
1

GPUfs: Integrating a File System with GPUs

MARK SILBERSTEIN, University of Texas at Austin

BRYAN FORD, Yale University

IDIT KEIDAR, Technion

EMMETT WITCHEL, University of Texas at Austin

As GPU hardware becomes increasingly general-purpose, it is quickly outgrowing the traditional, constrained

GPU-as-coprocessor programming model. This article advocates for extending standard operating system
services and abstractions to GPUs in order to facilitate program development and enable harmonious

integration of GPUs in computing systems. As an example, we describe the design and implementation of

GPUfs, a software layer which provides operating system support for accessing host files directly from GPU
programs. GPUfs provides a POSIX-like API, exploits GPU parallelism for efficiency, and optimizes GPU

file access by extending the host CPU’s buffer cache into GPU memory. Our experiments, based on a set

of real benchmarks adapted to use our file system, demonstrate the feasibility and benefits of the GPUfs
approach. For example, a self-contained GPU program that searches for a set of strings throughout the

Linux kernel source tree runs over seven times faster than on an eight-core CPU.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design; I.3.1 [Hard-
ware Architecture]: Graphics processors

General Terms: Accelerators, Operating Systems, Performance

Additional Key Words and Phrases: Operating Systems Design, GPGPUs, File Systems, accelerators

ACM Reference Format:

Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel, 2013. GPUfs: Integrating a File System

with GPUs. ACM Trans. Comput. Syst. 1, 1, Article 1 (January 1), 30 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Due to their impressive price/performance and performance/watt curves, GPUs have be-
come the processor of choice for many types of intensively parallel computations from data
mining to molecular dynamics simulations [NVI]. As GPUs have matured and acquired
increasingly general-purpose processing capabilities, a richer and more powerful set of lan-
guages, tools, and computational algorithms have evolved to make use of GPU hardware.

Unfortunately, GPU programming models are still almost entirely lacking core system ab-
stractions, like files and sockets, that CPU programmers have taken for granted for decades.
Today’s GPU is a bit of an idiot savant: it is capable of amazing computational feats when
spoon-fed with the right data and micro-managed by application code on the host CPU,
but it is incapable of initiating even the simplest system interactions for itself, such as read-
ing an input file from a disk. The traditional coprocessor-style GPU programming model

This research was supported in part by NSF grants CNS-1017785 and CNS-1017206, by the Andrew and
Erna Fince Viterbi Fellowship, and by a 2010 NVIDIA research award.
Author’s addresses: M. Silberstein and I. Keidar, Electrical Engineering Department, Technion; Bryan
Ford, Computer Science Department, Yale University; Emmett Witchel, Computer Science Department,
University of Texas at Austin.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© 1 ACM 0734-2071/1/01-ART1 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:2 M. Silberstein et al.

requires developers to explicitly manage GPU I/O on the host CPU, which increases the
design complexity and code size of even simple GPU programs that require file access. While
programmers can explicitly optimize CPU-GPU interactions, these optimizations are not
portable to new generations of hardware, affect software modularity and make it hard to
maintain functionality and performance.

Drawing an analogy to pre-virtual memory days, applications often managed their own
address spaces efficiently using manual overlays, but this complex and fragile overlay pro-
gramming ultimately proved not worth the effort. Similarly, GPU programmers today face
many of the same challenges CPU application developers did a half-century ago – partic-
ularly the constant reimplementation of system abstractions such as data movement and
management operations. As GPUs are quickly evolving toward general high-performance
processors useful for a wide variety of massively parallel, throughput-oriented tasks, we
believe GPU programming should reap the same benefits from the file system abstraction
enjoyed by CPU programmers.

We propose GPUfs, an infrastructure that exposes the file system API to GPU pro-
grams, bringing the convenience and power of file systems to GPU developers. GPUfs offers
compute-intensive applications a convenience well-established in the CPU context: to be
largely oblivious to where data is located–whether on disk, in main memory, in a GPU’s
local memory, or replicated across several GPUs or other coprocessors. Further, GPUfs lets
the OS optimize data access locality across independently-developed GPU compute mod-
ules, using application-transparent caching and data replication, much like a traditional
OS’s buffer cache optimizes access locality across multi-process computation pipelines. A
unified file API interface abstracts away the low-level details of different GPU hardware
architectures and their complex inter-device memory consistency models, improving code
and performance portability. GPUfs expands the appeal of GPU programming by offering
familiar, well-established data manipulation interfaces instead of proprietary GPU APIs.
Finally, GPUfs allows GPU code to be self-sufficient, by simplifying or eliminating the
complex CPU support code traditionally required to feed data to GPU computations.

Two key GPU characteristics make developing OS abstractions for GPUs challenging–
massive data parallelism, and independent memory systems. GPUs are optimized for data
parallel processing, where the same program operates on many different parts of the input
data. GPU programs typically use tens of thousands of lightweight threads running similar
or identical code with little control-flow variation. Conventional OS services, such as the
POSIX file system API, were not built with such an execution environment in mind. In
GPUfs, we had to adapt both the API semantics and the implementation to support such
massive parallelism, allowing thousands of threads to efficiently invoke open, close, read,
or write calls simultaneously.

To feed their voracious appetites for data, high-end GPUs usually have their own DRAM
storage. A massively parallel memory interface to this DRAM offers high bandwidth for
local access by GPU code, but GPU access to system memory is an order of magnitude
slower, because it requires communication over the bandwidth-constrained, higher latency
PCI Express bus. In the increasingly common case of systems with multiple discrete GPUs–
standard in Apple’s new Mac Pro, for example – each GPU has its own local memory, and
accessing a GPU’s own memory can be an order of magnitude more efficient than accessing
a sibling GPU’s memory. GPUs thus exhibit a particularly extreme non-uniform memory
access (NUMA) property, making it performance-critical to optimize for access locality in
data placement and reuse across CPU and GPU memories. GPUfs distributes its buffer
cache across all CPU and GPU memories to efficiently enable idioms like process pipelines
that read and write files from the same or different processors.

We evaluate a prototype implementation of GPUfs on an x86 PC with four NVIDIA
GPUs, using several microbenchmarks and two realistic I/O intensive applications. All the
presented GPUfs workloads are implemented entirely in the GPU kernel without CPU-side

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:3

Fig. 1. Hierarchical hardware parallelism in a GPU.

application code. In sequential file access benchmarks, a trivial 16 line GPU kernel using
GPUfs outperforms a simple GPU implementation with manual data transfer by up to
40%, and comes within 5% of a hand-optimized double-buffering implementation. A matrix
multiply benchmark illustrates how GPUfs easily enables access to datasets larger than
the GPU’s physical memory, performs faster than the manual double-buffering typical in
current GPU code, and is about 2× smaller in code size. Another matrix product benchmark
demonstrates the performance benefits of the GPU buffer cache, improving performance by
over 2× on average when the input data is reused. Two parallel data analysis applications,
prioritized image matching and string search, highlight the ability of GPUfs to support
irregular workloads in which parallel threads open and access dynamically-selected files of
varying size and composition.

This paper makes the following main contributions.

(1) The first POSIX-like file system API we are aware of for GPU programs, with semantics
modified to be appropriate for the data-parallel GPU programming environment.

(2) A design and implementation of a generic software-only buffer cache mechanism for GPUs,
employing a lock-free traversal algorithm for parallel efficiency.

(3) A proof-of-concept implementation of GPUfs on NVIDIA Kepler GPUs, supporting multi-
GPU systems.

(4) A quantitative evaluation of a GPU file system that identifies sensitive performance
parameters such as page size, and evaluates efficiency relative to hand-coded solutions.

The next section provides an overview of the GPU architecture. Next we highlight the
main GPU programming challenges caused by the lack of file access abstractions on GPUs.
We then explain and justify the design choices that we made while building GPUfs, followed
by the implementation details of GPUfs on NVIDIA FERMI and KEPLER GPUs. We
evaluate the GPUfs prototype implementation in Section 6, summarize related work, and
finally discuss applicability of GPUfs ideas in emerging software and hardware systems.

2. GPU ARCHITECTURE OVERVIEW

We provide a simplified overview of the GPU software/hardware model, highlighting prop-
erties that are particularly relevant to GPUfs. We use NVIDIA CUDA terminology because
we implement GPUfs on NVIDIA GPUs, but most other GPUs that support the cross-
platform OpenCL standard [OpenCL] share the same concepts.

Hardware model. GPUs are parallel processors which expose programmers to hierarchi-
cally structured hardware parallelism, as depicted in Figure 1. At the highest level, GPUs are
similar to CPU shared-memory multicores. GPUs support coarse-grain task-level parallelism
via concurrent execution of different tasks on different powerful cores, called multiprocessors

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:4 M. Silberstein et al.

(MP). Each MP features several wide, single instruction multiple data (SIMD) vector units
comprised of individual lightweight processing elements called CUDA cores (for example,
32 CUDA cores per SIMD unit). Similar to CPU vector hardware, MPs expose fine-grain
data-level parallelism allowing the same instruction to concurrently process multiple data
items.

The main architectural difference between CPUs and GPUs lies in the way GPUs execute
parallel code. A single GPU program, termed a kernel (unrelated to an operating system
kernel) comprises tens of thousands of individual threads. Each GPU thread forms a basic
sequential unit of execution. Unlike CPU threads which usually run exclusively occupy one
CPU core each, hundreds of GPU threads are concurrently scheduled to run on each MP.
At any point a single CUDA core is executing only a single GPU thread (marked in blue
in the figure), but the hardware scheduler multiplexes many of them onto a single core to
maximize hardware utilization. When a running thread gets stalled, while waiting on a slow
memory access for example, the hardware restarts another thread that is ready for execution.
The switching between the threads is highly efficient because the hardware maintains the
execution state, or context, of all threads, and not only those actively executing. Thus the
scheduler restarts the thread by simply switching to its context. This type of parallelism,
sometimes called thread-level parallelism, or simultaneous multithreading (SMT) [Tullsen
et al. 1996], is essential to achieving high hardware utilization and performance in GPUs.

In order to amortize instruction fetch and execution overheads, a hardware scheduler
manages threads in small groups called warps (32 threads in NVIDIA GPUs), executing all
threads in a warp in lockstep on the same SIMD unit.

Software model. A GPU program looks like an ordinary sequential program, but it is
executed by all GPU threads. The hardware supplies each thread with a unique identifier
allowing different threads to select different data and control paths. GPU programs can be
implemented in plain C++/C or Fortran with only few restrictions and minor language
extensions. The programming model closely matches the hierarchy of parallelism in the
hardware. Threads in a GPU kernel are subdivided into threadblocks – static groups of up
to two thousand threads which may communicate, share state and synchronize efficiently,
enabling coordinated data processing within a threadblock. A threadblock is a course-grain
unit of execution that matches the task-level parallelism support in the hardware: all threads
in a single threadblock are scheduled and executed at once on a single MP. To draw analogy
with CPUs, if we think of a GPU kernel as a single CPU process, then a threadblock is
analogous to a CPU thread.

