Failure Detectors in Omission Failure Environments®

Danny Dolev! Roy Friedman? Idit Keidarf Dahlia Malkhi®

September 19, 1996

Abstract

We study failure detectors in an asynchronous environment that admits message omis-
sion failures. In such environments, processes may fail by crashing, but may also dis-
connect from each other. We adapt Chandra and Toueg’s definitions of failure detection
completeness and accuracy to the omissions failure model, and define a weak failure detec-
tor OW(om) that allows any majority of the processes that become connected to reach a
Consensus decision, despite any number of transient communication failures in their past.
We provide a protocol that solves the Consensus problem in this model whenever a ma-
jority of the processes become connected, regardless of past omissions. Moreover, in our
protocol it is not necessary to save and repeatedly send all past messages, which makes it
more efficient than previous protocols in this model.

*This work was supported by ARPA/ONR grants N00014-92-J-1866 and F30602-95-1-0047, and by grants
from IBM, Siemens, and GTE Corporations and by the Ministry of Science of Israel, grant number 0327452.

fComputer Science Institute, The Hebrew University of Jerusalem. Email: {idish,dolev}@cs.huji.ac.il

{Department of Computer Science, Cornell University. Email: roy@cs.cornell.edu

SAT&T Laboratories, Murray Hill, NJ 07974. Email: dalia@research.att.com

1 Introduction

Failure detectors are useful abstractions for specifying services and protocols in a distributed
environment prone to failures. Failure detectors provide a clear analysis of the effects of failures
on the solvability of certain problems in distributed environments. Examples of services that
are defined using failure detectors include Consensus [12], atomic commit protocols [7, 9] and
primary component membership [11] services.

In a seminal paper, Chandra and Toueg categorized failure detectors according to their
degree of accuracy and completeness [4]. In particular, they defined an eventual weak failure
detector OW that can make an infinite number of mistakes but eventually some restrictions
on its behavior hold. They present a protocol for solving Consensus using OGW. The failure
detectors definitions and protocols presented in [4] are described in a model that is limited to
crash failures only and cannot be trivially extended to allow message omissions.

We extend the definitions of failure detectors to a more general asynchronous model with all
benign types of failures: In our model processes may crash and recover, messages may be lost
or arbitrarily delayed, the network may partition and previously disconnected network compo-
nents may re-merge. We start by defining the correct and faulty processes of this environment
in such a way that allows two correct processes to experience transient communication failures
for any unbounded (but finite) period. In our model, the system eventually converges to a
stable state in which all the correct processes reliably communicate with each other, and are
disconnected from all faulty processes. Note that the stable state is observed only externally,
as an analysis tool of the system, and the processes need not be aware of it. Furthermore
a process need not know whether it is correct or not. Note also that, while stability has to
formally hold forever, in any execution of our algorithms it needs to hold only for a finite time
(though no prior bound on it exists).

We define classes of failure detectors in our environment. Qur definitions follow closely the
ones given in [4]. In particular, we define the eventually weak failure detector class, OW(om).
This class consists of weak, unreliable failure detectors that satisfy Weak Completeness, i.e.,
that every faulty process is eventually suspected by some correct process, and Fventual Weak
Accuracy, i.e., that eventually there exists a correct process that is not suspected by any other
correct process. We also define an eventually strong failure detector class, CS(om), and prove
the equivalence of the two classes, which is analogous to the equivalence of OGW and O in
Chandra and Toueg’s model.

We show that Consensus is solvable in our environment if no more than %] processes are

faulty (where n is the number of processes in the system) and the environment is augmented
with a failure detector of the class GW(om). We begin by presenting a naive adaptation of the
protocol in [4] to our environment. The naive protocol overcomes message loss by re-sending
all past messages at each round. Unfortunately, this approach results in buffering requirements
that grow linearly in the total size of exchanged data. We provide an alternative solution
whose memory requirement is bounded logarithmically in the number of messages sent, and
does not require storing nor re-sending of old messages, yet can overcome an unbounded (but

finite) number of omission failures. The logarithmic space requirement stems from our lack
of assumption on message ordering. Note that there can exist no constant memory protocols
providing reliable multicast over an unreliable network that can re-order messages [1]. In
our solution, the memory requirements increase logarithmically due to the use of monotonic
counters. In any practical execution, 64 or 128 bits of memory will be more than enough.
Therefore our solution is reasonable for practical use.

