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Abstract

We study the implication that various timeliness and failure detector assumptions have on the per-
formance of consensus algorithms that exploit them. We present a general framework, GIRAF, for

expressing such assumptions, and reasoning about the performance of indulgent algorithms.
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1 Introduction

1.1 Background and motivation

Consensus a widely-studied fundamental problem in distributed computing, theory and practice. Roughly
speaking, it allows processes to agree on a common output. We are interested in the performance of consen-
sus algorithms in different timing models.

Although the synchronous model provides a convenient programming framework, it is often too restric-
tive, as it requires implementations to use very conservative timeouts to ensure that messagexiate.
For example, in some practical settings, there is a difference of two orders of magnitude between average
and maximum message latenciésH]. Therefore, a system design that does not rely on strict synchrony is
often advocated5, 17, 8]; algorithms that tolerate arbitrary periods of asynchrony are calthdgent20].

As it is well-known that consensus is not solvable in asynchronous sysiednshe feasibility of in-
dulgent consensus is contingent on additional assumptions. More specifically, such a system may be asyn-
chronous for an unbounded period of time, but eventually reack&slzl Stabilization Time (GSTL7],
following which certain properties hold. These properties can be expressed in terms of eventual timeliness
of communication links17, 102, or using the abstraction ofacle failure detector§8]. Protocols in such
models usually progress in asynchronomsnds where, in each round, a process sends messages (often to
all processes), then receives messages while waiting for some condition expressed as a timeout or as the
oracle’s output, and finally performs local processing.

Recent work has focused on weakening post-GST synchrony assumgi#phsd, 3, 27], e.g., by only
requiring one process to have timely communication with other processes after GST. Clearly, weakening
timeliness requirements is desirable, as this makes it easier to meet them. For example, given a good choice
of a leader process, it is possible to choose a fairly small timeout, so that the leader is almost always able
to communicate with all processes before the timeout expires, whereas having each process usually succeed
to communicate witteveryother processes requires a much larger timedud][ In general, the weaker
the eventual timeliness properties assumed by an algorithm are, the shorter the timeouts its implementation
needs to use, and the faster its communication rounds can be.
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Unfortunately, faster communication rounds do not necessarily imply faster consensus decision; the
latter also depends on the number of rounds a protocol employs. A stronger model, although more costly to
implement, may allow for faster decision after GST. Moreover, although formally modeled as holding from
GST to eternity, in practice, properties need only hold “enough time” for the algorithm to solve the problem
(e.g., consensus®f. But how much time is “enough” depends on how quickly consensus can be solved
based on these assumptions. Satisfying a weak property for a long time may be more difficult than satisfying
a stronger property for a short time. Therefore, before choosing timeliness or failure detector assumptions
to base a system upon, one must understand the implication these assumptions have on the running time of
consensus. This is precisely the challenge we seek to address in this paper.

1.2 GIRAF - General Round-based Algorithm Framework

This question got little attention in the literature, perhaps due to the lack of a uniform framework for com-
paring the performance of asynchronous algorithms that use very different assumptions. Thus, the first con-
tribution of our work is in introducing a general framework for answering such questioSgchion 2.2we

present GIRAF, a new abstraction of round-based algorithms, which separates an algorithm’s computation
(in each round) from its round waiting condition. The former is controlled by the algorithm, whereas the
latter is determined by an environment that satisfies the specified timeliness or failure detector properties. In
addition, the environment can provide additional “oracle output” information for the protocol. In general,
rounds are not synchronized among processes. GIRAF is inspired by Gafni's round-by-round failure detec-
tor (RRFD) [19], but extends it to allow for more expressiveness in specifying round properties, in that the
oracle output can have an arbitrary range and not just a suspect listl&, iafd our rounds do not have to

be synchronized among processes or communication-closed like Gafni’s

One model that we study and cannot be expressed in RRFD ensures that each process receives messages
from a majority, and in addition, provides an eventiealder oracle €2, which eventually outputs the same
correctleaderprocess at all processes; many consensus algorithms were designed for this mod2h, e.g., [

13, 21]. Note that in order to ensure communication with a majority in each round, RRFD’s suspect list must
include at most a minority of the processes, and hence cannot, by itself, indicate which of the unsuspected
processes is leader. Thus, additional oracle output is required. In general, the question of which systems
can be implemented in RRFD was left opd®][ In contrast, we show that GIRAF generalenough to
faithfully captureany oracle-based asynchronous algorithm in the moderpfdeeSection 4. Note that

GIRAF can be used to express models assuming various failure patterns and is not constrained to the crash
failure model (even though the models we define in this paper do assume crash failures). Moreover, GIRAF
can be used to study problems other than consensus.

Since we focus on round-based computations, we replace the notion of GST with the notGlobéh
Stabilization Round (GSR}.2]. Each run eventually reaches a round GSR, after which no process fails, and
all “eventual” properties hold. More specifically, an environment in our model is defined using two types of
properties: (1perpetual propertieswhich hold in all rounds; and (Zventual propertiesvhich hold from
GSR onward. The eventual counterpart of a perpetual propagglenoted)¢.

Since one can define different round properties, and organize algorithms into rounds where these proper-
ties hold, one can prove upper and lower bounds for the number of rounds of different types (i.e., satisfying
different properties such as all-to-all communication in each round or communication with a majority in
each round) that are sufficient and necessary for consensus. Note that, in order to deduce which algorithm
is best for a given network setting, this analysis should be complemented with a measurement study of the
cost of rounds of different types in that specific setting. The latter is highly dependant on the particularities
of the given network and has no general answers (e.g., in a LAN, all-to-all communication may well cost

2In communication-closed rounds, each message arrives in the round in which it is sent.



the same as communication with majority, whereas in a WAN it clearly doe$nd})[ GIRAF provides
generic analysis, which can be combined with a network-specific measurements to get a network-specific
bottom line.

We use GIRAF to revisit the notion of oracle (or model) reducibility. Traditionally, reducibility defines
when one model can be implemented in anotBer], without taking complexity into account. In Secti@n
we definek-round reducibility which captures reductions that incuk-@ound penalty in running time; i.e.,
the GSR of a run in the emulated model is at mosbunds later than that of the run in the original model.
Additionally, we define the more general notioneafeducibility, where the GSR of the emulated model is
at most a functiorax() of that of the original model in the same run. Thisound reducibility is simplyx-
reducibility witha(z) = = + k. Gafni [19] has posed as an open problem the question of finding a notion of
an equivalence relation between models with regard to the extent in which one model “resembles” another.
We hope that our notion af-reducibility (andk-round reducibility) provides a convenient instrument to
describe such relations.

1.3 Results

We use GIRAF to analyze consensus performance in different models. In this paper, we consider a crash-
failure model, where up to < n/2 out of n processes may crash (before GSR). Our performance measure
is the number of rounds untjlobal decisioni.e., until all correct processes decide, after GSR.

Dutta et al. L 2] have shown that in thEventual Synchrony (E$)7] model, where all links are timely
from GSR onward, GSR2, i.e., three rounds including round GSR, is a tight lower bound for global
decision. We are interested in the implications of weakening the ES assumptions. Following the observation
that in some settings communication with a leader or a majority can be achieved with significantly shorter
timeouts than required for timely communication with all procesSed][ we focus on leader-based and
majority-based models.

The first model we define iEventual Leader-Majority QLM (see Table 1 row 2). In this model,
processes are equipped witHemder oracle Q [7]. We further require that the leader beda-source,
where a processis a{j-source if it hag timely outgoing links in every round starting from GSH (the
j recipients includep, and are not required to be corréctFinally, we require that each correct process
eventually have timely incoming links from a majority of correct processes (including itself) in each round;
this property is denotedi( | % | + 1)-destination, where the subscriptdenotes that the incoming links of a
process can change in each roufyd.M does not impose any restrictions on the environment before GSR.
One might expect that weakening the ES model in this way would hamper the running time. Surprisingly, in
Section 5we present a leader-based consensus algorithgiLfiet, which achieves the tight bound for ES,

i.e., global decision by GSR2. Our result suggests that eventually perfect failure detection is not required
for optimal performance2 and timely communication with a majority suffice.

We then turn to see whether we can repl&revith an equivalent (in the “classical” sense) failure
detector).S [8]. ¢S outputs a list obuspecteghrocesses at each process, so that eventually, every correct
process suspects every faulty process, and there exists one correct process that is not suspected by any
process. In Sectios, we show that in runs in which less th&nh— 1 processes fail, replacing with
¢S entails a lower bound af rounds from GSR onward. In the literatukg$ is typically used with the
assumptions that links are reliable (although not timely), and that messages from a majority arrive in each
round, including before GSRB] 28]. We therefore prove our lower bound for a stronger model, which
we call Eventually Strong-ReliabJé)SR. In this model, all links are reliable, processes are equipped with
a ¢S failure detector, the unsuspected correct process(s-gource, and every process is a perpetual

3In [2], the link fromp to itself is not counted; hencejasource in our terminology is @ — 1)-source in theirs.



| Model

Model Properties

Upper Bound

| Lower Bound|

ES all links Otimely GSR{t-2 GSR{t-2
[12] [12]
OLM Q, the leader ig)n-source GSR+2 GSRf2
every correct process(| % | + 1)-destination Algorithm 2 [12]
OSR OS, the unsuspected process)ig-source
every proces$n — f — 1)-destination GSR®2n + 2 GSR#m — 1
f <n/2—1and reliable links [28] Lemma 4
OAFM dJmeN,f<m<n/2st GSR+4 ifn =2m +1 GSR+2
every correct proces¥(m + 1)-source GSR+5 otherwise [12]
and{(n — m)-destinatior Algorithm 3
OMFM('m) | every correct process(n — m)-source
meNT m Correct processesn-source Unbounded Unbounded
f<m<n/2| (n—m) correct processe®(n — m)-accessible [2, 3,27 Lemma5
every correct procesdm-accessible
reliable links

Table 1: Upper and lower bounds on consensus global decision times in various mcedels2).

(n — f — 1)-destinatiop, wheref < ¢ is the number of actual failures in a given run, which is at least a
majority wheneverf < § — 1 (seeTable 1 row 3).

The( oracle is clearly a powerful tool; our result fOiIL M shows thaf2 effectively eliminates the need
for communication with all processes, and renders communication with majority sufficient. This raises the
guestion of whether timely communication with a majority can suffice for constant-time consensus even
withoutan oracle. To answer this question, we defineBhentual All-from-Majority QAFM, model, where
each correct process eventually has incoming timely links from a majority of processes, and outgoing timely
links to a majority (including itself). It is possible for processes to have fewer outgoing links, and in return
have additional incoming ones (s&able 1 row 4). In Section 7 we give a consensus algorithm for this
model that decides in constant time after GSR (five or six rounds, depending on the number of outgoing
versus incoming timely links).We are not aware of any previous algorithm fo$ the M model, nor any
other constant-time (from GSR) oracle-free algorithm in a timing model other than ES.

