
Timeliness, Failure-Detectors, and Consensus Performance

Idit Keidar∗ Alexander Shraer†

Abstract

We study the implication that various timeliness and failure detector assumptions have on the per-

formance of consensus algorithms that exploit them. We present a general framework, GIRAF, for

expressing such assumptions, and reasoning about the performance of indulgent algorithms.

Keywords: eventual synchrony, failure detectors, lower bounds, indulgent consensus.

1 Introduction

1.1 Background and motivation

Consensusis a widely-studied fundamental problem in distributed computing, theory and practice. Roughly
speaking, it allows processes to agree on a common output. We are interested in the performance of consen-
sus algorithms in different timing models.

Although the synchronous model provides a convenient programming framework, it is often too restric-
tive, as it requires implementations to use very conservative timeouts to ensure that messages areneverlate.
For example, in some practical settings, there is a difference of two orders of magnitude between average
and maximum message latencies [6, 5]. Therefore, a system design that does not rely on strict synchrony is
often advocated [25, 17, 8]; algorithms that tolerate arbitrary periods of asynchrony are calledindulgent[20].

As it is well-known that consensus is not solvable in asynchronous systems [18], the feasibility of in-
dulgent consensus is contingent on additional assumptions. More specifically, such a system may be asyn-
chronous for an unbounded period of time, but eventually reaches aGlobal Stabilization Time (GST)[17],
following which certain properties hold. These properties can be expressed in terms of eventual timeliness
of communication links [17, 10]1, or using the abstraction oforacle failure detectors[8]. Protocols in such
models usually progress in asynchronousrounds, where, in each round, a process sends messages (often to
all processes), then receives messages while waiting for some condition expressed as a timeout or as the
oracle’s output, and finally performs local processing.

Recent work has focused on weakening post-GST synchrony assumptions [22, 1, 2, 3, 27], e.g., by only
requiring one process to have timely communication with other processes after GST. Clearly, weakening
timeliness requirements is desirable, as this makes it easier to meet them. For example, given a good choice
of a leader process, it is possible to choose a fairly small timeout, so that the leader is almost always able
to communicate with all processes before the timeout expires, whereas having each process usually succeed
to communicate witheveryother processes requires a much larger timeout [5, 4]. In general, the weaker
the eventual timeliness properties assumed by an algorithm are, the shorter the timeouts its implementation
needs to use, and the faster its communication rounds can be.

∗Department of Electrical Engineering, Technion, Israel.idish@ee.technion.ac.il .
†Department of Computer Science, Technion, Israel.shralex@cs.technion.ac.il .
1A timely link delivers messages with a bounded latency; the bound is either known or unknown a priori.

1

Unfortunately, faster communication rounds do not necessarily imply faster consensus decision; the
latter also depends on the number of rounds a protocol employs. A stronger model, although more costly to
implement, may allow for faster decision after GST. Moreover, although formally modeled as holding from
GST to eternity, in practice, properties need only hold “enough time” for the algorithm to solve the problem
(e.g., consensus) [23]. But how much time is “enough” depends on how quickly consensus can be solved
based on these assumptions. Satisfying a weak property for a long time may be more difficult than satisfying
a stronger property for a short time. Therefore, before choosing timeliness or failure detector assumptions
to base a system upon, one must understand the implication these assumptions have on the running time of
consensus. This is precisely the challenge we seek to address in this paper.

1.2 GIRAF – General Round-based Algorithm Framework

This question got little attention in the literature, perhaps due to the lack of a uniform framework for com-
paring the performance of asynchronous algorithms that use very different assumptions. Thus, the first con-
tribution of our work is in introducing a general framework for answering such questions. InSection 2.2, we
present GIRAF, a new abstraction of round-based algorithms, which separates an algorithm’s computation
(in each round) from its round waiting condition. The former is controlled by the algorithm, whereas the
latter is determined by an environment that satisfies the specified timeliness or failure detector properties. In
addition, the environment can provide additional “oracle output” information for the protocol. In general,
rounds are not synchronized among processes. GIRAF is inspired by Gafni’s round-by-round failure detec-
tor (RRFD) [19], but extends it to allow for more expressiveness in specifying round properties, in that the
oracle output can have an arbitrary range and not just a suspect list as in [19], and our rounds do not have to
be synchronized among processes or communication-closed like Gafni’s2.

One model that we study and cannot be expressed in RRFD ensures that each process receives messages
from a majority, and in addition, provides an eventualleader oracle, Ω, which eventually outputs the same
correctleaderprocess at all processes; many consensus algorithms were designed for this model, e.g., [25,
13, 21]. Note that in order to ensure communication with a majority in each round, RRFD’s suspect list must
include at most a minority of the processes, and hence cannot, by itself, indicate which of the unsuspected
processes is leader. Thus, additional oracle output is required. In general, the question of which systems
can be implemented in RRFD was left open [19]. In contrast, we show that GIRAF isgeneralenough to
faithfully captureanyoracle-based asynchronous algorithm in the model of [7] (seeSection 4). Note that
GIRAF can be used to express models assuming various failure patterns and is not constrained to the crash
failure model (even though the models we define in this paper do assume crash failures). Moreover, GIRAF
can be used to study problems other than consensus.

Since we focus on round-based computations, we replace the notion of GST with the notion of aGlobal
Stabilization Round (GSR)[12]. Each run eventually reaches a round GSR, after which no process fails, and
all “eventual” properties hold. More specifically, an environment in our model is defined using two types of
properties: (1)perpetual properties, which hold in all rounds; and (2)eventual properties, which hold from
GSR onward. The eventual counterpart of a perpetual propertyφ is denoted♦φ.

Since one can define different round properties, and organize algorithms into rounds where these proper-
ties hold, one can prove upper and lower bounds for the number of rounds of different types (i.e., satisfying
different properties such as all-to-all communication in each round or communication with a majority in
each round) that are sufficient and necessary for consensus. Note that, in order to deduce which algorithm
is best for a given network setting, this analysis should be complemented with a measurement study of the
cost of rounds of different types in that specific setting. The latter is highly dependant on the particularities
of the given network and has no general answers (e.g., in a LAN, all-to-all communication may well cost

2In communication-closed rounds, each message arrives in the round in which it is sent.

2

the same as communication with majority, whereas in a WAN it clearly does not [5, 4]). GIRAF provides
generic analysis, which can be combined with a network-specific measurements to get a network-specific
bottom line.

We use GIRAF to revisit the notion of oracle (or model) reducibility. Traditionally, reducibility defines
when one model can be implemented in another [8, 7], without taking complexity into account. In Section3,
we definek-round reducibility, which captures reductions that incur ak-round penalty in running time; i.e.,
the GSR of a run in the emulated model is at mostk rounds later than that of the run in the original model.
Additionally, we define the more general notion ofα-reducibility, where the GSR of the emulated model is
at most a functionα() of that of the original model in the same run. Thus,k-round reducibility is simplyα-
reducibility withα(x) = x+k. Gafni [19] has posed as an open problem the question of finding a notion of
an equivalence relation between models with regard to the extent in which one model “resembles” another.
We hope that our notion ofα-reducibility (andk-round reducibility) provides a convenient instrument to
describe such relations.

1.3 Results

We use GIRAF to analyze consensus performance in different models. In this paper, we consider a crash-
failure model, where up tot < n/2 out ofn processes may crash (before GSR). Our performance measure
is the number of rounds untilglobal decision, i.e., until all correct processes decide, after GSR.

Dutta et al. [12] have shown that in theEventual Synchrony (ES)[17] model, where all links are timely
from GSR onward, GSR+2, i.e., three rounds including round GSR, is a tight lower bound for global
decision. We are interested in the implications of weakening the ES assumptions. Following the observation
that in some settings communication with a leader or a majority can be achieved with significantly shorter
timeouts than required for timely communication with all processes [5, 4], we focus on leader-based and
majority-based models.

The first model we define isEventual Leader-Majority, ♦LM (see Table 1, row 2). In this model,
processes are equipped with aleader oracle, Ω [7]. We further require that the leader be a♦n-source,
where a processp is a♦j-source if it hasj timely outgoing links in every round starting from GSR [2] (the
j recipients includep, and are not required to be correct)3. Finally, we require that each correct process
eventually have timely incoming links from a majority of correct processes (including itself) in each round;
this property is denoted♦(

⌊
n
2

⌋
+ 1)-destinationv, where the subscriptv denotes that the incoming links of a

process can change in each round.♦LM does not impose any restrictions on the environment before GSR.
One might expect that weakening the ES model in this way would hamper the running time. Surprisingly, in
Section 5, we present a leader-based consensus algorithm for♦LM, which achieves the tight bound for ES,
i.e., global decision by GSR+2. Our result suggests that eventually perfect failure detection is not required
for optimal performance;Ω and timely communication with a majority suffice.

We then turn to see whether we can replaceΩ with an equivalent (in the “classical” sense) failure
detector,♦S [8]. ♦S outputs a list ofsuspectedprocesses at each process, so that eventually, every correct
process suspects every faulty process, and there exists one correct process that is not suspected by any
process. In Section6, we show that in runs in which less thann2 − 1 processes fail, replacingΩ with
♦S entails a lower bound ofn rounds from GSR onward. In the literature,♦S is typically used with the
assumptions that links are reliable (although not timely), and that messages from a majority arrive in each
round, including before GSR [8, 28]. We therefore prove our lower bound for a stronger model, which
we callEventually Strong-Reliable, ♦SR. In this model, all links are reliable, processes are equipped with
a ♦S failure detector, the unsuspected correct process is a♦n-source, and every process is a perpetual

3In [2], the link fromp to itself is not counted; hence aj-source in our terminology is a(j − 1)-source in theirs.

3

Model Model Properties Upper Bound Lower Bound

ES all links ♦timely GSR+2 GSR+2
[12] [12]

♦LM Ω, the leader is♦n-source GSR+2 GSR+2
every correct process♦(

⌊
n
2

⌋
+ 1)-destinationv Algorithm 2 [12]

♦SR ♦S, the unsuspected process is♦n-source
every process(n− f − 1)-destinationv GSR+2n + 2 GSR+n− 1
f < n/2− 1 and reliable links [28] Lemma 4

♦AFM ∃m ∈ N, f ≤ m < n/2 s.t. GSR+4 ifn = 2m + 1 GSR+2
every correct process♦(m + 1)-sourcev GSR+5 otherwise [12]
and♦(n−m)-destinationv Algorithm 3

♦MFM(m) every correct process♦(n−m)-source
m ∈ N+ m correct processes♦n-source Unbounded Unbounded

f ≤ m < n/2 (n−m) correct processes♦(n−m)-accessible [2, 3, 27] Lemma 5
every correct process♦m-accessible
reliable links

Table 1: Upper and lower bounds on consensus global decision times in various models (t < n/2).

(n − f − 1)-destinationv, wheref ≤ t is the number of actual failures in a given run, which is at least a
majority wheneverf < n

2 − 1 (seeTable 1, row 3).
TheΩ oracle is clearly a powerful tool; our result for♦LM shows thatΩ effectively eliminates the need

for communication with all processes, and renders communication with majority sufficient. This raises the
question of whether timely communication with a majority can suffice for constant-time consensus even
withoutan oracle. To answer this question, we define theEventual All-from-Majority, ♦AFM, model, where
each correct process eventually has incoming timely links from a majority of processes, and outgoing timely
links to a majority (including itself). It is possible for processes to have fewer outgoing links, and in return
have additional incoming ones (seeTable 1, row 4). In Section 7, we give a consensus algorithm for this
model that decides in constant time after GSR (five or six rounds, depending on the number of outgoing
versus incoming timely links).We are not aware of any previous algorithm for the♦AFM model, nor any
other constant-time (from GSR) oracle-free algorithm in a timing model other than ES.