An application enqueues all threadblocks comprising a kernel into a global hardware queue
on a GPU. The number of threadblocks in each kernel ranges from tens to hundreds, and
typically exceeds the number of MPs, leaving some threadblocks waiting in the hardware
queue until resources become available. Oversubscribing the MPs facilitates load balancing
and portability across GPU systems with different number of MPs. Once a threadblock has
been dispatched to an MP, it occupies the resources of that MP until all of the thread-
block’s threads terminate. Most importantly, a threadblock cannot be preempted in favor
of another threadblock waiting for execution in the global hardware queue. The hardware
executes different threadblocks in an arbitrary, non-deterministic order. Therefore, thread-
blocks generally may not have data dependencies, because such dependencies could lead to
deadlock.

System integration model. Discrete GPUs are peripheral devices connected to the host
system via an internal PCI Express (PCIe) bus. They feature their own physical memory
on the device itself. The GPU’s bandwidth to local memory is an order of magnitude higher
– over 30× in current systems –than the PCIe bandwidth to the memory on the host.
Discrete GPU memory has a separate address space that cannot be directly referenced by

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:5

CPU programs. Moving the data in and out of GPU memory efficiently requires direct
memory access (DMA).

Currently, GPUs are programmed as peripheral devices: they are slave processors that
must be managed by a CPU application which uses the GPU to offload specific computa-
tions. The CPU application prepares the input data for GPU processing, invokes the kernel
on the GPU, and then obtains the results from GPU memory after the kernel terminates.
All these operations use GPU-specific APIs, which offer a rich set of functions covering
various aspects of memory and execution state management. For example, there are about
50 different memory management functions in the CUDA API [NVIDIA 2013]. As a result,
managing GPU computations in GPU-accelerated programs entails significant design and
implementation complexity.

3. GPU PROGRAMMING CHALLENGES

Despite their popularity in high-performance scientific computing, GPUs remain under-
utilized in commodity systems. The list of 200 popular general-purpose GPU applications
recently published by NVIDIA [NVI] has no mention of GPU-accelerated desktop services,
such as real-time virus scanning, text search, or data encryption, although GPU algorithms
for encryption and pattern matching are well-known and provide significant speedups [HPL
; Han et al. 2010]. We believe that enabling GPUs to access host resources directly, via
familiar system abstractions such as files, will hasten GPU integration in widely deployed
software systems.

GPUs currently require application developers to build complicated CPU-side code to
manage access to the host’s network and storage. If an input to a GPU task is stored in a
file, for example, the CPU-side code handles system-level I/O issues, such as how much of
the file to read into system memory, how to overlap data access with GPU execution, and
how to optimize the size of memory transfer buffers. This code dramatically complicates the
design and implementation of GPU-accelerated programs, turning application development
into a low-level systems programming task.

Operating systems have historically been instrumental in eliminating or hiding this com-
plexity from ordinary CPU-based application development. GPUfs is intended to do the
same for GPU programs.

Consider an application that searches a set of files for text patterns. It is trivial to speed
up this task using multi-core CPUs, for example by scanning different files in parallel on
different cores. Algorithmically, this task is also a good candidate for acceleration on GPUs,
given the speedups already demonstrated for GPU pattern matching algorithms [HPL].

Using GPUs presents several system-level challenges, however.
Complex low-level data management code. Since GPU code cannot directly access

files, CPU code must assist in reading the file data and managing data transfers to the
GPU. Thus, a substantial part of an overall GPU program is actually CPU-based code
needed to “spoon-feed” the GPU. This CPU-based code needs to understand low-level
GPU details and performance characteristics to allocate GPU memory and manage data
transfers efficiently.
No overlap between data transfer and computations. Unlike in CPUs, where

operating systems use threads and device interrupts to overlap data processing and I/O,
GPU code traditionally requires all input to be transferred in full to local GPU memory
before processing starts. Further, the application cannot easily retrieve partial output from
GPU memory until the GPU kernel terminates. Optimized GPU software alleviates these
performance problems via pipelining: they split inputs and outputs into smaller chunks,
and asynchronously invoke the kernel on one chunk, while simultaneously transferring the
next input chunk to the GPU, and the prior output chunk from the GPU. While effective,
pipelining often complicates the algorithm and its implementation significantly.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:6 M. Silberstein et al.

Fig. 2. GPUfs architecture

Bounded input/output size. If a file’s contents are too large to fit into an input buffer
in GPU memory, the application must split the input and process it in smaller chunks,
tying the algorithm to low-level hardware details. The size of any output buffer for a GPU
program’s results must be specified when the program starts, not when it generates its
output, further complicating algorithms that produce unpredictable amounts of output. To
prevent running out of buffer space, a common practice is to allocate overly large buffers,
making inefficient use of GPU memory.
No support for data reuse. A CPU application deallocates all of its GPU-side mem-

ory buffers that hold file contents when it terminates. For example, the pattern matching
application might read (and not modify) many input files, but when it is invoked again, the
files are read again from CPU memory or disk. In contrast, CPU applications rely on the
operating system’s buffer cache to transparently protect them from expensive redundant
reads.
No support for data-dependent accesses. A program’s inputs can depend on its

execution history. For example, a program might search for a string in an HTML file and
in any file referenced by the HTML file. The list of files that must be searched is only
known during execution because it depends on the link structure within the HTML files
themselves. A CPU implementation might read the next input file the moment it encounters
a reference to it. In GPU code, however, the file reading logic occurs on the CPU separately
from the GPU-based processing code. The application’s CPU and GPU code must therefore
coordinate explicitly on which files to read next.

GPUfs aims to alleviate these challenges. It exposes a single file system shared across all
processors in the system and accessible via standard familiar API, thereby simplifying GPU
development and facilitating integration of GPU programs into complex software systems.

4. DESIGN

We describe the GPUfs API and file system semantics, focusing on the similarities and
differences from the standard APIs used in CPU programs, and the properties of GPUs
that motivate these design choices.

Figure 2 illustrates the architecture of GPUfs. CPU programs are unchanged, but GPU
programs can access the host’s file system via a GPUfs library linked into the application’s
GPU code. The GPUfs library works with the host OS on the CPU to coordinate the file
system’s namespace and data.

There are three essential properties of discrete GPUs that make designing GPUfs chal-
lenging: massive hardware parallelism, fast, separate physical memory, and non-preemptive
hardware scheduling. We first summarize their implications on the design of GPUfs in Ta-
ble I, with the detailed analysis in the rest of this section.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:7

Table I. Implications of the GPU hardware characteristics on the GPUfs design.

Behavior on CPU GPU hardware
characteristics

GPUfs design implica-
tions

Buffer cache Caches file contents in
CPU memory to hide disk
access latency

Separate physical
memory

Caches file contents in GPU
memory to hide accesses to
disks and CPU memory

Data consistency Strong consistency: file
writes are immediately
visible to all processes

Slow CPU-GPU
communications

Close-to-open consistency:
file writes are immediately
visible to all GPU threads,
but require explicit close
and open to be visible on
another processor

Cache
replacement
algorithm

Approximate LRU invoked
asynchronously and peri-
odically in a background
thread

Non-preemptive
hardware
scheduling

Synchronous and fast but
inaccurate

API call
granularity

File APIs are called inde-
pendently in every thread

Data-parallel lock-
step execution of
threads in a warp

File APIs are invoked col-
laboratively by all threads in
the same warp

File descriptors Each descriptor is associ-
ated with a file pointer

Massive data
parallelism

No file pointers at an OS
level, but library supports
per-warp or per-threadblock
local file descriptors

4.1. Buffer cache for GPUs

Operating systems strive to minimize slow disk accesses by introducing a buffer cache, which
stores file contents in memory when file data is first accessed. The OS serves subsequent
accesses directly from the buffer cache, thereby improving performance transparently to
applications. Moreover, buffer cache enables whole-system performance optimizations such
as read-ahead, data transfer scheduling, asynchronous writes, and data reuse across process
boundaries.

Imagine a GPU program accessing a file. Even if the file data is resident in the CPU
buffer cache, it must be transferred from CPU memory to the local GPU memory for every
program access. However, GPUs provide far more bandwidth and lower latencies to access
local GPU memory than to access the main CPU memory. For GPUfs performance, it is
therefore critical to extend the buffer cache into GPUs by caching file contents in GPU
memory. In multi-processor, multi-GPU systems the buffer cache spans multiple GPUs and
serves as an abstraction hiding the low-level details of the shared I/O subsystem.

Data consistency model. One important design decision is the choice of a cache consis-
tency model, which determines how and when file updates performed by one processor are
observed by other processors in a system. For example, if a file is cached by one GPU and
then changed by another GPU or a CPU, the cached data becomes stale, and must be
refreshed by a consistency mechanism. Strong consistency models (e.g., sequential consis-
tency) permit no or little disparity in the order different processors can observe updates.
For example, in Linux, file writes executed by one process become immediately visible to
all other processes running on the same machine. On the other hand, the popular NFS dis-
tributed file system [NFS] provides no such guarantee if processes are running on different
machines. In general, distributed file systems tend to provide weaker consistency than local
file systems, because weaker consistency permits less frequent data synchronization among
caches, and is thus more efficient in systems with higher communication costs.

GPUfs is a local file system in the sense that it is used by processors in the same physical
machine. However, the disparity between the bandwidth from the GPU to system memory
and to local GPU memory, makes the system more similar to a distributed environment
with slow communication network rather than a tightly coupled local environment.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:8 M. Silberstein et al.

Fig. 3. Close-to-open data consistency in GPUfs.

GPUfs therefore implements a weak consistency model (close-to-open consistency), sim-
ilar to the Andrew file system (AFS [Howard et al. 1988]) and modern versions of
NFS [NFS]. Once a file’s content is cached on a GPU, its threads can read and write the file
locally without further communication with other processors—even if the host and/or other
GPUs concurrently read and/or modify that file. GPUfs guarantees that local file changes
propagate to other processors when the file is closed on the modifying processor first, and
subsequently opened on other processors. In the example in Figure 3, GPU2 writes two
different values to a file. However GPU1 will see only “1” and may not see “2”, because
close-to-open consistency permits to postpone the updates to other processors operating on
the same file instead of propagating them as they happen.

For the GPU threads running on the same GPU, GPUfs provides strong consistency,
which guarantees that file updates are immediately visible to all the threads in that GPU.
If a file is mapped using mmap, however, GPUfs naturally inherits the consistency model
implemented by the hardware.

Concurrent non-overlapping writes to the same file. In the potentially common situation
in which a parallel task is executing on several GPUs and CPUs in one system, the same
file may be write-shared among all executing processors. Concurrent tasks typically write
into different parts of the file: i.e., to the particular range each task is assigned to produce.
While traditional implementations of close-to-open semantics like AFS leave the results of
concurrent writes undefined, GPUfs is designed to properly handle concurrent writes to
disjoint file regions.