Finally, we examine whether one can weaken the model even further. Can we relax the assumption that
all correct processes have incoming timely links from a majority, and allow a minority of the processes to
each have one fewer timely link? (In case= 3, only one timely link is removed). IBection 8 we show
that the answer to this questionris, as this renders the problem unsolvable in bounded time. We define
a family of models Eventual Majority-from-Majority OMFM(m), where, roughly speaking, a majority of
the processes have incoming timely links from a majority, and the rest have incoming timely links from a
minority. In order to strengthen the lower bound, we add a host of additional assumptiorisiged,
row 5): We require a minority of processes to He-sources. We replacgdestination assumptions with
j-accessibility{1, 27], i.e., the existence of bidirectional timely links wighcorrect processes. Finally, we
require reliable links. We show that in the resulting modéMFM(m), global decision cannot be achieved
in bounded time from GSR. Interestingly, these models are strictly stronger than th@s8&,81], which
were used for solving consensus. We note, though, tha#nlpcal decision (of the leader and its accessible
destinations) is possible in constant time, whereag,if§][ local decision time is unbounded as well.

As Table 1shows, there are still several tantalizing gaps between the known upper and lower bounds
in various models. Moreover, many additional models can be explored, e.g., in the middle ground between
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AFM and MFM. We hope that GIRAF will allow researchers to address many such issues in future work.
Section 9provides further discussion of future research directions.

1.4 Related work

In recent years, a number of efforts have been dedicated to understanding the performance of asynchronous
algorithms in runs that are synchronous (or the failure detector is perfect) from the @4t4& P1, 16, 14),
typically focusing on the case that all failures are initial, which corresponds to=GSR our model.

Only very recently, the issue of performance following asynchronous periods has begun to get attention
[12, 15]. As noted above 2] shows thatG.S R+ 2 is a tight bound for global decision in ES. It uses Gafni’'s
RRFD [19] framework. In [L5], Dutta et al. focus on actual time rather than rounds, again in ES; they present
an algorithm that decides ST + 174§, whereé is a bound on message delay from GST onward (but no
matching lower bound). This result gives a more accurate assessment of the actual running time after GST
than out round-count offers. Nevertheless, a similar assessment might be obtained in our model if one can
guantify the time it takes the environment’s synchronization to establish GSR after GST; this is an interesting
subject for future study. We believe that the clean separation we offer between round synchronization and
the consensus algorithm'’s logic allows for more abstract and easier to understand protocol formulations and
complexity analyses, as well as for proving lower bounds.

The only previous algorithm presented in Q&M model, Paxosd5], may require a linear number
of rounds after GSR1[1]. Most otherQ)-based protocols, e.g13, 21], wait for messages from a majority
in each round (including before GSR), which is undesirable, as it may cause processes to be in arbitrarily
unsynchronized rounds when some process first reaches round GSR, causing GSR itself to take a long time.
Dutta et al. L 1] allow processes to “skip” rounds in order to re-synchronize in such situations. Implementing
such approach in our framework yields an algorithm that requires one more round than Algbrithm

2 Model and Problem Definition

2.1 Distributed computation model

We consider an asynchronous distributed system consisting oflaset > 1 processespi, p2, - - -, Pn,

fully connected by communication links. Processes and links are modeled as deterministic I/O ai6mata [

An automaton’s transitions are triggereddogtions which are classified daput, output andinternal. Ac-

tion = of automatonA is enabledin states if A has a transition of the forrs, , ). The transitions
triggered by input actions are always enabled, whereas those triggered by output and internal actions are
preconditioned on the automaton’s current state.

A run of I/O automatonA is an infinite sequence of alternating states and actignsi, s1, ..., where
s is A’s initial state, and each triples;—1, 7;, s;) is a transition ofd. We only considefair runs, where no
action is enabled without occurring in an infinite suffix.

A processp; interacts with its incoming link from procegs via thereceive{n); ; action, and with
its outgoing link top; via the send{n); ; action. Communication links do not create, duplicate, or alter
messages (this property is calletegrity). Messages may be lost by links.

A threshold oft of the processes may fail by crashing. The failure of progess modeled using the
actioncrash, which disables all locally controlled actionsmf A process that does not fail t®rrect The
actual number of failures occurring in a run is denofedProcesy; is equipped with dailure detector
oracle which can have an arbitrary output rangg pnd is queried using tharacle function.



States
k; € N, initially O  /*round number*/
sent;[II] € Boolean arrayinitially Vp; € II : sent;[j] = true
FD; € OracleRangeinitially arbitrary
M;[N][II] eMessages{_}, initially Vk € NVp; € IT : M;[k][j] = L

Actions and Transitions:
inputreceivé(m, k)); j, k € N outputsend({M; [k;][i], k:))i,;
Effect: M;[k][j] — m Precondition:sent;[j] = false
Effect: sent;[j] < true
input end-of-round
Effect: F'D; «— oracle; (k;)
if (k; = 0) then M;[1][¢] < initialize (F'D;)
elseM;[k; + 1][¢] < computek;, M;, FD,)
Vp; € I : sent;[j] < false

Algorithm 1: GIRAF: Generic algorithm for procegs (I/O automaton).

2.2 GIRAF — General Round-based Algorithm Framework

Algorithm 1 presents GIRAF, a generic round-based distributed algorithm framework. To implement a
specific algorithm, GIRAF is instantiated with two functionsitialize(), andcompute() Both are passed

the oracle output, ancompute(rlso takes as parameters the set of messages received so far and the round
number. These functions are executed atomically as part of one automaton action, and are not allowed to
block or wait.

Each process’s computation proceedsoimnds The advancement of rounds is controlled by the envi-
ronment via theend-of-roundinput action. It first occurs in round, whereupon it queries the oracle and
callsinitialize(), which creates the message for sending in the first round (round one). Subsequently, during
each round, the process sends a message to all processes and receives messages available on incoming links,
until the end-of-roundaction occurs, at which point the oracle is queried aathpute()is called, which
returns the message for the next round. We say that an event of pppoessirs in roundk of runr, if there
are exactlyk invocations oend-of-roung before that event in. For simplicity, we have the algorithm send
the same message to all processes in each round; this is without loss of generality as we are not interested
in message complexity as a performance metric. The outgoing message is stored in the incoming message
buffer, M;[k; + 1][i], hence self-delivery is ensured. The environment might decide not to send the message
of a round to any subset of processes, i.e., it might inverke-of-roung in round & without asend{n); ;
action ever happening in rourkdor a procesg;. However, some of our environment definitions below will
restrtict this behavior and require messages to be sent. In any case, self-delivery is always preserved.

Our framework can capture any asynchronous oracle-based message-passing algorithm in the general
model of [7] (seeSection 3. Thus, GIRAF does not restrict the allowed algorithms in any way, but rather
imposes a round structure that allows for analyzing them.

Each run is determined by the algorithm automaton’s state transitions, aedvhienment'sactions,
consisting of (i) schedulingnd-of-roundactions; (ii) oracle outputs; and (ii§endandreceiveactions of
the communication links. Environments are specified usingnd-based propertiegestricting the oracle
outputs or message arrivals in each round. We consider two types of environment propenmpesual
properties, which hold in each round, aedentualproperties, which hold from some (unknown) round
onward. More formally, in every run there is a round GSR) so that from round GSR) onward, no



process fails, and all eventual properties hold in each round.(§3&thefirst round inr that satisfies this
requirement. (We henceforth omit tfe) where it is clear from the context).

Note that although, in general, rounds are not synchronized among processes, we specify below environ-
ment properties that do require some synchronization, e.g., that some messages are received at one process
at the same round in which they are sent by another. Therefore, an implementation of an environment
that guarantees such properties needs to employ some sort of round or clock synchronization mechanism
(e.g. L7, 30], or using GPS clocks).

2.3 Environment properties

We define several environment properties in GIRAF, mostly in perpetual form. Prefixing a property with
means that it holds from GSR onward.

Communication Properties Every process has a “link” with itself, and though it is not an actual physical
link, it counts toward thg timely links in the definitions below. Some of the properties that reguii@ely

links may appear with a subscript(variable), which indicates that the set pfimely links is allowed to
change in each round. Note that link integrity is assumed by the model. When characterizing a link, we
denote the source process of the linkgyand the recipient by,.

reliable link: if end-of-round occurs in round: andp is correct, them, receives the round message of
Ds-

timely link: if end-of-round occurs in round: andpy is correct, them, receives the rounél message of
ps, in roundk.

j-source: process is a j-sourceif there arej processes to which it has timely outgoing links in every
round;p is aj-source if in every round it hag timely outgoing links. (Correctness is not required
from the recipients.)

j-destination: correct procesg is aj-destinationif there are;j correct processes from whighhas timely
incoming links in every roundp is a j-destination if it has j timely incoming links from correct
processes in every round.

j-accessible: correct proces9 is j-accessibldf there arej correct processes with whighhas timely
bidirectional links in every round. (We do not consider varigbbcessibility in this paper.)

Note that the reliable and timely link properties assure that the environment sends messages on the link, i.e.,
theend-of-round action in roundk is preceded by aendn), 4 action in roundk.

Failure Detector Properties We next define several oracle properti@s§]. The range of theracle()
function for.S (and¢S) is 2" — a group of suspected processes. [Eader(and?), the range igl.

S failure detector: SC' (strong completeness) — eventually every faulty process is suspected by every
correct process, anid’ A (weak accuracy) — some correct process is not suspected.

leader: 3 correctp; s.t. for every round € N and everyp; € II, oracle; (k) = i.

Q) failure detector: ¢ leader.



2.4 Consensus and global decision

A consensus problem is defined for a given value doméituyes In this paper, we assume th#luesis a
totally ordered set. In a consensus algorithm, every prggdsas a read-only variabje-op; € Valuesand
a write-once variabléec; € Valuesu{_L}. In every runr, prop; is initialized to some value € Values and
dec; is initialized to_L. We say thap; decidesi €Valuesin roundk of r if p; writesd to dec; whenk; = k
inr.

An algorithm A solves consensus if in every runof A the following three properties are satisfied:
(a) (validity) if a process decides thenprop; = v for some procesg;, (b) (agreemertno two correct
processes decide differently, and (®r(inatior) every correct process eventually decides.

