QMesh.
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(a) Initial connection
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(b) After micro-mobility

���

���

����	

��


��
���

����
���

���

��
���

����
���

��


��
��
�
�
��
��
�

��
��

(c) After macro-mobility

Figure 2: Handoff of a VoIP session between two NAT gateways in QMesh. (a) Initial assignment to
GW1 by access point AP1. (b) Micro-mobility to access point AP2, in parallel with monitoring and
probing. (c) Macro-mobility to gateway GW3. GW2 is congested and consequently not selected.

performs the protocol on behalf of its users. Handoff
management entails two kinds of decisions for each user,
namely, when to request a gateway handoff, and which
gateway to transition to. The first decision is driven by
monitoring the user’s recent QoS (e.g, by tracking the
RTCP control packets within a VoIP media flow). The
second one is based on probing multiple gateways (e.g.,
in VoIP, the AP-gateway delay can be tested over a low-
bandwidth dedicated connection; in an online game, an
AP can predict the average request delay by reading the
response time statistics from a server, through a remote
invocation of a standard application resource monitor-
ing (ARM) API [29]). Monitoring and probing are per-
formed by each AP in the background, transparently
to the mobile users. When an AP decides to re-assign
some user to a different gateway, it selects the one that
offered the best QoS in the last probe.

Figure 2 illustrates a handoff of a media session (e.g.,
VoIP). The gateways provide an Internet connection
service. Each gateway is attached to a different IP sub-
net, and functions as a NAT router. Initially, the mobile
user is served by access point AP1, which associates it
with gateway GW1 (Figure 2(a)). The second party re-
sides in the public Internet and communicates with the
user through GW1’s IP address. The user then moves
to access point AP2 (Figure 2(b)), which forwards its
packets to GW1 over mesh links. Consequently, the

packet latency is degraded. AP2 monitors the session’s
quality, and in parallel probes gateways GW2 and GW3
for their prospective QoS. At some point, AP2 decides
to transfer the user from GW1 to GW3. GW2 is not
selected despite its proximity to AP2 because it is cur-
rently congested with other users. AP2 sends a noti-
fication with GW3’s IP address to the user, through
the application’s natural signaling protocol (e.g., SIP).
In parallel, it re-routes the UDP media flow within the
mesh via the new gateway (Figure 2(c)). The user re-
registers its new IP address with its peer. Before the
re-registration is complete, the peer’s traffic continues
to arrive to GW1, and is dropped there. This loss is the
handoff cost.

A handoff management algorithm must balance the
tradeoff between two conflicting goals. On the one
hand, it would like to always assign each user to the
best gateway, in order to minimize continuous costs. On
the other hand, one would like to decrease the number
of handoffs, in order to reduce one-time costs. QMesh
balances this tradeoff by controlling the fraction of one-
time costs in the total cost. The algorithm is config-
ured with a handoff threshold H. QMesh monitors each
user’s cumulative cost since the last handoff (not inclu-
sive), and allows a new transition only when this cost
exceeds H. For example, if the application-dependent
handoff cost is C, then the total cost of each assignment



period (including the handoff in the end) is bounded by
C + H, and therefore, the fraction of the handoff cost
within the total cost is bounded by C

C+H .
The pseudocode of the QMesh assignment protocol

appears in Figure 3. Cost monitoring (Lines 4–10) hap-
pens every τm time units. Once the cumulative cost of
user u, denoted cost[u], exceeds H, the user’s gateway
is re-assigned. cost[u] is tracked by its current AP and
sent to the new one upon an AP handoff (Lines 11–13).

The AP runs the gateway selection procedure
nextchoice() (Lines 24–41) once in τp time units, in-
dependently of cost monitoring. nextchoice() selects
the next assignment for all local users of the same ap-
plication jointly. The GWID variable holds the selected
gateway’s identity, and is used upon subsequent hand-
offs of all users served by this AP. Waiting a long time
between invocations results in using stale choices, which
translates to suboptimal assignments in dynamic work-
loads. On the other hand, running nextchoice() at a
high rate incurs undesirable control overhead. In order
to balance between the two, each AP sets the value of τp
adaptively, using the feedback on the quality of the cur-
rent choice. If the QoS below a configured threshold ∆,
then τp is exponentially reduced, otherwise, it is linearly
increased. The possible values of τp are constrained by
the lower and upper bounds Tmin and Tmax.