Supporting concurrent disjoint writes requires solving the well-known problem of false
sharing, in this case of buffer cache pages among different GPUs. False sharing arises be-
cause GPUfs uses large pages in its buffer cache. The pages are larger than CPU standard
pages to allow efficient data transfers over PCIe bus and amortize management overhead.
False sharing occurs when different processors write to different file offsets that are close
enough to be mapped to the same page. Two writers who write to the same page end up
caching two partially modified versions of that page. Writing back both pages in full results
in a lost write—only the last writer’s data is present and the first writer’s data is lost.
A proper implementation must merge the writes. GPUfs applies a classic diff-and-merge
technique [Amza et al. 1996] to determine which specific portions of a page were modified
on a given GPU when propagating those modifications to the host.

An important common case is write-once file access, where GPU application threads
produce a new output file without ever reading it or overwriting already-written data. To
avoid the costs of data transfers in this case, GPUfs attaches special semantics to files an
application opens in a new (O_GWRONCE) open mode. GPUfs never reads pages of such files
from the host into the GPU cache. Instead, when the GPU propagates locally written pages
back to the host, the merge operation can be optimized to a byte-by-byte OR of the current
and the new versions of the page. These semantics imply that concurrent writes by multiple
GPUs are guaranteed to merge correctly only if threads write only once to disjoint file
areas. We believe these constraints are consistent with common practices in file-producing
data parallel applications, and thus place reasonable semantic demands on applications in
order to enable important data movement optimizations.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:9

Buffer cache management. CPUs handle buffer cache management tasks in daemon
threads, keeping costly activities such as flushing modified (dirty) pages out of an ap-
plication’s performance path. GPUs unfortunately have a scheduling-related weakness that
makes daemon threads inefficient. GPU threadblocks are non-preemptive, so a daemon
would require its own permanently running threadblock. This dedicated threadblock could
be either an independent, constantly running GPU kernel, or it could be part of each GPU
application. The former approach reduces performance by permanently consuming a por-
tion of GPU hardware resources, thereby reducing the performance of all GPU applications
including those not using GPUfs; whereas the latter violates the correctness of GPU appli-
cations that rely on the availability of a specific number of threadblocks for execution (e.g.,
by causing deadlock).

Alternatively, offloading all of the GPU cache management functionality to a CPU dae-
mon is impractical on existing hardware due to the lack of atomic operations over a PCIe
bus.1 This limitation precludes the use of efficient one-side communication protocols. A
CPU cannot reliably lock and copy a page from GPU memory, for example, without GPU
code being involved in acknowledging that the page has been locked. Consequently, our
design uses a less efficient message-passing protocol for synchronization.

Organizing GPUfs without daemon threads has important design consequences, such as
the need to optimize the page replacement algorithm for speed. GPUfs performs page re-
placement as a part of regular file operations such as write, with the GPUfs code hijacking
the calling thread to perform the operation. The call is often on the critical path, so reduc-
ing the latency of the replacement algorithm is important. It is unclear, however, how to
implement standard replacement mechanisms, such as the clock algorithm [Effelsberg and
Haerder 1984], because they require periodic scanning of all pages in use. Performing the
scan as a part of the file system operations is aperiodic and expensive. Instead, the GPUfs
prototype implements a simple heuristic that evicts a page with the oldest allocation time.
While it works well for streaming workloads, the best replacement policy across diverse
workloads is an area for future work.

Although GPUfs must invoke the replacement algorithm synchronously, writing modified
pages from the GPU memory back to the CPU can be done asynchronously. GPUfs enqueues
writeback of dirty pages in a ring buffer which it shares with the CPU so the CPU can
asynchronously complete the transfer. The GPU produces dirty pages, enqueues them into
the ring buffer, and the CPU dequeues them and copies them. This single producer, single
consumer pattern does not require atomic operations.

4.2. GPUfs API

It is not obvious whether the traditional single-thread CPU API semantics is necessary or
even appropriate for massively parallel GPU programs. Consider a program with multiple
threads accessing the same file. On a CPU each thread that opens a file, obtains its own
file descriptor, and accesses the file independently of other threads. The same semantics on
a GPU would result in tens of thousands of file descriptors, one for each GPU thread. But
such semantics are likely to be of little use to programmers, because they do not match
GPU’s data-parallel programming idioms and hardware execution model.

Our key observation is that GPU and CPU threads have very different properties, and
thus are used in different ways in programs.
A single GPU thread is slow. GPUs are fast when running many threads, but dras-

tically slower when running only one. For example, multiplying a vector by a scalar in a
single thread is about two orders of magnitude slower on C2070 TESLA GPU than on Xeon
L5630 CPU. Hence, GPUs invoke thousands of threads to achieve high throughput.

1The PCIe 3.0 standard includes atomics, but implementation is optional and we know of no hardware
currently supporting it.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:10 M. Silberstein et al.

Threads in a warp execute in lockstep. Even though according to the programming
model GPU threads are independent, the hardware executes threads in SIMD groups, or
warps (see § 2 for detailed discussion). The threads in the same warp are executed in
lockstep. Thus, processing is efficient when all threads in a warp follow the same code
paths, but highly inefficient if they follow divergent paths: all the threads must explore all
possible divergent paths together, masking instructions applicable only to some threads at
every execution step. Similarly, memory hardware is optimized for a warp-strided access
pattern in which all the warp threads jointly access a single aligned memory block: the
hardware coalesces multiple accesses into a single large memory transaction to maximize
memory throughput.

As a result, GPU programs are typically designed to execute a task collaboratively in a
group of threads, such as a warp or a threadblock, rather than in each thread separately,
and per-thread APIs would not fit in this design pattern. Furthermore, per-thread file API
calls would be highly inefficient: their implementations are control-flow heavy, they require
synchronization on globally shared data structures, e.g. a buffer cache, and they often involve
large memory copies between system and user buffers, as in write and read. Therefore,
if GPUfs allowed API calls at thread granularity, the threads would quickly encounter
divergent control and data paths within GPUfs, resulting in hardware serialization and
inefficiency in the GPUfs layer.

Consequently, GPUfs requires applications to invoke the file system API at warp—rather
than thread—granularity. All application threads in a warp must invoke the same GPUfs
call, with the same arguments, at the same point in application code. These collaborative
calls together comprise one logical GPUfs operation. The warp granularity of the API al-
lows the GPUfs implementation to parallelize the handling of API calls across threads in the
invoking warp—parallelizing file table search operations, for example. Our current imple-
mentation supports even more course-grained per-threadblock granularity, which, in fact,
we found to be more efficient than per-warp calls, and sufficient for the GPUfs applications
we implemented.

Layered API design. File descriptors in GPUfs are global to a GPU kernel, just as they
are global to a CPU process. Each GPU open returns a distinct file descriptor that must be
closed with close. The benefit of this design is that a file descriptor can be initialized once,
and then reused by all other GPU threads to save the overhead of CPU file system accesses.
Unfortunately, implementing such globally-shared objects on a GPU is a non-trivial task
due to the lack of GPU-wide barriers and subtleties of the GPU memory model.

GPUfs balances programmer convenience with implementation efficiency by layering its
API. The open call on the GPU is wrapped into a library function gopen that returns
the same file descriptor when given the same file name argument. GPUfs reference counts
these files, so a gopen on an already-open file just increments the file’s open count without
CPU communication. In our experiments with GPUfs we found gopen to be much more
convenient to use than the low-level GPU open call. It is also generally more efficient than
an open call because it does not need to contact the CPU.

Similarly, at the lowest level, GPUfs removes the file pointer from the global file descriptor
data structure to prevent its update from becoming a serializing bottleneck. It implements a
subset of POSIX file system functionality, for example by providing the pread and pwrite as
system calls, which take an explicit file offset parameter. At a higher level, however, GPUfs
provides programmer convenience, such as per-threadblock or per-warp file pointers. Thus
a programmer can choose to program to the low-level pread interface, or she can initialize a
local file offset and make calls to the more familiar read interface. This division of labor is
somewhat similar to the division on the CPU between system calls like read and C library
functions like fread.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:11

File mapping. GPUfs allows GPU threads to map portions of files directly into local GPU
memory via gmmap/gmunmap. As with traditional mmap, file mapping offers two benefits: the
convenience to applications of not having to allocate a buffer and separately read data into
it, and opportunities for the system to improve performance by avoiding unnecessary data
copying.

Full-featured memory mapping functionality requires software programmable hardware
virtual memory, which current GPUs lack. Even in future GPUs that may offer such control,
we expect performance considerations to render traditional mmap semantics impractical in
data parallel contexts. GPU hardware shares control plane logic, including memory man-
agement, across compute units running thousands of threads at once. Thus, any translation
change has global impact, likely requiring synchronization too expensive for fine-grained
use within individual threads.

GPUfs therefore offers a more relaxed alternative to gmmap, permitting more efficient
implementation in a data parallel context by avoiding frequent translation updates. There
is no guarantee that gmmap will map the entire file region the application requests—instead
it may map only a prefix of the requested region, and return the size of the successfully
mapped prefix. Further, gmmap is not guaranteed ever to succeed when the application
requests a mapping at a particular address: i.e., MMAP_FIXED may not work. Finally, gmmap
does not guarantee that the mapping will have only the requested permissions: mapping
a read-only file may return a pointer to read/write memory, and GPUfs trusts the GPU
kernel not to modify that memory.

These looser semantics ultimately increase efficiency by allowing GPUfs to give the ap-
plication pointers directly into GPU-local buffer cache pages, residing in the same address
space (and protection domain) as the application’s GPU code.

4.3. Failure semantics

GPUfs has failure semantics similar to the CPU page cache: on GPU failure, file updates not
yet committed to disk may be lost. From the application’s perspective, successful completion
of gfsync or gmsync (GPUfs analogues of fsync and msync) ensures that data has been
written to the host buffer cache. Note that successful completion of close does not guarantee
that the data has been written to disk, or even to the CPU page cache, as the transfers
might be performed asynchronously.

Unfortunately, GPU failures are more frequent than CPU failures and have severe impli-
cations. In existing systems, a GPU program failure—such as an invalid memory access or
assertion failure—may require restarting the GPU card, thus losing all GPU memory state.
As GPUs continue to become more general-purpose, we expect GPU hardware to gain more
resilience to software failures.

4.4. Resource overheads

Operating systems are known to compete with user programs for hardware resources such as
caches [Soares and Stumm 2010], and are often blamed for decreased performance in high-
performance computing environments. GPUfs is a system software co-resident with GPU
programs, but it is less intrusive than a complete OS in that it has no active, continuously
running components on the GPU. GPUfs by design imposes no overhead on GPU kernels
that use no file system functionality. We deliberately avoided design alternatives involving
“daemon” threads: i.e., persistent GPU threads dedicated to file system management, such
as paging or CPU-GPU synchronization. While enabling more efficient implementation of
the file system layer, such threads would violate this “pay-as-you-go” design principle.