Finally, we examine whether one can weaken the model even further. Can we relax the assumption that
all correct processes have incoming timely links from a majority, and allow a minority of the processes to
each have one fewer timely link? (In casen = 3, only one timely link is removed). InSection 8, we show
that the answer to this question isno, as this renders the problem unsolvable in bounded time. We define
a family of models,Eventual Majority-from-Majority, ♦MFM(m), where, roughly speaking, a majority of
the processes have incoming timely links from a majority, and the rest have incoming timely links from a
minority. In order to strengthen the lower bound, we add a host of additional assumptions (seeTable 1,
row 5): We require a minority of processes to be♦n-sources. We replacej-destination assumptions with
j-accessibility[1, 27], i.e., the existence of bidirectional timely links withj correct processes. Finally, we
require reliable links. We show that in the resulting models,♦MFM(m), global decision cannot be achieved
in bounded time from GSR. Interestingly, these models are strictly stronger than those of [2, 3, 27], which
were used for solving consensus. We note, though, that in [27], local decision (of the leader and its accessible
destinations) is possible in constant time, whereas in [2, 3], local decision time is unbounded as well.

As Table 1shows, there are still several tantalizing gaps between the known upper and lower bounds
in various models. Moreover, many additional models can be explored, e.g., in the middle ground between

4

AFM and MFM. We hope that GIRAF will allow researchers to address many such issues in future work.
Section 9provides further discussion of future research directions.

1.4 Related work

In recent years, a number of efforts have been dedicated to understanding the performance of asynchronous
algorithms in runs that are synchronous (or the failure detector is perfect) from the outset [24, 13, 21, 16, 14],
typically focusing on the case that all failures are initial, which corresponds to GSR= 0 in our model.

Only very recently, the issue of performance following asynchronous periods has begun to get attention
[12, 15]. As noted above, [12] shows thatGSR+2 is a tight bound for global decision in ES. It uses Gafni’s
RRFD [19] framework. In [15], Dutta et al. focus on actual time rather than rounds, again in ES; they present
an algorithm that decides byGST + 17δ, whereδ is a bound on message delay from GST onward (but no
matching lower bound). This result gives a more accurate assessment of the actual running time after GST
than out round-count offers. Nevertheless, a similar assessment might be obtained in our model if one can
quantify the time it takes the environment’s synchronization to establish GSR after GST; this is an interesting
subject for future study. We believe that the clean separation we offer between round synchronization and
the consensus algorithm’s logic allows for more abstract and easier to understand protocol formulations and
complexity analyses, as well as for proving lower bounds.

The only previous algorithm presented in the♦LM model, Paxos [25], may require a linear number
of rounds after GSR [11]. Most otherΩ-based protocols, e.g., [13, 21], wait for messages from a majority
in each round (including before GSR), which is undesirable, as it may cause processes to be in arbitrarily
unsynchronized rounds when some process first reaches round GSR, causing GSR itself to take a long time.
Dutta et al. [11] allow processes to “skip” rounds in order to re-synchronize in such situations. Implementing
such approach in our framework yields an algorithm that requires one more round than Algorithm2.

2 Model and Problem Definition

2.1 Distributed computation model

We consider an asynchronous distributed system consisting of a setΠ of n > 1 processes,p1, p2, . . . , pn,
fully connected by communication links. Processes and links are modeled as deterministic I/O automata [26].
An automaton’s transitions are triggered byactions, which are classified asinput, output, andinternal. Ac-
tion π of automatonA is enabledin states if A has a transition of the form(s, π, s′). The transitions
triggered by input actions are always enabled, whereas those triggered by output and internal actions are
preconditioned on the automaton’s current state.

A run of I/O automatonA is an infinite sequence of alternating states and actionss0, π1, s1, . . . , where
s0 is A’s initial state, and each triple(si−1, πi, si) is a transition ofA. We only considerfair runs, where no
action is enabled without occurring in an infinite suffix.

A processpi interacts with its incoming link from processpj via the receive(m)i,j action, and with
its outgoing link topj via thesend(m)i,j action. Communication links do not create, duplicate, or alter
messages (this property is calledintegrity). Messages may be lost by links.

A threshold oft of the processes may fail by crashing. The failure of processpi is modeled using the
actioncrashi, which disables all locally controlled actions ofpi. A process that does not fail iscorrect. The
actual number of failures occurring in a run is denotedf . Processpi is equipped with afailure detector
oracle, which can have an arbitrary output range [7], and is queried using theoraclei function.

5

States:
ki ∈ N , initially 0 /*round number*/
senti[Π] ∈ Boolean array, initially ∀pj ∈ Π : senti[j] = true
FDi ∈ OracleRange, initially arbitrary
Mi[N][Π] ∈Messages∪{⊥}, initially ∀k ∈ N∀pj ∈ Π : Mi[k][j] = ⊥

Actions and Transitions:
input receive(〈m, k〉)i,j , k ∈ N outputsend(〈Mi[ki][i], ki〉)i,j

Effect: Mi[k][j]← m Precondition:senti[j] = false
Effect: senti[j]← true

inputend-of-roundi
Effect: FDi ← oraclei (ki)

if (ki = 0) then Mi[1][i]← initialize (FDi)
elseMi[ki + 1][i]← compute(ki, Mi, FDi)
ki ← ki + 1
∀pj ∈ Π : senti[j]← false

Algorithm 1: GIRAF: Generic algorithm for processpi (I/O automaton).

2.2 GIRAF – General Round-based Algorithm Framework

Algorithm 1 presents GIRAF, a generic round-based distributed algorithm framework. To implement a
specific algorithm, GIRAF is instantiated with two functions:initialize(), andcompute(). Both are passed
the oracle output, andcompute()also takes as parameters the set of messages received so far and the round
number. These functions are executed atomically as part of one automaton action, and are not allowed to
block or wait.

Each process’s computation proceeds inrounds. The advancement of rounds is controlled by the envi-
ronment via theend-of-roundinput action. It first occurs in round0, whereupon it queries the oracle and
calls initialize(), which creates the message for sending in the first round (round one). Subsequently, during
each round, the process sends a message to all processes and receives messages available on incoming links,
until the end-of-roundaction occurs, at which point the oracle is queried andcompute()is called, which
returns the message for the next round. We say that an event of processpi occurs in roundk of runr, if there
are exactlyk invocations ofend-of-roundi before that event inr. For simplicity, we have the algorithm send
the same message to all processes in each round; this is without loss of generality as we are not interested
in message complexity as a performance metric. The outgoing message is stored in the incoming message
buffer,Mi[ki + 1][i], hence self-delivery is ensured. The environment might decide not to send the message
of a round to any subset of processes, i.e., it might invokeend-of-roundi in roundk without asend(m)i,j
action ever happening in roundk for a processpj . However, some of our environment definitions below will
restrtict this behavior and require messages to be sent. In any case, self-delivery is always preserved.

Our framework can capture any asynchronous oracle-based message-passing algorithm in the general
model of [7] (seeSection 3). Thus, GIRAF does not restrict the allowed algorithms in any way, but rather
imposes a round structure that allows for analyzing them.

Each run is determined by the algorithm automaton’s state transitions, and theenvironment’sactions,
consisting of (i) schedulingend-of-roundactions; (ii) oracle outputs; and (iii)sendandreceiveactions of
the communication links. Environments are specified usinground-based properties, restricting the oracle
outputs or message arrivals in each round. We consider two types of environment properties:perpetual
properties, which hold in each round, andeventualproperties, which hold from some (unknown) round
onward. More formally, in every runr there is a round GSR(r) so that from round GSR(r) onward, no

6

process fails, and all eventual properties hold in each round. GSR(r) is thefirst round inr that satisfies this
requirement. (We henceforth omit the(r) where it is clear from the context).

Note that although, in general, rounds are not synchronized among processes, we specify below environ-
ment properties that do require some synchronization, e.g., that some messages are received at one process
at the same round in which they are sent by another. Therefore, an implementation of an environment
that guarantees such properties needs to employ some sort of round or clock synchronization mechanism
(e.g. [17, 30], or using GPS clocks).

2.3 Environment properties

We define several environment properties in GIRAF, mostly in perpetual form. Prefixing a property with♦
means that it holds from GSR onward.

Communication Properties Every process has a “link” with itself, and though it is not an actual physical
link, it counts toward thej timely links in the definitions below. Some of the properties that requirej timely
links may appear with a subscriptv (variable), which indicates that the set ofj timely links is allowed to
change in each round. Note that link integrity is assumed by the model. When characterizing a link, we
denote the source process of the link byps, and the recipient bypd.

reliable link: if end-of-rounds occurs in roundk andpd is correct, thenpd receives the roundk message of
ps.

timely link: if end-of-rounds occurs in roundk andpd is correct, thenpd receives the roundk message of
ps, in roundk.

j-source: processp is a j-sourceif there arej processes to which it has timely outgoing links in every
round;p is aj-sourcev if in every round it hasj timely outgoing links. (Correctness is not required
from the recipients.)

j-destination: correct processp is aj-destinationif there arej correct processes from whichp has timely
incoming links in every round;p is a j-destinationv if it has j timely incoming links from correct
processes in every round.

j-accessible: correct processp is j-accessibleif there arej correct processes with whichp has timely
bidirectional links in every round. (We do not consider variablej-accessibility in this paper.)

Note that the reliable and timely link properties assure that the environment sends messages on the link, i.e.,
theend-of-rounds action in roundk is preceded by asend(m)s,d action in roundk.

Failure Detector Properties We next define several oracle properties [7, 8]. The range of theoracle()
function forS (and♦S) is 2Π – a group of suspected processes. Forleader(andΩ), the range isΠ.

S failure detector: ♦SC (strong completeness) – eventually every faulty process is suspected by every
correct process, andWA (weak accuracy) – some correct process is not suspected.

leader: ∃ correctpi s.t. for every roundk ∈ N and everypj ∈ Π, oraclej(k) = i.

Ω failure detector: ♦ leader.

7

2.4 Consensus and global decision

A consensus problem is defined for a given value domain,Values. In this paper, we assume thatValuesis a
totally ordered set. In a consensus algorithm, every processpi has a read-only variablepropi ∈ Valuesand
a write-once variabledeci ∈ Values∪{⊥}. In every runr, propi is initialized to some valuev ∈ Values, and
deci is initialized to⊥. We say thatpi decidesd ∈Valuesin roundk of r if pi writesd to deci whenki = k
in r.

An algorithmA solves consensus if in every runr of A the following three properties are satisfied:
(a) (validity) if a process decidesv thenpropi = v for some processpi, (b) (agreement) no two correct
processes decide differently, and (c) (termination) every correct process eventually decides.

We say that a run ofA achievesglobal decisionat roundk if (1) every process that decides in that run
decides at roundk or at a lower round; and (2) at least one process decides at roundk.

3 Complexity of Reductions

In discussing different models, the question ofreducibilitynaturally arises – one is often interested whether
one model is stronger than another, or how “close” two models are. The classical notion of reducibility
among models/oracles [8, 7] does not take complexity into account. We use GIRAF to provide a more
fine-grained notion of similarity between models.

We first explain how classical reducibility is expressed for GIRAF models. Reducibility (in the “clas-
sical” sense) means that one model can be emulated in another. A simulation from a GIRAF modelM1

to another (GIRAF or non-GIRAF) modelM2, must work within theinitialize() andcompute()functions
in M1, which must be non-blocking. Simulating a GIRAF modelM2 means invoking theinitializeA() and
computeA() functions of some algorithmA that works inM2, while satisfying the properties ofM2. In
particular, if M1 andM2 are both GIRAF models, then a reduction algorithmTM1→M2 instantiates the
initialize() and compute()functions, denotedinitializeT () and computeT (), and invokesinitializeA() and
computeA() in modelM1. If algorithmTM1→M2 exists, we say thatM2 is reducible toM1 (or weaker than
M1), and denote this byM1 ≥M2. M1 is equivalent toM2 if M1 ≥M2 andM2 ≥M1.