Most QoS metrics are distance-sensitive, i.e., an op-
timal gateway is likely to be near to the user, and the
primary reason for picking a remote gateway is network
congestion around the close ones. Therefore, QMesh al-
ways probes the nearest gateway first, and probes fur-
ther gateways only if they can help dissipating the local
load. More distant gateways are probed only if mov-
ing further continues to improve QoS (which happens
in case of high load peaks). Remote gateways are ran-
domly load-balanced.

Assume that the distance between the AP and the
closest gateway is D network hops. The algorithm
works in phases. In phase i ≥ 0, it probes in paral-
lel P random candidates at distances 2i−1D < d ≤ 2iD
from the AP. That is, the probed nodes are drawn from
concentric rings of doubling width around the AP (the
empty rings are skipped, Line 29) – see Figure 4 for il-
lustration. The number of rings is logarithmic with the
network diameter ψ, and hence, the worst-case number
of probes in a time unit is P logψ

Tmin
. Note that in the

first phase, only the nearest gateway is probed. A gate-
way chosen multiple times is probed only once. The
algorithm stops either if the result of a phase does not
improve the result of the previous phases, or if all the
rings are sampled. Using a small number of probes is
the key to the algorithm’s scalability with the network
size. We later show through simulation (Section 5) that
using P = 1 suffices for most workloads, and the aver-
age number of probes in a time unit is very close to

1: Initialization
2: τp ← Tmax

3: {Cost monitoring - per user}
4: Every τm time do for user u
5: cost[u]← cost[u] + cost(monitor(u))
6: q[gwid[u]]← monitor(u)
7: if cost[u] ≥ H then
8: gwid[u]← GWID, cost[u]← 0
9: end if

10: end

11: upon AP handoff(u) do
12: send(cost[u]) to the new AP
13: end upon

14: Every τp time do
15: {Gateway selection - shared for all users}
16: nextchoice()
17: {Adjust the invocation period}
18: if (q[GWID] < ∆) then
19: τp ← max(τp/2, Tmin)
20: else
21: τp ← min(τp + 1, Tmax)
22: end if
23: end

24: procedure nextchoice()
25: G′ ← ∅
26: D ← ming∈G distance(g)
27: while (G′ 6= G) do
28: ring← {g ∈ G|D2 < distance(g) ≤ D}
29: if (ring 6= ∅) then
30: choices← {P random choices from ring}
31: results← probe(choices)

⋃{q[GWID]}
32: best← c with the best results[c]
33: if best 6= GWID then
34: GWID← best
35: else
36: stop
37: end if
38: end if
39: D ← 2D, G′ ← G′

⋃
ring

40: end while
41: end

Figure 3: The QMesh gateway assignment.

2
Tmax

– far below the pessimistic upper bound.
Note that QMesh’s distributed opportunistic assign-

ment policy cannot guarantee the best system-wide cost
at all times. For example, an AP in a congested area
may start choosing different gateways, thus using longer
routes and amplifying the network load in other re-
gions. In some cases, the network may even stabilize
in an equilibrium point which is far from optimal. This
problem is common to many game-theoretic scenarios
(e.g., [27]). However, under the VoIP traffic, most of the
congestion happens close to the gateways, and hence,
the route length affects the network delay only weakly.
Our simulations show that on average, QMesh does not
stretch the user-gateway routes by much, and hence,
the probability of the worst-case scenarios is small.
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Figure 4: Selecting candidates for a probe in
the QMesh assignment protocol. The number
of random probes in each phase is P = 1. The
process stops after probing the 3rd gateway that
fails to provide a better QoS than the 2nd one.

5. EVALUATION
We empirically compare QMesh to alternative assign-

ment policies, through extensive simulations. Most of
our simulation focus is on VoIP. We study the algo-
rithms’ QoS and service capacity, as well as their adap-
tiveness to mobility and load. Section 5.1 presents our
cost model for VoIP QoS evaluation, and Section 5.2
describes two policies that QMesh is compared to.