GPUfs necessarily adds some overheads, however, in the form of memory consumption,
increased program instruction footprint, and use of GPU hardware registers. We expect
the relative effect of these overheads on performance to decrease with future hardware
generations, which will provide larger memory, larger register files, and larger instruction

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:12 M. Silberstein et al.

Fig. 4. Main GPUfs software layers and their location in the software stack and physical memory.

caches. And despite the cost, we find GPUfs to have good performance in useful application
scenarios (§6).

5. IMPLEMENTATION

This section describes our GPUfs prototype for NVIDIA FERMI and KEPLER GPUs.
We first outline the prototype’s structure and how it implements the above API, then
explore implementation details and challenges. We cover buffer cache management, GPU-
CPU communication, file consistency management, and limitations of the current prototype.
Some of these implementation choices are likely to be affected by future GPU evolution,
but we feel that most considerations discussed here will remain relevant. For simplicity, our
current implementation supports parallel invocation of the GPUfs API only at threadblock
and not warp granularity. GPUfs calls represent an implicit synchronization barrier, and
must be called at the same point with the same parameters from all threads in a threadblock.

Most of GPUfs is a GPU-side library linked with application code. The CPU-side portion
runs as a user-level thread in the host application, giving it access to the application’s
CUDA context.

Figure 4 shows the three main software layers comprising GPUfs, their location in the
overall software stack shown on the right and indicated by different colors, and the type of
memory the relevant data structures are located in shown on the left.

The top layer is the core of GPUfs, which runs in the context of the application’s GPU
kernels and maintains its data structures in GPU memory. This layer implements the GPUfs
API, tracks open file state, and implements the buffer cache and paging.

The communication layer manages GPU-CPU communications, and naturally spans the
CPU and GPU components. Data structures shared between the GPU and CPU are stored
in write-shared CPU memory accessible to both devices. This layer implements a GPU-CPU
Remote Procedure Call (RPC) infrastructure, to be detailed in Section 5.3.

Finally, the GPUfs consistency layer is an OS kernel module running on the host CPU,
which manages consistency between the host OS’s CPU buffer cache and the GPU buffer
caches, according to the file consistency model described above in §4.

The GPUfs file system is inspired by the Linux file system and buffer cache. We now
examine its function in more detail.

5.1. File system operations

Table II summarizes the GPUfs API.

Open and close. GPUfs keeps track of open and recently closed files in several tables.
Each open file has an entry in the open file table. This table holds a pointer to a radix tree

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:13

Fig. 5. Functional diagram of a call to pread. Color scheme is the same as Figure 4.

Table II. GPUfs API.

API Explanation
gread/gwrite Reads and writes always supply explicit file offsets, as in pread and pwrite.

gopen/gclose Open and close files in the namespace of a single threadblock. Multiple concurrent
open requests to open or close the same file are coalesced into one open/close.

gfsync Synchronously write back to the host all dirty file pages that are currently neither
memory-mapped nor being accessed concurrently via gread or gwrite calls.

gmmap/gmunmap A relaxed form of mmap that avoids double copies in gread/gwrite. Imposes API con-
straints discussed in §4.2.

gmsync Write back a specific dirty page to the host. The application must coordinate calls to
gmsync with updates by other threadblocks.

gunlink Remove a file. Files unlinked on the GPU have their local buffer space reclaimed
immediately.

gfstat Retrieve file metadata. File size reflects file size at the time of the first gopen call that
opened this file on the host.

gftruncate Truncate a file to a given size, and reclaim any relevant pages from the buffer cache.

indexing the file’s pages. For each file, the table stores several file parameters, including the
pathname and the CPU file descriptor used for data requests handled by the CPU. Finally,
each entry stores a reference count of the number of threadblocks holding the file open.

When a file is closed its pages are retained in GPU memory until they are reclaimed for
caching other data. The closed file table maintains pointers to the caches of closed files,
and is a hash table indexed by file inode number in the CPU file system. Because of GPU
hardware thread scheduling, files can appear to be closed while still in use by threadblocks
that have yet to be scheduled. To optimize for this case and to support data reuse in and
across kernels, gopen checks the closed file table first, and moves the file cache back to the
open file table.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:14 M. Silberstein et al.

If a file was changed, close enqueues all the file’s dirty pages to a write queue. The
CPU then asynchronously fetches the pages from the queue and flushes them to the disk.
The write queue is implemented as a lock-free ring buffer with the CPU as a consumer
and the GPU as a producer. Single-producer/consumer ring buffer does not require atomic
operations and thus works correctly over PCIe-2 bus that does not support inter-device
atomics.

Reads and writes. Reads and writes work as expected, first checking the cache for the
relevant block, and forwarding requests to the CPU and allocating cache space as necessary.
Figure 5 shows a functional summary of pread’s operation. Reads and writes exploit the
GPU’s fine-grain parallelism by using many threads to copy data or initialize pages to zero
collaboratively. Reference counts protect pages during memory transfers.

When write completes, each thread issues a memory fence to ensure that updates reach
GPU memory, in case the GPU buffer cache needs to write the page back to the CPU.
Otherwise, due to the GPU’s weak memory consistency model, the data paged back via a
DMA from the GPU memory might be left inconsistent because the writes might remain
buffered in the GPU’s L1 cache.

File management operations. File management operations such as gunlink and gftrun-
cate each generate an RPC to the CPU to request the respective operation on the host.
They also reclaim the file page cache on the GPU if necessary.

5.2. GPU buffer cache

Pages, page frames and page table. GPUfs manages file content at the granularity of a
buffer cache page. This page size is configurable, though performance considerations typi-
cally dictate page sizes larger than OS-managed pages on the host CPU—e.g., 256KB, since
GPU code often parallelizes the processing of a page across many threads in a threadblock
(on the order of 256 threads). The ideal page size depends on empirical considerations ex-
plored further in §6. For efficiency, GPUfs pre-allocates pages in a large contiguous memory
array, which we call the raw data array.

As in Linux, each page has an associated pframe structure holding metadata for that
page, e.g., the size of the actual data in the page, dirty status, and others. Unlike Linux,
pframes contain some file-related information, such as a unique file identifier used for lock-
free traversal, and the page’s offset in the file, because in GPUfs all pages are backed by a
host OS file. We chose to eliminate additional layers of indirection where possible to speed
up the access to the data.

Pframes are allocated in an array separate from the pages themselves, but the ith pframe
in this array holds metadata for the ith page in the raw data array, making it easy to
translate in both directions, as needed in operations such as gmunmap and gmsync.

Per-file buffer cache. The buffer cache keeps replicas of previously accessed file content for
later reuse. For simplicity the GPUfs buffer cache is per-file, not per-block device as in Linux,
but future GPU support for direct access to storage devices may motivate reconsideration
of this decision.

We depict main buffer cache data structures in Figure 6. A dynamic radix tree indexes
each file’s buffer cache, enabling efficient page lookups given a file offset. Last-level nodes in
the tree hold an array of fpage structures, each with a reference to a corresponding pframe.
The fpages manage concurrent access to the respective pframes: each holds a read/write
reference count and a spinlock, together preventing concurrent access by mutually exclusive
operations such as initialization, read/write access, and paging out. The fpages are allocated
not by reference, but by value within radix tree nodes. We use in-place data structures to
avoid pointer traversal and minimize memory allocations, even though all dynamic memory
is managed by GPUfs via special allocators.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:15

Fig. 6. Buffer cache data structures. Pages occupied with data are marked blue.

Buffer cache management. GPUfs implements a FIFO policy by tracking allocation of
last-level radix tree nodes. Newly allocated nodes are placed at the head of a doubly-linked
list. The node allocation time is a reasonable proxy for the allocation time of the individual
pages referred by that node, because these pages are often initialized and accessed together
by parallel threads. When a thread needs to evict pages from the buffer cache, it performs
a lock-free traversal of this list to reclaim a desired number of pages from a particular file.

To choose the file whose pages will be reclaimed, GPUfs uses a policy similar to Linux’s.
GPUfs first looks at closed files, which are not in use so their content can be evicted with
lower performance penalty for the running application. Furthermore, their pages are more
likely to be clean, so they can be reclaimed without GPU-CPU communication. GPUfs then
looks for pages from read-only open files, and as a last resort chooses pages from writable
open files.

Lock-free buffer cache access. The buffer cache radix tree is a major contention point
among threads accessing the same file. These accesses must be synchronized to avoid data
races, such as concurrent attempts to initialize pages belonging to the same intermediate
node, or node deletion due to page reclamation, which may be performed concurrently with
page lookup.

GPUfs uses lock-free reads and locked updates, similar to Linux’s seqlocks [Hemminger
2002]. Updates maintain the radix-tree invariants used by readers, and all fields are initial-
ized before a new node becomes visible to readers. Reads can fail, in which case they retry.
GPUfs retries once without locking, then locks on its third attempt. To check that the page
found is correct, GPUfs assigns a unique identifier to each radix tree during initialization,
then propagates this identifier to every page referenced by the tree. This identifier, combined
with the page offset, uniquely identifies the page.

The paging algorithm also uses lock-free reads on a doubly linked list used as a FIFO
queue.

5.3. GPU-CPU Remote Procedure Call

GPUfs implements an RPC protocol to coordinate data transfers between a CPU and a
GPU. The GPU serves as a client that issues requests to a file server running on the

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:16 M. Silberstein et al.

host CPU. This GPU-as-client design contrasts with the traditional GPU-as-coprocessor
programming model, reversing the roles of CPU and GPU.

The challenge of implementing an efficient RPC protocol lies in the CPU/GPU memory
consistency model. GPU consistency models are tailored to the bulk-synchronous GPU pro-
gramming model, where GPU-CPU communications traditionally occur only at kernel invo-
cation boundaries and not while the kernel is running. Except at these points, CPU/GPU
consistency is not guaranteed. Our RPC system is thus not currently portable to all GPUs,
but relies on hardware providing the following consistency features.

(1) GPU-CPU memory fences. GPU file read and write requests must be delivered to
the CPU while the GPU kernel is running. This is only possible if consistent updates of
the CPU-GPU write-shared memory can be enforced in both directions.

(2) GPU cache bypass. To allow consistent reads of GPU memory from the running GPU
kernel, after this memory has been updated by CPU-initiated DMA transfers, GPU reads
must either invalidate or bypass the GPU’s L1 and L2 caches.

The latest stable version 1.2 of the OpenCL standard [OpenCL], and consequently
AMD’s discrete GPUs, currently do not support these features 2. Only NVIDIA GPUs
currently satisfy all of our requirements.

Challenges due to hardware constraints.. RPC implementation is complicated by the lack
of atomic operations over the PCIe bus. The new PCIe-III standard includes atomics, but
implementation is optional and we know of no hardware currently supporting it.

This limitation precludes the use of efficient one-side communication protocols, as dis-
cussed in §4.1. A CPU cannot reliably lock and copy a page from GPU memory, for example,
without GPU code being involved in acknowledging that the page has been locked. Conse-
quently, the current implementation must resort to a less efficient message-passing protocol
for synchronization.