We say that a run oft achievegylobal decisionat roundk if (1) every process that decides in that run
decides at round or at a lower round; and (2) at least one process decides at kound

3 Complexity of Reductions

In discussing different models, the questiomreducibility naturally arises — one is often interested whether
one model is stronger than another, or how “close” two models are. The classical notion of reducibility
among models/oracle$,[7] does not take complexity into account. We use GIRAF to provide a more
fine-grained notion of similarity between models.

We first explain how classical reducibility is expressed for GIRAF models. Reducibility (in the “clas-
sical” sense) means that one model can be emulated in another. A simulation from a GIRAFMhodel
to another (GIRAF or non-GIRAF) modéll;, must work within thenitialize() and compute()functions
in M7, which must be non-blocking. Simulating a GIRAF modé} means invoking thénitialize 4() and
computg () functions of some algorithm that works inM», while satisfying the properties df/s. In
particular, if M; and M, are both GIRAF models, then a reduction algoritifiyy, .1/, instantiates the
initialize() and compute()functions, denotedhitializer() and compute(), and invokesnitialize 4() and
computeg () in model M;. If algorithm T}, a7, €Xists, we say that/, is reducible ta)/; (or weaker than
M), and denote this byy/; > M. M is equivalent taVls if My > My andMs > M;.

We next extend the notion of reducibility, and introdueeeducibility, which takes the reduction time
(round) complexity into account. Note that the definition of a run's GSR is model-specific(:GSRk in
model M if k is the first round from which onward no process fails and the eventual propeftiésare
satisfied. We denote GSR in moddl and runr by GSRy(r).

Definition (a-reducibility). Model M5 is a-reducible ¢ : N — N) to modelM, denotedM; >, Mo, if
there exists a reduction algorithff;, —. s, S.t. for every run, GSRy ., (r) < a(GSRyy, (1)).

Definition (k-round reducibility). Model M5 is k-round reducible § € N) to model)M;, denoted
My > Mo, if My >, M S.t.oz(x) =x+ k.

In particular, if My >q M then modell, can be simulated in modal/; with no performance penalty. In
Section6, we use the notion of-round reducibility to prove thap.S is 0-round reducible t&)n-source.

4 Generalty of GIRAF

In this section we show how GIRAF relates to the framework7gf A computation step in the model of][
consists of (i) receiving a message, (ii) consulting the oracle, (jii) using the process’s algotithni(their



notation) to perform local computation and generate an outgoing message; and (iv) sending the message.
Moreover, reliable links are assumed.

Lemma 1. Every modell/; in the framework of ] is equivalent to a GIRAF modél/,, where the only
environment properties are the same oracle properties ddiirand reliable links.

Proof. We prove that the framework o] with model M7 can be used to implement the environment for
GIRAF resulting in modelM>. Note that in f], A(p) is invoked upon every message receipt after the
oracle is queried, and the oracle output and incoming message are available to it. To run the generic GIRAF
algorithm in model)M/;, we haveA(p) first invokeinitialize(), and subsequently invokeompute()every
time it is called to take a stepl(p) passes to these functions the oracle outputdrapute()it also passes
the set of messages received thus far, and a counter of the number o€timpste()s called.compute()
orinitialize() returns a message, which is sent immediately afterwards. Every perpetual property guaranteed
by the oracle of\/; holds starting from the first round i/,, and every eventual property of the oracle is
eventually true inV,, guaranteeing that the propertiesi$’s oracle are preserved.

We next prove that GIRAF with model/; can be used to simulate the framework @f. [Given an
algorithm A(p) designed for the framework of/l and model};, we make thecompute()function of
GIRAF invoke a series of steps of(p) — one invocation for every message added toM since the
previous timecompute(was activatedcompute(Xhen aggregates all the messages that these steps return
into one composite message which is returned to GIRAF generic algorithm (to be sent in the next round).
When a step ofl(p) queries the oracle, it is given the oracle output passedntpute() Note that each step
of A(p) is atomic, and thereforeompute()s atomic, as required by GIRAF. Since the message arrival order
is arbitrary in [7], this a valid run inM. Every perpetual property dff,'s oracle is preserved starting from
the first round and is therefore true starting from the first activatiod (@f), and every eventual property
will hold starting from GSR inM5 and therefore eventually holds ivf;. O

5 Optimal Leader-Based Algorithm in O LM

The OLM model is strictly weaker than ES: it requires that each process have only a majority of incoming
timely links (from GSR onward), which can vary in each round, anfamacle that selects a corregh-
source as leader (it is easy to implemg&rin ES, e.g., by choosing the lowest-id correct process). Formally:

QLM (Leader-Majority): t < n/2, (2 failure detector, the leader i(a:-source, and every correct process
isad(| %] + 1)-destinatiop.

Algorithm.  Algorithm 2 presents a leader-based consensus algorithndlidd, which reaches global
decision by round GSR2. In runs with GSR= 0, this means that consensus is achieved in 2 rounds, which
is tight [9, 24]. In runs with GSR> 0, global decision is reached in 3 rounds, numbered GSR,-&4SBnd
GSR+2, which also matches the lower bound for BS][

Algorithm 2 works in GIRAF, and therefore implements only tindialize() andcompute(functions.
These function are passéghder, the leader trusted by the oracle.

The main idea of the algorithm, which ensures fast convergence, is to trust the leader even if it competes
against a higher bid of another process. In contrast, P&&sritiates a new “ballot”, that is, aborts any
pending attempts to decide on some value, whenever a higher timestamp is observed, potentially leading
to linear running time after GSRL]]. In order to ensure that the leader does not propose a value that
contradicts previous agreement, thstApprovalvariable (and message-field) conveys the “freshness” of
the leader’s proposed value, and the leader’s proposals are not accepted if it is not up-to-date.



1: Additional state

2 est; € Values initially prop;

3 ts;, maxTS;, lastApprova) € N, initially 0

4 prevLD;, newlLD € IT

5: msgType€ {PREPARE COMMIT, DECIDEY}, initially PREPARE

6: Message format

7 (msgTypes {PREPARE COMMIT, DECIDE}, est € Valuests € N, leader € 11, last Approval; € N)
8: procedureinitialize(leader)

9: prevLD; <— newLD; < leader;

10:  return messagansgType est;, ts;, newLD;, lastApproval) /*round 1 message*/

11: procedure computek;, M[*][*], leader)
12: if dec; = L then

13: [*Update variables*/
14: prevLD; < newlLD;; newlLD, — leader,
15: mazTS; — max{ m.ts| m € M|[k;]|[+] }
160 i |{j| MIkG) £ L} > [n/2] then
17: last Approval; «— k;
18: [*Round Actions*/
19: if 3m € Mk;][+] s.t. m.msgType = DECIDE then /[*decide-1*/
20: dec; «— est; «— m.est; msgType; < DECIDE
21: else if(|{ j | M[ki][j].msgType = COMMIT }| > |n/2])
and (M [k;][prevLD;].msgType = Mk;][i].msgType = coMmIT) then /[*decide-2*/
22: dec; < est;; msgType; < DECIDE
23: elseif(|{ j | M[ki][j].leader = prevLD; }| > |n/2]) [*commit-1*/

and (M [k;][prevLD;].last Approval = k; — 1 A M|[k;][prevLD;].leader = prevLD;) [*commit-2*/
and (newLD; = prevLD;) then [*commit-3*/

24: est; «— MIk;|[prevLD;].est; ts; — k;; msgType; <— COMMIT;
25: else

26: est; «— anyest’ € { M[k;][j).est | M[ks][j].ts = mazTS; }
27: ts; < mazTS;; msgType; < PREPARE

28:  return messagénsgType;, est;, ts;, newLD, lastApproval) /*round k; + 1 message*/

Algorithm 2: Optimal leader—based algorithm foi. M/, code for process;.

We now describe the protocol in more detail. Procgsmaintains the following local variables: an
estimate of the decision valuest; initialized to the proposal valuefop;); the timestamp of the estimated
value,ts;, and the maximal timestamp received in the current round;TS;, both initialized td); the index
of the last round in whiclp; receives a message from a majority of procedsssApprova), initialized to
0; the leader provided by the oracle at the end of the previous rqamedl.D;, and in the current round,
newLD; and the message typasgTypg which is used as follows: |#; sees a possibility of decision in the
next round, then it sends@MMIT message. Onge decides, it sendsBECIDE message in all subsequent
rounds. Otherwise, the message typeREPARE

We now describe the computation of roukd If p; has not decided, it updates its variables as follows.
It saves its previous leader assessmemirevLD;, and its new leader (as passed by the oracleewwlLD
(line 14). It stores the highest timestamp receivedhineT'S;. If p; receives a message from a majority, it
setslastApprova] to the round numbe¥;;. It then executes the following conditional statements:

¢ If p; receives adECIDE message then it decides on the received estimate by writing that estimate to
dec; (line 20).

e If p; receivesCOMMIT messages from a majority of processes, including itself and its leaderthen
decides on its own estimate (line 22).
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e LetprevLD, be the leader indicated j’s roundk; message. Consider the following three conditions
(line 23): commit-1 p; receives round; messages from a majority of processes that indioetel D,
as their leadercommit-2 p; receives a message fropnevLD; that hasprevLD; as the leader, and
lastApprovalset tok; — 1; andcommit-3 prevLD, = newLD;. If all three conditions are satisfied,
thenp; sets its message type (for the round+ 1 message) tcoMmIT, adopts the estimate received
from prevLD;, sayest’, and sets its timestamp to the current round nunibéline 24). We say that
p; commits in rounds; with estimateest’.

e Otherwise p; adopts the estimate and the timestamp of an arbitrary message with the highest times-

tampmazTS;, and sets the message typeteePARE(lines 26-27).

Finally, p; returns the message for the next round.

Correctness. We formally prove Algorithm2’s correctness ilppendix A Our main lemmal(emma 1)}
shows that no two processes decide differently, by showing that if some process deicideandk, then
from roundk — 1 onward, the only committed estimaters(This proves agreement since a decision is made
when either @ECIDE or a majority ofcoMMITs is received.) We now intuitively explain why this is correct.
The claim is proven by induction on round number. pebe the first process that decides, and denote its
decision value by, and the decision round by. (the decision is by rulelecide-2 rule decide-1is not
applicable since; is the first process to decide). Therefore, in roéng; hearscommIT from majority M,
including itself and its round prevLD, p;, and decides on its own estimate, Let us first examine round
k—1. Processes df/ commitin this round. Rulesommit-landcommit-3ensure that akoMMIT messages
sent in this round have the same estimate and leader fields, namahdp;. Additionally, it is easy to see
that a process’s timestamp never decreases. Thus, since procedseoofmit in roundk — 1, they have
timestamps of at leadt — 1 in all ensuing rounds. Now consider rouhd Any process that commits in
roundk hears from a majority with the same leader, and since this majority interkgctise leader i;.
Therefore, any commitment in rourtids made with the estimate of, i.e.,z.