We next extend the notion of reducibility, and introduceα-reducibility, which takes the reduction time
(round) complexity into account. Note that the definition of a run’s GSR is model-specific: GSR(r) = k in
modelM if k is the first round from which onward no process fails and the eventual propertiesof M are
satisfied. We denote GSR in modelM and runr by GSRM (r).

Definition (α-reducibility). ModelM2 is α-reducible (α : N → N) to modelM1, denotedM1 ≥α M2, if
there exists a reduction algorithmTM1→M2 s.t. for every runr, GSRM2(r) ≤ α(GSRM1(r)).

Definition (k-round reducibility). ModelM2 is k-round reducible (k ∈ N) to modelM1, denoted
M1 ≥k M2, if M1 ≥α M2 s.t.α(x) = x + k.

In particular, ifM1 ≥0 M2 then modelM2 can be simulated in modelM1 with no performance penalty. In
Section6, we use the notion ofk-round reducibility to prove that♦S is 0-round reducible to♦n-source.

4 Generalty of GIRAF

In this section we show how GIRAF relates to the framework of [7]. A computation step in the model of [7]
consists of (i) receiving a message, (ii) consulting the oracle, (iii) using the process’s algorithm (A(p) in their

8

notation) to perform local computation and generate an outgoing message; and (iv) sending the message.
Moreover, reliable links are assumed.

Lemma 1. Every modelM1 in the framework of [7] is equivalent to a GIRAF modelM2, where the only
environment properties are the same oracle properties as inM1 and reliable links.

Proof. We prove that the framework of [7] with modelM1 can be used to implement the environment for
GIRAF resulting in modelM2. Note that in [7], A(p) is invoked upon every message receipt after the
oracle is queried, and the oracle output and incoming message are available to it. To run the generic GIRAF
algorithm in modelM1, we haveA(p) first invoke initialize(), and subsequently invokecompute()every
time it is called to take a step.A(p) passes to these functions the oracle output. Tocompute(), it also passes
the set of messages received thus far, and a counter of the number of timescompute()is called.compute()
or initialize() returns a message, which is sent immediately afterwards. Every perpetual property guaranteed
by the oracle ofM1 holds starting from the first round inM2, and every eventual property of the oracle is
eventually true inM2, guaranteeing that the properties ofM2’s oracle are preserved.

We next prove that GIRAF with modelM2 can be used to simulate the framework of [7]. Given an
algorithm A(p) designed for the framework of [7] and modelM1, we make thecompute()function of
GIRAF invoke a series of steps ofA(p) – one invocation for every messagem added toM since the
previous timecompute()was activated.compute()then aggregates all the messages that these steps return
into one composite message which is returned to GIRAF generic algorithm (to be sent in the next round).
When a step ofA(p) queries the oracle, it is given the oracle output passed tocompute(). Note that each step
of A(p) is atomic, and thereforecompute()is atomic, as required by GIRAF. Since the message arrival order
is arbitrary in [7], this a valid run inM1. Every perpetual property ofM2’s oracle is preserved starting from
the first round and is therefore true starting from the first activation ofA(p), and every eventual property
will hold starting from GSR inM2 and therefore eventually holds inM1.

5 Optimal Leader-Based Algorithm in ♦LM

The♦LM model is strictly weaker than ES: it requires that each process have only a majority of incoming
timely links (from GSR onward), which can vary in each round, and anΩ oracle that selects a correct♦n-
source as leader (it is easy to implementΩ in ES, e.g., by choosing the lowest-id correct process). Formally:

♦LM (Leader-Majority) : t < n/2, Ω failure detector, the leader is a♦n-source, and every correct process
is a♦(

⌊
n
2

⌋
+ 1)-destinationv.

Algorithm. Algorithm 2 presents a leader-based consensus algorithm for♦LM, which reaches global
decision by round GSR+2. In runs with GSR= 0, this means that consensus is achieved in 2 rounds, which
is tight [9, 24]. In runs with GSR> 0, global decision is reached in 3 rounds, numbered GSR, GSR+1, and
GSR+2, which also matches the lower bound for ES [12].

Algorithm 2 works in GIRAF, and therefore implements only theinitialize() andcompute()functions.
These function are passedleaderi, the leader trusted by the oracle.

The main idea of the algorithm, which ensures fast convergence, is to trust the leader even if it competes
against a higher bid of another process. In contrast, Paxos [25] initiates a new “ballot”, that is, aborts any
pending attempts to decide on some value, whenever a higher timestamp is observed, potentially leading
to linear running time after GSR [11]. In order to ensure that the leader does not propose a value that
contradicts previous agreement, thelastApprovalvariable (and message-field) conveys the “freshness” of
the leader’s proposed value, and the leader’s proposals are not accepted if it is not up-to-date.

9

1: Additional state
2: esti ∈ Values, initially propi

3: tsi, maxTSi, lastApprovali ∈ N , initially 0
4: prevLDi, newLDi ∈ Π
5: msgTypei ∈ {PREPARE, COMMIT, DECIDE}, initially PREPARE

6: Message format
7: 〈msgType∈ {PREPARE, COMMIT, DECIDE}, est ∈ Values, ts ∈ N , leader ∈ Π, lastApprovali ∈ N〉
8: procedure initialize(leaderi)
9: prevLDi ← newLDi ← leaderi

10: return message〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round 1 message*/

11: procedurecompute(ki, M[*][*], leaderi)
12: if deci = ⊥ then
13: /*Update variables*/
14: prevLDi ← newLDi; newLDi ← leaderi
15: maxTSi ←max{m.ts|m ∈M [ki][∗] }
16: if |{ j |M [ki][j] 6= ⊥ }| > bn/2c then
17: lastApprovali ← ki

18: /*Round Actions*/
19: if ∃m ∈M [ki][∗] s.t.m.msgType = DECIDE then /*decide-1*/
20: deci ← esti ← m.est; msgTypei ← DECIDE

21: else if(|{ j |M [ki][j].msgType = COMMIT }| > bn/2c)
and (M [ki][prevLDi].msgType = M [ki][i].msgType = COMMIT) then /*decide-2*/

22: deci ← esti; msgTypei ← DECIDE

23: else if(|{ j |M [ki][j].leader = prevLDi }| > bn/2c) /*commit-1*/
and (M [ki][prevLDi].lastApproval = ki − 1 ∧M [ki][prevLDi].leader = prevLDi) /*commit-2*/
and (newLDi = prevLDi) then /*commit-3*/

24: esti ←M [ki][prevLDi].est; tsi ← ki; msgTypei ← COMMIT;
25: else
26: esti ← anyest′ ∈ {M [ki][j].est |M [ki][j].ts = maxTSi }
27: tsi ← maxTSi; msgTypei ← PREPARE

28: return message〈msgTypei, esti, tsi, newLDi, lastApprovali〉 /*round ki + 1 message*/

Algorithm 2: Optimal leader–based algorithm for♦LM , code for processpi.

We now describe the protocol in more detail. Processpi maintains the following local variables: an
estimate of the decision value,esti initialized to the proposal value (propi); the timestamp of the estimated
value,tsi, and the maximal timestamp received in the current round,maxTSi, both initialized to0; the index
of the last round in whichpi receives a message from a majority of processes,lastApprovali, initialized to
0; the leader provided by the oracle at the end of the previous round,prevLDi, and in the current round,
newLDi; and the message type,msgTypei, which is used as follows: Ifpi sees a possibility of decision in the
next round, then it sends aCOMMIT message. Oncepi decides, it sends aDECIDE message in all subsequent
rounds. Otherwise, the message type isPREPARE.

We now describe the computation of roundki. If pi has not decided, it updates its variables as follows.
It saves its previous leader assessment inprevLDi, and its new leader (as passed by the oracle) innewLDi

(line 14). It stores the highest timestamp received inmaxTSi. If pi receives a message from a majority, it
setslastApprovali to the round number,ki. It then executes the following conditional statements:

• If pi receives aDECIDE message then it decides on the received estimate by writing that estimate to
deci (line 20).

• If pi receivesCOMMIT messages from a majority of processes, including itself and its leader, thenpi

decides on its own estimate (line 22).

10

• Let prevLDi be the leader indicated inpi’s roundki message. Consider the following three conditions
(line 23):commit-1: pi receives roundki messages from a majority of processes that indicateprevLDi

as their leader;commit-2: pi receives a message fromprevLDi that hasprevLDi as the leader, and
lastApprovalset toki − 1; andcommit-3: prevLDi = newLDi. If all three conditions are satisfied,
thenpi sets its message type (for the roundki + 1 message) toCOMMIT, adopts the estimate received
from prevLDi, sayest′, and sets its timestamp to the current round numberki (line 24). We say that
pi commits in roundki with estimateest′.

• Otherwise,pi adopts the estimate and the timestamp of an arbitrary message with the highest times-
tampmaxTSi, and sets the message type toPREPARE(lines 26–27).

Finally, pi returns the message for the next round.

Correctness. We formally prove Algorithm2’s correctness inAppendix A. Our main lemma (Lemma 11)
shows that no two processes decide differently, by showing that if some process decidesx in roundk, then
from roundk−1 onward, the only committed estimate isx. (This proves agreement since a decision is made
when either aDECIDE or a majority ofCOMMITs is received.) We now intuitively explain why this is correct.
The claim is proven by induction on round number. Letpi be the first process that decides, and denote its
decision value byx, and the decision round byk. (the decision is by ruledecide-2; rule decide-1is not
applicable sincepi is the first process to decide). Therefore, in roundk, pi hearsCOMMIT from majorityM ,
including itself and its roundk prevLD, pl, and decides on its own estimate,x. Let us first examine round
k−1. Processes ofM commit in this round. Rulescommit-1andcommit-3ensure that allCOMMIT messages
sent in this round have the same estimate and leader fields, namely,x, andpl. Additionally, it is easy to see
that a process’s timestamp never decreases. Thus, since processes ofM commit in roundk − 1, they have
timestamps of at leastk − 1 in all ensuing rounds. Now consider roundk. Any process that commits in
roundk hears from a majority with the same leader, and since this majority intersectsM , the leader ispl.
Therefore, any commitment in roundk is made with the estimate ofpl, i.e.,x.

We now consider the inductive step, i.e., roundk′ > k. If pi commits in roundk′, it commits on the
estimate of its leader. If that leader sends aCOMMIT message, by induction, its estimate isx. Otherwise, the
leader sends aPREPAREmessage. Bycommit-2, that leader’slastApprovalfield is set tok′−1 ≥ k, implying
that the leader receives a message from a majority of processes in roundk′ − 1. Therefore, it receives at
least one message from a process inM with timestamp at leastk− 1. Since the highest timestamp received
is adopted, the leader adopts timestampts ≥ k − 1 and some estimatez. It is easy to see that if a message
(other thanDECIDE) is sent with timestampts and estimatez, then some process commitsz in roundts.
Therefore, some process commitsz in a round≥ k − 1. By induction, we get thatz = x. Therefore, the
leader adoptsx with the maximal timestamp in roundk′ − 1, andpi commitsx in roundk′.