Today’s GPUs also lack a signal-like mechanism accessible to applications, to notify a
host CPU process of events originating on the GPU. The current API offers the CPU only
coarse-grained notifications when entire GPU kernels or memory transfers complete, and
do not allow code within a GPU kernel to send notifications. The CPU must therefore poll
the GPU-CPU shared memory region continuously to detect RPC requests from the GPU.

RPC protocol implementation.. GPU-CPU communications in GPUfs follow a syn-
chronous client-server protocol, where the GPU sends requests to the CPU and waits for
the CPU to acknowledge the request’s completion. The RPC request channel is a FIFO
queue in write-shared memory, which the CPU polls for requests. Each GPU in the system
has a separate RPC request queue, managed exclusively by the GPU that owns that queue.

The GPU uses its request queue only to send commands: when the GPU issues a bulk
transfer request such as a bulk data read or write, the CPU initiates a DMA-based bulk
data transfer directly to or from the respective GPU buffer cache pages, using source or
destination pointers supplied by GPU code. The CPU then notifies the GPU when the
transfer completes.

The RPC queue usually contains multiple concurrent requests that, in principle, CPU
code could handle in parallel. Our implementation uses a single-threaded, event-based de-
sign on the host to restrict the GPU-related CPU load to one CPU, simplify synchronization,
and to avoid overwhelming the disk subsystem with concurrent requests. Our implementa-
tion thus currently orders file accesses, but data transfers to and from the GPU use multiple
asynchronous CPU-GPU channels to utilize full-duplex DMA and overlap GPU-CPU trans-
fers with disk accesses and GPU execution.

2OpenCL 2.0 formalizes inter-processor memory consistency model and enables more forms of synchroniza-
tion, but which architectures will support that and their performance costs is yet to be known.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:17

5.4. File consistency management

The current prototype implements the locality-optimized file consistency model described
in Section 4, though currently only for the common cases of files opened in either read-only
(O_RDONLY) or write-once mode (O_GWRONCE, see §4.2). The GPUfs prototype does not yet
implement the diff-and-merge protocol required to support general write-sharing, and thus
currently supports only one writer processor per file at a time.

If a GPU is caching the contents of a closed file, this cache must be invalidated if the file is
opened for write or unlinked by another GPU or CPU. GPUfs propagates such invalidations
lazily, if and when the GPU caching this stale data later reopens the file. We call this strategy
lazy because closing a file on one GPU or CPU does not actively push an invalidation to
other GPUs caching the file. The GPUfs API currently offers no direct way to push changes
made on one GPU to another GPU, except when the latter reopens the file. Supporting
such invalidations without PCI atomics would require GPUs to run daemon threads waiting
for such an invalidation signal, an overhead we wish to avoid (see §5.2).

GPUfs uses WRAPFS [Zadok and Bădulescu 1999], a stackable passthru file system, on
the CPU to implement file consistency. WRAPFS is a Linux module that introduces a thin
software layer on top of any file system, enabling interposition on calls to the underlying file
system. We modified WRAPFS to implement our consistency protocol, enabling seamless
integration of GPUfs with unmodified CPU programs. The CPU-side GPUfs daemon com-
municates with this modified WRAPFS module via a special character device. This device
is used solely to update and query file state to implement file consistency, and provides no
access to actual file content, thereby leaving the host OS’s file access policies uncompro-
mised. We do not currently protect against denial-of-service by misbehaved applications via
buffer cache invalidation, however.

In principle, the consistency protocol could be implemented in user space without kernel
module, and use the last file modification time to determine the staleness state of the data
cached on a GPU. In order to be correct, however, such an implementation must disallow
asynchronous writebacks of dirty blocks from the GPU to prevent violation of the close-to-
open data consistency.

5.5. Implementation limitations

We think of GPUfs as GPU system-level code, but modern GPUs do not support a publicly
documented privileged mode. Therefore, GPUfs cannot run in privileged mode on the GPU,
and our GPUfs prototype is a library linked with the application. However, the library is
structured in two layers, with the top layer intended to remain a library. The bottom
layer would execute in privileged mode when GPUs add such a capability. We believe that
GPU vendors will eventually provide some combination of software and hardware support
for executive-level software, e.g., to explicitly manage memory permissions across multiple
GPU kernels.

GPUs contain hardware translation and protection mechanisms that prevent GPU kernels
launched by one CPU process from accessing the GPU memory of kernels launched by other
processes. Today’s GPUs do not offer software interfaces to control this memory protection
hardware, however 3. A GPUfs instance can therefore serve only a single CPU process,
and GPUfs cannot share state across GPU invocations by different host processes. For the
same reason, GPUfs cannot protect the contents of its GPU buffer caches from corruption
by the application it serves. Such features may become feasible once GPU vendors offer
appropriate interfaces.

GPUfs does preserve file access protection at the host OS level, however. The host OS
prevents a GPUfs application from opening host files the application doesn’t have permission

3NVIDIA CUDA recently added support for sharing GPU memory across CPU processes, but GPUfs does
not use it yet.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:18 M. Silberstein et al.

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1000

2000

3000

4000

5000

6000

CUDA pipeline GPU File I/O

Page size

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

 Whole file transfer (2100MB/s)

 Maximum PCI bandwidth (5731MB/s)

Fig. 7. Sequential read performance as a function of the page size. The red line is the maximum achievable
PCI bandwidth on this hardware configuration. Higher is better.

to access, and it denies writes of dirty blocks back to the host file system if the GPUfs
application has opened the file read-only.

6. EVALUATION

We evaluate GPUfs on a SuperMicro server system featuring two 4-core Intel Xeon L5630
CPUs at 2.13GHz with 12MB L3 cache per CPU, and four NVIDIA TESLA C2075 GPUs,
each with 6 GB of GDDR5 memory. We also used TESLA K20c GPU on the same machine.
We use Ubuntu Linux kernel 3.0.0-27, with CUDA SDK 5.0, GPU driver 304.54. GPUfs
is mounted atop a regular disk partition; the disk is a 500GB WDC WD5003, 7200RPM.
The performance as reported by ‘hdparm -t -T’ is 6,600MB/s and 132MB/s for cached
and disk reads respectively.

We evaluate the system’s performance and utility with several microbenchmarks, and also
present two more realistic applications. For every data point we report the arithmetic mean
of 5 executions after one warm up, unless stated otherwise. In all experiments we found the
standard deviation of the results to be less than 1%.

One important property shared by all the test workloads is that their GPUfs implementa-
tion required almost no CPU code: they were entirely implemented in the GPU kernel. For
all the workloads, the CPU code is identical, save the name of the GPU kernel to invoke.
This is a remarkable contrast with standard GPU development, which always requires sub-
stantial CPU programming effort. From our experience we found it significantly easier to
develop self-contained GPU programs, and believe that self-contained GPU programming
will enable broader adoption of GPUs.

6.1. Microbenchmarks

The microbenchmarks below examine basic system performance and its sensitivity to several
important configuration parameters.

6.1.1. Sequential file read. We first evaluate the effect of page size on sequential read perfor-
mance. The benchmark transfers a single 1.8 GB file, in three ways: (a) reading data from
the GPU kernel via GPUfs, (b) using the CUDA memory transfer API in chunks the same
size as a GPUfs page (CUDA pipeline), and (c) reading the whole file in one chunk and
transferring it to the GPU in one CUDA API call.

The GPU file reading kernel runs with 28 threadblocks (twice the number of active
multiprocessors in the GPU), where each threadblock maps pages from a contiguous range

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:19

Fig. 8. Contribution of different factors to the file I/O performance as a function of the page size. Lower
is better.

in the file. Each threadblock maps one page at a time, until the total 64MB of data is
mapped. The number of map requests depends on the page size. The data itself is not
accessed, but the pages are fetched from the CPU page cache into the GPU buffer cache. The
threadblock then closes the file and exits. GPU file access is not strictly sequential because
the order of reads by different threadblock is non-deterministic. We do not anticipate any
measurable effect from these non-sequential reads, however, because the file data is cached
in CPU memory and fits in the GPU page cache.

The CPU code uses pread to read each chunk of the file into pinned CPU memory
allocated with cudaHostMalloc, then issues an asynchronous cudaMemcpy to enqueue a
DMA transfer request for that chunk, then proceeds to the next chunk (except in the whole
file transfer case in which there is only one big chunk). Dividing the file into chunks overlaps
file access latency with DMA data transfers to the GPU. An alternative implementation,
which copies file content directly from the CPU page cache exposed via mmap, performs worse
because it prevents CUDA from optimizing DMA transactions and forces cudaMemcpy to
be synchronous.

The graph in Figure 7 shows read bandwidth for different page sizes. As expected, small
GPUfs pages (less than 64KB) result in low performance, and increasing page size increases
performance, with diminishing returns after 512 KB. Reading entire files, a common practice
among GPU programmers expecting larger transfers to amortize data transfer overheads
most effectively, is in fact less efficient than breaking reads into chunks, as chunks allow
overlap of pread from the CPU page cache with PCI data transfer. Similar observations
were made in [Kato et al. 2012]. The CUDA pipeline implementation appears to achieve
the maximum possible file-to-GPU transfer performance on this machine (because the CPU
memory bandwidth and the PCIe bandwidth are about the same).

GPUfs outperforms simple CUDA whole file reads at 64 KB pages and higher, and
achieves on average within 5% of the bandwidth of the hand-pipelined version, a cost we
consider to be a reasonable tradeoff for the convenience GPUfs offers.

Figure 8 breaks down the timing of the microbenchmark, by eliminating PCI data transfer
time while leaving only the RPC traffic, eliminating CPU file reads, and eliminating both.
The graph shows latency, where lower is better.

Execution time with small pages is dominated by the DMA transfers, which copy too little
data per transaction, and by GPUfs API costs. I/O operations become fully overlapped with
GPUfs buffer cache code execution for pages larger than 64KB. We see that total page cache

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:20 M. Silberstein et al.

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

100

200

300

400

500

600

700

800

900

1000

Unique pages accessed

Throughput

Page size

U
ni

qu
e

pa
g e

s
ac

ce
ss

ed

E
ffe

ct
iv

e
ba

nd
w

id
th

 (M
B

/s
)

Fig. 9. Random read/write performance as a function of page size. Higher is better.

access overhead (the rightmost labeled column) diminishes proportionally to page size. This
is because the total amount of memory mapped by each threadblock is fixed while the page
size changes, so the number of map requests performed by each threadblock is reduced as
the page size grows. For pages larger than 128K the CPU page cache becomes the main
bottleneck.