We first evaluate the protocols in a campus network
with real user mobility traces extracted from a public
dataset (Section 5.3). However, the scale of this net-
work is around 600 APs, and a limited capacity (150
users). Therefore, we turn to simulating a projected
citywide mesh (Section 5.4) with 4096 APs, and address
two spatial distributions of mobile users: a near-uniform
distribution, as induced by the widely adopted random
waypoint (RWP) mobility model [31], and a more re-
alistic distribution with load peaks in residential and
business centers, produced by an Alternating Weighted
Waypoint (AWWP) model of urban traffic. Finally
(Section 5.5), we show the importance of service-specific
handoff policies using an example an application which
is more sensitive to handoffs (e.g., an online game).

5.1 VoIP Traffic and Cost Model
We consider RTP-over-UDP VoIP flows generated by

a standard G.729 codec, i.e., a constant bit rate (CBR)
flow of 50 packets per second (20ms inter-packet delay).
The typical one-way delay required to sustain a nor-
mal conversation quality is 100ms [19]. A VoIP packet
is considered lost if it fails to arrive to its destination
within an admissible delay. We attribute most of the
delay to the mesh infrastructure, and set the admissi-
ble threshold to 80 ms, thus allowing a small slack for
additional delay incurred by the wired Internet.

We evaluate the VoIP QoS in terms of average packet
loss ratio, which is the most dominant component in
Mean Opinion Score (MOS) – the standard VoIP qual-
ity metric [1]. MOS values range from 0 to 5; values
above 3.8 are considered acceptable; values above 4.0
are considered good. For a given workload, we define

the service capacity as the maximum number of users
that can be served within an acceptable MOS. In order
to visualize our simple metric, we draw two MOS levels,
4.0 (corresponding to 1% of loss) and 3.8 (2% of loss)
on most of our performance plots.

We focus on VoIP calls between mesh users and peers
in the public Internet. In this context, a gateway hand-
off involves a change in the user’s external IP address,
and triggers application-level signaling to re-route the
traffic. This results in one second of connectivity loss,
during which all the VoIP packets are lost. Thus, the
handoff cost is C = 50 (packets).

A VoIP flow starts losing packets if its path to the
currently assigned gateway becomes long or congested.
Excessive packet delays are the primary reason for con-
tinuous loss. Network delay is incurred by accessing the
various kinds of mesh links (user, backbone, and gate-
way connection), and by queuing at the mesh routers.
Appendix A extends on the models used by MeshSim.
The link-level delays are characterized by the MAC ar-
chitecture, whereas the queuing delays depend on the
VoIP traffic scheduling policy.

In order to allow for large-scale simulations with
thousands of users and access points, we developed
a flow-level mesh network simulator, MeshSim [7].
Packet-level simulation tools [4, 8] cannot handle such
a scale. MeshSim models the delays incurred to VoIP
flows at each infrastructure node and link. It uses an ac-
curate 802.11 link delay model [30], and implements two
state-of-the-art optimizations: (1) multiple antennae at
each node, with channels carefully allocated to mini-
mize cross-link interference, and (2) VoIP aggregation
(e.g., [19], and also supported by the 802.11n standard).
We describe MeshSim in more detail in Appendix A.

5.2 Assignment Policies
We compare QMesh to two simple assignment poli-

cies, NearestGateway and BestMatch. NearestGateway
assigns the user to the gateway closest to its current AP.
That is, gateway handoffs are tightly bound to AP tran-
sitions. The BestMatch policy is a realistically impos-
sible variant of QMesh, which runs the greedy selection
procedure upon every AP handoff request, and assumes
instantaneous correct information. That is, it performs
an exhaustive search of the best candidate rather than
random sampling of one, and moreover never uses stale
information.

QMesh and BestMatch are instantiated with cumula-
tive packet loss as the QoS cost function. The handoff
threshold is set to H = 10 packets. This relatively
small value is chosen because the handoff cost is low
(C = 50 packets), and given the user speeds, the loss
of 10 packets is a sufficient indication for changing the
assignment. QMesh uses a single probe in each phase of
nextchoice() (i.e., P = 1). It adaptively adjusts the in-
terval between invocations of nextchoice() within the



range [Tmin = 1sec, Tmax = 15sec]. The QoS threshold
for accelerating the probes is ∆ = 50 ms.