We now consider the inductive step, i.e., roudd> k. If p; commits in roundt’, it commits on the
estimate of its leader. If that leader sendscaimIT message, by induction, its estimate:iOtherwise, the
leader sends RREPAREMessage. Bgommit-2 that leader'sastApprovafield is set tok’ —1 > k, implying
that the leader receives a message from a majority of processes inkountl Therefore, it receives at
least one message from a procesa/firwith timestamp at leagt — 1. Since the highest timestamp received
is adopted, the leader adopts timestamp- £ — 1 and some estimate It is easy to see that if a message
(other thanDECIDE) is sent with timestamps and estimate, then some process commitsn roundts.
Therefore, some process commitén a round> k£ — 1. By induction, we get that = z. Therefore, the
leader adopts with the maximal timestamp in round — 1, andp; commitsz in roundk’.

Performance. We now give an intuitive explanation why in round GSR every correct process that
does not decide by the end of that round evaluates the tor@enitrules (line 23) tarue (this is formally
proven inAppendix A). Sincep; does not decide by the end of GER, all the processes it hears from in this
round do not decide by round GSR. By definitiondaf M, from round GSR onward, each correct process
receives messages from a majority of correct processes, including its lgaddrerefore, théastApproval

field of every round GSR1 message is GSR (notice for the case of GSRhatlastApprovalis initialized

to 0). Moreover, it is assured by the failure detector, that from round GSR onward, all processes trust the
same leadep;. Therefore, from round GSRI onward, all running processes (including the leagesend

the same leader identifier in their messages. (Note thatartenit-3is assured to be true only starting at
round GSR-1, sinceprevLD; of roundk; = GSR is based on the oracle’s output in round G3Rin which
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it is not assured that all processes trust the same leader.) We conclude that in rounl &8R/ correct
process sends@MMIT or DECIDE message, and by the end of that round, every correct process decides.

6 Linear Bound for SR

We use the notion df-round reducibility, to prove that at leastrounds starting at GSR are needed to solve
consensus in thé S R model. We formally define thé.S R model as follows:

OSR (Strong-Reliable): t < n/2, reliable links,( S failure detector, the unsuspected procesgissource
and all correct processes dre— f — 1)-destinations, wheref < 5 — 1).

Lemma 2. Any modelM g that requires a0 S failure detector and environment properti@sis 0-round
reducible to a model/,, that assumes a correGtr-source process ang, i.e. My, >0 Mos.

Proof. We implement the reduction algorithit,, ., s as follows: compute() receives a multi-set of
messages/ received so far, and the current round numbgebut no oracle output (sinc&/,, does not
include an oracle) and produces the set of suspected prodégsess follows: F Dy — { j | M[k][j] =
1 }. It then passed/, k and F'Dy to compute(). initializer() calls initialize() with () as the set of
suspected processes. Since in every raing G'SRyy,, there exists one process (the-source correct
process) whosg’ round message reaches every correct process by the end ofAQuhis process is not
included in any of the”’ D sets produced by algorithffiy,,, .17, at any process in rount, i.e. is not
suspected. Since no faulty process enters rauifd),,,, no such process sends a rouridnessage, and
thus every faulty process is suspected from roGiiR,,,, onward. Therefore, the produced seDr
satisfies the specification ¢S in our framework such that the eventual propertie$ Sfare satisfied from
GSRyu,, onward. Sincél/ (the message set) akdre not altered by, .1, ¢, all the other propertie®
are still preserved from rour@S Ry, onward. Thereforez SRy, = GSRu, g andMe, >0 Mos. [

FromLemma 2 it follows that suffices to prove the lower bound for a model just {ieRR, but without
the assumption of.S. We denote this model by SR\0S.

We prove the lower bound using the impaossibility of consensus inrtbkile failuremodel R9], in
which no process crashes, and in each communication step there is one process whose messages may be
lost.

Below we denote the prefix of lengthrounds of a run by (7).

Lemma 3. For anyk € N, letr be a run in the mobile failure model. There exists a raim ¢SR\OS
with GSR({) = k and f = O such that’(k +n —2) = r(k +n — 2).

Proof. We construct’ as follows: (i) f = 0 andGSR(r’) = k, (ii) ' is identical tor in the firstk + n — 2
rounds, except that messages are delayed to réunch — 1 instead of being lost, and (iii) from round
k +n — 1 onward,r is synchronous (all links are timely).

We show that’ is a run in model) SR\ S. In each round of’(k + n — 2), a subset of messages sent
by at most one process is delayed and all other messages arrive in the same round in which they are sent, and
from roundk +n — 1 onward, no message is delayed-inTherefore, in”/, each process receives messages
from at least: — 1 processes in every round and is thereforg¢ran- f — 1)-destination (recall thatf = 0
in7’). Sincer’(k +n — 2) lasts onlyn — 1 rounds starting frontzSR(r’) (and there are processes), there
exists some correct process whose messages are not delayed in any rouath#®gn). This process is a
correctOn-source inr’. Finally, since every message sent before rokirdn — 1 in v arrives at the latest
in roundk + n — 1 and every message sent in later round arrives in the same round in which it is sent, we
conclude that links are reliable in. O
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We strengthen the lower bound by proving that it is impossible to reach global decision in less thes
from GSR in the0.S R\ .S model, even with an algorithm especially tailored for some specific GSR.

Lemma 4. For k € N,k > 1, no algorithm exists that in every runin which GSRf) = k achieves global
decision before round GSR{-(n — 1), in the Q.S R\ O.S model.

Proof. Fork € N,k > 1, assume there exists an algorithip that solves consensus SR\ .S, and in
every run with GSR: k reaches global decision by roukdt n — 2. Then we run4;, in the mobile model
for k-+n — 2 rounds. Denote this run by FromLemma 3there is arun’ in 0.SR\(S with GSR(r') = k
andf = 0, such that’(k +n — 2) = r(k + n — 2). Therefore A;, cannot distinguish from +’ in the first
k +n — 2 rounds and decides by rousd+ n — 2 in r as it does in”’. We conclude thatl;, reaches a global
decision for every rum in the mobile failure model. A contradiction t89. O

Note that our proof (combined with Algorithm 2, which achieves global decision by4&23SR { L M)
immediately implies tha®. SR %, OLM for anyk < n — 3, since otherwise, we could use the reduction
algorithm to simulat& LM in OSR in any runr with GSRorar < GSRosr(r)+n—3 and use Algorithn?
on top of the reduction algorithm. Since Algoriti@rassures global decision 6yS Ry () + 2 we get
that there exists an algorithm that for any nuachieves global decision before roud$ Rysr(r) +n — 1,

a contradiction to our lower bound.

7 Constant-Time Algorithm in QAFM

In this section, we investigate whether constant time decision is possible without an oracle in a model weaker
than ES. We are not aware of any previous constant-time algorithms for such a model.

In the )AFM model, each process has timely incoming links from a correct majority of processes, and a
majority of timely outgoing links (from GSR onward), both can vary in each round. The number of outgoing
links may decrease if more incoming links are timely. Formally:

OAF M (All-From-Majority): t <n/2,3m € N, f < m < n/2 such that every correct process
is aQ(n — m)-destinatiop and a((m + 1)-source. Note thatn can be different in each run.

Algorithm.  Algorithm 3 is a majority-based algorithm fg¢AFM, which always reaches global decision

by round GSR-5. At the end of this section we present an optimization of the algorithm for the case of
n = 2m + 1 (i.e., when bothim + 1) and(n — m) are majorities), and idkppendix Bwe prove that the
optimized algorithm reaches global decision by round G&Ror n = 2m + 1 and by round GSR5 for

other values off < m < n/2. The code used for optimization is marked in gray in AlgoritBand should

be ignored until its explanation at the end of this section.

In general, Algorithn3 is similar to Algorithm?2. We therefore focus mainly on the differences from
Algorithm 2. SinceQAF M does not assume a failure detector, the oracle’s output is not a parameter for
compute()

The variables maintained by each procpssare similar to those of Algorithn2. A new variable,
maxEST;, holds the maximal estimate received with timestam@xzT'S; in the current round (recall
that Valuesis a totally ordered set). A new message type is introdueed& CcomMmIT. Intuitively, pre-
committing is similar to a committing, but without increasing the timestamp. An estimate must be pre-
committed by some process before it is committed.

Pre-commit is needed, since, unlik&M, where the leader is @n-source )AFM never assures that a
process is able to convey information to all other processes in a single round. If we hadn’t intreeé&eed
COMMIT, it would have been possible for two different estimates to be committed in alternating rounds,
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Additional state
est;, maxEST; € Values initially prop;
tsi, maxTS; € N, initially O
IgotCommit; € Boolean initially false

msgType; € {PREPARE PRE-=COMMIT, COMMIT, DECIDE}, initially PREPARE

. procedureinitialize()

1:

2

3

4

5: gotCommit; € 2%, initially (

6

7

8 return messagénsgT'ype;, ests, ts; , IgotCommit;, gotCommit; ) [*round 1 message*/

9: procedure computek;, M[*][*])
10:  if dec; = L then

11: [*Update variables*/

12: maxTS; «— max{ m.ts| m € MIk;][*] }

13: marEST; — max{ m.estf m € M[k;][*] A m.ts = mazTS; }

14: IgotCommit; «— 3Im € M|k;][*] s.t. m.msgType = COMMIT

15: gotCommit; — { ] | M[ks][j].IgotCommit }

16: /*Round Actions*/

17: if 3m € Mk;][%] s.t. m.msgType = DECIDEthen /[*decide-1*/

18: dec; «— est; < m.est; msgType; < DECIDE

19: elseif|{ j | M[k;][j].msgType = COMMIT }| > [n/2| A M|k;][i].msgType = cOMMIT then /*decide-2*/
20: dec; < est;; msgType; < DECIDE

21: else if| U, .y M[k:][j].gotCommit| > |n/2] then /[*decide-3*/

22: dec; — est; — maxEST;; msgType; < DECIDE

23: elseif|{ j | M[ki][j].est = maxzEST; }| > |n/2] then [*pre-commit*/

24: if 35 s.t. M[k;][j].est = maxzEST; A M[k;][j].msgType = COMMIT or PRECOMMIT then  /*commit*/
25: est; «— maxEST;; ts; — ki; msgType; < COMMIT;

26: else

27: est; «— maxEST;, ts; — maxTS;; msgType; < PRECOMMIT,

28: else

29: ts; «— maxTS;; est; — maxrEST;; msgType; «— PREPARE

30:  return messagénsgType;, est;, ts; , IgotCommit;, gotCommit; ) [*round k; + 1 message*/

Algorithm 3: Majority—based algorithm fo) AF M model. Code for procegs. Optimization forn = 2m + 1 is
marked in gray.

where a majority of processes hear and adopt estimate (which has the maximal timestamp) but some
other process does not heatt; and commits teest,, increasing its timestamp. In the next round the
situation flips, andst is adopted by a majority whilest; is committed, and so on, precluding decision.