6.1.2. Random file read. This experiment shows the performance of random file access for
different page sizes. This kernel is invoked with 112 threadblocks, where each threadblock
reads 32 32KB data blocks from random offsets in a 1GB file, for a total of 112 MB read.
The kernel uses gread to read the data into a 32KB array allocated in the GPU on-die
scratchpad memory. Unlike gmmap, gread is not constrained in size to a single cache page,
hence it is more appropriate for accessing file data at random offsets. Occasionally, different
threadblocks may access the same page and fetch it from the GPU buffer cache. Time
measurements are an average over 8 runs.

Figure 9 shows that as with sequential reads, small pages lead to bad performance, but
now large pages also lead to bad performance. Small pages fail to amortize transfer costs,
while large pages transfer too much data that is not actually read by the application. 64KB
achieves the best performance in this test.

We calculate effective throughput in this experiment assuming an ideal case of exactly
112MB of data transferred. To support random accesses from GPU code without GPUfs, a
GPU program would typically transfer the whole 1GB and perform the random accesses in
GPU memory. Assuming the maximum observed throughput of 3100MB/s (see Figure 7),
using only one tenth of the total 1GB of transferred data results in an effective random-access
throughput of only 310 MB/s, comparable to GPUfs’s worst performance using very large
pages. Further, without GPUfs, random access to files whose size exceeds the GPU’s physical
memory is complex and inefficient in hand-coded GPU programs, often requiring frequent,
brief kernel invocations between each random access. GPUfs eliminates from the application
the design and implementation complexity required to handle such cases efficiently.

In the above experiments, a 128KB page size achieves a reasonable balance between se-
quential and random access performance. The optimal page size in general depends on appli-
cation access pattern, however. In the current implementation, in which GPUfs is deployed
on a per-application basis, page size may easily be tailored to the particular application’s
access patterns if necessary.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:21

Fig. 10. Buffer cache access performance with and without lock-free radix tree traversal, normalized by the
raw memory access time.

6.1.3. Buffer cache access performance. As the “GPUfs-lock-free” case in Figure 10 shows,
GPUfs achieves 85–88% of raw memory access performance when accessing files in the GPU
buffer cache, for 128KB pages or larger. In this experiment we invoke 112 threadblocks, each
reading 64MB of data into the GPU’s on-die scratchpad memory in chunks of 16KB. The
baseline implementation reads data directly from the GPU’s main memory, without using
the GPUfs API. The GPUfs implementation reads data from the cached file via gread,
passing to gread a direct pointer to the destination buffer in scratchpad memory. The file is
fully prefetched into the GPU page cache by another previously invoked kernel, excluding
PCI transfer time from the measurements. We randomized the memory accesses so that
every 16KB chunk is read from a different file location, to cause non-trivial contention on
the buffer cache data structure.

This workload mimics the behavior of linear algebra kernels, for example, which perform
tiled operations on large matrices, prefetching data to be processed into scratchpad memory.

We ran this experiment with a locked traversal of the buffer cache’s radix trees, for
comparison against our default lock-free implementation. As described in §5.2, we normally
use the lock-free traversal to access each page, resorting to locking only in cases of high
contention. When file data is fully resident in the buffer cache, GPUfs locks the tree rarely,
as confirmed later in Table III. As a result, Figure 10 shows that the lock-free protocol
performs nearly 3× better than the locked protocol across various page sizes.

6.1.4. Matrix-vector product. We run a simple single-precision matrix-vector product kernel
to highlight two key benefits of the file system API: automatic data transfer pipelining and
code simplification.

This test reads an input matrix and vector from files, and writes the result to an output
file. We compare three implementations: one using GPUfs, one that explicitly implements
double buffering to overlap the PCI data transfer and the kernel execution (CUDA näıve
in Figure 11), and an optimized version of the latter (CUDA optimized). The GPUfs im-
plementation does not call the CUDA host-side API, employing gmmap to read the data in
the kernel, gftruncate to truncate the output file at the start, gwrite to write the output,
and finally gclose to synchronize the data to disk. The GPUfs buffer cache is sized to 2
GB, with 2MB pages. The “näıve” version implements a simple pipeline, splitting the file
into four chunks and processing each chunk independently, overlapping the file read, data
transfer and kernel execution between them. Note that the chunk size depends on the size
of the input, which is convenient because every GPU kernel invocation may use the same
number of threads. The optimized version is similar, but the chunk size is fixed at 70 MB
and there are 16 independently processed chunks. Similarly to the CUDA näıve version,
each chunk is processed separately, and the file read, data transfer and kernel execution are
overlapped between the chunks. Both implementations run the same code for computing
the inner-product.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:22 M. Silberstein et al.

280 560 2800 5600 11200
0

500

1000

1500

2000

2500

3000

3500 GPU file I/O CUDA naïve CUDA optimized

Matrix size (MB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Fig. 11. Matrix-vector product for large matrices

We fix the input vector length to 128K elements, and vary the matrix size from a few
megabytes up to 11GB. The largest input does not fit in the GPU’s memory, and barely
fits into the CPU’s RAM. The GPUfs version requires no special treatment for this case,
however. While this workload is entirely limited by the PCIe bus bandwidth, and for the
largest inputs by the disk bandwidth, it is representative of many kernels that need to read
data from disk as part of a large processing pipeline.

Figure 11 shows that the GPUfs based implementation outperforms the double-buffering
implementation, achieving maximum PCI bandwidth equivalent to reading sequential files
(see Figure 7). The main reason for the performance benefit is that the non-GPUfs code
reads the input in large chunks (1GB each), which sometimes causes slowdowns due spurious
paging of the CPU buffer cache, stalling the CPU-GPU transfer pipeline. GPUfs performs
many shorter reads, due to the 2MB page size in this experiment, and the performance
irregularities are smoothed by the fine-grained pipelining performed under the hood by the
GPUfs’ RPC daemon.

When file size exceeds available CPU buffer cache (the last data point in the graph),
performance falls as the workload becomes disk bound. In this performance regime, GPUfs
outperforms both CUDA versions by a factor of 4. The pinned memory allocated for large
transfer buffers for the CUDA implementations competes with the CPU buffer cache, slowing
it down significantly.

On the other hand, we observe no slowdown for inputs exceeding the size of the GPU
buffer cache (larger than 2GB). The FIFO-like replacement policy employed by GPUfs
appears to offer adequate efficiency for such streaming workloads.

6.1.5. Matrix product. Our matrix product program reads two matrices from two different
files, multiplies them, and writes the result to a third file. We compare three implemen-
tations: CUDA näıve – the original CUDA SDK implementation with input,output and
execution performed sequentially, CUDA pipelined – the SDK implementation but with
data transfers to and from GPU memory overlapped between themselves and with the
kernel execution, and GPUfs, which accesses files from the GPU code.

We evaluate two scenarios: compute-intensive and cross-application data reuse. The com-
pute intensive case evaluates GPUfs’s ability to overlap communication and computation.
Thus, the inputs are sized so GPU computation time is at least as long as data transfer time.
We generate inputs and outputs ranging from 1MB to 1GB by systematically doubling each
dimension of the input matrices starting from 3,328x4096 by 4,096x256 to 106,492x4,096
by 4,096x2,048. We also evaluate the benefits of a cross-application GPU buffer cache when

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:23

Fig. 12. Relative speedup in matrix product benchmarks

an application is invoked multiple times with different parameters but on the same data.
Unfortunately, our prototype cannot maintain its buffer cache in GPU memory across dif-
ferent CPU applications. Consequently we emulate data reuse by comparing execution time
for a program that reads its inputs from CPU buffer cache memory, and one that reads its
inputs from GPUfs’s buffer cache. Inputs range from 30MB to 1.5GB and the outputs from
1MB to 100MB, generated similarly to the compute-intensive benchmark.

We run these experiments on TESLA K20C NVIDIA GPU. Figure 12 shows the relative
performance of GPUfs and the näıve and pipelined CUDA versions normalized by the
performance of the CUDA näıve implementation. In the compute intensive scenario GPUfs
reaches throughput of 180GFLOP/s, and is on average more efficient that the näıve CUDA
implementation, but falls short of the hand-tuned implementation. However, GPUfs is more
efficient than the pipelined version if file contents is reused — GPU-side cross-application
data caching is capable to transparently improve application performance.

6.2. Application benchmarks

We now consider two more realistic I/O intensive workloads: image search, and a “grep”-
like search of text files. Both applications have highly data-dependent, unbounded working
sets that dynamically change during computations. Such dynamic data dependencies are
challenging to handle in GPU programs without GPUfs.

6.2.1. Finding approximately matching images. The first application’s input is a set of query
images and several image databases containing many small images. The goal is to find
which databases contain images matching the query images, where a match is defined by a
threshold on a similarity metric, in our case Euclidian distance. While each image may be
present in several databases, the databases must be scanned in a predefined order and only
the first match output for a given query image. This process is representative of large-scale
image registration tasks, e.g., when processing aerial photographs while attempting to find
a matching image in a specific region first.

We can easily parallelize this problem by dynamically or statically splitting the input
images between the threadblocks. The databases or/and the input set may not fit in GPU
memory, however. Thus, the decision of which database to load and when must be done
at runtime depending on the outcome of prior matching attempts. For example, if all the
matching images are located at the beginning of the first database, the amount of data to
be transferred is much lower than simply transferring all of the databases at once.

Without GPU access to the file system, the CPU must transfer the databases to the GPU
first. To avoid redundant PCI transfers, the CPU is likely to split the databases into chunks,

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:24 M. Silberstein et al.

Table III. Impact of the buffer cache size on the running time and
locking behavior for the image search workload. Locked access count
also includes unlocked retries.

Buffer
cache size

Time (s) Pages
reclaimed

Lock-free
accesses

Locked
accesses

2G 53 0 1,088,838 21,516
1G 69 11,509 547,819 574,463

0.5G 99 38,317 176,758 1,351,903

small enough so that the amount of redundant data transferred would be negligible, but
large enough to amortize the overheads of GPU invocation on each chunk. This heuristic
is not only suboptimal and introduces additional overheads, but significantly complicates
the code. Furthermore, before starting the kernel to process the next chunk, all previously
matched images must be removed from the input set, requiring additional program logic to
compact the input array.

GPUfs streamlines this task, making the implementation almost trivial and closely fol-
lowing the design for CPU code. Both the OpenMP parallel CPU and GPUfs-based versions
of the program are about 130 ± 10 LOC, counting semicolons.4 The associated CPU code
for the GPU version is only a single line—the GPU kernel invocation.

In our synthetic workload, the images in the input and the databases are randomly
generated. Each image is represented as a 4K-element vector. The input contains 2,016
images, amounting to 31.5MB of raw data. We use 3 database files, of sizes 383, 357 and
400 MB, containing about 25,000 images each. The images from the input are injected at
random locations in the databases. We invoke the kernel with 28 threadblocks, 512 threads
per threadblock.

We measure raw performance using a query set containing only images with no matches
in the databases, forcing all databases to be read completely. We flush the OS page cache
before each experiment. We set the GPU buffer cache size to 2GB, enough to keep all
databases in GPU memory. The GPU throughput achieved is 18GFLOP/s, twice as fast as
an 8-core CPU run using OpenMP.