Finally, we prove minimality of OGW(om) for solving Consensus in our environment using
similar arguments as the ones used in proving the minimality of GW in the crash-failure
environment model (see [3]).

1.1 Related Work

Guerraoui and Schiper introduced the notion of “I'-Accurate” failure detectors in [8]. Their
definitions are provided, again, in the crash failure model only. More precisely, they assume that
messages between any pair of live processes are eventually received. Like the model in [4], over
an unreliable network, this assumption requires unbounded message re-transmission capability.
In a practical environment with message losses, in which live processes may omit an unbounded
number of messages, the main reduction presented in [8] does not work.

In the timed asynchronous model, Cristian and Schmuck [6] explicitly use the notions of
time and timeouts to state sufficient conditions for reaching agreement on the membership of
a group of processes. As discussed in [13], timeouts are only one possible aspect of failure
detection. Since our definitions and results use failure detectors as an abstract tool, our model
is more general than the one presented in [6]. As in our model, their protocols are guaranteed
to proceed only when the network stabilizes, with the important distinction that, in their work,
a stable network delivers every message within a known delay.

Babaoglu, Davoli, and Montresor also define failure detectors for omission failure envi-
ronments and use them to develop protocols for view-synchronous communication [2]. Their
definitions of permanent reachability and unreachability require, like ours, eventual stability
of the system, but unlike ours, capture pairwise connectivity only. Thus, in their model, only
crashed processes are considered faulty, and consequently they do not provide a weakest failure
detector for solving Consensus in omission failure environments.

2 The System Model and Definitions

The system contains a fixed set N of n processes which communicate via message passing. The
set N is known to all processes. The underlying communication network provides datagram
message delivery. There is no known bound on message transmission time, hence the system
is asynchronous.

The datagram message delivery assumption captures the following types of possible failures:
Messages may be lost or delivered out of order, failures may partition the network into several

components, and previously disjoint network components may re-merge. Processes may crash
and recover, but recovered processes come up with their stable storage intact and every state
change in a process is logged on stable storage. Hence, our model does not distinguish processes
that crash and later recover from “disconnected” ones, and from now on, when we say that a
process crashes, we assume that it does not recover.

We assume also that each process is equipped with a failure detector, which provides hints
regarding which processes may be faulty at any given time. The information provided by
the failure detectors need not be accurate, although some restrictions on their behavior are
imposed later in Section 3.

More formally, a process can be modeled as a (possibly infinite) automaton, which takes
steps that consist of receiving message-receive events from the network and suspect lists
from the failure detector, doing some local computation, and then generating zero or more
message-send events. Events of type message-receive may be empty, i.e., containing null
messages. (This allows processes to initiate operations spontaneously). A process can also
receive a crash event, which is the last event it receives.

A history of a process is a sequence of events as they occur in that process, in which crash
events are not followed by any other event. An execution is a collection of histories, one for each
process, in which there is a mapping from each message-receive event to a corresponding
message-send event. In this paper we consider only executions in which there are no causal
cycles [5, 10].

An execution ¢’ is a sub-execution of another execution o if they include histories of the
same set of processes, and the history of each process p; in ¢’ is a prefix of p;’s history in o.
Given an execution o and a sub-execution ¢’ of o, the collection of history suffixes resulted by
eliminating the history of each process in ¢’ from its corresponding history in o is an extension
of o’/. We denote this extension by o\ o’.

An execution or a sub-execution is infinite if the history it contains for every process is
either infinite or ends with a crash event.