In OAFM, in every round from GSR onward, each process hears from m) correct processes, and
its outgoing message reachast 1 processes. Note that the+ 1 processes the message reaches overlaps
the set ofln — m) correct processes every other process hears from in the next round, allowing information
to propagate to all correct processes in two rounds. Thus, a ginrgleommitphase suffices to eliminate
races as described above, where two different values are repeatedly committed after GSR.

We now describey;’s computation. Ifp;, does not decide, it evaluates the following two conditions:
pre-commit(line 23): p; receives messages from a majority of processesmith F.ST; as their estimate;
andcommit(line 24): at least oneoOMMIT or PRECOMMIT message is received withax EST;. If both
conditions are true, thep; sets its message type (for the roulid+ 1 message) taomMmIT, adopts the
estimatenax EST;, and sets its timestamp to the current round nuribdine 25). We say that; commits
in round k; with estimatemaxEST;. If, however, only the first condition holds, then sets its message
type toPRE-COMMIT, adopts the estimateax £ST;, and sets its timestamp taazT'S; (line 27). We say
thatp; pre-commits in round:; with estimatemaxz EST;. If neither condition holdsp; prepares (sets his
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message type teREPARE and adopts the estimatear £ ST; and timestampnaxT'S; (line 29).

Correctness. A process may commit with different estimates in different rounds. However, we show (in
Appendix B that starting from a rouné in which a majority of processe® commit with some estimate

x onward, every commit is with estimate Note that this implies agreement, since decision is impossible
before a majority of processes commit (see decision rules). To understand why this is true, note first that
by rule pre-commit all comMIT and PRECOMMIT messages sent in the same round are with the same
estimate. This explains why a commitment wifh# = is impossible in round:. Additionally, note

that a process’s timestamp never decreases, and therefore the procestdwmue timestamps & in
subsequent rounds. Suppose that a progesemmits in roundk’ > k. Rule pre-commitensures thap;
hears from a majority. Since every two majorities intersgchears from at least one processlih Since

p; commits onmax EST;, which has the maximal timestamp, commits with a timestamp- k. Using

an inductive argument, we get thatuz £ST; = z. Since no decision is made before a majority commits,
and every decision is either on the value of a previous decision ¢edae-}, or on the value sent in
COMMIT messages (ruldecide-3, which equals: from roundk onward, all decisions are with

Performance. We now explain why the algorithm decides by round GSR(a formal proof appears

in Appendix B. First, if some process decides by round GSRthen its DECIDE message reaches every
process by the end of round G$BR. Assume no process decides by GSR Second, if no process commits

in round GSR, the maximum timestamp sent in GSR is the same as the maximum timestamp sent in round
GSR+1, and it reaches every correct process by the end of reurelGSR+-1, at which point all processes
have the samenaxz EST. Finally, if a process commits in GSR, the use of pre-commit ensures that no
different value is committed in GSRI, and thus this value has the highest timestamp among those sent in
round GSR-2, and this timestamp and its estimate reach every process by the end oksot@E5R+-2. In

both cases, every process has the sameFE ST at the end of round = &k, or k = ko. Thus, all processes
send the same estimate in rouhd- 1, and in the ensuing round, a majority of processes receives it and
pre-commits (at least). In rourigH 2, every correct process receives the same estimate from majority and a
PRE-COMMIT Or COMMIT message, and commits. Finally, by round- 3, which is at most GSR5, every
process decides by rutiecide-2

Optimization for n = 2m+1 We present an optimization of Algorith&for the case of. = 2m+1 (i.e.,
when both(m + 1) and(n — m) are majorities). The additional code used for the optimization is marked in
gray in Algorithm3. In Appendix B we prove that the optimized algorithm reaches global decision by round
GSR+4 (five rounds) fom = 2m + 1 and by round GSR5 (six rounds) for other values gf < m < n/2.

The optimization relies on thgotCommitandgotCommitariables, that are used for “gossiping” about
COMMIT messages. Whenever a process receivesamIT message, it indicates this in its next round
message by settingotCommitto true. In order to have all processes learn about commits, we use the
gotCommiimessage field. A process includes in fmeCommitset that it sends in rouneH- 1, all processes
that it knows have gotteaoMMIT messages in round— 1 (based origotCommitindications sent in round
k). Thus, in roundk + 1, the incominggotCommitsets from different processes can givea better picture
about which processes gopbMMIT messages in rounid— 1. In Appendix A, we prove that if the union of
the gotCommitgroups that a process gets excegdg2 |, it is safe for the process to decide omz EST
(rule decide-3) and this optimization allows us to speed up global decision to be by roungdGigfead
of by round GSR-5. We formally prove the correctness of the optimized AlgoritBim Appendix B
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8 Impossibility of Bounded Time Global Decision in) M F' M

We define the)MFM family of models, form € N*, f < m < n/2, as follows:

OM F M (m) (Majority-From-Majority): t < n/2, reliable links, every correct process i)&n — m)-
source andym-accessiblemn correct processes afu-sources, an@n — m) correct processes are
O(n — m)-accessible.

Note that these models are only slightly weaker th&#M, where we have shown that constant-time
decision is attainable. We show that the time for global decision after GSR in all of these models is un-
bounded.

Lemma 5. Forany f < m < n/2 (m € NT), there exists no consensus algorithm that reaches global
decision in bounded time from GSRGMFM(m).

Proof. Assume by contradiction that an algorithiireaches global decision by round GBR({T 4 in every
runr. We partition the processes into three groups: a gBugd m processes, a group of m processes,
and a groupR of the remaining: — 2m (> 1, sincem < n/2) processes.

We construct three runs WM F' M (m), in which no process failsf(= 0), and processes of each group
have perpetually timely bidirectional links to all other processes of the same group. For each run we state
which inter-group links arétimely. These links are timely only from GSR onward, and delay until round
GSR all messages sent before that round.

Each one of the three runs is a runin/ F'M (m): in every run, either groups Q and R or groups P and
R are fully connected with timely links from GSR onward. The number of processes in the resulting group
is n — m. Therefore, in every run there ane— m processes that af®(n — m)-accessible (and therefore
O(n — m)-source and)m-accessible, since — m > m). The otherm processes are correct and fully
interconnected with timely links from the start, i:a-accessible, and hawgimely outgoing links to every
process,i.em correctQn-source processes. Therefore, the requirements of the model are fulfilled in each
one of the three runs below.

We construct a ruag in which from round GSR{) = 1 onward (i) processes @t have timely outgoing
links to all other processes, and (ii) processe§)aind R have timely links among them. All other links
between groups deliver messages only after round GJR{’4 = T4 + 1. All processes propoge Since
algorithm A always reaches global decision by round GSR(4, processes aP decide0 (by validity) by
roundTs + 1.

We next construct a ruay, in which from round GSRf{;) = T4 + 2 onward (i) processes @ have
timely outgoing links to all other processes, and (ii) processd3 ahd R have timely links among them.

All other links between groups deliver messages only after round G$R{ 4. All processes propose
1. Since algorithmA always reaches global decision by round GSR(4, processes of) decidel (by
validity) by round GSRf;)+71 4.

Finally, we construct a rum, in which, like inoy, starting from round GSR¢) = T4 + 2 onward (i)
processes of) have timely outgoing links to all other processes, and (ii) processEsamid R have timely
links among them. All other links between groups deliver messages only after roundgG$Ry. In oo,
processes af) proposel and processes @ and R propose). Note that processes 6f decidel since they
cannot distinguish this run from,. Processes of group cannot distinguislas from o by roundT4 + 1
and hence decidg violating agreement. A contradiction. O

Note that our notion of timely links is more abstract than the real-time-based definition uged,ig{],
where messages arrive within bounded latency. Nevertheless, since we never explicitly reason about time
duration in constructing our runs, our proof is applicable even if all messages on timely links in these runs
are delivered within bounded latency, and hence covers these models.
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9 Conclusions and Future Directions

We have focused on the question of which timeliness or failure detector guarantees one should attempt to
implement in a distributed system. While it is obvious that weaker timeliness/failure detector guarantees can
be practically satisfied using shorter timeouts and cheaper hardware than stronger ones, it was not previously
established what implications the use of weaker properties has on algorithm performance. Although from a
theoretical perspective it is interesting to discover the weakest conditions that can be used tevergued
decision, in practice, timely decision is of essence. System designers are often willing to spend more on
hardware, if this can ensure better performance. Likewise, implementations are better off using longer
timeouts if this can lead to faster decision overall.

We have presented a general framework GIRAF, to answer such questions. GIRAF does not restrict the
set of allowed algorithms, models or failure patterns, but rather organizes algorithms in a “round” struc-
ture, which allows for analyzing their complexity. We used our framework to show that some previously
suggested guarantees were too weak to solve consensus in a timely manner. We haver further shown that
it is possible to strengthen a model in which consensus is not solvable in bounded)Mad&(m) for
n = 2m + 1) to get a model in which consensus is solvable in constant t{Wé) by adding just one
¢timely incoming link per process, for a minority of processes. In such situations, it is worthwhile to in-
crease timeouts and/or buy faster hardware in order to implement stronger guarantees. On the other hand,
we have shown that the strong ES model (which requires timely communication aihqragrs of correct
processes) can be weakened in ways that are significant from a performance standpoint (as gh&in in [
and yet with little (forOAFM) or no (for OLM) penalty on performance of the consensus algorithm.

We believe that GIRAF has the potential to further enhance the understanding of performance tradeoffs
between different models, and opens vast opportunities for future work. We now point out several exemplar
directions for future research.

e One can use our new notion afreducibility (andk-round reducibility) to compare various models
more meaningfully than with the classical notion of reducibility, by considering the time (round)
complexity of the reduction.

e While this paper focuses on the performance of the algorithm after synchronization, an important
complementary direction for future study is understanding the performance of the environment’s syn-
chronization mechanism, that is, the actual time it takes to reach GSR in various timing models.
Whereas GIRAF provides generic analysis of the cost of algorithms in terms of different round-types
(e.g., all-to-all communication in each round or communication with a majority of processes), in order
to deduce which algorithm is best for a given network setting, this analysis should be complemented
with a measurement study of the cost of rounds of different types in that specific setting.