Changing the buffer cache size. We examine the effect of the buffer cache size on program
performance in Table III. Observe that as the amount of available memory decreases, the
ratio between lock-free and locked accesses drops due to the paging algorithm’s attempts
to free pages being used. Each threadblock runs independently of the others, and may
follow different execution paths, for example accessing the databases relevant to the set
of input images it is processing. File access patterns among different threadblocks quickly
desynchronizes, a well known effect in large-scale parallel environments, requiring careful
implementation and possibly redundant work to avoid.

Finally, we evaluate our implementation’s scalability by splitting the query list equally
among up to 4 GPUs. We do not evaluate the diff-and-merge algorithm for write-sharing,
but the system interaction with the WRAPFS-based consistency daemon is included (as is
the case for all experiments presented in this section).

This set of experiments is performed with preliminary warmup in order to prefetch the
data into the CPU buffer cache and highlight the scaling capabilities of the system. As
confirmed in the experiments in Table IV, GPUfs shows near linear scaling with increasing
GPU count because of the lightweight consistency protocol. The first run (“No match”)
shows the performance of the more regular workload, for which GPUfs shows ideal scaling.
The second run is irregular because the number of exact matches per processor is different,
and static input partitioning does not scale as well in either the GPUfs or CPU versions.
All 4 GPUs together outperform a single CPU execution by about a factor of 9.

4We tried David Wheeler’s SLOCCount but it fails to parse CUDA code.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:25

Table IV. Approximate image matching performance. Speedup for
multi-GPU runs relative to a single GPU are given in parentheses.

Input CPUx8 #GPUs
1 2 3 4

No match 119s 53s 27s
(2.0×)

18s
(2.9×)

13s
(4.1×)

Exact match 100s 40s 21s
(1.9×)

14s
(2.9×)

11s
(3.6×)

Table V. GPU exact string match “grep -w” performance.

Input CPUx8 GPU-GPUfs GPU-vanilla
Linux source 6.07h 53m (6.8×) 50m (7.2×)
Shakespeare 292s 40s (7.3×) 40s (7.3×)
LOC (semicolon) 80 140 (+52) 178

The benefits of dynamic database loading becomes apparent as we relax the matching
threshold, allowing searches to terminate earlier, and occasionally eliminating the need to
accesses lower-priority databases altogether. Runtime decreases as expected; in the degen-
erate case where images always match the first entry in the first database, runtime falls by
400×—from 53 seconds to a minimum of 130ms—leaving only the costs of initialization,
invocation, and matching the query list with the first database page.

6.2.2. Exact string matching in text files. The last experiment is an implementation of a con-
strained version of grep on a GPU. Given a dictionary and a set of text files, for each word
in the dictionary, the program determines how many times and in which files it appears.

This application is conceptually similar to image matching, but with two key differences.
The parallelization strategy is different because words are typically short (up to 32 symbols),
so each GPU thread is assigned one word, instead of one image per threadblock in the
previous case. Second, the output buffer becomes unbounded, so we need to write the
output frequently to flush the per-threadblock internal buffer.

This experiment counts the frequencies of modern English words in two datasets: the
works of William Shakespeare, and the Linux kernel source code. We search for a specific
dictionary of 58,000 modern English words5, within the complete works of Shakespeare as a
single 6MB text file6, and within the Linux 3.3.1 kernel source containing about 33,000 files
for 524MB in total. To simplify the parsing of the dictionary file by a GPU, we reformat the
dictionary to align every word on a 32 byte boundary; none of the words in the dictionary
exceed that length. The list of input files is itself specified in a file.

Each threadblock opens one file at a time, then each thread searches for a subset of the
dictionary that it is allocated to match. Matched words are printed out together with the
file name and match count into an internal per-threadblock output buffer, which is then
periodically flushed into a global output file. Various text parsing and formatted output
tasks required us to implement limited GPU versions of the sprintf, strtok, strlen,
strcat functions not normally available to GPU code.

This workload puts extremely high pressure on GPUfs because most of the files are fairly
small (few kilobytes on average), leading to frequent calls to gopen and gclose. Since the
progress of each threadblock depends on the actual number of matching words in its input
subset, the number of concurrently open files eventually reaches the number of concurrently
running threadblocks.

As a point of reference we compared two other implementations: a simple CPU program
performing the same task on 8 cores (using OpenMP), and a “vanilla” GPU version imple-

5http://www.mieliestronk.com/wordlist.html
6http://www.gutenberg.org/ebooks/100

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:26 M. Silberstein et al.

mented without GPUfs. Both implementations prefetch the contents of the input files into a
large memory buffer first, then do not read from the file system during the matching phase.

The vanilla GPU version pre-allocates a large output buffer in the GPU memory (5GB—
all remaining GPU memory), but if it overflows, the GPU kernel crashes. In general, our
vanilla GPU version is more limited than the one using GPUfs because it conservatively
assumes that the inputs and outputs fit in the GPU’s physical memory. Large file sup-
port would substantially complicate the implementation, whereas the GPUfs-based version
automatically supports arbitrarily large input files.

We present the results (no warmup) in Table V. Even for such a file-system intensive
workload, a single GPU outperforms the 8-core CPU by 6.8×. The GPUfs version is only
9% slower than the vanilla GPU implementation on the Linux kernel input, but the two
versions perform similarly on one large input file. The GPUfs-based code is shorter than
the vanilla version if we exclude string parsing and formatted output functions (52 lines of
code), which are not used in the vanilla version because they are executed on a CPU as a
part of a post-processing phase.

We emphasize, however, that no serious effort has been made to optimize either the GPU
or CPU version. The main point of this exercise is to highlight the utility of the file system
API on GPUs, which opens up new ways to explore the computing power of these massively
parallel processors.

7. RELATED WORK

To our knowledge GPUfs is the first extension of the file system abstraction to modern
GPU architectures. This work touches on many areas from classic OS design and efficient
lock-free synchronization to GPU architectures and programming techniques.

General-purpose GPU computing. The research community has focused considerable ef-
fort on the problem of providing a general-purpose programming interface to the special-
ized hardware supported by GPUs (GPGPU). GPGPU computing frameworks such as
CUDA [NVIDIA], OpenCL [OpenCL], and others [Bayoumi et al. 2009; McCool and
D’Amora 2006; Buck et al. 2004; Han and Abdelrahman 2009; Ueng et al. 2008] provide an
expressive platform, but none provide any way for GPUs to use host OS services in general,
or file system access in particular.

I/O for GPUs. GPUDirect from NVIDIA allows GPUs to access certain storage and net-
work devices without the mediation of the host OS. This technology is exposed via propri-
etary, low-level hardware-specific interfaces, and does not provide higher-level abstractions,
such as a file system API.

Other hardware architectures. The Cell processor [Kahle et al. 2005] pioneered the in-
tegration of parallel accelerators into the OS, allowing system calls and file accesses from
its Synergistic Processor Elements (SPEs). The SPEs share the same die as the main pro-
cessor, offering a high bandwidth channel with memory performance more like multicore
SMPs than today’s discrete GPUs. Also, we are unaware of any published work analyzing
file system design tradeoffs or I/O intensive data parallel applications, the focus of this
paper.

Intel’s Xeon-Phi [Intel Corporation 2012] is a PCIe-attached accelerator sharing the
NUMA characteristics of discrete GPUs, but built of more traditional CPU cores that
can run a full OS such as Linux. To our knowledge Xeon-Phi does not expose the host’s
file system to software on the accelerator. We expect many aspects of GPUfs to be relevant
to Xeon-Phi systems, particularly the NUMA-driven need to maximize file cache locality.
Matuso et al [Matsuo et al. 2012] presented a file system layer for Xeon-phi, providing access
to the host file system from the card. This design does not explore file I/O in fine-grain
data-parallel workloads, however, one of the main foci of our work.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:27

Host OS support for GPU programming. Stuart [Stuart et al. 2010] prototyped CPU-GPU
communication via RPC, enabling GPU software to make host system calls. GPUfs includes
such a mechanism, but focuses on coping with data parallelism and locality at design level
via its GPU buffer cache, to avoid redundant data transfers and GPU-CPU interaction.

Hydra [Weinsberg et al. 2008] and PTask [Rossbach et al. 2011b] explore dataflow frame-
works for GPU programming, offering host CPU software an API with which to compose
GPU modules. GPUfs in contrast focuses on the complementary goal of enhancing the API
available to GPU code.

Kato [Kato et al. 2012] introduces a host OS driver for GPUs that facilitates the OS-
managed sharing of GPU resources, allowing different CPU processes to share GPU memory
for example. We hope to leverage this complementary functionality to enable future cross-
application file system support in GPUfs.

Simplifying data management in GPUs. The complexity of data management in discrete
GPUs is well recognized. Gelado [Gelado et al. 2010] suggested ADSM, an asymmetric,
CPU-centric shared memory [Gelado et al. 2010]. ADSM emulates a unified address space
between CPUs and GPUs, alleviating management problems. Unlike GPUfs, ADSM does
not support communications with a running kernel, and also introduces new accelerator-
specific abstractions, which GPUfs avoids. Recently, Ji [Ji et al. 2013] introduced RSVM,
a GPU region-based virtual memory mechanism for GPU memory management. Similarly
to GPUfs, RSVM enables GPU kernels to access large datasets potentially exceeding GPU
physical memory size by automatically swapping data in and out of GPU memory. RSVM,
however, serves different purpose and does not provide access to CPU files from GPUs. It
also introduces new APIs for manipulating memory regions in CPU and GPU code, whereas
GPUfs strives to provide paging support largely transparently to programmers. Yet, both
approaches have their benefits and their convergence is a subject of future research.

Heterogeneous and multi-core OS design. A number of researchers considered the gen-
eral problem of building OSes for heterogeneous architectures. The Helios operating sys-
tem [Nightingale et al. 2009] targets heterogeneous systems with multiple programmable
devices. However, Helios requires the processors to expose interfaces to three basic hard-
ware primitives: a timer, an interrupt controller, and the ability to catch exceptions. These
services are currently not available on most GPUs, making Helios inapplicable to such archi-
tectures. Furthermore, Helios does not account for the specifics of massively parallel SIMD
architectures, as GPUfs does.

The Barrelfish OS [Baumann et al. 2009] treats the hardware as a network of independent,
heterogeneous cores communicating via RPC. Again, it is not clear if a GPU could run
Barrelfish directly. Philosophically, Barrelfish argues for a ground-up OS redesign based on
message passing. GPUfs takes a more pragmatic view of applications interacting through
the file system, keeping the host OS largely intact.

Lock-free algorithms. Lock-free algorithms are a well known technique in parallel program-
ming [Maurice Herlihy and Nir Shavit 2008]. Our algorithm was inspired by seqlocks [Hem-
minger 2002] and read-copy update (RCU) [McKenney et al. 2002]. We are unaware of any
prior radix tree designs with lock-free traversal available for GPUs.