Let o be an infinite execution, ¢’ a sub-execution of o, 6" a sub-execution of ¢’, and let 7
be the extension ¢’ \ o”. Note that if o’ above is infinite, then ¢ = ¢’. We use the following
definitions:

alive Process p is alive in 7 if p does not crash in o’

crashed Process p is (permanently) crashed in 7 if p crashes in o’.

connected Processes p and ¢q are connected in 7 if p and ¢ are alive in 7, p receives in o every
message that was sent from ¢ to p in 7, and vice versa. A set of processes P is connected
in 7, if for every two processes p,q € P, p and ¢ are connected in 7.

If o' is infinite, p and ¢ are (P is) permanently connected in o.

detached Processes p and ¢ are detached in 7 if p does not receive (in o) any message that ¢
sends in 7 and vice versa. A set of processes P is detached from a set of processes () in
7 if for every process p € P and every process ¢ € (), p and ¢ are detached in 7. Note
that the definitions of detached and connected do not complement each other.

If ¢’ is infinite, p and ¢ (P and Q) are permanently detached in o.

connected component A set of processes P is a connected component in 7, if P is connected
in 7, and P is detached from N \ P in 7.

If ¢’ is infinite, P is a permanently connected component in o.

A permanently connected component defines a stable situation in which members of the
permanently connected component can exchange messages among themselves, but cannot re-
ceive any message from other members. Note that, although messages are guaranteed to be
delivered within a permanently connected component, there is no bound on the latency of
these messages.

2.1 Correct Processes

In the crash-failure model, correct processes are identified with the live processes. In that
model, two correct processes can communicate reliably. We make an analogous tagging in
our model, such that any two processes we tag as correct will eventually be able to exchange
messages reliably. However, we differ from previous models in that we allow two correct
processes to lose an unbounded (but finite) number of messages through some transient period,
and to then become permanently connected. The notion of correctness is viewed by an external
observer that sees the infinite run. The processes are not aware of this tagging, nor can they
know that they have reached the “stable” point in the execution. The tagging is only used for
reasoning about the protocol.

Formally, the correct processes are tagged as follows:

Definition 2.1 Let P be the largest permanently connected component in an execution o (if
there are two or more such components of equal size, choose one among them). For eachp € P,
p is called correct in o. For each q € P, q is called faulty in o.

Note that the above definition holds in the case that the largest permanently connected
component contains only a minority of the processes (and in the worst situation, contains an
empty set, if the system never stabilizes). However, this is of limited interest in the current
context, since in the context of agreement protocols, a majority resilience threshold (on the
number of correct processes) is required.

3 Failure Detectors

We have already identified the correct processes with a permanently connected component in
the execution, thereby extending the model to include initial omissions. Using our definition,
if a majority of the processes eventually becomes permanently connected, they are considered
correct. This allows us to extend the definition of failure detectors of Chandra and Toueg [4]
from a crash-failure asynchronous environment to a partitionable environment, in a natural
way. It is important to note that in environments in which messages never get lost, the entire
set of non crashed processes forms a connected component. Thus, in such environments, our
definitions are compatible with those proposed by Chandra and Toueg.

Failure detectors are characterized using completeness and accuracy properties. Below, we
provide the definitions of completeness and eventual accuracy' in our model.

Strong Completeness Eventually every faulty process is permanently suspected by every
correct process.

Weak Completeness Eventually every faulty process is permanently suspected by some cor-
rect process.

Eventual Weak Accuracy There is a time after which some correct process is never sus-
pected by any other correct process.

Accuracy
Completeness | Eventual Strong | Eventual Weak
Strong Fventually Perfect | Fventually Strong
OP(om) OS(om)
Weak FPventually Weak
OQ(om) OW(om)

Figure 1: Classes of Failure Detectors

We define four classes of eventual failure detectors; each failure detector is characterized by
the strength of its completeness and eventual accuracy properties. The failure detector classes
are shown in Figure 1.