Performance. We now give an intuitive explanation why in round GSR+1, every correct processpi that
does not decide by the end of that round evaluates the threecommitrules (line 23) totrue (this is formally
proven inAppendix A). Sincepi does not decide by the end of GSR+1, all the processes it hears from in this
round do not decide by round GSR. By definition of♦LM , from round GSR onward, each correct process
receives messages from a majority of correct processes, including its leader,pl. Therefore, thelastApproval
field of every round GSR+1 message is GSR (notice for the case of GSR= 0 that lastApprovalis initialized
to 0). Moreover, it is assured by theΩ failure detector, that from round GSR onward, all processes trust the
same leader,pl. Therefore, from round GSR+1 onward, all running processes (including the leaderpl) send
the same leader identifier in their messages. (Note that rulecommit-3is assured to be true only starting at
round GSR+1, sinceprevLDi of roundki = GSR is based on the oracle’s output in round GSR−1, in which

11

it is not assured that all processes trust the same leader.) We conclude that in round GSR+2 every correct
process sends aCOMMIT or DECIDE message, and by the end of that round, every correct process decides.

6 Linear Bound for ♦SR

We use the notion ofk-round reducibility, to prove that at leastn rounds starting at GSR are needed to solve
consensus in the♦SR model. We formally define the♦SR model as follows:

♦SR (Strong-Reliable) : t < n/2, reliable links,♦S failure detector, the unsuspected process is♦n-source
and all correct processes are(n− f − 1)-destinationsv, wheref < n

2 − 1).

Lemma 2. Any modelM♦S that requires a♦S failure detector and environment propertiesP is 0-round
reducible to a modelM♦n that assumes a correct♦n-source process andP, i.e. M♦n ≥0 M♦S .

Proof. We implement the reduction algorithmTM♦n→M♦S
as follows: computeT () receives a multi-set of

messagesM received so far, and the current round numberk, but no oracle output (sinceM♦n does not
include an oracle) and produces the set of suspected processesFDT as follows:FDT ← { j | M [k][j] =
⊥ }. It then passesM , k andFDT to computeA(). initializeT () calls initializeA() with ∅ as the set of
suspected processes. Since in every roundk′ ≥ GSRM♦n

there exists one process (the♦n-source correct
process) whosek′ round message reaches every correct process by the end of roundk′, this process is not
included in any of theFDT sets produced by algorithmTM♦n→M♦S

at any process in roundk′, i.e. is not
suspected. Since no faulty process enters roundGSRM♦n

, no such process sends a roundk′ message, and
thus every faulty process is suspected from roundGSRM♦n

onward. Therefore, the produced setFDT

satisfies the specification of♦S in our framework such that the eventual properties of♦S are satisfied from
GSRM♦n

onward. SinceM (the message set) andk are not altered byTM♦n→M♦S
, all the other propertiesP

are still preserved from roundGSRM♦n
onward. Therefore,GSRM♦n

= GSRM♦S
andM♦n ≥0 M♦S .

FromLemma 2, it follows that suffices to prove the lower bound for a model just like♦SR, but without
the assumption of♦S. We denote this model by♦SR\♦S.

We prove the lower bound using the impossibility of consensus in themobile failuremodel [29], in
which no process crashes, and in each communication step there is one process whose messages may be
lost.

Below we denote the prefix of lengthl rounds of a runr by r(l).

Lemma 3. For anyk ∈ N , let r be a run in the mobile failure model. There exists a runr′ in ♦SR\♦S
with GSR(r) = k andf = 0 such thatr′(k + n− 2) = r(k + n− 2).

Proof. We constructr′ as follows: (i)f = 0 andGSR(r′) = k, (ii) r′ is identical tor in the firstk + n− 2
rounds, except that messages are delayed to roundk + n − 1 instead of being lost, and (iii) from round
k + n− 1 onward,r′ is synchronous (all links are timely).

We show thatr′ is a run in model♦SR\♦S. In each round ofr′(k + n− 2), a subset of messages sent
by at most one process is delayed and all other messages arrive in the same round in which they are sent, and
from roundk +n− 1 onward, no message is delayed inr′. Therefore, inr′, each process receives messages
from at leastn− 1 processes in every round and is therefore an(n− f − 1)-destinationv (recall thatf = 0
in r′). Sincer′(k + n− 2) lasts onlyn− 1 rounds starting fromGSR(r′) (and there aren processes), there
exists some correct process whose messages are not delayed in any round fromGSR(r′). This process is a
correct♦n-source inr′. Finally, since every message sent before roundk + n − 1 in r′ arrives at the latest
in roundk + n − 1 and every message sent in later round arrives in the same round in which it is sent, we
conclude that links are reliable inr′.

12

We strengthen the lower bound by proving that it is impossible to reach global decision in less thann rounds
from GSR in the♦SR\♦S model, even with an algorithm especially tailored for some specific GSR.

Lemma 4. For k ∈ N, k ≥ 1, no algorithm exists that in every runr in which GSR(r) = k achieves global
decision before round GSR(r)+(n− 1), in the♦SR\♦S model.

Proof. For k ∈ N, k ≥ 1, assume there exists an algorithmAk that solves consensus in♦SR\♦S, and in
every run with GSR= k reaches global decision by roundk + n− 2. Then we runAk in the mobile model
for k+n−2 rounds. Denote this run byr. FromLemma 3, there is a runr′ in ♦SR\♦S with GSR(r′) = k
andf = 0, such thatr′(k + n− 2) = r(k + n− 2). Therefore,Ak cannot distinguishr from r′ in the first
k + n− 2 rounds and decides by roundk + n− 2 in r as it does inr′. We conclude thatAk reaches a global
decision for every runr in the mobile failure model. A contradiction to [29].

Note that our proof (combined with Algorithm 2, which achieves global decision by GSR+2 in ♦LM)
immediately implies that♦SR �k ♦LM for anyk < n − 3, since otherwise, we could use the reduction
algorithm to simulate♦LM in ♦SR in any runr with GSR♦LM < GSR♦SR(r)+n−3 and use Algorithm2
on top of the reduction algorithm. Since Algorithm2 assures global decision byGSR♦LM (r) + 2 we get
that there exists an algorithm that for any runr achieves global decision before roundGSR♦SR(r) + n− 1,
a contradiction to our lower bound.

7 Constant-Time Algorithm in ♦AFM

In this section, we investigate whether constant time decision is possible without an oracle in a model weaker
than ES. We are not aware of any previous constant-time algorithms for such a model.

In the♦AFM model, each process has timely incoming links from a correct majority of processes, and a
majority of timely outgoing links (from GSR onward), both can vary in each round. The number of outgoing
links may decrease if more incoming links are timely. Formally:

♦AFM (All-From-Majority) : t < n/2, ∃m ∈ N , f ≤ m < n/2 such that every correct process
is a♦(n−m)-destinationv and a♦(m + 1)-sourcev. Note thatm can be different in each run.

Algorithm. Algorithm 3 is a majority-based algorithm for♦AFM, which always reaches global decision
by round GSR+5. At the end of this section we present an optimization of the algorithm for the case of
n = 2m + 1 (i.e., when both(m + 1) and(n −m) are majorities), and inAppendix Bwe prove that the
optimized algorithm reaches global decision by round GSR+4 for n = 2m + 1 and by round GSR+5 for
other values off ≤ m < n/2. The code used for optimization is marked in gray in Algorithm3 and should
be ignored until its explanation at the end of this section.

In general, Algorithm3 is similar to Algorithm2. We therefore focus mainly on the differences from
Algorithm 2. Since♦AFM does not assume a failure detector, the oracle’s output is not a parameter for
compute().

The variables maintained by each processpi are similar to those of Algorithm2. A new variable,
maxESTi, holds the maximal estimate received with timestampmaxTSi in the current round (recall
that Valuesis a totally ordered set). A new message type is introduced,PRE-COMMIT. Intuitively, pre-
committing is similar to a committing, but without increasing the timestamp. An estimate must be pre-
committed by some process before it is committed.

Pre-commit is needed, since, unlike♦LM, where the leader is a♦n-source,♦AFM never assures that a
process is able to convey information to all other processes in a single round. If we hadn’t introducedPRE-
COMMIT, it would have been possible for two different estimates to be committed in alternating rounds,

13

1: Additional state
2: esti, maxESTi ∈ Values, initially propi

3: tsi, maxTSi ∈ N, initially 0
4: IgotCommiti ∈ Boolean, initially false

5: gotCommiti ∈ 2Π, initially ∅
6: msgTypei ∈ {PREPARE, PRE-COMMIT, COMMIT, DECIDE}, initially PREPARE

7: procedure initialize()
8: return message〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round 1 message*/

9: procedurecompute(ki, M[*][*])
10: if deci = ⊥ then
11: /*Update variables*/
12: maxTSi ←max{m.ts|m ∈M [ki][∗] }
13: maxESTi ←max{m.est|m ∈M [ki][∗] ∧m.ts = maxTSi }
14: IgotCommiti ← ∃m ∈M [ki][∗] s.t.m.msgType = COMMIT

15: gotCommiti ← { j |M [ki][j].IgotCommit }
16: /*Round Actions*/
17: if ∃m ∈M [ki][∗] s.t.m.msgType = DECIDE then /*decide-1*/
18: deci ← esti ← m.est; msgTypei ← DECIDE

19: else if|{ j |M [ki][j].msgType = COMMIT }| > bn/2c ∧ M [ki][i].msgType = COMMIT then /*decide-2*/
20: deci ← esti; msgTypei ← DECIDE

21: else if|
⋃

j∈Π M [ki][j].gotCommit| > bn/2c then /*decide-3*/

22: deci ← esti ← maxESTi; msgTypei ← DECIDE

23: else if|{ j |M [ki][j].est = maxESTi }| > bn/2c then /*pre-commit*/
24: if ∃j s.t.M [ki][j].est = maxESTi ∧M [ki][j].msgType = COMMIT or PRE-COMMIT then /*commit*/
25: esti ← maxESTi; tsi ← ki; msgTypei ← COMMIT;
26: else
27: esti ← maxESTi; tsi ← maxTSi; msgTypei ← PRE-COMMIT;
28: else
29: tsi ← maxTSi; esti ← maxESTi; msgTypei ← PREPARE

30: return message〈msgTypei, esti, tsi , IgotCommiti, gotCommiti 〉 /*round ki + 1 message*/

Algorithm 3: Majority–based algorithm for♦AFM model. Code for processpi. Optimization forn = 2m + 1 is
marked in gray.

where a majority of processes hear and adopt estimateest1, (which has the maximal timestamp) but some
other process does not hearest1 and commits toest2, increasing its timestamp. In the next round the
situation flips, andest2 is adopted by a majority whileest1 is committed, and so on, precluding decision.

In ♦AFM, in every round from GSR onward, each process hears from(n −m) correct processes, and
its outgoing message reachesm + 1 processes. Note that them + 1 processes the message reaches overlaps
the set of(n−m) correct processes every other process hears from in the next round, allowing information
to propagate to all correct processes in two rounds. Thus, a singlepre-commitphase suffices to eliminate
races as described above, where two different values are repeatedly committed after GSR.

We now describepi’s computation. Ifpi does not decide, it evaluates the following two conditions:
pre-commit(line 23): pi receives messages from a majority of processes withmaxESTi as their estimate;
andcommit(line 24): at least oneCOMMIT or PRE-COMMIT message is received withmaxESTi. If both
conditions are true, thenpi sets its message type (for the roundki + 1 message) toCOMMIT, adopts the
estimatemaxESTi, and sets its timestamp to the current round numberki (line 25). We say thatpi commits
in round ki with estimatemaxESTi. If, however, only the first condition holds, thenpi sets its message
type toPRE-COMMIT, adopts the estimatemaxESTi, and sets its timestamp tomaxTSi (line 27). We say
thatpi pre-commits in roundki with estimatemaxESTi. If neither condition holds,pi prepares (sets his

14

message type toPREPARE) and adopts the estimatemaxESTi and timestampmaxTSi (line 29).