5.3 Campus Scale Simulation (CRAWDAD)
Our first case study is mobile VoIP performance in

an unplanned mesh deployed within a large neighbor-
hood or a campus. We draw the network topology and
the mobile users’ motion traces from CRAWDAD [3],
a community resource for archiving wireless data at
Dartmouth college, thus avoiding the need to speculate
about the simulation’s input. The original Dartmouth
network is a single-hop WLAN. The network includes
over 600 irregularly placed access points. While in a
WLAN, APs are connected via a wired infrastructure,
in our WMN setting, they communicate through wire-
less interfaces. All routers use omnidirectional antennas
with a transmission radius of 133m – a minimal value
for which the network remains connected. We place the
Internet gateways in a way that minimizes the mean
distance (in the number of hops) from each AP to the
nearest gateway. For this purpose, the network is par-
titioned into 5 clusters using a K-Means algorithm [22],
and within each cluster, the router closest to the cen-
troid as selected to serve as a gateway. Figure 5(a) il-
lustrates the WMN’s topology (the campus map is due
to [2]). The APs are depicted as dark dots, and the
selected gateways as triangles with a dot in the middle.

We employ the 2001–2003 movement dataset [28] that
contains the mobility traces of more than 6200 users,
collected over a period of many months. Each trace
contains a sequence of (timestamp, AP id) pairs that de-
scribe the history of the user’s associations with wireless
APs. The majority of users are either static or quasi-
static (occasionally hopping between close APs once in
a few minutes) most of the time. Their locations are
heavily biased toward the faculty buildings.

We explore the scalability of the assignment policies
with network load, as follows. For each data point L, we
builds a set of scenarios in which L users generate a con-
tinuous VoIP stream, as follows. We extract from the
trace a set of time intervals, all at least 10 minutes long,
in which the number of online users is exactly L. Since
the database is very large, each set contains hundreds
of intervals for each L. We simulate NearestGateway,
BestMatch and QMesh on the traces of 50 intervals se-
lected uniformly at random from each set, and average
the loss rates among the runs. Figure 5(b) depicts the
results. The loss of BestMatch and QMesh remains ac-
ceptable as long as the number of users does not exceed
125 (the service capacity). Therefore, in the absence of
mobility, BestMatch and QMesh efficiently balance the
costs incurred by network distances and gateway loads.
Only under high loads, some differentiation between the
two appears, because the latter searches for the can-
didate more carefully and locates it immediately. On
the other hand, NearestGateway cannot handle even

25 users, due to its inability to exploit multiple gate-
ways. QMesh’s adaptive nature becomes even more
pronounced as we study the dependency between the
congestion and the user-gateway distances. For small
loads, QMesh and NearestGateway produce an identi-
cal average distance of 2.1, while for high loads, QMesh
stretches the routes to 4.9 to optimize the assignment.

Following this, we examine QMesh’s scalability in the
presence of concurrent TCP flows generated by tradi-
tional data applications. We repeat the previous exper-
iment, for a varying number of TCP connections (0%
to 20% of the number of users, with the rest running
VoIP flows). All TCP flows are handled in a traditional
way, namely, each of them is initially assigned to the
closest gateway, and never reassigned again. In order
to prevent starvation of the VoIP traffic by TCP flows,
we allocate the latter with at most 50% of available
transmission bandwidth, and schedule their packets at
a lower priority. Thus, the VoIP capacity of the shared
links decreases, but the QoS of the admitted flows is
guarantee. Figure 5(c) shows that the average loss ratio
increases with the fraction of TCP flows, but the impact
is not dramatic within the admissible load range.

5.4 City Scale Simulation
Our ultimate goal is studying the performance of

QMesh in a very large-scale WMN with highly mo-
bile users. For this, we turn to simulating a citywide
mesh that exceeds the campus deployment by an order
of magnitude in the spanned area and the population.