3.1 Reducing OW(om) to OS(om)

In this section, we show equivalence between the two classes of failure detectors defined above.
Reduction between failure detector classes is based on the notion of implementation, as follows:

!Chandra and Toueg also define perpetual accuracy, but this concept does not carry to our model because of
the transient nature of link failures.

Every process p does the following:

1. Initially:
Sy, — 10

2. p periodically sends its suspects list to all the processes:
send (p, W) to all.

3. when receive (¢, W,) for some ¢,

Sp SpUVVq\{q}

Figure 2: From W € OW(om) to 5 € OS(om)

Definition 3.1 We say that a failure detector class R can be reduced to a failure detector
class S if, for every R € R, there exists a protocol that uses R (as input) and whose output is
a failure detector S € S.

We reduce OGW(om) to OS(om) using the algorithm suggested by Chandra and Toueg for
reducing OW to OS [4], described in Figure 2. We prove below that this algorithm reduces
OW(om) to OS(om). We denote the given (input) failure detector by W, and the resulting
(output) failure detector by 5. We denote by W, the suspects list of p with the failure detector
W, and S, the suspects list with 5.

The algorithm works as follows: p periodically sends its input suspects list to all the
processes (including itself). When p receives a suspects list from a process ¢, it removes ¢ from
its suspects list, and merges ¢’s suspects list into its output suspects list.

Lemma 3.1 If W satisfies weak completeness then S satisfies strong completeness.

Proof: Let p be a correct process. If ¢ is faulty, then eventually ¢ € W, for some correct
r. Furthermore, since ¢ is faulty, there is a time after which p does not hear from ¢. Since r
periodically sends W, to p, and since p and r are permanently connected, eventually p receives
r’s message and merges W, into S5,, and thus, eventually, ¢ € 5,. Subsequently, ¢ is never
removed from 5. [|

Lemma 3.2 If W satisfies eventual weak accuracy then S also satisfies eventual weak accu-
racy.

Proof: Let p be a correct process such that there is a time g after which p never appears in
W,, for any correct process r. Then after this time, no correct process ever sends a suspects
list containing p. Furthermore, there is a time #; > #y after which the correct processes do not
receive messages sent by faulty processes and no message that is received by a correct process

(and was also sent by a correct process) includes p in the suspects list. If at t; p € 5, for
some correct ¢, then since p and ¢ are connected, there exists a time t5 > #; in which ¢ gets
p’s suspects list and removes p from 5. p is never again added to 5. [|

From these two lemmata, the theorem immediately follows:
Theorem 3.3 The algorithm in Figure 2 reduces W € OW(om) to S € OS(om).

We note that the reduction from OGW(om) to OS(om) takes constant space (w.r.t. the
number of iterations) and works correctly even in the absence of F1ro links. The importance
of this fact will become apparent below, when we construct a logarithmic-space solution for the
Consensus problem using a failure detector in $S(om), and thus obtain a logarithmic-space
solution for Consensus using a failure detector in OGW(om).

4 Consensus with Failure Detectors

There are many (equivalent) formulations of the Consensus problem, originally introduced
n [12]. We say that a protocol solves the Consensus problem if:

Agreement All the processes that decide decide on the same value.

Non-Triviality The protocol has different executions that decide on at least two different
values.

Termination All the correct processes eventually decide.

Note that although the definition of Consensus in the omission failure model looks the
same as in the definition for the crash failure model, it is actually harder to solve Consensus in
the former than it is in the latter. This stems from the differences between the definitions of
correct processes in the two models. For example, consider a failure detector that accurately
detects all processes that crash, but never detects faulty processes that do not crash. Such a
failure detector is strong enough to solve Consensus in the crash failure model, but not in the
omission failure model.

In the rest of this section, we show protocols for solving Consensus in the omission failure
model with a majority of correct processes, using an eventually strong failure detector 5 €
OS(om). However, since we have shown how to implement ¢S(om) from GW(om), then the
protocols we describe work with GW(om) by superimposing the reduction from GW(om) to
&S(om) onto them.