Correctness. A process may commit with different estimates in different rounds. However, we show (in
Appendix B) that starting from a roundk in which a majority of processesM commit with some estimate
x onward, every commit is with estimatex. Note that this implies agreement, since decision is impossible
before a majority of processes commit (see decision rules). To understand why this is true, note first that
by rule pre-commit, all COMMIT and PRE-COMMIT messages sent in the same round are with the same
estimate. This explains why a commitment withy 6= x is impossible in roundk. Additionally, note
that a process’s timestamp never decreases, and therefore the processes inM have timestamps≥ k in
subsequent rounds. Suppose that a processpi commits in roundk′ > k. Rulepre-commitensures thatpi

hears from a majority. Since every two majorities intersect,pi hears from at least one process inM . Since
pi commits onmaxESTi, which has the maximal timestamp,pi commits with a timestamp≥ k. Using
an inductive argument, we get thatmaxESTi = x. Since no decision is made before a majority commits,
and every decision is either on the value of a previous decision (ruledecide-1), or on the value sent in
COMMIT messages (ruledecide-2), which equalsx from roundk onward, all decisions are withx.

Performance. We now explain why the algorithm decides by round GSR+5 (a formal proof appears
in Appendix B). First, if some process decides by round GSR+3, then its DECIDE message reaches every
process by the end of round GSR+5. Assume no process decides by GSR+3. Second, if no process commits
in round GSR, the maximum timestamp sent in GSR is the same as the maximum timestamp sent in round
GSR+1, and it reaches every correct process by the end of roundk1 =GSR+1, at which point all processes
have the samemaxEST . Finally, if a process commits in GSR, the use of pre-commit ensures that no
different value is committed in GSR+1, and thus this value has the highest timestamp among those sent in
round GSR+2, and this timestamp and its estimate reach every process by the end of roundk2 =GSR+2. In
both cases, every process has the samemaxEST at the end of roundk = k1 or k = k2. Thus, all processes
send the same estimate in roundk + 1, and in the ensuing round, a majority of processes receives it and
pre-commits (at least). In roundk +2, every correct process receives the same estimate from majority and a
PRE-COMMIT or COMMIT message, and commits. Finally, by roundk + 3, which is at most GSR+5, every
process decides by ruledecide-2.

Optimization for n = 2m+1 We present an optimization of Algorithm3 for the case ofn = 2m+1 (i.e.,
when both(m + 1) and(n−m) are majorities). The additional code used for the optimization is marked in
gray in Algorithm3. In Appendix B, we prove that the optimized algorithm reaches global decision by round
GSR+4 (five rounds) forn = 2m + 1 and by round GSR+5 (six rounds) for other values off ≤ m < n/2.

The optimization relies on theIgotCommitandgotCommitvariables, that are used for “gossiping” about
COMMIT messages. Whenever a process receives aCOMMIT message, it indicates this in its next round
message by settingIgotCommitto true. In order to have all processes learn about commits, we use the
gotCommitmessage field. A process includes in thegotCommitset that it sends in roundk+1, all processes
that it knows have gottenCOMMIT messages in roundk− 1 (based onIgotCommitindications sent in round
k). Thus, in roundk + 1, the incominggotCommitsets from different processes can givepi a better picture
about which processes gotCOMMIT messages in roundk − 1. In Appendix A, we prove that if the union of
thegotCommitgroups that a process gets exceedsbn/2c, it is safe for the process to decide onmaxEST
(rule decide-3) and this optimization allows us to speed up global decision to be by round GSR+4 instead
of by round GSR+5. We formally prove the correctness of the optimized Algorithm3 in Appendix B.

15

8 Impossibility of Bounded Time Global Decision in♦MFM

We define the♦MFM family of models, form ∈ N+, f ≤ m < n/2, as follows:

♦MFM(m) (Majority-From-Majority) : t < n/2, reliable links, every correct process is a♦(n − m)-
source and♦m-accessible,m correct processes are♦n-sources, and(n − m) correct processes are
♦(n−m)-accessible.

Note that these models are only slightly weaker than♦AFM, where we have shown that constant-time
decision is attainable. We show that the time for global decision after GSR in all of these models is un-
bounded.

Lemma 5. For any f ≤ m < n/2 (m ∈ N+), there exists no consensus algorithm that reaches global
decision in bounded time from GSR in♦MFM(m).

Proof. Assume by contradiction that an algorithmA reaches global decision by round GSR(r)+TA in every
run r. We partition the processes into three groups: a groupP of m processes, a groupQ of m processes,
and a groupR of the remainingn− 2m (≥ 1, sincem < n/2) processes.

We construct three runs in♦MFM(m), in which no process fails (f = 0), and processes of each group
have perpetually timely bidirectional links to all other processes of the same group. For each run we state
which inter-group links are♦timely. These links are timely only from GSR onward, and delay until round
GSR all messages sent before that round.

Each one of the three runs is a run in♦MFM(m): in every run, either groups Q and R or groups P and
R are fully connected with timely links from GSR onward. The number of processes in the resulting group
is n −m. Therefore, in every run there aren −m processes that are♦(n −m)-accessible (and therefore
♦(n − m)-source and♦m-accessible, sincen − m > m). The otherm processes are correct and fully
interconnected with timely links from the start, i.e.m-accessible, and have♦timely outgoing links to every
process,i.e.m correct♦n-source processes. Therefore, the requirements of the model are fulfilled in each
one of the three runs below.

We construct a runσ0 in which from round GSR(σ0) = 1 onward (i) processes ofP have timely outgoing
links to all other processes, and (ii) processes ofQ andR have timely links among them. All other links
between groups deliver messages only after round GSR(σ0)+TA = TA + 1. All processes propose0. Since
algorithmA always reaches global decision by round GSR(r)+TA, processes ofP decide0 (by validity) by
roundTA + 1.

We next construct a runσ1, in which from round GSR(σ1) = TA + 2 onward (i) processes ofQ have
timely outgoing links to all other processes, and (ii) processes ofP andR have timely links among them.
All other links between groups deliver messages only after round GSR(σ1)+TA. All processes propose
1. Since algorithmA always reaches global decision by round GSR(r)+TA, processes ofQ decide1 (by
validity) by round GSR(σ1)+TA.

Finally, we construct a runσ2 in which, like inσ1, starting from round GSR(σ2) = TA + 2 onward (i)
processes ofQ have timely outgoing links to all other processes, and (ii) processes ofP andR have timely
links among them. All other links between groups deliver messages only after round GSR(σ2)+TA. In σ2,
processes ofQ propose1 and processes ofP andR propose0. Note that processes ofQ decide1 since they
cannot distinguish this run fromσ1. Processes of groupP cannot distinguishσ2 from σ0 by roundTA + 1
and hence decide0, violating agreement. A contradiction.

Note that our notion of timely links is more abstract than the real-time-based definition used in [2, 3, 27],
where messages arrive within bounded latency. Nevertheless, since we never explicitly reason about time
duration in constructing our runs, our proof is applicable even if all messages on timely links in these runs
are delivered within bounded latency, and hence covers these models.

16

9 Conclusions and Future Directions

We have focused on the question of which timeliness or failure detector guarantees one should attempt to
implement in a distributed system. While it is obvious that weaker timeliness/failure detector guarantees can
be practically satisfied using shorter timeouts and cheaper hardware than stronger ones, it was not previously
established what implications the use of weaker properties has on algorithm performance. Although from a
theoretical perspective it is interesting to discover the weakest conditions that can be used to ensureeventual
decision, in practice, timely decision is of essence. System designers are often willing to spend more on
hardware, if this can ensure better performance. Likewise, implementations are better off using longer
timeouts if this can lead to faster decision overall.

We have presented a general framework GIRAF, to answer such questions. GIRAF does not restrict the
set of allowed algorithms, models or failure patterns, but rather organizes algorithms in a “round” struc-
ture, which allows for analyzing their complexity. We used our framework to show that some previously
suggested guarantees were too weak to solve consensus in a timely manner. We haver further shown that
it is possible to strengthen a model in which consensus is not solvable in bounded time (♦MFM(m) for
n = 2m + 1) to get a model in which consensus is solvable in constant time (♦AFM) by adding just one
♦timely incoming link per process, for a minority of processes. In such situations, it is worthwhile to in-
crease timeouts and/or buy faster hardware in order to implement stronger guarantees. On the other hand,
we have shown that the strong ES model (which requires timely communication amongall pairs of correct
processes) can be weakened in ways that are significant from a performance standpoint (as shown in [4, 5]),
and yet with little (for♦AFM) or no (for♦LM) penalty on performance of the consensus algorithm.

We believe that GIRAF has the potential to further enhance the understanding of performance tradeoffs
between different models, and opens vast opportunities for future work. We now point out several exemplar
directions for future research.

• One can use our new notion ofα-reducibility (andk-round reducibility) to compare various models
more meaningfully than with the classical notion of reducibility, by considering the time (round)
complexity of the reduction.

• While this paper focuses on the performance of the algorithm after synchronization, an important
complementary direction for future study is understanding the performance of the environment’s syn-
chronization mechanism, that is, the actual time it takes to reach GSR in various timing models.
Whereas GIRAF provides generic analysis of the cost of algorithms in terms of different round-types
(e.g., all-to-all communication in each round or communication with a majority of processes), in order
to deduce which algorithm is best for a given network setting, this analysis should be complemented
with a measurement study of the cost of rounds of different types in that specific setting.

• It would be interesting to further study the fine line between models that allow bounded and un-
bounded decision times. For example, is it possible to weaken♦AFM by making fewer processes
♦(m + 1)-sources, and still achieve constant or bounded time consensus? and what would be the ef-
fect of weakening the assumption that the leader is a♦n-source in♦LM, on consensus performance?

• In this paper, we have focused on global decision. It can be interesting to investigate local consensus
decision [16], i.e., the number of rounds untilsomeprocess decides.

• Finally, there are gaps between upper and lower bounds shown in Table 1, which might be closed.

17

Acknowledgments

We thank Marcos Aguilera, Partha Dutta, Rachid Guerraoui, Eshcar Hilel, Denis Krivitski, Keith Marzullo,
Yoram Moses, and Neeraj Suri for many helpful discussions.

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable leader election. InDISC,
pages 108–122, 2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implementing omega with weak
reliability and synchrony assumptions. InPODC, pages 306–314, 2003.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-efficient leader
election and consensus with limited link synchrony. InPODC, pages 328–337, 2004.

[4] O. Bakr. Performance evaluation of distributed algorithms over the Internet. Master’s thesis, Mas-
sachusetts Institute of Technology, Feb. 03.

[5] O. Bakr and I. Keidar. Evaluating the running time of a communication round over the Internet. In
PODC, pages 243–252, 2002.

[6] N. Cardwell, S. Savage, and T. Anderson. Modeling tcp latency. InINFOCOM, pages 1742–1751,
2000.

[7] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996.

[8] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.J. ACM,
43(2):225–267, 1996.

[9] B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus.J. Algorithms, 51(1):15–
37, 2004.

[10] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. InIEEE Transactions on
Parallel and Distributed Systems, number 10(6), pages 642–657.

[11] P. Dutha, R. Guerraoui, and I. Keidar. The overhead of consensus failure recovery. Technical Report
200456,École Polytechnique F́ed́erale de Lausanne, 2004.

[12] P. Dutha, R. Guerraoui, and I. Keidar. The overhead of consensus failure recovery. Submitted for
publication, 2005.

[13] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero degradation. InFourth European
Dependable Computing Conference (EDCC-4), Oct. 2002.

[14] P. Dutta and R. Guerraoui. The inherent price of indulgence. In21st ACM Symp. on Principles of
Distributed Computing (PODC-21), July 2002.