We consider an urban geography of size 8 × 8 km2.
There are five population areas – four residential neigh-
borhoods and a commercial downtown. User locations
within each area follow a Gaussian distribution around
the area’s center with variance σ, which is called the
area’s effective radius. The downtown’s effective radius
is 1km, and its center is co-located with the center of the
grid at coordinates (4km, 4km). Each neighborhood’s
effective radius is 500m, and their centers are located at
coordinates (1km,1km), (1km, 7km), (7km, 1km), and
(7km, 7km). Figure 6(a) depicts this topology. Areas
are depicted as circles, and gateways as small triangles.
The Internet access is provided through a regular grid of
64 gateways, spaced 1km apart. The wireless backbone
is a fine grid of 4096 mesh routers, spaced 125m apart.
The transmission radius is 125m. Our simulation em-
ploys two stationary distributions of mobile users, each
generated by a different mobility model:

1. A near-uniform distribution, produced by the pop-
ular random waypoint model (RWP) [31]. The
node uniformly chooses the destination and moves
toward it at a constant speed v = 20 m/s (an ur-
ban driving speed).

2. A more realistic distribution that biases the users
toward the population areas (e.g., neighborhoods
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Figure 5: Scalability evaluation of the gateway assignment algorithms in an unplanned campus WMN,
with topology and user mobility traces drawn from the Dartmouth CRAWDAD public dataset.

or downtown), produced by the projected alternat-
ing weighted waypoint (AWWP) model. At any
given time, a mobile node is either stationary in
some area, or moving on a highway between two
areas at a constant speed v = 20 m/s. The popu-
larity of different areas varies during the day.

5.4.1 The Alternating Weighted Waypoint Model
AWWP is one plausible way to create a clustered

user distribution. It is inspired in part by [21], which
explored preferences in choosing destinations of pedes-
trian mobility patterns. The nodes’ transitions be-
tween the areas are governed by a Markov process
that switches its transition probability matrix every 12
hours. The system is modeled by two super-states, each
of which is a Markov chain. Each state in a chain cor-
responds to a single area. Each probability matrix des-
ignates the users’ preferred locations at a certain time
of day. The moving node’s destination point within the
target area is a random variable, drawn from the Gaus-
sian distribution described above. In the morning, most
users drive to the downtown and stay there during the
working hours, whereas in the evening, most users drive
back to their neighborhood and stay at home during the
night. Direct transitions between the neighborhoods are
not allowed.

Figure 6(b) depicts this random process. We denote
the downtown by D, and neighborhood i by Ni. The
transition probabilities are (symmetric for all i):

Morning/day Evening/night
pD,D 0.9 0.1
pD,Ni 0.025 0.225
pNi,D 0.9 0.1
pNi,Ni 0.1 0.9
pNi,Nj 0 0

The stationary distributions of the Markov chains are:

Morning/day Evening/night
πD 0.9 0.1
πNi 0.025 0.225

A mobile user’s behavior is deterministic between
transition times. Upon a self-transition, a node remains
at its current location for a period of t. In case of a tran-
sition of the user to another area, it picks a destination
point from the distribution induced by the destination
area, and moves to it with a speed of v. For simplicity,
we assume that all users wait for the same time and
move with the same speed. We set t = 4 min. Note
that the waiting time is equal to the driving time be-
tween the centers of the downtown and neighborhood
areas. In this setting, the motion can be approximated
as a discrete-time Markov chain, in which the time slot
length is 4 min. All state transitions (including the
probability matrix switch) happen on slot boundaries.
During a single slot, the user either moves between two
areas, or remains in one of them.

In each super-state (day or night), the users are
mostly stationary, except in a short time after the tran-
sition, when they mostly move to their new preferred
areas. Upon switching the super-state, the convergence
to a new matrix’s stationary distribution is short (3-4
time slots). Therefore, the 15 min following the super-
state transition are considered a transition period, after
which the system enters a stable period.

We also experimented with richer models, e.g., non-
straight movement trajectories, and constrained motion
within the population areas. However, they yield al-
most the same results because the most important fac-
tor is the load peaks. Hence, our simulations focus on
the presented simple model.