4.1 Consensus with OS(om) — Naive Solution

Chandra and Toueg [4] suggested an algorithm that solves Consensus with a failure detector
5 € OS if there are no more than || crash-failures. If there are more than || failures, the
algorithm blocks, but in no case does it allow two processes to decide on different values. Their
algorithm was not designed to overcome messages losses, and consequently, if more than |7 |

of the processes incur send or receive omission faults, the algorithm may block.

The algorithm can be changed to overcome message losses as follows:

1. Each process records all the messages it sent in the past and piggybacks on every message
all the previous messages.

2. Every undecided process periodically re-sends the latest message to every other process,
at every stage of the protocol. In this way, processes retransmit past messages even when
they are otherwise idle.

3. A process that receives a message that it has already received, or a message from a
previous round, discards this message.

4. When a process decides it stops periodic sending of messages. When a decided process
receives a message other than decide, it responds by sending a decide message with its
decision value. This way, undecided members that reconnect with decided processes
receive the decide message, and the protocol stops sending messages once all the correct
processes have decided.

Note that the memory requirements of the suggested protocol grow linearly in the total
size of exchanged data, and if the exchanged data is constant, the memory requirement is
O(tlogt) where t is the number of rounds. Therefore, this protocol is not reasonable for use
in practice.

Theorem 4.1 The protocol given in [}] with the modifications above solves Consensus in the
omission failure environment extended with a failure detector S € OS(om), given that a ma-
jority of the processes are correct.

Proof: (Sketch) The protocol in [4] uses a majority to guarantee against inconsistent de-
cisions. Therefore, it is only left to show that the protocol with the above modifications
guarantees termination. Assume to the contrary that there is an infinite run of the protocol
above.

With the above modifications to the protocol, for any pair (p,q) of correct processes, ¢
eventually receives all of the messages p sends it. Furthermore, p cannot distinguish the case
that it is permanently detached from ¢, from the case that ¢ has crashed. Therefore, to the

correct processes in the crash failure model the execution seems the same as to a group of [241]

correct processes in the omission failure model. Therefore, we can construct an infinite run
in the crash failure model by stopping all the incorrect processes at the point of detachments.
The runs are indistinguishable to the correct processes, and therefore it does not terminate in
the crash failure model as well. This contradicts the results of [4].]

4.2 Consensus with OS(om) — Practical Solution

In this section, we offer an alternative Consensus algorithm to the one above, but whose
memory requirement is bounded logarithmically in the number of messages sent, and does
not require storing nor re-sending of old messages. The algorithm uses a failure detector

5 e OS(om).

The algorithm uses a rotating coordinator paradigm. The coordinator of round r is process
(r mod n) 4+ 1, while the other processes are slaves. Every coordinator tries to determine a
consistent decision value.

Process p maintains the following variables: the round number, r,, the coordinator of this
round, C,, the current estimate, est,, and a timestamp, ¢s,, which contains the number of the
round when this estimate was last changed. Initially, the estimate contains the process’ initial
value, and ts, = 0.

The algorithm is easily described as a state machine with the following states: an Init
state, two coordinator states, C1 and C2, two slave states, S1 and S2, and a final Decide
state. Periodic sending is modeled as a response to a null event.

The state diagram of round 7, of the algorithm at process p is depicted in Figure 3. Circles
represent states, arrows represent state transitions. Each circle is labeled with the name of
the state, and with the type of message that p periodically sends while it is in this state.
Each arrow is labeled with the event that caused the state transition. The event r, > 7, is
a shorthand for: p receives a message from round r, where r, > r,. The event suspect ¢
denotes that ¢ is in the suspects list.