[15] P. Dutta, R. Guerraoui, and L. Lamport. How fast can eventual synchrony lead to consensus?. InDSN,
pages 22–27, 2005.

18

[16] P. Dutta, R. Guerraoui, and B. Pochon. Tight lower bounds on early local decisions in uniform con-
sensus. In17th Intl. Symp. on Distributed Computing (DISC-17), pages 264–278, Oct 2003.

[17] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.J. ACM,
35(2):288–323, Apr. 1988.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process.J. ACM, 32(2):374–382, Apr. 1985.

[19] E. Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In17th ACM Symp.
on Principles of Distributed Computing (PODC-17), pages 143–152, 1998.

[20] R. Guerraoui. Indulgent algorithms. In19th ACM Symp. on Principles of Distributed Computing
(PODC-19), pages 289–298, July 2000.

[21] R. Guerraoui and M. Raynal. The information structure of indulgent consensus.IEEE Transactions
on Computers, 53(4):453–466, 2004.

[22] R. Guerraoui and A. Schiper. ”Γ-accurate” failure detectors. InWDAG, pages 269–286, 1996.

[23] R. Guerraoui and A. Schiper. Consensus: The big misunderstanding. InFTDCS ’97: 6th IEEE Wshop
on Future Trends of Distributed Computing Systems (FTDCS ’97), page 183, 1997.

[24] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no faults - a tutorial.
Technical Report MIT-LCS-TR-821, MIT, May 2001.

[25] L. Lamport. The part-time parliament.ACM Trans. Comput. Syst., 16(2):133–169, May 1998.

[26] N. Lynch and M. Tuttle. An introduction to Input/Output Automata.CWI Quarterly, 2(3):219–246,
1989.

[27] D. Malkhi, F. Oprea, and L. Zhou. Omega meets paxos: Leader election and stability without eventual
timely links. 19th Intl. Symp. on Distributed Computing (DISC-19), pages 199–213, sep 2005.

[28] A. Mostefaoui and M. Raynal. Solving consensus using Chandra-Toueg’s unreliable failure detectors:
A general quorum-based approach. In13th Intl. Symp. on Distributed Computing, pages 49–63, Sept.
1999.

[29] N. Santoro and P. Widmayer. Time is not a healer.6th Annual Symp. Theor. Aspects of Computer
Science, volume 349 of LNCS:304–313, feb 1989.

[30] J. L. Welch and H. Attiya.Distributed computing: fundamentals, simulations and advanced topics.
McGraw-Hill, Inc., Hightstown, NJ, USA, 1998.

19

A Correctness of Algorithm 2

Lemma 6. A process’s timestamp at the start of roundk is less thank.

Proof. We prove the claim by induction on the round numberk′. Base case:k′ = 1. The claim is correct
since a process’s timestamp is initialized to 0. The induction hypothesis is that the claim holds up to round
k′. Lets us inspect the possible actions of processes at the end of roundk′. A process can decide and in
this case its timestamp does not change and in roundk′ + 1 it will remain less or equal tok′ − 1, by the
induction hypothesis. Alternatively, a process may commit, and then (on line 24) it will adoptk′ as its new
timestamp for roundk′ + 1, and the claim holds here as well. Finally, a process may adopt the timestamp of
a message it received in roundk′ (lines 26-27) and again, by induction hypothesis, the claim is true (since
communication rounds are closed).

Lemma 7. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its timestamp does not change. It does not change in the
following rounds as well. If a processpi does not decide in roundk, then it can change its timestamp by
adopting eitherk (when committing on line 24) or the maximum timestamp received in roundk as its new
timestamp (lines 26-27). Sincepi receives its own message in roundk, the latter is not lower than its current
timestamp (recall that communication rounds are closed). In case it commits, since according toLemma 6,
its old timestamp cannot exceedk − 1, by adoptingk it can only increase.

Lemma 8. For every roundk, no two processes commit with different estimates in roundk, and no two
processes commit with differentnewLDs in roundk.

Proof. Consider two processespi andpj that commit in roundk with estimatesesti andestj , andleader
valuesnewLDi andnewLDj , respectively. Also, in roundk, letprevLDi be the leader ofpi andprevLDj

be the leader ofpj . Fromcommit-1, each of them has received in roundk a majority of messages that contain
prevLDi andprevLDj as leader, respectively. As two majorities intersect,prevLDi = prevLDj . Fur-
thermore, fromcommit-3, newLDi = prevLDi andnewLDj = prevLDj . So,newLDi = prevLDi =
prevLDj = newLDj . From the algorithm,pi commits with the estimate sent byprevLDi, andpj com-
mits with the estimate sent byprevLDj . As prevLDi = prevLDj , pi and pj commit with the same
estimate.

Lemma 9. If some process sends aPREPAREor COMMIT message with timestampts > 0 and estimatex
then some process commits in roundts with estimatex.

Proof. We prove the claim by induction on the round numberk′, starting from a roundk0 in which a message
with the timestampts was first sent with some estimatex′, by some processpj .

Base Case.k‘ = k0. From the definition ofk0, pj could not receive a message withts from another process
in an earlier round. Thus,pj commits with timestampts and estimatex′ in roundk0 − 1, and from the
algorithm,k0 − 1 = ts.

Induction Hypothesis.If any process sends aPREPAREor COMMIT message in roundk1, such that
k0 ≤ k1 ≤ k′, with timestampts and some estimatex′′, then some process commits in roundts with
estimatex′′.

Induction Step.We need to show that if, in roundk′ + 1, a process sends aPREPAREor COMMIT message
with timestampts and some estimatex′′ then some process commits in roundts with estimatex′′. Observe,

20

that if a COMMIT message is sent, it would have a timestamp equal to the previous round numberk′, and
sincets = k0 − 1 < k′ (by the base case), this case is not possible. Observe that if aPREPAREmessage
is sent in roundk′ + 1 with timestampts and estimatex′′, the sending process must have adopted the
timestamp together with the estimate from somePREPAREor COMMIT message sent in roundk′. By the
induction hypothesis, we get that some process commits in roundts and estimatex′′.

Please note that the claim inLemma 9does not hold forDECIDE messages, since a process decides adopting
only the estimate and not the associated timestamp from anotherDECIDE message.

Lemma 10. If a processpi decides in roundk by rule decide-2on estimatex, then every process that
commits in roundk, commits with estimatex.

Proof. Suppose for the purpose of contradiction that a processpj that commits withy 6= x in roundk. Since
pj does not decide in roundk, it evaluates rulesdecide-1anddecide-2to false. pj commits the estimate
that it receives from its leader (line 24). We denote this leader bypl. By rulecommit-1, there is a majority
of proccesses that send a roundk message withpl as leader. Let us denote this majority byM1. Observe
processpi that decides in roundk. pi receives aCOMMIT message from a majority of processes, including
its leaderprevLDi and itself. We denote this majority byM2. By Lemma 8everyCOMMIT message sent
by a process inM2 has the same leader field and the same estimate (x). SinceM1 andM2 intersect (as
every two majorities), the leader field indicatespl. Sincepi receives aCOMMIT message from itself, it as
well sends a roundk message withpl as leader. Since whatpi actually sent is now in hisprevLDi variable,
we get thatprevLDi = pl. Sincepi receives a messageMi[k][prevLDi] with msgType = COMMIT, we
conclude thatpl sends aCOMMIT message in roundk and as was explained, this means that its message
includesx as the estimate. This contradicts our assumption thatpj sees an estimatey 6= x sent bypl.

Lemma 11 (Uniform Agreement). No two processes decide differently.

Proof. Let k be the lowest numbered round in which some process decides. Supposepi decidesx in round
k. Since no process decides in an earlier round,pi decides by ruledecide-2. Therefore,pi receives a majority
of COMMIT messages in roundk, and it decides on the estimate of one of theCOMMIT messages (the one
from itself). FromLemma 8, all COMMIT messages include the same estimate and leader, saypl.

Thuspi receives a roundk message of the form〈COMMIT, x, k− 1, pl, ∗〉 from a majority of processes,
and hence, a majority of processes commits in roundk − 1 with estimatex. Let us denote this majority of
processes bySx. Note thatk− 1 ≥ 1 since according to the pseudo-code, the first round of the algorithm is
round number 1. We claim that if any process commits or decides in roundk′ ≥ k − 1 then it commits or
decidesx. The proof is by induction on round numberk′.

Base Case.k′ = k − 1. As processes inSx commitx in roundk − 1, from Lemma 8, no process commits
with an estimate different fromx in roundk − 1. By definition ofk, no process decides in roundk − 1.

Induction Hypothesis.If any process commits or decides in any roundk1 such thatk − 1 ≤ k1 ≤ k′, then
it commits with estimatex or decidesx.

Induction Step. decision in roundk′ +1. If some processp decides in roundk′ +1, then in that round either
some other process sends aDECIDE message with decision valuey or p sends aCOMMIT message with
estimatey. In both cases, by the induction hypothesis,y = x.

commit in roundk′ + 1. Suppose by contradiction that some processpj commits in roundk′ + 1 with
estimatez 6= x. First, sincepi decides by ruledecide-2in roundk, by Lemma 10we have thatk′ + 1 6= k.
Since we know by the induction hypothesis thatk′ ≥ k − 1 we now get thatk′ > k − 1. Sincepj commits,

21

it does not receive anyDECIDE message in roundk′+1. Sincecommit-2evaluated to true forpj , a message
m = 〈type (6= DECIDE), z, tsz, ld, k′〉 was received bypj in roundk′ + 1 from the leaderld. Notice
thattsz might be different thanmaxTSi of roundk′ + 1.

Observe thelastApproval field of the messagem. Its value isk′. Sincek′ > k − 1 ≥ 1 we get that
k′ > 1. Since thelastApproval field can become greater than 0 only on line 17 of thecompute() function,
this indicates that the leader received a message from a majority of processes in roundk′, and therefore it
must have heard from at least one processpa ∈ Sx. Recall that every process inSx commits in roundk − 1
with estimatex. Thuspa has timestampk − 1 at the end of roundk − 1. FromLemma 7, sincek′ > k − 1,
pa’s timestamp is at leastk − 1.

If type =COMMIT, this means thattsz = k′ (line 24). As was explained,k′ > 1, and byLemma 9
we get that some process commits in roundk′ with estimatez 6= x. This is a contradiction to the induc-
tion hypothesis. Iftype = PREPARE, it means thattsz is the maximum timestamp the leader received in
any message of roundk′ (lines 26-27). Because it received a message frompa and because, according to
Lemma 6, the highest timestamp that can be received in roundk′ + 1 is k′, we get thatk − 1 ≤ tsz ≤ k′,
and since (byLemma 9) there must be a process that commits in roundtsz with estimatez 6= x (recall that
k − 1 > 0), this is a contradiction to the induction hypothesis.

Lemma 12. In every runr, all correct processes decide by roundGSR(r) + 2.

Proof. Observe that in our model every correct process executes an infinite number of rounds, and in par-
ticular, executes roundGSR(r) + 2. We prove the lemma by contradiction. Assume that some correct
processpj does not decide by roundGSR(r) + 2 in some runr. Therefore,pj couldn’t have received a
COMMIT message from a majority of processes (including from itself and the leader) in roundGSR(r) + 2.
Since, in our model, fromGSR(r) onward, every correct process receives messages from a majority of
correct processes (including itself and the leader), it must have received at least one message with type
t other thanCOMMIT. t cannot beDECIDE, sincepj didn’t decide in roundGSR(r) + 2. Therefore,t
must bePREPARE. Therefore, there must be a processpi that sent in roundGSR(r) + 2, a message with
msgType = PREPARE.