¢ It would be interesting to further study the fine line between models that allow bounded and un-
bounded decision times. For example, is it possible to wedk®fM by making fewer processes
O(m + 1)-sources, and still achieve constant or bounded time consensus? and what would be the ef-
fect of weakening the assumption that the leaderjsa&ource inOLM, on consensus performance?

e In this paper, we have focused on global decision. It can be interesting to investigate local consensus
decision [L6], i.e., the number of rounds unbmeprocess decides.

e Finally, there are gaps between upper and lower bounds shown in Table 1, which might be closed.
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A Correctness of Algorithm 2

Lemma 6. A process’s timestamp at the start of round less thark.

Proof. We prove the claim by induction on the round numbérBase casek’ = 1. The claim is correct

since a process’s timestamp is initialized to 0. The induction hypothesis is that the claim holds up to round
k’. Lets us inspect the possible actions of processes at the end of kbuAdprocess can decide and in

this case its timestamp does not change and in r@dnd1 it will remain less or equal té&’ — 1, by the
induction hypothesis. Alternatively, a process may commit, and then (on line 24) it will Zaptits new
timestamp for round’ + 1, and the claim holds here as well. Finally, a process may adopt the timestamp of
a message it received in roukt(lines 26-27) and again, by induction hypothesis, the claim is true (since
communication rounds are closed). O]

Lemma 7. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its timestamp does not change. It does not change in the
following rounds as well. If a process does not decide in rounkl, then it can change its timestamp by
adopting eithek (when committing on line 24) or the maximum timestamp received in rauasl its new
timestamp (lines 26-27). Singg receives its own message in rouiadhe latter is not lower than its current
timestamp (recall that communication rounds are closed). In case it commits, since accotdingria

its old timestamp cannot exceéd- 1, by adoptingkt it can only increase. O

Lemma 8. For every roundk, no two processes commit with different estimates in raunand no two
processes commit with differem¢w L Ds in roundk.

Proof. Consider two processes andp; that commit in round: with estimates:st; andest;, andleader
valuesnew L D; andnewLD;, respectively. Also, in round, letprevLD; be the leader of; andprevLD;

be the leader gf;. Fromcommit-1 each of them has received in rouhd majority of messages that contain
prevLD; andprevLD; as leader, respectively. As two majorities interseetyLD; = prevLD;. Fur-
thermore, fromcommit-3 newLD; = prevLD; andnewLD; = prevLD;. So,newLD; = prevLD; =
prevLD; = newLD;. From the algorithmp; commits with the estimate sent byevLD;, andp; com-
mits with the estimate sent byrevLD;. As prevLD; = prevLDj, p; andp; commit with the same
estimate. O

Lemma 9. If some process sendsP®& EPAREOr COMMIT message with timestanmp > 0 and estimate:
then some process commits in rourdvith estimater.

Proof. We prove the claim by induction on the round numblestarting from a round, in which a message
with the timestamps was first sent with some estimaté by some process;.

Base Casek‘ = ko. From the definition ok, p; could not receive a message withfrom another process
in an earlier round. Thug; commits with timestamps and estimate:’ in roundk, — 1, and from the
algorithm,ky — 1 = ts.

Induction Hypothesidf any process sendsrREPAREOr COMMIT message in rounkl, such that
ko < ki < K, with timestampts and some estimate”’, then some process commits in routxdwith
estimater”.

Induction StepWe need to show that if, in round + 1, a process sendsFlREPAREOr COMMIT message
with timestamp s and some estimaté’ then some process commits in roundvith estimater”. Observe,
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that if acoMmIT message is sent, it would have a timestamp equal to the previous round nindoeat
sincets = kg — 1 < k' (by the base case), this case is not possible. Observe thaRiERAREMessage

is sent in roundt’ 4+ 1 with timestampts and estimater”, the sending process must have adopted the
timestamp together with the estimate from sopmEPAREOr COMMIT message sent in rourid. By the
induction hypothesis, we get that some process commits in rouand estimate:”. O

Please note that the claimlirmma 9does not hold foDECIDE messages, since a process decides adopting
only the estimate and not the associated timestamp from arm#@DE message.

Lemma 10. If a processp; decides in round: by rule decide-2on estimater, then every process that
commits in round:, commits with estimate.

Proof. Suppose for the purpose of contradiction that a progg#isat commits withy # z in roundk. Since

p; does not decide in rounk, it evaluates ruleslecide-land decide-2to false. p; commits the estimate
that it receives from its leader (line 24). We denote this leader; by rule commit-1 there is a majority

of proccesses that send a roundhessage withy; as leader. Let us denote this majority bf;. Observe
proces; that decides in round. p; receives a&coOMMIT message from a majority of processes, including
its leaderprevLD; and itself. We denote this majority by/». By Lemma 8everyCOMMIT message sent
by a process inV/; has the same leader field and the same estimateSince M; and M, intersect (as
every two majorities), the leader field indicatgs Sincep; receives a&coMMIT message from itself, it as
well sends a rouné message witly; as leader. Since what actually sent is now in higsrev L D; variable,

we get thaprevLD; = p;. Sincep; receives a messad¥; [k|[prevL D;| with msgType = COMMIT, we
conclude thap; sends acoMMIT message in rounél and as was explained, this means that its message
includesz as the estimate. This contradicts our assumptiornzthaées an estimate# x sent byp;. O

Lemma 11 (Uniform Agreement). No two processes decide differently.

Proof. Let k be the lowest numbered round in which some process decides. Sypptesdes: in round
k. Since no process decides in an earlier rogndgecides by rulelecide-2 Thereforep; receives a majority
of coMMIT messages in rounkl and it decides on the estimate of one of t@vmIT messages (the one
from itself). FromLemma 8 all commMIT messages include the same estimate and leader;.say

Thusp; receives a rounél message of the forercommIT, x, k — 1, pl, x) from a majority of processes,
and hence, a majority of processes commits in rokird1 with estimatexr. Let us denote this majority of
processes bg,.. Note thatt — 1 > 1 since according to the pseudo-code, the first round of the algorithm is
round number 1. We claim that if any process commits or decides in rbunrdk — 1 then it commits or
decidesr. The proof is by induction on round numbiét

Base Casek’ = k — 1. As processes i¥, commitz in roundk — 1, from Lemma 8 no process commits
with an estimate different from in roundk — 1. By definition ofk, no process decides in roukd- 1.

Induction Hypothesislf any process commits or decides in any rourndsuch thatc — 1 < k1 < &/, then
it commits with estimate: or decides.

Induction Step. decision in rourid + 1. If some procesp decides in round’ + 1, then in that round either
some other process send®BaCIDE message with decision valyeor p sends acOMMIT message with
estimatey. In both cases, by the induction hypothegis; x.

commit in round:’ + 1. Suppose by contradiction that some progessommits in round:’ + 1 with
estimate: # z. First, sincep; decides by rul@ecide-2in roundk, by Lemma 10we have that’ + 1 # k.
Since we know by the induction hypothesis that- £ — 1 we now get that’ > k& — 1. Sincep; commits,
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it does not receive anyECIDE message in rounkl + 1. Sincecommit-2evaluated to true fos;, a message
m = (type (# DECIDE), z, ts, ld, k") was received by; in roundk’ + 1 from the leadeid. Notice
thatts, might be different thamaxT'S; of roundk’ + 1.

Observe thdast Approval field of the messagen. Its value isk’. Sincek’ > k — 1 > 1 we get that
k' > 1. Since thdast Approval field can become greater than 0 only on line 17 ofdhepute() function,
this indicates that the leader received a message from a majority of processes ii’rcamditherefore it
must have heard from at least one progess S,. Recall that every process §. commits in rounds — 1
with estimater. Thusp, has timestamp — 1 at the end of round — 1. FromLemma 7 sincek’ > k — 1,
pe'S timestamp is at leadt — 1.

If type =CcoMMIT, this means thats, = £’ (line 24). As was explained;’ > 1, and byLemma 9
we get that some process commits in rodndvith estimatez # x. This is a contradiction to the induc-
tion hypothesis. Itype = PREPARE it means thats, is the maximum timestamp the leader received in
any message of round (lines 26-27). Because it received a message frprand because, according to
Lemma 6 the highest timestamp that can be received in rand 1 is &/, we get thate — 1 < ts, < ¥/,
and since (by-emma 9 there must be a process that commits in rotsydwith estimatez # x (recall that
k — 1 > 0), this is a contradiction to the induction hypothesis. O

Lemma 12. In every runr, all correct processes decide by rou6db R(r) + 2.

Proof. Observe that in our model every correct process executes an infinite number of rounds, and in par-
ticular, executes round'SR(r) + 2. We prove the lemma by contradiction. Assume that some correct
procesgp; does not decide by roundSR(r) + 2 in some run-. Thereforep; couldn’t have received a
CcoMMIT message from a majority of processes (including from itself and the leader) in €otiRdr) + 2.
Since, in our model, frontzSR(r) onward, every correct process receives messages from a majority of
correct processes (including itself and the leader), it must have received at least one message with type
t other thancommIT. ¢ cannot beDECIDE, sincep; didn’'t decide in roundZSR(r) + 2. Thereforet
must bePREPARE Therefore, there must be a processhat sent in round7SR(r) + 2, a message with
msgType = PREPARE

Let us now observe roundSR(r) + 1. p; couldn’t have decided, and couldn’t have committed in this
round since it sent BREPAREmMessage in the next round. Therefore, one of the commit rules must have been
evaluated tgfalse for p;. It couldn’t have beerommit-1lor commit-3 because all correct processes agree
on the identity of the leader fro@SR(r) onward, and each process receives a message from a majority
of processescommit-3, and starting from round"SR(r) + 1, the rulecommit-3evaluates térue as was
explained in the description of the algorithm.

Therefore commit-2must have been the rule that evaluated ddse. The only possible reason for this
is that the leader indicatdd st Approval # GSR(r) in its roundGSR(r) + 1 message. I&GSR(r) = 0
we get a contradiction sindest Approval is initialized to 0. Otherwise(@SR(r) > 0), notice that the
leader couldn’t have decided by start of roudd R(r), since otherwise all correct processes would decide
by end ofGSR(r). Therefore, according to our algorithm, the leader had téssetpproval = GSR(r)
in round GSR(r) (since every process hears from a majority starting at radisd(r)), and this is a
contradiction. O
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Theorem 13. The algorithm solves consensus by round GSR(r) + 2.