The state chart of the protocol is described in Figure 4. Fach round of the algorithm is
conducted in phases. First, the coordinator sends a new message informing all the processes
that a new round has started, and the slaves send timestamped estimates to the coordinator.
2411 processes (including its own estimate which it
initially holds), adopts one of the estimates with the latest timestamp, sets its s to the current

round number, and multicasts the chosen estimate to all the slaves.

The coordinator gathers estimates from |

When a slave receives the new estimate it adopts it as its new estimate, sets its ts to the
current round number, and sends an ACK to the coordinator. Once a majority (including the
coordinator) adopts this estimate, this value becomes fixed, and it is the only possible decision
value in the system.

When the coordinator gathers [241] Acks, (counting an ACK from itself), it sends a decide

message. Fvery process that receives a decide message, decides on the suggested value.

coordinator, slave

Initr P +1
Suspect Cp

Receive Estimates
from Majority

Receive Estimate
from Cp

Init r p +1
Suspect Cp

Receive ACKs
from Majority

Decide

Figure 3: State Diagram for Round 7, of the Protocol

The following two rules prevent the processes from blocking in case of failures:

1. If a slave suspects the current coordinator, it aborts the current round and starts a new
round of the protocol.

2. When a process receives a message with a higher round number than its own, it aborts
the current round and joins the new round.

With these rules, if the coordinator crashes or detaches, a new round is started, with a
different coordinator. If the coordinator, ¢, is suspected by some slave p, then p “crowns” a new
coordinator, g. Once ¢ receives the estimate from p it realizes that it is the new coordinator,
and multicasts a new message to all. When ¢ receives this message, it joins the round lead by
g. This may be repeated several times, but with a failure detector S € ¢S(om), eventually
a correct process u, that is not suspected by any other correct process becomes coordinator.
The round lead by u is not aborted by any correct member, and eventually leads to a decision.
Thus, the algorithm solves Consensus using 5 € $S(om).

10

L egend:

Cl | StaeCl

Event Handler

- Eyent

wad» Transition

r, — 1
ts, «— O

est, «— v,

Yy

INIT

send (new,

(q, rp, esty, tsy)

tsy, «— r,

est, «— estp/

periodically

(q, rp, ack)

[RRRTRRRTTNRATY o

(a, rq, esty, decide)

MEEEEEEENENERNEREEREREREENN

non-decide message

Event Handlers for C1 +

est, «— est,

C2 + Sl + 32

C,— (rymodn)+1
if (p = Cy) Qe
then wrers else "srsnnnnnnrnnnnnns :
JE I —_— ;
: ! : SLAVE | :
1 : -
I | - 1 | H
! I v : :
periodically | | | H
rp) | | periodically | E
| | send (p, rp, esty,, tsy) | H
| | H
if majority of ests: | : | E
I | | :
[est, «— est I (Cp, rp, est H
s.t. ts,; = max(tsy) | ! ? Cr < (Cp, ¥ CP) H
| tsy — rp g H
qu | | E | :
H | | : | E
: ! ! : ' :
H ! | - ! H
H | | H | H
- | = 2 | H
| v -
v cz2y | | v | :
: [periodically : E
send (p, rp, est,) | ! send (p, rp, ack) | :
! :
| | | :
I | I :
if majority of acks | | S1+82 | H
- | | suspect C, H
| : r, —r,+1 E

: s

e

—_—_ =

rp < Tyg

any other message

<

from round v, > r,

. 2

il

decide est,

DECIDE

>

send (p, rp, est,, decide,)

Figure 4: Deciding with Bounded Buffers and S € ¢S(om)
State Chart

11

To allow for recovery from message omissions, each process periodically re-sends its last
message, which contains the round number of the current round. Thus, even if there are
message losses that cause different processes to be “stuck” in different rounds, when the system
stabilizes and a group of processes becomes permanently connected, they all shift to the latest
round. Note that due to Strong Completeness , no process may be “stuck” as a slave of a
disconnected coordinator.

A process stops periodic sending of its latest message when it decides. When a decided
process receives a message other than decide, it responds by sending a decide message with its
decision value. This way, undecided members that reconnect with decided processes receive
the decide message, and the protocol stops sending messages once all the live and connected
processes have decided.