Let us now observe roundGSR(r) + 1. pi couldn’t have decided, and couldn’t have committed in this
round since it sent aPREPAREmessage in the next round. Therefore, one of the commit rules must have been
evaluated tofalse for pi. It couldn’t have beencommit-1or commit-3, because all correct processes agree
on the identity of the leader fromGSR(r) onward, and each process receives a message from a majority
of processes (commit-1), and starting from roundGSR(r) + 1, the rulecommit-3evaluates totrue as was
explained in the description of the algorithm.

Therefore,commit-2must have been the rule that evaluated tofalse. The only possible reason for this
is that the leader indicatedlastApproval 6= GSR(r) in its roundGSR(r) + 1 message. IfGSR(r) = 0
we get a contradiction sincelastApproval is initialized to 0. Otherwise (GSR(r) > 0), notice that the
leader couldn’t have decided by start of roundGSR(r), since otherwise all correct processes would decide
by end ofGSR(r). Therefore, according to our algorithm, the leader had to setlastApproval = GSR(r)
in round GSR(r) (since every process hears from a majority starting at roundGSR(r)), and this is a
contradiction.

22

Theorem 13. The algorithm solves consensus by round GSR(r) + 2.

Proof. From Lemma 12, every correct process decides by roundGSR(r) + 2. Validity holds, since the
decision can only be one of the initial estimates of the processes. Uniform agreement was proved in
Lemma 11.

B Correctness of Algorithm 3

Lemma 14. A process’s timestamp at the start of roundk is less than k.

Proof. We prove the claim by induction on the round numberk′. Base case:k′ = 1. The claim is correct
since a process’s timestamp is initialized to 0. The induction hypothesis is that the claim holds up to round
k′. Let us inspect the possible actions of a process at the end of roundk′. A process can decide and in
this case its timestamp does not change and in roundk′ + 1 it will remain less or equal tok′ − 1, by the
induction hypothesis. Alternatively, a process may commit, and then (on line 25) it will adoptk′ as its new
timestamp for roundk′ + 1, and the claim holds here as well. Finally, a process may adopt the timestamp
of a message it received in roundk′ (on line 27 or 29) and again, by induction hypothesis, the claim istrue
(since communication rounds are closed).

Lemma 15. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its timestamp does not change. It does not change in the
following rounds as well. If a processpi does not decide in roundk, then it can change its timestamp by
adopting eitherk (when committing on line 25) or the maximum timestamp received in roundk as its new
timestamp (on line 27 or 29). Sincepi receives its own message in roundk, the latter is not lower than its
current timestamp (recall that communication rounds are closed). In case it commits, since according to
Lemma 14, its old timestamp cannot exceedk − 1, by adoptingk it can only increase.

Lemma 16. For every roundk, no two processes commit or pre-commit with different estimates in roundk.

Proof. Consider two processespi andpj that commit or pre-commit in roundk with estimatesesti andestj .
Thus, bypre-commitrule, each of them has received in roundk a majority of messages that containesti
andestj , respectively. As two majorities intersect,esti = estj . Therefore,pi andpj commit or pre-commit
with the same estimate.

Lemma 17. If some process sends a message other thanDECIDE with timestampts > 0 and estimatex,
then some process commits in roundts with estimatex.

Proof. We prove the claim by induction on the round numberk′, starting from a roundk0 in which a message
other thanDECIDE with the timestampts is first sent with some estimatex′ by some processpj .

Base Case.k′ = k0. From the definition ofk0, pj could not receive a message withts from another process
in an earlier round. Thus,pj commits with timestampts and estimatex′ in roundk0 − 1, and from the
algorithm,k0 − 1 = ts.

Induction Hypothesis.If any process sends aPREPARE, PRE-COMMIT or COMMIT message in roundk1,
such thatk0 ≤ k1 ≤ k′, with timestampts and some estimatex′′, then some process commits in roundts
with estimatex′′.

23

Induction Step.We need to show that if, in roundk′ + 1, a process sends a message other thanDECIDE with
timestampts and some estimatex′′ then some process commits in roundts with estimatex′′. Observe,
that if a COMMIT message is sent, it has a timestamp equal to the previous round numberk′, and since
ts = k0 − 1 < k′ (from the base case), this case is not possible. Observe that if aPREPAREor PRE-
COMMIT message is sent in roundk′ + 1 with timestampts and estimatex′′, the sending process must have
adopted the timestamp together with the estimate from somePREPARE, PRE-COMMIT, or COMMIT message
sent in roundk′ (this message couldn’t have beenDECIDE since otherwise thek′ + 1 round message would
beDECIDE and notPREPARE). By the induction hypothesis, we get that some process commits in roundts
and estimatex′′.

Please note that the claim inLemma 17does not hold forDECIDE messages, since a process can decide
adopting only the estimate and not the associated timestamp from anotherDECIDE message.

Lemma 18. If rule decide-3evaluates to true in some roundk, there exists a majority of processes that
receive aCOMMIT message in roundk − 2.

Proof. Suppose ruledecide-3evaluates to true in some roundk at processpi. Therefore, the union of the
gotCommit setspi receives in roundk messages includes more thanb(n/2)c indices. ThesegotCommit
groups were created in roundk−1 by the processes that sent these messages, according to theIgotCommit
values that these processes received. The fact that the union of thegotCommit groups has size> b(n/2)c
indicates that more thanb(n/2)c messages were received in roundk − 1 with IgotCommit = true from
different processes. A process sends a message withIgotCommit = true only when it receives aCOM-
MIT message in the previous round. Therefore, more thanb(n/2)c (a majority) of processes received a
COMMIT message in roundk − 2.

Lemma 19. (a) If some process receives aCOMMIT message in roundk with estimatex, and some process
commits in roundk with estimatez, thenz = x (b) if a processpi commits tox in round k, or receives
a COMMIT message with estimatex in roundk, and does not decide in this round, then it adoptsx as its
estimate with timestampts ≥ k − 1.

Proof. (a) If some process commits with estimatez in roundk, it must have received aCOMMIT or PRE-
COMMIT message withz (rule commit), and according toLemma 16, all such messages have the same
estimate, and thereforez = x. (b) If pi commitsx, then it sets its timestamp tok and adoptsx as its
estimate. Ifpi receives aCOMMIT message with estimatex, it cannot commit or pre-commit on a different
value since according to rulepre-commita process can commit or pre-commit only on a value received with
the highest timestamp. Moreover,pi receivesx with the timestampk − 1 (which is maximal at round k)
and (Lemma 16) every message with this timestamp has x as estimate. Since it does not commit onx either,
it does not commit at all in roundk. Sincepi does not decide in this round, it must either pre-commit or
prepare with the estimatex and adopt its timestamp:k − 1.

Lemma 20 (Uniform Agreement). Let k be the first round in which there exists a group consisting of a
majority of processes such that each process of the group either commits or receives aCOMMIT message.
Then, no decision is made before roundk+1, and all decisions and commitments made in roundsk′ ≥ k−1
are with the same estimate.

Proof. Let k be the lowest numbered round in which each one out of a majority of processes either commits
x (from Lemma 16all commitments in some round are with the same value) or receives aCOMMIT message
with a valuex (x is well defined according toLemma 19). Denote this group of processes bySx. According
to Lemma 19, every process inSx has timestamp≥ k − 1 at the end of roundk (we prove below that a
decision is not possible in roundk). Note also, thatk−1 > 0. This is true since by definition ofk, processes

24

in Sx either commit or receive aCOMMIT message in roundk. Therefore, in roundk−1 some process must
either commit or pre-commit and since round numbering starts from 1, we have thatk − 1 > 0.

There are three decision rules in the algorithm. We show that none of them could evaluate to true for
any process before roundk + 1. Let k′ be the first round in which any process decides. Ruledecide-1may
be true only after some process has already decided, and thus cannot cause the first decision. Ruledecide-2
can evaluate to true only if a majority of processes committed in the previous round. Since the first round in
which this happens isk, this rule may evaluate to true only starting from roundk + 1. The last one is rule
decide-3. According toLemma 18, if this rule evaluates to true in roundk′, there must have been a majority
of processes that received aCOMMIT message in roundk′ − 2. Since the first round in which this could
happen isk, we get thatk′ ≥ k + 2. So in any case, no decision is possible before roundk + 1. We now
prove that all decisions and commitments made in roundsk′ ≥ k − 1 are with estimatex.

Base Case.k′ = k − 1. As proven above, no process decides in roundk′ < k + 1. Assume by con-
tradiction that some process commits on a valuez 6= x in roundk − 1. By Lemma 16, no process can
commit or pre-commit onx in the same round. Therefore, in roundk, no process receives aCOMMIT or
PRE-COMMIT message with the estimatex. Thus, no process commitsx in roundk (rule commit). This
contradicts the definition ofk.

Induction Hypothesis.If any process commits or decides in any roundk1 such thatk − 1 ≤ k1 ≤ k′, then
it commits with estimatex or decidesx.

Induction Step. decision in roundk′ + 1. Suppose some processp decides in roundk′ + 1. If it decides
using ruledecide-1or decide-2, then in that round either some other process sends aDECIDE message with
decision valuey or p sends aCOMMIT message with estimatey. In both cases, by the induction hypothesis,
y = x.

If it decides by ruledecide-3, then according toLemma 18, there must be a majority of processes that
receiveCOMMIT messages two rounds earlier, in roundk′−1. Since the first round in which this can happen
is k, we have thatk′ − 1 ≥ k. According to the induction hypothesis, the commit messages received are
with estimatex. Therefore, in roundk′ − 1, some majority of processesM received aCOMMIT message
with the estimatex. According toLemma 19, if a process inM does not decide in roundk′−1, it will adopt
x with timestamp≥ k′ − 2. By the induction hypothesis, every process that decides in roundk′ − 1 or k′,
decidesx and no process commits with a different value in roundk′ − 1 or k′ − 2. Therefore, in roundk′,
all estimates different fromx are sent with a timestamp< k′ − 2. No process can commit or pre-commit
on an estimate other thanx in roundk′ sincex is the value processes inM send and every two majorities
intersect (rulepre-commitmust be false for any other value).

p receives a roundk′ + 1 message from at least one processpi that receives a roundk′ message from
some process inM . Therefore,pi receives a roundk′ message with the estimatex and

timestamp≥ k′−2. As was explained above, no other estimate can have a timestamp that high in round
k′, so if pi prepares or pre-commits, it must be with estimatex. If pi commits, it is with the estimatex
as well, according to the induction hypothesis.pi does not decide, since otherwisep would decide by rule
decide-1and notdecide-3. Therefore,pi sends a roundk′ + 1 message with the estimatex and a timestamp
≥ k′ − 2. Since no process can commit on a value different thanx in roundk′ or k′ − 1, this timestamp
is higher than the timestamp of any other estimate sent in roundk′ + 1. ThereforemaxEST of p must be
equal tox. Therefore,p decidesx.

commit in roundk′ + 1. Suppose by contradiction that some processpj commits in roundk′ + 1 with
estimatez 6= x. Thenpj does not receive anyDECIDE message in roundk′ + 1. Also note that according to
rulepre-commit, pj commits on an estimate that it receives with the highest timestamp:maxTS. Therefore,

25

some process sends a roundk′ + 1 message with timestampmaxTS and estimatez. By Lemma 14, the
highest timestamp that can be received in roundk′ + 1 is k′, and thereforemaxTS ≤ k′. Sincepj commits
in roundk′ + 1, it receives roundk′ + 1 messages from a majority of process (rulepre-commit) and hence,
receives a roundk′ + 1 message from at least one processpi ∈ Sx. According toLemma 19, pi has at
least timestampk − 1 at the end of roundk. By Lemma 15, pi’s timestamp is at leastk − 1 and therefore
maxTS ≥ k − 1. Thus, we havek − 1 ≤ maxTS ≤ k′. Sincek − 1 > 0 (as shown above), and sincepj

does not receive anyDECIDE messages in roundk′ + 1, by Lemma 17there is a process that commitsz in
roundmaxTS. By the induction hypothesis, every process that commits in roundmaxTS commitsx 6= z;
a contradiction.