5.4.2 Numerical Results
We compare the loss rates and overhead of QMesh

to BestMatch and NearestGateway, for the near-
uniform and skewed stationary distributions produced
by the RWP and AWWP mobility models, respec-
tively. Every data point is averaged over 20 runs. For
AWWP, we separately study four different times of day:
morning (neighborhoods-to-downtown movement), day
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(b) Alternating Weighted Waypoint

Figure 6: Urban Simulation Settings: (a) The city’s topology (downtown and four neighborhoods)
and the gateway grid. (b) The random process behind the AWWP mobility model.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Load (number of users)

P
ac

ke
t l

os
s 

(%
)

MOS 4.0

MOS 3.8 NearestNeighbor
BestMatch
QMesh

Figure 7: Scalability evaluation of the gateway
assignment algorithms in a citywide WMN, for
a near-uniform distribution (RWP model).

(mostly staying in the downtown), evening (downtown-
to-neighborhoods movement), and night (mostly stay-
ing in the neighborhoods). Day and night are stable
periods, morning and evening are transition. The morn-
ing and evening scenarios are simulated for 15 min (the
transition period time, see Section 5.4.1). The day and
night scenarios are insensitive to the measurement pe-
riod; we used 30 min periods for them. The RWP exper-
iments were initialized with the uniform distribution of
users, and preserved it over time [31]. Each experiment
simulated 15 min of user motion.

We first study the the dependency between load and
loss for the three algorithms. Figure 7 depicts their
behavior for near-uniform distribution induced by the
RWP mobility pattern, with loads ranging from 200 to
2000 users. At all times, NearestGateway succeeds in
accommodating each user at the closest gateway, be-
cause no cell’s load exceeds its capacity. All loss is due
to handoffs, and depends only on the user’s speed, and
hence, it is constant for all loads. The BestMatch and
QMesh policies incur identical costs, since upon a hand-
off, the local gateway is almost always the best choice
that cannot be improved by further probing. They
improve the loss over NearestGatewayby sustaining a
user’s association with its gateway beyond the grid cell’s
boundaries, as long as the QoS permits. The maximal
admissible user-gateway distance diminishes with load,
and hence, handoffs become more frequent, thus caus-
ing BestMatch’s and QMesh’s loss rates.

The shortcomings of NearestGateway become evident
as we apply the same experiment for a more realistic
biased distribution of load generated by the AWWP
model. We separately explore the morning scenario fea-
turing a transition of load from the periphery to the
center (Figure 8(a)), and the day scenario that reflects
a stationary congestion in the downtown (Figure 8(c)).
In both cases, NearestGateway does not scale beyond
300 users due to its inability to resolve the congestion
in the downtown area to the other gateways. On the
other hand, QMesh can accommodate 600 users – just
slightly below the baseline BestMatch. Figure 8(b) dif-
ferentiates the part of handoffs in the packet loss (by
depicting the average handoff frequency), in the morn-
ing scenario. QMesh’s frequency is low and congestion-
adaptive (growing slowly with load), while Nearest-
Gateway’s is high and load-insensitive.

In the next experiments, we continue using the more
challenging AWWP workload. Figure 9(a) depicts the
distribution of costs achieved by NearestGateway, Best-
Match and QMesh by the time of day, for a load of 600
users. Note that NearestGateway’s loss is even higher
during the day than in the morning, due to the sta-
tionary congestion in the downtown. The price of this
congestion is higher than the cost of excessive hand-
offs during the morning transition. Since the measured
transition period also captures some resting time in the
steady-state area for most nodes, NearestGateway’s loss
in the morning is higher than in the evening, when
these areas are not congested. The same disadvantage
of NearestGateway is observed when we examine the re-
lationship between a user’s mobility level (the fraction
of time in which the user changes its location) and its
loss rate. Figure 9(b) and Figure 9(c) depict the distri-
bution of loss among the mostly stationary users (below
20% mobility) and the mostly mobile ones (above 20%)
achieved by NearestGateway and QMesh, respectively.
(Note that a small fraction of users remains highly mo-
bile even in the stable regime, since transitions between
population centers are not instantaneous). QMesh has
the desirable property that the stationary users experi-
ence smaller loss rates than the mobile ones. That is,
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Figure 8: Scalability evaluation for a clustered distribution (AWWP model): (a) Loss ratio – morning.
(b) Handoff frequency (average number of handoffs per minute) – morning. (c) Loss ratio – day.
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Figure 9: Average loss ratio distribution by the time of day, for the a skewed workload of 600 users
(AWWP mobility model): (a) Comparison between 3 assignment policies, (b,c) Comparison between
the mostly stationary (below 20% mobility) and the mostly mobile users, for two separate policies.

most of the mobile users’ packet loss stems from hand-
offs (which do not happen to the stationary users), while
the congestion-oriented loss is minimized for both cate-
gories thanks to opportunistic assignment. In contrast,
under NearestGateway, stationary users in congested
areas suffer from continuous loss, which exceeds the oc-
casional handoff-related loss incurred to mobile users.