The number of bits required by this protocol increases logarithmically with the number of
rounds, as the counters used by it increase. In practice, this is not a real problem, since some
number between 64 bits to 128 bits would be sufficient for any practical application.

4.3 Proof of Correctness
We now prove that the protocol above solves Consensus.

Lemma 4.2 (Agreement) Let r be the first round in which a coordinator collects ["+1] Acks.
Assume that in round r, the coordinator chooses estimate v. Then for any round ' > r in

which a coordinator collects ["+1] estimates, the coordinator picks v as its new estimate (in
state C'1).

Proof: First, note that in any round in which the coordinator ejects before collecting [%}
estimates, no process changes its estimate. Also, since the coordinator of round r collects
[2417 AckKs, there are at least [2EL] processes in round r that have v as their estimate with
timestamp at least . Let ’ > 7 be the first round in which the coordinator chooses its estimate
to some value other than » (denoted v). This means that at least one process proposed v with a
timestamp greater than or equal r. However, a process can change its timestamp only in rounds
in which the coordinator collects [2F1] estimates, and in these cases the process changes its
estimate to whatever the coordinator has chosen. Therefore, there is a round between r and
r’ in which a coordinator chooses v, contradicting the minimality of r’. Thus, there does not
exist such 7/, and therefore in any round higher than r, in which the coordinator changes its
estimate, it does so to value v. [|

Lemma 4.3 (Termination) In every execution of the protocol described in this section in which
[%} processes or more are correct, every correct member decides.

Proof: Intuitively, we need to prove that the algorithm does not run into a deadlock, i.e., a

situation where all the correct processes wait for each other somehow, nor does it run into a
livelock, i.e., a race where the current round number increases endlessly without decision.

12

Consider a time after which a majority of correct processes become permanently connected,
no messages from faulty processes are delivered to any correct process, and some correct process
p is never suspected by any correct process from this point on. If some correct process p has
decided already, and another correct process ¢ has not decided yet, then p will eventually receive
a message from ¢ and will respond by re-sending a decide message which will be received by
q, hence ¢ will decide.

Otherwise, let r be the highest round number held by any correct process at this point,
and let ¢ be the coordinator corresponding to round r. Since all the correct processes belong
to a permanently connected component, eventually they will receive a message from round r
or higher, and move to that round. If ¢ is faulty, then eventually all of the correct processes
will suspect it and move to round r + 1 or higher. If ¢ is correct and does not decide in
round 7, then this could only happen if some correct process suspects ¢, moves to round r + 1,
and causes enough processes to move to round r 4+ 1 before they send ACKs to g. Again, this
will eventually cause all the correct processes to move to round r 4+ 1 or higher. This can be
repeated however only until some round 7’ is reached in which the coordinator is p.

Once some correct process reaches round 7/, it will cause all of the correct processes to
receive a message from round 7/, and since none of them suspects p, none will eject from round
r’. Thus, it is guaranteed that p will eventually receive at least [%} estimates in C'1 and
[2417 Acks in €2, and therefore will eventually decide. |
Lemma 4.4 (Non-Triviality) In every execution of the protocol in which some process decides,

it decides on a value that was the initial value of some process.

Proof: By the code of the protocol, a process can only decide on a value that was the estimate
of some process in the round in which the decision was taken. In every round but the first
one, the estimated value of every process is an estimated value of some process in a previous
round. In the first round, the estimated value of each process is its initial value. [|
The following theorem follows immediately from Lemmas 4.2, 4.3, and 4.4.

Theorem 4.5 The protocol described in this section solves the Consensus problem in an omis-

sion failure environment extended with a failure detector S € OS(om), provided that a majority
of the processes are correct.

5 The Weakest Failure Detector for Solving Consensus

We now show that GW(om) is the weakest failure detector for solving Consensus in an asyn-
chronous model with message omissions with a majority of correct processes.