We now turn to prove the performance guarantees of Algorithm3.

Lemma 21. If n = 2m + 1, in every runr, if some processp commits in roundGSR(r) with an estimate
x, then all processes decide by the end of roundGSR(r) + 3.

Proof. Suppose that some processpi does not decide by the end of roundGSR(r) + 3. This means that it
evaluates rulesdecide-1, decide-2anddecide-3to false. Therefore,pi does not receive anyDECIDE mes-
sage, and|

⋃
j∈Π M [ki][j].gotCommit| ≤ bn/2c. pi receives a roundGSR(r) + 3 message from a group

M of (n −m) processes. Thus, there are(n −m) processes that together receive in roundGSR(r) + 2
messages withIgotCommit = true from at mostbn/2c processes. Every process inM does not receive a
DECIDE message in roundGSR(r) + 2, since otherwise their next round message would beDECIDE. Since
each process’s message reaches(m+1) fromGSR(r) onward, it reaches at least one process from any group
of (n−m) processes. Therefore, the number of processes that send a message withIgotCommit = true
in roundGSR(r) + 2 is at mostb(n/2)c. We get that in roundGSR(r) + 1, at mostb(n/2)c processes
received aCOMMIT message. Every process whose message reaches a process inM does not decide in
roundGSR(r) + 1, since otherwise their next round message would beDECIDE and processes inM do not
receive any such messages. Sincep sends aCOMMIT message, its message should reaches at leastm + 1
processes (a majority whenn = 2m + 1). As explained above, we get a contradiction the assumption thatp
sends aCOMMIT message in roundGSR(r) + 1.

Notations: (relating to a specific runr)

absMaxTS(k) = max{ m.ts |messagem is sent in roundk}

absMaxEST (k) = max{ m.est |messagem is sent in roundk s.t.m.ts = absMaxTS(k)}

Lemma 22. In every runr, if no correct process decides by the end of roundk ≥ GSR(r), then in roundk at
leastm+1 correct processes adopt the estimateabsMaxEST (k) with timestamps equal toabsMaxTS(k)
or to k (in case it is adopted by committing).

Proof. Let us observe round k messages.
Denote bypmax the (correct) process that sendsabsMaxEST (k) with the timestampabsMaxTS(k). By
the assumptions of our model, the roundk message〈∗, absMaxEST (k), absMaxTS(k), ∗, ∗〉 will reach
at leastm+1 correct processes. Denote the group of processes that actually get this message byA. Note that
since a process receives a subset of all messages sent in roundk, for anypi ∈ A, maxTSi = absMaxTS(k)
andmaxESTi = absMaxEST (k). The conditions of the lemma assume that no correct process decides
by the end of roundk. Therefore, each processpi ∈ A must commit, pre-commit or just prepare for the
next round. Ifpi commits or pre-commits, rulepre-commitmust hold for it. This rule makes sure that the
estimatepi adopts is equal tomaxESTi. Therefore,pi will adopt absMaxEST (k). If pi prepares, it will
execute line 29 of the pseudo-code, adoptingabsMaxEST (k) as well. Therefore all the processes inA (at

26

leastm + 1 processes) will adopt the same estimateabsMaxEST (k). Observe, that they will either adopt
it with timestampabsMaxTS(k) (if they pre-commit or prepare) or with timestampk if they commit.

Lemma 23. In every runr, if no correct process decides by the end of roundGSR(r) + 1, and no process
commits in roundGSR(r), all processes will have the same estimate by the end of roundGSR(r) + 1.

Proof. By Lemma 22, at the end of roundGSR(r), at leastm + 1 of processes adopt the estimate
absMaxEST (GSR(r)) with a timestamp equal toabsMaxTS(GSR(r)). Notice that an estimateest′ 6=
absMaxEST (GSR(r)) can becomeabsMaxEST (GSR(r)+1) only by adopting a new timestamp (that
was not sent in roundGSR(r)). This can be done only if a process commits withest′ in roundGSR(r),
and this is not possible by the assumptions of our lemma. We conclude thatabsMaxEST (GSR(r)+ 1) =
absMaxEST (GSR(r)) (6= est′).

No process decides in roundGSR(r) + 1, and eachpi process receives a roundGSR(r) + 1 message
from n −m processes, including one message of the form〈∗, absMaxEST (GSR(r) + 1), ts, ∗, ∗〉 and
ts is either equal toabsMaxTS(GSR(r)) (ts 6= GSR(r) since we assume in this lemma that no process
commits in roundGSR(r)). Whetherpi commits, pre-commits or prepares, because of rulepre-commitand
line 29, the estimatepi adopts is equal tomaxESTi. Therefore,pi will adoptabsMaxEST (GSR(r)+1),
and we get that all processes adopt the same estimate by the end of roundGSR(r) + 1.

Lemma 24. In every runr, if no correct process decides by the end of roundGSR(r)+2, and some process
commits in roundGSR(r), all processes will have the same estimate by the end of roundGSR(r) + 2.

Proof. By Lemma 22, at the end of roundGSR(r) + 1, at leastm + 1 of processes adopt the
estimateabsMaxEST (GSR(r) + 1) with a timestamp equal toGSR(r). Notice that an estimateest′ 6=
absMaxEST (GSR(r) + 1) can becomeabsMaxEST (GSR(r) + 2) only by adopting a new timestamp
(that was not sent in roundGSR(r) + 1). This can be done only if a process commits withest′ in round
GSR(r) + 1, and this is not possible because some process will receive theCOMMIT message sent in this
round, andLemma 19. We conclude thatabsMaxEST (GSR(r) + 2) = absMaxEST (GSR(r) + 1)
(6= est′).

No process decides in roundGSR(r) + 2, and eachpi process receives a roundGSR(r) + 2 message
from n −m processes, including one message of the form〈∗, absMaxEST (GSR(r) + 2), ts, ∗, ∗〉 and
ts is either equal toGSR(r) or to GSR(r) + 1. Whetherpi commits, pre-commits or prepares, because
of rule pre-commitand line 29, the estimatepi adopts is equal tomaxESTi. Therefore,pi will adopt
absMaxEST (GSR(r) + 1), and we get that all processes adopt the same estimate by the end of round
GSR(r) + 2.

Lemma 25. If in a roundk ≥ GSR(r) all estimates being sent are the same, all correct processes decide
by roundk + 2.

Proof. Observe that in our model every correct process executes an infinite number of rounds, and in par-
ticular, executes roundk + 2. Also, it is obvious that all estimates being sent remain the same in all rounds
starting atk. We prove the lemma by contradiction. Assume that some correct processpj does not decide
by roundk + 2 in some runr. Therefore,pj couldn’t have received aCOMMIT message from a majority
of processes in roundk + 2. Since, in our model, fromGSR(r) onward, every correct process receives
messages from a majority of correct processes (including itself), it must have received a roundk + 2 mes-
sagem s.t. m.msgType = t from some processpi with type t 6= COMMIT . t 6=DECIDE, sincepj

didn’t decide in roundk + 2. Therefore,t must bePREPAREor PRE-COMMIT. If t =PREPARE, this can
happen only if in roundk + 1, processpi received messages with different estimates, since otherwise (if
all estimates it receives are the same), even if there were no proper conditions (according to the algorithm)

27

for pi to DECIDE or COMMIT, its PRE-COMMIT rule would definitely evaluate to true and its roundk + 2
message would be (at least)PRE-COMMIT. Therefore,t =PREPAREis a contradiction to our assumption that
in roundk + 1 all estimates being sent are the same. Ift =PRE-COMMIT, this means thatpi didn’t receive
any DECIDE message in roundk + 1, and that rulepre-commitevaluated totrue for pi, but rulecommit
did not. Therefore,pi receivedk + 1 round messages from a majority of processes with some estimate
maxESTi, but didn’t receive any of them with the typeCOMMIT or PRE-COMMIT. This means that at the
end of roundk, there were processes that didn’tPRE-COMMIT. Lets observe one such processpc (who’s
roundk + 1 message reachedpi) at the end of roundk. It couldn’t have decided sincepi didn’t receive any
DECIDE messages in roundk + 1. Since all estimates sent are the same in roundk, its rulepre-commitmust
evaluate to true at the end of roundk, and it sends either aCOMMIT or a PRE-COMMIT message in round
k+1, a contradiction to the fact thatpi received no such messages (since starting with roundk, all estimates
are the same,est′ must be the estimate sent bypc).

Lemma 26. If n = 2m + 1 then in every runr all correct processes decide by roundGSR(r) + 4.

Proof. If some process correct process decides by the end of roundGSR(r) + 1, lets denote byk the round
in which this happens, orGSR(r)− 1 (the later round between the two). Sincek ≥ GSR(r)− 1, in round
k +1, it is assured that the decision message will reachm+1 processes, and in roundk +2, it will reach all
the process since each one receives a message fromn−m processes. Therefore, every process will decide
by roundk + 2. If k = GSR(r) + 1, k + 2 = GSR(r) + 3, and the lemma holds.

Suppose that no correct process decides by the end of roundGSR(r) + 1. If some process commits in
roundGSR(r), all processes will decide by roundGSR(r) + 3, by Lemma 21. If no process commits in
GSR(r), by Lemma 23, all processes will adopt the same estimate by the end of roundGSR(r) + 1, and
send it in roundGSR(r)+2. By Lemma 25, all processes will decide by the end of roundGSR(r)+4.

Lemma 27. In every runr all correct processes decide by roundGSR(r) + 5.

Proof. If some process correct process decides by the end of roundGSR(r) + 2, lets denote byk the round
in which this happens, orGSR(r)− 1 (the later round between the two). Sincek ≥ GSR(r)− 1, in round
k +1, it is assured that the decision message will reachm+1 processes, and in roundk +2, it will reach all
the process since each one receives a message fromn−m processes. Therefore, every process will decide
by roundk + 2. If k = GSR(r) + 2, k + 2 = GSR(r) + 4, and the lemma holds.

Suppose that no correct process decides by the end of roundGSR(r) + 2. If some process commits in
roundGSR(r), , byLemma 24, all processes adopt the same estimate by the end of roundGSR(r)+2, and
send it in roundGSR(r) + 3. By Lemma 25, all processes will decide by the end of roundGSR(r) + 5.
If no process commits inGSR(r), by Lemma 23, all processes will adopt the same estimate by the end of
roundGSR(r) + 1, and send it in roundGSR(r) + 2. By Lemma 25, all processes will decide by the end
of roundGSR(r) + 4.

Theorem 28. The algorithm solves consensus in our model with global decision by roundGSR(r) + 5 (or
GSR(r) + 4 in casen = 2m + 1).

Proof. From Lemma 26, every correct process decides by roundGSR(r) + 4, if n = 2m + 1. From
Lemma 27, every process decides by roundGSR(r) + 5. Validity holds, since the decision can only be one
of the initial estimates of the processes. Uniform agreement was proved inLemma 20.

28

	Introduction
	Background and motivation
	GIRAF -- General Round-based Algorithm Framework
	Results
	Related work

	Model and Problem Definition
	Distributed computation model
	GIRAF -- General Round-based Algorithm Framework
	Environment properties
	Consensus and global decision

	Complexity of Reductions
	Generalty of GIRAF
	Optimal Leader-Based Algorithm in LM
	Linear Bound for SR
	Constant-Time Algorithm in AFM
	Impossibility of Bounded Time Global Decision in MFM
	Conclusions and Future Directions
	Correctness of Algorithm 2
	Correctness of Algorithm 3