Following this, we examine QMesh’s control overhead
– the average number of probes per minute performed
by each AP. We focus on the day scenario when the
network congestion is most heavy. The overhead de-
pends on the number of probes per selection as well as
on the probing rate. Our measurements show that for
most values of load, it is enough to apply nextchoice()
once in 15 seconds to achieve an acceptable loss ratio.
The average number of probes applied upon gateway se-
lection never exceeds 2.5, as opposed to the theoretical
limit of the logarithm of the network size. Moreover, for
most values of the load, the number of probes is almost
exactly 2 – the minimal possible value. Figure 10(a)
summarizes these results in a single plot, which shows
that the overhead is very small for most workloads.

Finally, we study the potential QoS benefit of in-
creasing the number of random probes made by QMesh.
We compare two instantiations of the algorithm using
P = 1 and P = 2, in the day scenario. Figure 10(b)

shows that increasing P does not bring any performance
impact for light loads (below 400), and has a minor im-
pact for heavy loads. Moreover, QMesh partially masks
the disadvantage of applying a single random probe by
adaptively adjusting the probing interval τp. Note that
at a load of 600, QMesh with P = 1 starts increasing
its probing rate due to QoS degradation, which reduces
the gap between it and QMesh with P = 2.

5.5 Service-Specific Handoff Policies
In all the above experiments, QMesh used a very low

handoff threshold, and migrated each user almost imme-
diately as the user’s delay became inadmissible. Setting
a low threshold (H = 10) was correct because the hand-
off cost was also low (C = 50), and hence, there was no
benefit in delaying the new assignment. However, this
policy is not necessarily true if the handoff cost is very
high, e.g., in an online game, in which a handoff entails
a substantial state transfer. Consider, for example, the
same traffic model as described in Section 5.1, the same
continuous cost (1 lost packet = 1 unit), and the hand-
off cost of C ′ = 50000 units. We provide this example
for insight only, and do not claim that a realistic online
game’s traffic/cost model is used.

Figure 10(c) illustrates the comparison between two
instances of QMesh parametrized by H = 10 and
H = 10000, respectively, under a light load (400 users).
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Figure 10: Studying the effect of QMesh’s tuning parameters: (a) Scalability of the number of probes
per minute with load, (b) Impact of increasing the number of simultaneous probes P . (c) Impact of
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The second instance, which is much more conservative
in applying costly handoffs, consistently achieves a bet-
ter cost with all mobility patterns; i.e., tuning the hand-
off threshold in accordance with the application-specific
handoff cost is crucial for achieving a good overall cost.

6. CONCLUSIONS
Future mesh networks will be expected to accommo-

date a high capacity of mobile users running media-
rich applications. In order to satisfy the QoS require-
ments of such applications, gateway assignment policies
will need to take into consideration factors like load
peaks, mobility, and application-specific handoff costs.
Future WMN architectures will need to employ scal-
able mechanisms to this end. We introduced QMesh, a
novel scalable solution for dynamic assignment of mo-
bile users to gateways in a large-scale WMN, which can
be instantiated with application-specific handoff poli-
cies. We studied QMesh through simulation in different
settings of a wide-area urban WMN. Our results show
that QMesh scales well and adapts to network loads. It
satisfies application QoS requirements for service capac-
ities significantly exceeding those of traditional policies.
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APPENDIX
A. DELAY MODELING IN MESHSIM

We briefly describe the delay models used by Mesh-
Sim (available for download at [7]), a flow-level simula-
tor we developed to provide network scalability beyond
that of packet-level simulation tools [4, 8].