Theorem 5.1 OW(om) is the weakest failure detector allowing Consensus to be solved in an
asynchronous model with message omissions with up to |5 | faulty process.

13

Proof: (Sketch) In [3], Chandra, Hadzilacos and Toueg prove that OW is the weakest failure
detector for solving Consensus in an asynchronous environment with crash failures. Their
proof reduces a failure detector D that solves Consensus to OW; the reduction sends the entire
history of each process with each message, and therefore works even if message omissions occur.
Therefore, the same reduction may be applied to reduce any failure detector D(om) that solves
Consensus in our model, reducing it to OGW(om). []

Note that the notion of comparing between failure detectors using the implements rela-
tion, as defined by Chandra et al. [3], does not take into account the space-complexity of the
reduction. Therefore, a failure detector may exist, that requires a linear space (or more) im-
plementation to implement GW(om), but is nevertheless considered no weaker than GW(om).
An interesting open direction is to consider an alternative definition of the implements relation,
by constraining the space complexity of the implementation. It is an open question whether
there exists a failure detector weaker than, in this sense, OW(om), that can solve Consensus
in our environment.

6 Conclusions

In this paper, we have shown how to analyze the weakest failure detector in an environment
where message reliability matches the properties of real networks, and have shown that in
such a setting, the intuitive findings of Chandra and Toueg remain valid. In particular, we

have defined OGW(om) and ©S(om) analogous to OGW and ¢S and showed that GW(om) and

OS(om) are equivalent in the omission failure model too.

We have presented protocols that solve Consensus using ¢S(om) in executions in which
there are at least [%} correct processes. We suggested a practical algorithm that can be used,
as a building block, to make various distributed services more fault tolerant. For example, the
primary component membership protocol in [11], and the atomic commitment protocol in [7]
use Chandra and Toueg’s Consensus protocol as a building block. Replacing that module with
our Consensus protocol will make these services tolerant to omission faults.

Acknowledgments

We are grateful to Sam Toueg and Vassos Hadzilacos for pointing out weaknesses in our
previous version. Special thanks to Gregory Chockler and Esti Yeger Lotem for their help in
making the presentation of the algorithm clearer. Thanks to Ken Birman for many helpful
discussions on the area.

14

References

[1] Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y. Mansour, W. Dai-Wei, and
L. Zuck. Reliable communication over unreliable channels. Journal of the ACM,
41(6):1267-1297, November 1994.

[2] 0. Babaoglu, R. Davoli, and A. Montresor. Failure detectors, group membership and view-
synchronous communication in partitionable asynchronous systems. Technical Report
UBLCS-95-18, Department of Computer Science, University of Bologna, November 1995.

[3] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. Journal of the ACM. To appear.

[4] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225-267, March 1996.

[5] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February 1985.

[6] F. Cristian and F. Schmuck. Agreeing on process group membership in asynchronous
distributed systems. Technical Report CSE95-428, Department of Computer Science and
Engineering, University of California, San Diego, 1995.

[7] R. Guerraoui and A. Schiper. The decentralized non-blocking atomic commitment proto-
col. In IEEF International Symp. on Parallel and Distributed Processing (SPDP), October
1995.

[8] R. Guerraoui and A. Schiper. “y-accurate” failure detectors. In International Workshop
on Distributed Algorithms (WDAG), 1996. To appear.

[9] I. Keidar and D. Dolev. Increasing the resilience of atomic commit at no additional cost.
In ACM Symp. on Prin. of Database Systems (PODS), pages 245-254, May 1995.

[10] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558-565, July 78.

[11] C. Malloth and A. Schiper. View synchronous communication in large scale networks. In
Proceedings 2nd Open Workshop of the ESPRIT project BROADCAST (number 6360),
July 1995.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228-234, 1980.

[13] W. Vogels. World wide failures. In ACM SIGOPS Furopean Workshop, 1996. To appear.

15