Proof. From Lemma 12 every correct process decides by rousdR(r) + 2. Validity holds, since the
decision can only be one of the initial estimates of the processes. Uniform agreement was proved in
Lemmall O

B Correctness of Algorithm 3

Lemma 14. A process’s timestamp at the start of rouni less than k.

Proof. We prove the claim by induction on the round numbkérBase caset’ = 1. The claim is correct

since a process’s timestamp is initialized to 0. The induction hypothesis is that the claim holds up to round
k’. Let us inspect the possible actions of a process at the end of #dundl process can decide and in

this case its timestamp does not change and in rddnd1 it will remain less or equal té&’ — 1, by the
induction hypothesis. Alternatively, a process may commit, and then (on line 25) it will Zaptits new
timestamp for round’ + 1, and the claim holds here as well. Finally, a process may adopt the timestamp
of a message it received in roukti(on line 27 or 29) and again, by induction hypothesis, the claitnis

(since communication rounds are closed). O

Lemma 15. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its timestamp does not change. It does not change in the
following rounds as well. If a process does not decide in rounk, then it can change its timestamp by
adopting eithek (when committing on line 25) or the maximum timestamp received in rauasl its new
timestamp (on line 27 or 29). Singe receives its own message in roukgdthe latter is not lower than its
current timestamp (recall that communication rounds are closed). In case it commits, since according to
Lemma 14its old timestamp cannot excegd- 1, by adoptingk it can only increase. O

Lemma 16. For every roundk, no two processes commit or pre-commit with different estimates in reund

Proof. Consider two processgsandp; that commit or pre-commit in rourklwith estimatesst; andest;.
Thus, bypre-commitrule, each of them has received in roulné majority of messages that contaisy;
andest;, respectively. As two majorities interseett; = est;. Thereforep; andp; commit or pre-commit
with the same estimate. O

Lemma 17. If some process sends a message other tf&niDE with timestamps > 0 and estimater,
then some process commits in rougdvith estimater.

Proof. We prove the claim by induction on the round numblestarting from a round in which a message
other tharbeCIDE with the timestamps is first sent with some estimaié by some process;.

Base Casek’ = kq. From the definition ofy, p; could not receive a message withfrom another process
in an earlier round. Thug; commits with timestamps and estimate:’ in roundk, — 1, and from the
algorithm, kg — 1 = ¢s.

Induction Hypothesislf any process sendsRREPARE PRECOMMIT Or COMMIT message in rounéll,

such thatey < k1 < £/, with timestampts and some estimate’, then some process commits in rourd
with estimater”.
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Induction StepWe need to show that if, in rourid 4 1, a process sends a message other ti&r1DE with
timestampts and some estimate” then some process commits in routxdwith estimater”. Observe,
that if acoMMIT message is sent, it has a timestamp equal to the previous round nkmbed since
ts = kg — 1 < k' (from the base case), this case is not possible. Observe thatREBAREOr PRE
COMMIT message is sent in roud+ 1 with timestamp: s and estimate”, the sending process must have
adopted the timestamp together with the estimate from STRE®ARE PRECOMMIT, Of COMMIT message
sent in round:’ (this message couldn’t have beeBcIDE since otherwise th&’ + 1 round message would
beDECIDE and notPREPARE). By the induction hypothesis, we get that some process commits in reund
and estimate”. O

Please note that the claim iremma 17does not hold foDECIDE messages, since a process can decide
adopting only the estimate and not the associated timestamp from abpethee message.

Lemma 18. If rule decide-3evaluates to true in some rourkd there exists a majority of processes that
receive aCOMMIT message in round — 2.

Proof. Suppose rulelecide-3evaluates to true in some roukdat proces®;. Therefore, the union of the
gotCommit setg;, receives in round messages includes more thgm/2) | indices. ThesgotCommit
groups were created in routkd- 1 by the processes that sent these messages, according t@tbh&®mm it
values that these processes received. The fact that the uniongfttfiemmit groups has size- |(n/2)|
indicates that more thaf(n/2) | messages were received in round- 1 with IgotCommit = true from
different processes. A process sends a messagel/witlt’ommit = true only when it receives &0om-
MIT message in the previous round. Therefore, more tHari2)| (a majority) of processes received a
COMMIT message in rounk — 2. O

Lemma 19. (a) If some process receive@aMMIT message in roundé with estimater, and some process
commits in rounds with estimatez, thenz = z (b) if a processg; commits tox in round k, or receives
a CoOMMIT message with estimatein round k, and does not decide in this round, then it adaptas its
estimate with timestamp > k& — 1.

Proof. (a) If some process commits with estimatén roundk, it must have received @OMMIT or PRE
COMMIT message withe (rule commi), and according td.emma 16 all such messages have the same
estimate, and therefore = x. (b) If p; commitsz, then it sets its timestamp to and adoptse as its
estimate. Ifp; receives a&cOMMIT message with estimate it cannot commit or pre-commit on a different
value since according to rupgre-commita process can commit or pre-commit only on a value received with
the highest timestamp. Moreover, receivesr with the timestamg: — 1 (which is maximal at round k)
and Lemma 16 every message with this timestamp has x as estimate. Since it does not commaitioer,

it does not commit at all in round. Sincep; does not decide in this round, it must either pre-commit or
prepare with the estimateand adopt its timestamp; — 1. O

Lemma 20 (Uniform Agreement). Let & be the first round in which there exists a group consisting of a
majority of processes such that each process of the group either commits or receigesvar message.
Then, no decision is made before roung 1, and all decisions and commitments made in routids k£ —1

are with the same estimate.

Proof. Let k be the lowest numbered round in which each one out of a majority of processes either commits
x (from Lemma 16all commitments in some round are with the same value) or receiwes/aiIT message

with a valuer (x is well defined according tbemma 19. Denote this group of processes $y. According

to Lemma 19 every process it¥, has timestamp> k£ — 1 at the end of round (we prove below that a
decision is not possible in rourid. Note also, that —1 > 0. This is true since by definition &f, processes
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in S, either commit or receive @OMMIT message in rounk. Therefore, in roun@& — 1 some process must
either commit or pre-commit and since round numbering starts from 1, we have-that> 0.

There are three decision rules in the algorithm. We show that none of them could evaluate to true for
any process before rourkd+ 1. Let &’ be the first round in which any process decides. Rigleide-1may
be true only after some process has already decided, and thus cannot cause the first decidi@cideule
can evaluate to true only if a majority of processes committed in the previous round. Since the first round in
which this happens i, this rule may evaluate to true only starting from roungt 1. The last one is rule
decide-3 According toLemma 18iif this rule evaluates to true in rourid, there must have been a majority
of processes that receivedcammIT message in round’ — 2. Since the first round in which this could
happen ist, we get that’ > k + 2. So in any case, no decision is possible before rdurdl. We now
prove that all decisions and commitments made in rodnds k — 1 are with estimate:.

Base Casek’ = k — 1. As proven above, no process decides in rokhd &k + 1. Assume by con-
tradiction that some process commits on a valug¢ x in roundk — 1. By Lemma 16 no process can
commit or pre-commit orx in the same round. Therefore, in rouhdno process receivesGMMIT or
PRE-COMMIT message with the estimate Thus, no process commitsin roundk (rule commi). This
contradicts the definition of.

Induction Hypothesislf any process commits or decides in any rourdsuch thatc — 1 < k1 < ¥/, then
it commits with estimate: or decides.

Induction Step. decision in round + 1. Suppose some processlecides in round’ + 1. If it decides
using ruledecide-1or decide-2 then in that round either some other process semdscaDE message with
decision valugy or p sends a&&oMMIT message with estimaie In both cases, by the induction hypothesis,
Yy = .

If it decides by ruledecide-3 then according themma 18 there must be a majority of processes that
receiveCOMMIT messages two rounds earlier, in rouiid- 1. Since the first round in which this can happen
is k, we have that’ — 1 > k. According to the induction hypothesis, the commit messages received are
with estimater. Therefore, in round’ — 1, some majority of processeéd received acOMMIT message
with the estimate:. According toLemma 19if a process inV/ does not decide in rourd — 1, it will adopt
x with timestamp> k&’ — 2. By the induction hypothesis, every process that decides in rbundl or &/,
decidesr and no process commits with a different value in roéhd- 1 or ¥’ — 2. Therefore, in round’,
all estimates different from: are sent with a timestamyp &’ — 2. No process can commit or pre-commit
on an estimate other thanin round’ sincex is the value processes M send and every two majorities
intersect (rulgore-commitmust be false for any other value).

p receives a round’ + 1 message from at least one procgsshat receives a rounkl message from
some process i/. Thereforep; receives a round’ message with the estimateand

timestamp> k' — 2. As was explained above, no other estimate can have a timestamp that high in round
k', so if p; prepares or pre-commits, it must be with estimatelf p; commits, it is with the estimate
as well, according to the induction hypothesgis.does not decide, since otherwigevould decide by rule
decide-land notdecide-3 Thereforep; sends a round’ + 1 message with the estimateand a timestamp
> k' — 2. Since no process can commit on a value different thamroundk’ or ¥’ — 1, this timestamp
is higher than the timestamp of any other estimate sent in réundl. ThereforemaxEST of p must be
equal tox. Thereforep decidest.

commit in roundk’ 4+ 1. Suppose by contradiction that some progessommits in rounds’ + 1 with
estimatez # . Thenp; does not receive anyECIDE message in roundf + 1. Also note that according to
rule pre-commitp; commits on an estimate that it receives with the highest timestamp'S. Therefore,
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some process sends a rourid+ 1 message with timestampaxT'S and estimate. By Lemma 14 the
highest timestamp that can be received in roihé 1 is &/, and thereforenazT'S < k’. Sincep; commits
in roundk’ + 1, it receives round’ + 1 messages from a majority of process (mpite-commi} and hence,
receives a round’ + 1 message from at least one procgsss S,. According toLemma 19 p; has at
least timestamp — 1 at the end of roun@. By Lemma 15 p;’s timestamp is at leagt — 1 and therefore
maxTS > k — 1. Thus, we havé — 1 < mazTS < k. Sincek — 1 > 0 (as shown above), and sinpe
does not receive anyECIDE messages in round + 1, by Lemma 17there is a process that commitsn
roundmazT'S. By the induction hypothesis, every process that commits in reuwdaell’S commitsz # z;
a contradiction. O

We now turn to prove the performance guarantees of AlgorBhm

Lemma 21. If n = 2m + 1, in every runr, if some process commits in round7S R(r) with an estimate
x, then all processes decide by the end of roGHIR () + 3.