MAC Architecture and Link Delays: We assume
that each router is equipped with distinct interfaces for
user access (802.11b) and backbone (802.11a) commu-
nication. These interfaces use different wireless bands,
and hence, the access and backhaul traffic flows do not
interfere. 802.11a is chosen for its abundance of or-
thogonal wireless channels (12), which are exploited to
minimize interference among the mesh links (this is also
a common practice in commercial WMNs [6]). A router
employs two cards for communicating within the mesh
- one for egress traffic and the other for ingress traffic.
This facilitates a parallel transmission and reception at
the backbone, and hence, a simultaneous upstream and
downstream forwarding. The ingress interface is oper-
ated at a fixed wireless channel. Whenever a router
needs to communicate with some neighbor, it switches
its egress interface to the channel of this neighbor’s
ingress card. Hence, a single ingress interface is shared
by the links emerging from the router’s neighbors.

The low-degree topologies utilized by our experiments
and a substantial number of available channels allow
performing ingress channel assignment in a way that no
pair of routers within two hops from each other share
the same ingress channel. Therefore, the only kind of
MAC contention at the backbone arises when two nodes
simultaneously transmit to the same neighbor. That
is, we assume that no interference exists between two
backbone links without a common endpoint.

Since at each mesh node, all the incoming backbone
links share the same ingress interface, the delay on each
outgoing link depends on the cumulative load on this
link’s target. The mesh forwards each flow along the
shortest path between its AP and gateway. Therefore,
a particular assignment of users to gateways determines
the load on each link, and hence, the total link delay
incurred to each user. We use the model by Tickoo and

Sikdar [30] to compute the expected latency of travers-
ing a shared 802.11 link (either access or backbone).

VoIP Aggregation and Queueing Delays: We as-
sume that VoIP flow aggregation(e.g., [19], also adopted
by 802.11n) is employed in order to overcome the capac-
ity limitation that is inherent to wireless VoIP, namely,
a high overhead of transmitting small packets over the
802.11 medium. The VoIP traffic at mesh routers is
handled through a VoIP-specific scheduling policy. A
packet that needs to be forwarded over an egress link is
placed into the queue of this link. The link’s scheduler
sets the time for transmitting the next outgoing packet.
At this time, the queued packets are aggregated into a
super-packet, which is transmitted over the medium as
a single frame. Upon arrival to the neighbor, the super-
packet is de-multiplexed, and the individual packets are
handled independently.

By rate-limiting the super-packet generation process,
the scheduler controls the capacity/delay tradeoff at the
wireless link. The scheduler transmits a single packet
in a fixed-length time slot, which can be implemented,
e.g., through a simple token-based traffic shaping. With
this policy, if the arrival rate exceeds the transmission
rate, the packets are queued on average for a half-slot
time, and otherwise, they are forwarded immediately.

In the chosen delay model [30], a link can sustain
an inter-packet delay of 20ms for at most 10 indepen-
dent flows without dropping packets. For the backbone
links, we take a conservative approach, and rate-limit
each egress queue to one packet in 10ms. Since the
maximal node degree is 4, at most 8 (aggregated) pack-
ets contend for each shared ingress link in 20ms, thus
approximating the behavior of eight concurrent VoIP
flows. The average queueing time is therefore 5ms for a
fully backlogged egress queue.

The maximal capacity of the backbone links is con-
strained by the number of RTP packets that can be
multiplexed into a single super-packet. The size of an
RTP packet with a G.729 voice payload is 60 bytes.
Assuming the super-packet size of 1500 bytes, without
RTP header compression [19], the number of voice pack-
ets that can be multiplexed into a super-packet is 25.
Since a single egress queue schedules transmissions each
10ms (twice the packet arrival rate in a single flow), its
capacity is 2×25 = 50. Hence, the capacity of a shared
ingress link is 4×50 = 200 flows (4.7 Mbps bandwidth).

Finally, the gateway connection introduces its own
delay, which depends on the wired link’s capacity. Since
a typical WMN is expected to use an available inexpen-
sive wired infrastructure, assume the use of the ADSL
technology, in which the uplink is the bandwidth bot-
tleneck. The fastest available ADSL2 uplink rate today
is 3.5 Mbps. We assume that it supports 120 flows (2.75
Mbps effective bandwidth), and employ the M/M/1
model for delay calculation.