8. DISCUSSION

This article advocates for providing standard operating system services and abstractions on
GPUs to facilitate their harmonious integration with the rest of the system, which we believe
is a key to their broader adoption now and in the future. We implement a file system for
discrete GPUs to demonstrate the feasibility and value of this goal on real GPU hardware.
We focused initially on a file system layer because files are among the most popular data
management abstractions. We primarily targeted discrete GPUs as they are among the most

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:28 M. Silberstein et al.

commonly deployed and most powerful high-throughput processors, and their adoption is
on the rise.

We now discuss how our work relates to other efforts to improve GPU programmability,
and analyze the applicability of our experience with GPUfs on discrete GPUs to emerging
high-throughput processor architectures.

8.1. GPU productivity efforts

Recent developments make it significantly easier to accelerate computations on GPUs with-
out even writing any GPU code. There are comprehensive STL-like libraries of GPU-
accelerated algorithms [THR], efficient domain-specific APIs [CUD], and offloading compil-
ers [Off] that parallelize and execute specially annotated loops on GPUs. Complex hetero-
geneous application pipelines may be developed using data flow programming frameworks,
such as PTask [Rossbach et al. 2011b; Rossbach et al. 2011a] and StartPU [Augonnet et al.
2011].

These and other projects focus on GPU development using the traditional co-processor
programming model, however, where a GPU task is a passive computational function with
well-defined inputs and outputs. As a result, applications not fitting this pattern are cum-
bersome to implement, because GPU code cannot perform I/O calls directly. Thus, all
running GPU threads need to stop in order to execute the I/O call on a CPU, or one must
develop application-specific CPU code to handle a GPU’s I/O requests asynchronously.

System-wide support for operating system services, as demonstrated by GPUfs, alleviates
this basic constraint of the programming model, and could benefit many GPU applications
including those developed with the help of other GPU productivity tools.

8.2. Hardware trends

Discrete GPUs are not only getting faster with each generation, but are also becoming more
programmable and flexible. Newer architectures enable GPUs to execute functions that
previously required CPU-side code. For example, NVIDIA Kepler GPUs support nested
parallelism in hardware, allowing invocation of new GPU kernels from GPU code without
stopping the running kernel first. Similarly, GPUs now provide direct access to peripheral
devices, such as storage and network adapters, eliminating the CPU from the hardware data
path. Future high throughput processors [Keckler et al. 2011] are expected to enable more
efficient sequential processing. These trends reemphasize the need for high level services
on GPUs themselves. Besides making GPUs easier to program, these services will natu-
rally exploit emerging hardware capabilities, and avoid performance and power penalties of
switching between the CPU and the GPU to perform I/O calls.

Intel’s Xeon-Phi is an extreme example of GPUs gaining more CPU-like capabilities.
Xeon-Phi shares many conceptual similarities with discrete GPUs, such as slow sequential
performance and fast local memory. However, it uses more traditional CPU cores, and runs
a full Linux operating system, providing a familiar execution environment to the programs
it executes. Xeon-Phi’s software architecture supports standard operating system services.
The current Xeon-Phi system stack, however, does not allow efficient access to host files
and network, and programmers are encouraged to follow a more traditional co-processor
programming model as in GPUs. We believe that support for accessing host resources by
Xeon-Phi programs will soon be available, but its exact design and performance charac-
teristics remain to be seen. We expect many aspects of GPUfs to be relevant to Xeon-Phi
systems, particularly the NUMA-driven need to maximize file cache locality.

Emerging hybrid processors combine both a GPU and a CPU on the same die. The GPU
and CPU share physical memory, but have separate address spaces. Newer architectures,
e.g., AMD’s just announced Kaveri processor, are expected to add support for sharing a sin-
gle virtual memory address space [hUM]. Communicating through shared memory makes
CPU-GPU data transfers unnecessary, providing a much faster and easier way to exchange

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

GPUfs: Integrating a File System with GPUs 1:29

data between the processors. However, the programming models for hybrid and discrete
GPUs are largely the same, which means that GPU programs executing on hybrid GPUs
cannot directly access host resources. Thus, we believe that portable and familiar operat-
ing system interfaces would be useful for both discrete and hybrid GPUs. Of course, the
availability of shared memory between the CPU and the GPU opens up many optimization
opportunities for how the GPUs and CPUs interact. Regardless of where the engineering
details end up, we expect GPUfs’s design lessons to remain relevant for massively parallel
API calls.

REFERENCES

AMD and HSA: A New Era of Vivid Digital Experiences. http://www.amd.com/us/products/technologies/
hsa/Pages/hsa.aspx.

GPU-accelerated high performance libraries. https://developer.nvidia.com/gpu-accelerated-libraries.

GPU Regexp. http://www.hpl.hp.com/israel/research/gpu regex.html.

Network File System (NFS) version 4 protocol. http://www.ietf.org/rfc/rfc3530.txt.

NVIDIA Thrust library. https://developer.nvidia.com/thrust.

PGI accelerator compilers with OpenACC directives. www.pgroup.com/resources/accel.htm.

Popular GPU-accelerated applications. http://www.nvidia.com/object/gpu-applications.html.

Cristiana Amza, Alan L Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,
Weimin Yu, and Willy Zwaenepoel. 1996. Treadmarks: Shared memory computing on networks of
workstations. Computer 29, 2 (1996), 18–28.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. 2011. StarPU: A Uni-
fied Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Com-
putation: Practice and Experience, Special Issue: Euro-Par 2009 23 (Feb. 2011), 187–198. Issue 2.
DOI:http://dx.doi.org/10.1002/cpe.1631

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
Systems Principles. New York, NY, USA, 29–44. DOI:http://dx.doi.org/10.1145/1629575.1629579

Amr Bayoumi, Michael Chu, Yasser Hanafy, Patricia Harrell, and Gamal Refai-Ahmed. 2009. Scientific and
Engineering Computing Using ATI Stream Technology. Computing in Science and Engineering 11, 6
(2009), 92–97. DOI:http://dx.doi.org/10.1109/MCSE.2009.204

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
2004. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics 23,
3 (Aug. 2004).

Wolfgang Effelsberg and Theo Haerder. 1984. Principles of database buffer management. ACM Transactions
on Database Systems 9, 4 (Dec. 1984), 560–595. DOI:http://dx.doi.org/10.1145/1994.2022

Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and Wen-mei W. Hwu. 2010. An
Asymmetric Distributed Shared Memory Model for Heterogeneous Parallel Systems. In Proceedings of
the 15th International Conference on Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA, 347–358.

Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader: a GPU-accelerated
software router. SIGCOMM Comput. Commun. Rev. 40 (August 2010), 195–206. Issue 4.
DOI:http://dx.doi.org/10.1145/1851275.1851207

Tianyi David Han and Tarek S. Abdelrahman. 2009. hiCUDA: a high-level directive-based language for
GPU programming. In Proceedings of the 2nd Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU-2).

Stephen Hemminger. 2002. Fast reader/writer lock for gettimeofday 2.5.30. (2002). http://lwn.net/Articles/
7388/.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. 1988. Scale and performance in a distributed file system. ACM
Transactions on Computing Systems 6, 1 (February 1988).

Intel Corporation 2012. Intel Xeon-Phi Coprocessor: System Software Developers Guide. http://www.intel.
com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-system-software-developers-guide.
html.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

1:30 M. Silberstein et al.

Feng Ji, Heshan Lin, and Xiaosong Ma. 2013. RSVM: a region-based software virtual memory for GPU. In
Parallel Architectures and Compilation Techniques (PACT), 2013 22nd International Conference on.
IEEE, 269–278.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. 2005. Introduction
to the Cell Multiprocessor. IBM Journal of Research and Development 49 (July 2005), 589–604. Issue
4/5.

S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. 2012. Gdev: First-class GPU resource management in
the operating system. In USENIX Annual Technical Conference.

Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs
and the future of parallel computing. Micro, IEEE 31, 5 (2011), 7–17.

Yuki Matsuo, Taku Shimosawa, and Yutaka Ishikawa. 2012. A file I/O system for many-core based clusters.
In Proceedings of the 2nd International Workshop on Runtime and Operating Systems for Supercom-
puters. New York, NY, USA, Article 3, 8 pages. DOI:http://dx.doi.org/10.1145/2318916.2318920

Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann.

Michael D. McCool and Bruce D’Amora. 2006. Programming using RapidMind on the Cell BE. In SC ’06:
Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM, New York, NY, USA, 222.
DOI:http://dx.doi.org/10.1145/1188455.1188686

Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger, and Rusty Russell.
2002. Read-Copy Update. In Ottawa Linux Symposium. 338–367.

Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen Hunt. 2009. Helios:
heterogeneous multiprocessing with satellite kernels. In SOSP ’09: Proceedings of the 22nd ACM sym-
posium on Operating systems principles.

NVIDIA. NVIDIA CUDA 4.2 Developer Guide. http://developer.nvidia.com/category/zone/cuda-zone.

NVIDIA 2013. NVIDIA CUDA Programming Guide. NVIDIA. http://docs.nvidia.com

Khronos Group: OpenCL. The open standard for parallel programming of heterogeneous systems. http:
//www.khronos.org/opencl.

Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett Witchel. 2011b. PTask:
operating system abstractions to manage GPUs as compute devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles. 233–248.

Christopher J. Rossbach, Jon Currey, and Emmett Witchel. 2011a. Operating Systems must support GPU
abstractions. In Hot Topics in Operating Systems (HotOS ’11).

Livio Soares and Michael Stumm. 2010. FlexSC: flexible system call scheduling with exception-less system
calls. In Proceedings of the 9th USENIX conference on Operating systems design and implementation.
Berkeley, CA, USA, 1–8. http://dl.acm.org/citation.cfm?id=1924943.1924946

Jeff A. Stuart, Michael Cox, and John D. Owens. 2010. GPU-to-CPU Callbacks. In Third Workshop on
UnConventional High Performance Computing (UCHPC 2010).

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L. Stamm.
1996. Exploiting choice: instruction fetch and issue on an implementable simultaneous multithreading
processor. In Proceedings of the 23rd annual international symposium on Computer architecture (ISCA
’96). ACM, New York, NY, USA, 191–202. DOI:http://dx.doi.org/10.1145/232973.232993

Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-Mei W. Hwu. 2008. CUDA-Lite: Reducing
GPU Programming Complexity. In LCPC 2008, 21th Annual Workshop on Languages and Compilers
for Parallel Computing.

Yaron Weinsberg, Danny Dolev, Tal Anker, Muli Ben-Yehuda, and Pete Wyckoff. 2008. Tapping into the
fountain of CPUs: on operating system support for programmable devices. In 13th International Con-
ference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’08).

E. Zadok and I. Bădulescu. 1999. A Stackable File System Interface for Linux. In LinuxExpo Conference
Proceedings. Raleigh, NC, 141–151.

ACM Transactions on Computer Systems, Vol. 1, No. 1, Article 1, Publication date: January 1.