Proof. Suppose that some processloes not decide by the end of rou6d R(r) + 3. This means that it
evaluates ruledecide-]1 decide-2anddecide-3to false. Thereforep; does not receive anyECIDE mes-
sage, andlUJ,cr; M [ki][j].gotCommit| < [n/2]. p; receives a round:SR(r) + 3 message from a group
M of (n — m) processes. Thus, there dre— m) processes that together receive in rodn8R(r) + 2
messages WwitligotCommit = true from at most|n/2| processes. Every processhifidoes not receive a
DECIDE message in round'SR(r) + 2, since otherwise their next round message wouldbelDE. Since
each process’s message readhes-1) from GSR(r) onward, it reaches at least one process from any group
of (n — m) processes. Therefore, the number of processes that send a messagetithnmit = true

in roundGSR(r) + 2 is at most|(n/2)]. We get that in round+SR(r) + 1, at most|(n/2)]| processes
received acoMMIT message. Every process whose message reaches a prodéssoies not decide in
roundGSR(r) + 1, since otherwise their next round message wouldbelDE and processes it/ do not
receive any such messages. Sipcgends acOMMIT message, its message should reaches atieastl
processes (a majority when= 2m + 1). As explained above, we get a contradiction the assumptiomthat
sends &OMMIT message in roun@SR(r) + 1. O

Notations: (relating to a specific run)
absMazxTS(k) =max m.ts | messagen is sentin round:}
absMaxEST (k) = max{ m.est | messagen is sent in round: s.t. m.ts = absMazT'S(k)}

Lemma 22. In every runr, if no correct process decides by the end of rokind GSR(r), then in roundk at
leastm +1 correct processes adopt the estimabe M ax E.ST (k) with timestamps equal i@sM azT'S (k)
or to k (in case it is adopted by committing).

Proof. Let us observe round k messages.

Denote byp,,... the (correct) process that sends M axz EST (k) with the timestam@bsM axzT'S (k). By

the assumptions of our model, the roundhessagéx, absMaxEST(k), absMazTS(k), *, ) will reach
atleastn+1 correct processes. Denote the group of processes that actually get this mesdabote/that

since a process receives a subset of all messages sentinksdandnyp; € A, maxT'S; = absMaxT S (k)
andmazEST; = absMaxzEST (k). The conditions of the lemma assume that no correct process decides
by the end of round:. Therefore, each procegs € A must commit, pre-commit or just prepare for the
next round. Ifp; commits or pre-commits, rulpre-commitmust hold for it. This rule makes sure that the
estimatep; adopts is equal tewaxz EST;. Thereforep; will adoptabsMaxEST (k). If p; prepares, it will
execute line 29 of the pseudo-code, adoptihgh/ az EST (k) as well. Therefore all the processesAr(at
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leastm + 1 processes) will adopt the same estimaie)M ax EST (k). Observe, that they will either adopt
it with timestampabsMaxzT S (k) (if they pre-commit or prepare) or with timestarhpf they commit. [

Lemma 23. In every runr, if no correct process decides by the end of ro@iR(r) + 1, and no process
commits in round>SR(r), all processes will have the same estimate by the end of r6\he(r) + 1.

Proof. By Lemma 22 at the end of round?SR(r), at leastn + 1 of processes adopt the estimate
absMaxEST(GSR(r)) with a timestamp equal tebsMazT'S(GSR(r)). Notice that an estimatest’ #
absMaxEST(GSR(r)) can becomebsMax EST(GSR(r) + 1) only by adopting a new timestamp (that
was not sent in roundSR(r)). This can be done only if a process commits witl in roundGSR(r),
and this is not possible by the assumptions of our lemma. We concludetidiux EST(GSR(r) +1) =
absMaxEST(GSR(r)) (# est').

No process decides in roudSR(r) + 1, and eaclp; process receives a roudtlSR(r) + 1 message
from n — m processes, including one message of the fornubsMax EST(GSR(r) + 1), ts, , *) and
ts is either equal tabsMazTS(GSR(r)) (ts # GSR(r) since we assume in this lemma that no process
commits in round=S R(r)). Whethemp,; commits, pre-commits or prepares, because ofgrdecommitand
line 29, the estimatg; adopts is equal tevax EST;. Thereforep; will adoptabsMax EST(GSR(r) + 1),
and we get that all processes adopt the same estimate by the end of¥6i{d) + 1. O

Lemma 24. In every runr, if no correct process decides by the end of roGHIR(r) + 2, and some process
commits in round>SR(r), all processes will have the same estimate by the end of r6Uhe(r) + 2.

Proof. By Lemma 22 at the end of round'SR(r) + 1, at leastn + 1 of processes adopt the
estimateubsMax EST(GSR(r) + 1) with a timestamp equal t6'SR(r). Notice that an estimatest’ #
absMaxEST(GSR(r) + 1) can becomabsMax EST(GSR(r) 4+ 2) only by adopting a new timestamp
(that was not sent in roun@SR(r) + 1). This can be done only if a process commits witf in round
GSR(r) + 1, and this is not possible because some process will receivedeT message sent in this
round, andLemma 19 We conclude thatbsMaxEST(GSR(r) + 2) = absMaxEST(GSR(r) + 1)
(# est).

No process decides in rouddS R(r) + 2, and eaclp; process receives a rouddS R(r) + 2 message
from n — m processes, including one message of the fornubsMax EST(GSR(r) + 2), ts, %, *) and
ts is either equal ta7SR(r) or to GSR(r) + 1. Whetherp; commits, pre-commits or prepares, because
of rule pre-commitand line 29, the estimatg, adopts is equal tenaxEST;. Therefore,p; will adopt
absMaxEST(GSR(r) + 1), and we get that all processes adopt the same estimate by the end of round
GSR(r) + 2. O

Lemma 25. If in around k& > GSR(r) all estimates being sent are the same, all correct processes decide
by roundk + 2.

Proof. Observe that in our model every correct process executes an infinite number of rounds, and in par-
ticular, executes rounkl + 2. Also, it is obvious that all estimates being sent remain the same in all rounds
starting atc. We prove the lemma by contradiction. Assume that some correct procels@s not decide

by roundk + 2 in some runr. Thereforep; couldn’t have received aoMmIT message from a majority

of processes in round + 2. Since, in our model, frond=SR(r) onward, every correct process receives
messages from a majority of correct processes (including itself), it must have received & rouhches-

sagem s.t. m.msgT'ype = t from some procesg; with typet # COMMIT. t #DECIDE, sincep;

didn’t decide in round: 4+ 2. Thereforet must bePREPAREOr PREECOMMIT. If ¢ =PREPARE this can
happen only if in round: + 1, procesg; received messages with different estimates, since otherwise (if

all estimates it receives are the same), even if there were no proper conditions (according to the algorithm)
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for p; to DECIDE or COMMIT, its PREECOMMIT rule would definitely evaluate to true and its rouhd- 2
message would be (at leaBE-cOMMIT. Thereforef =PREPAREIS a contradiction to our assumption that
in roundk + 1 all estimates being sent are the same. HPRE-COMMIT, this means that; didn’t receive
any DECIDE message in rounél + 1, and that rulgore-commitevaluated tarue for p;, but rulecommit
did not. Thereforep; receivedk + 1 round messages from a majority of processes with some estimate
mazxEST;, but didn’'t receive any of them with the tyg®MMIT or PRECOMMIT. This means that at the
end of roundk, there were processes that didrikecomMMIT. Lets observe one such procgsswho'’s
roundk + 1 message reacheg)) at the end of round. It couldn’t have decided singg didn’t receive any
DECIDE messages in rourfd+ 1. Since all estimates sent are the same in raunts rulepre-commitmust
evaluate to true at the end of roukdand it sends either aoMmmIT or aPREECOMMIT message in round
k+ 1, a contradiction to the fact that received no such messages (since starting with réad estimates
are the same;st’ must be the estimate sent by). O

Lemma 26. If n = 2m + 1 then in every rumr all correct processes decide by routb R(r) + 4.

Proof. If some process correct process decides by the end of GWRIr) + 1, lets denote by: the round

in which this happens, a#SR(r) — 1 (the later round between the two). Sinee> GSR(r) — 1, in round

k+ 1, itis assured that the decision message will reach 1 processes, and in rouridt 2, it will reach all

the process since each one receives a message:fromn processes. Therefore, every process will decide
by roundk 4 2. If k = GSR(r) + 1, k + 2 = GSR(r) + 3, and the lemma holds.

Suppose that no correct process decides by the end of @§tit{r) + 1. If some process commits in
roundGSR(r), all processes will decide by rour@dS R(r) + 3, by Lemma 21 If no process commits in
GSR(r), by Lemma 23 all processes will adopt the same estimate by the end of r6Ufhe(r) + 1, and
send itin round=SR(r) +2. By Lemma 25 all processes will decide by the end of rout#§ R(r) +4. O

Lemma 27. In every runr all correct processes decide by routb R(r) + 5.

Proof. If some process correct process decides by the end of @4 ) + 2, lets denote by: the round

in which this happens, a#SR(r) — 1 (the later round between the two). Sinfece= GSR(r) — 1, in round

k+ 1, itis assured that the decision message will reach 1 processes, and in rouridt- 2, it will reach all

the process since each one receives a messagexfromu processes. Therefore, every process will decide
by roundk + 2. If k = GSR(r) + 2, k +2 = GSR(r) + 4, and the lemma holds.

Suppose that no correct process decides by the end of @St r) + 2. If some process commits in
roundGSR(r), , byLemma 24 all processes adopt the same estimate by the end of @Sd(r) + 2, and
send it in round=ZSR(r) + 3. By Lemma 25 all processes will decide by the end of rou§ R(r) + 5.

If no process commits i’ SR(r), by Lemma 23 all processes will adopt the same estimate by the end of
roundGSR(r) + 1, and send it in round’SR(r) + 2. By Lemma 25 all processes will decide by the end
of roundGSR(r) + 4. O

Theorem 28. The algorithm solves consensus in our model with global decision by IG&(r) + 5 (or
GSR(r)+4in casen = 2m + 1).

Proof. From Lemma 26 every correct process decides by ro#§R(r) + 4, if n = 2m + 1. From
Lemma 27 every process decides by roufd R(r) + 5. Validity holds, since the decision can only be one
of the initial estimates of the processes. Uniform agreement was provesrima 20 O
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